1
|
Rajput P, Khanchandani S. A review of chitosan-functionalized graphene oxide nanocomposites: A revolutionary drug delivery vehicle for cancer therapy. Int J Biol Macromol 2025; 311:143999. [PMID: 40350131 DOI: 10.1016/j.ijbiomac.2025.143999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/15/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Cancer stands out as the primary cause of mortality globally. The variety of cancer-causing cells and their ability to adapt to the normal cellular milieu substantially complicates the treatment of cancer. Traditional cancer treatments encounter numerous constraints, including considerable side effects, insufficient efficacy and poor selectivity. This highlights the persistent demand for precise and efficient anticancer drug delivery vehicles capable of transporting therapeutic drugs specifically to targeted locations within the body. Through a comprehensive analysis of various drug delivery vehicles, multiple challenges have been identified. Nevertheless, years of in-vitro and in-vivo research, along with insights from experts around the globe, have spurred the evolution of nanotechnology-based cancer therapeutics. Among these advancements, nanocomposites derived from carbon allotropes and biopolymers have garnered significant interest owing to their non-toxic characteristics, substantial surface area for drug interaction and exemplary biocompatibility. In particular, nanocomposites composed of graphene oxide (GO) and chitosan (CS) have emerged as a significant area of focus in cancer research. By scrutinizing the findings of a plethora of research published over the past ten years, this comprehensive review delves into the recent advancements that have materialized in the field of cancer research utilizing chitosan-functionalized graphene oxide (CS/GO) nanocomposites as drug delivery vehicles. This review explores the various types of CS/GO nanovehicles, their preparation methods and modifications including functionalization with metals, polymers and biomolecules. We have also provided an in-depth analysis of the drug loading efficiency, its analytical evaluation and the key factors influencing it. Significant attention is directed towards understanding various drug release mechanisms, with a particular focus on pH-triggered stimuli-controlled release and the mathematical models employed to characterize drug release dynamics. Additionally, we have assessed the cytotoxicity and biocompatibility of CS/GO nanovehicles, which are critical considerations for guaranteeing safe and effective therapeutic outcomes. We assert that our review will serve as a strategic paradigm for researchers, offering an overview of the current landscape, addressing opportunities and challenges ahead and ultimately delineating sustainable prospective research goals focused on the drug delivery applications of CS/GO nanocomposites.
Collapse
Affiliation(s)
- Prachika Rajput
- Department of Chemistry, Netaji Subhas University of Technology (East Campus), New Delhi 110031, India
| | - Sunita Khanchandani
- Department of Chemistry, Netaji Subhas University of Technology (East Campus), New Delhi 110031, India.
| |
Collapse
|
2
|
Liu X, Fang W, Lu W, Xu M, Wu Z, Su D, Ding L, Zhang Q, Ouyang J, Wang T, Sun L, Gao S, Cheng H, Hu R. Oral pH-Sensitive Solid Self-Microemulsion of Norcantharidin Wrapped in Colon-Coated Capsule for Selective Therapy of Colorectal Carcinoma. AAPS PharmSciTech 2025; 26:67. [PMID: 39979516 DOI: 10.1208/s12249-025-03056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
Due to the poor solubility, permeability, stability and tumor-targeting ability of norcantharidin (NCTD), currently commercially available NCTD formulations require patients to take the medicine more frequently. Moreover, the formulation of NCTD themselves have certain toxicity, thus showing unsatisfactory therapeutic outcomes and serious systemic side effects. Based on the specific acidic environment at the tumor site, in this study, the pH-sensitive NCTD solid self-microemulsion (NCTD@CS-DMMA SSME) was prepared by introducing 2,3-dimethylmaleic acid amide modified chitosan (CS-DMMA), and it was wrapped in colon-coated capsule to achieve stable and controlled drug release in the acidic environment of colonic tumors. After self-emulsification, it had a particle size of 75.88 ± 0.85 nm and carried a negative charge. Under the condition of pH 6.5, NCTD@CS-DMMA SSME exhibited first-order release kinetics characteristics. Moreover, the cumulative release under the condition of pH 6.5 was 2.04-fold higher than that under the condition of pH 7.4. The in situ intestinal absorption assay elucidated that the prepared formulation could effectively improve the absorption rate constant and apparent permeability coefficients of NCTD in colon tumor site. The antitumor effect in vivo and in vitro showed that it could not only improve the inhibition ability of tumor growth, migration and invasion in mice, but also increase the tumor-infiltrating T lymphocytes in mice with colon cancer, thus inhibiting tumor growth. In summary, the NCTD@CS-DMMA SSME can deliver drugs to the site of colon tumors and continuously release drugs, providing new insights into improving the treatment effectiveness of colon cancer.
Collapse
Affiliation(s)
- Xia Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230038, Anhui, China
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei, 230038, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, Anhui, China
- Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
- Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, 230038, Anhui, China
| | - Wenyou Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230038, Anhui, China
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei, 230038, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, Anhui, China
- Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
- Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, 230038, Anhui, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Mingchao Xu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230038, Anhui, China
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei, 230038, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, Anhui, China
- Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
- Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, 230038, Anhui, China
| | - Zijun Wu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230038, Anhui, China
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei, 230038, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, Anhui, China
- Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
- Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, 230038, Anhui, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Lingzhen Ding
- Anhui Zhengyao Pharmaceutical Technology Co, Ltd, Hefei, 230041, Anhui, China
| | - Qing Zhang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Jinguang Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Tianming Wang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230038, Anhui, China
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei, 230038, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, Anhui, China
- Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
- Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, 230038, Anhui, China
| | - Lingfeng Sun
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230038, Anhui, China
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei, 230038, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, Anhui, China
- Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
- Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, 230038, Anhui, China
| | - Song Gao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230038, Anhui, China.
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei, 230038, Anhui, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, Anhui, China.
- Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
- Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, 230038, Anhui, China.
| | - Hui Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230038, Anhui, China.
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei, 230038, Anhui, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, Anhui, China.
- Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
- Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, 230038, Anhui, China.
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230038, Anhui, China.
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Hefei, 230038, Anhui, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, Anhui, China.
- Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
- Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, 230038, Anhui, China.
| |
Collapse
|
3
|
Zhang Z, Wang J, Hou L, Zhu D, Xiao HJ, Wang K. Graphene/carbohydrate polymer composites as emerging hybrid materials in tumor therapy and diagnosis. Int J Biol Macromol 2025; 287:138621. [PMID: 39667456 DOI: 10.1016/j.ijbiomac.2024.138621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Despite the introduction of various types of treatments for cancer control, cancer therapy faces several challenges such as aggressive behavior, heterogeneous characteristics, and the development of resistance. In contrast, the methods have depended on the creation and formulation of nanoparticles to impede tumor growth. Carbon nanoparticles have attracted considerable attention for cancer therapy, with graphene nanoparticles emerging as promising vehicles for delivering drugs and genes. Moreover, graphene composites can enhance immunotherapy, phototherapy, and combination therapies. Nonetheless, the biocompatibility and toxicity of graphene composites present difficulties. Consequently, this manuscript assesses the alteration of graphene nanocomposites using carbohydrate polymers. Altering graphene composites with carbohydrate polymers such as chitosan, hyaluronic acid, cellulose, and starch can enhance their efficacy in cancer treatment. Furthermore, graphene composites functionalized with carbohydrate polymers for tumor ablation induced by phototherapy. Graphene oxide and graphene quantum dots have been modified with carbohydrate polymers to enhance their therapeutic and diagnostic uses. These nanoparticles can transport gene therapy techniques like siRNA in the treatment of cancer. Despite the breakdown of these nanoparticles within the body, they maintain excellent biosafety and biocompatibility.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Jinxiang Wang
- Scientific Research Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China.
| | - Hai-Juan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Kaili Wang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Fang G, Hao P, Qiao R, Liu BX, Shi X, Wang Z, Sun P. Stimuli-responsive chitosan based nanoparticles in cancer therapy and diagnosis: A review. Int J Biol Macromol 2024; 283:137709. [PMID: 39549789 DOI: 10.1016/j.ijbiomac.2024.137709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Chitosan, obtained through deacetylation of chitin, has been shown to a promising biopolymer for the development of nano- and micro-particles. In spite of inherent anti-cancer activity of chitosan, the employment of this carbohydrate polymer for the synthesis of nanoparticles opens a new gate in disease therapy. The properties of chitosan including biocompatibility, biodegradability, and modifiability are vital in enhancing these nanoparticles, allowing for improved solubility and interaction with cellular targets. Among the pathological events, cancer has demonstrated an increase in incidence rate and therefore, the chitosan nanoparticles have been significantly utilized in cancer therapy. The present review emphasizes on the role of stimuli-responsive chitosan nanoparticles in the field of cancer therapy. The stimuli-responsive nanoparticles can release the cargo in the tumor site that not only improves the anti-cancer activity of chemotherapy drugs, but also diminishes their systemic toxicity. The stimuli-responsive chitosan nanoparticles can respond to endogenous and exogenous stimuli including pH, redox and light to release cargo. This improves the specificity towards tumor cells and enhances accumulation of drugs and/or drugs. The light-responsive chitosan nanoparticles can cause photothermal and photodynamic therapy in tumor ablation and provide theranostic feature that is cancer diagnosis and therapy simultaneously.
Collapse
Affiliation(s)
- Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Peng Hao
- Department of Joint Surgery, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing 400038, PR China
| | - Ruonan Qiao
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bi-Xia Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiujuan Shi
- School of Medicine, Tongji university, Shanghai 200092, China.
| | - Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital, Inner Mongolia Campus, Afliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, China.
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Liang W, Zhang W, Tian J, Zhang X, Lv X, Qu A, Chen J, Wu Z. Advances in carbohydrate-based nanoparticles for targeted therapy of inflammatory bowel diseases: A review. Int J Biol Macromol 2024; 281:136392. [PMID: 39423983 DOI: 10.1016/j.ijbiomac.2024.136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The incidence of inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, is rapidly increasing worldwide. Unfortunately, the current therapies for IBD are often hindered by premature drug release and undesirable side effects. With the advancement of nanotechnology, the innovative targeted nanotherapeutics are explored to ensure the accurate delivery of drugs to specific sites in the colon, thereby reducing side effects and improving the efficacy of oral administration. The emphasis of this review is to summarize the potential pathogenesis of IBD and highlight recent breakthroughs in carbohydrate-based nanoparticles for IBD treatment, including their construction, release mechanism, potential targeting ability, and their therapeutic efficacy. Specifically, we summarize the latest knowledge regarding environmental-responsive nano-systems and active targeted nanoparticles. The environmental-responsive drug delivery systems crafted with carbohydrates or other biological macromolecules like chitosan and sodium alginate, exhibit a remarkable capacity to enhance the accumulation of therapeutic drugs in the inflamed regions of the digestive tract. Active targeting strategies improve the specificity and accuracy of oral drug delivery to the colon by modifying carbohydrates such as hyaluronic acid and mannose onto nanocarriers. Finally, we discuss the challenges and provide insight into the future perspectives of colon-targeted delivery systems for IBD treatment.
Collapse
Affiliation(s)
- Wenjing Liang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| | - Jiayi Tian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinping Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinyi Lv
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ao Qu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
6
|
Yang W, Yan K, Feng Y, Zhao X. Charge reversible hyaluronic acid-based drug delivery system with pH-responsive dissociation for enhanced drug delivery. Eur J Pharm Biopharm 2024:114560. [PMID: 39447775 DOI: 10.1016/j.ejpb.2024.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Improving the efficiency of drug delivery is one of the most important goals in the field of drug delivery. One strategy for drug delivery efficiency is to make the drug delivery system capable of charge reversal. In this study, we used hyaluronic acid (HA) as the skeleton to anchor dimethylmaleic anhydride-modified polylysine (PLL-DMMA) and N-(3-Aminopropyl)-imidazole (IMI) to construct a pH-sensitive (IMI/Zn2+)-HA-PLL-DMMA system via Zn coordination. The (IMI/Zn2+)-HA-PLL-DMMA system can detach DMMA moieties and expose PLL with a positive charge in the acidic tumor microenvironment (TME), which enhances cellular uptake in cancer cells through charge reversal. Once the drug-loaded (IMI/Zn2+)-HA-PLL-DMMA enters cancer cells, it specifically responds and disassembles in the acidic TME, resulting in drug release and inhibition of cancer cell viability. The (IMI/Zn2+)-HA-PLL-DMMA system is designed to regulate drug release behavior with Zn2+ and IMI groups as control units. The HA-based system shows synergistic selective drug delivery in suppressing tumor cells and has potential in cancer therapy.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Ke Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yecheng Feng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xubo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Lashkarizadeh MR, Shafie'ei M, Lashkarizadeh M, Mousavi SM, Sheibani G, Akbari Z, Daneshafruz H, Derakhshani A, Khamesipour F. Assessment of the Effects of Albendazole-Loaded Sulfonated Graphene Oxide on Echinococcus granulosus Protoscoleces: An In Vitro Investigation. J Trop Med 2024; 2024:4851392. [PMID: 39372238 PMCID: PMC11452239 DOI: 10.1155/2024/4851392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/15/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives Due to Albendazole's relatively low efficacy and bioavailability, Echinococcosis has proven a challenge to manage successfully, with several studies investigating ways to improve the outcome, mainly showing mixed results. We, therefore, aimed to evaluate whether Sulfonated Graphene Oxide (S-GO), as nanocarriers, could improve the mentioned outcome. Methods Echinococcus protoscoleces were divided into four groups based on the agent they received, which comprised control, S-GO, Albendazole, and Albendazole-loaded S-GO (S-GO-Albendazole). Then, the Bax and Bcl-2 gene expression levels and the number of surviving protoscoleces in each group were determined. Results Bax gene expression increased by 121% in the 50 μg/ml concentration of the S-GO-Albendazole, while Bcl-2 gene expression decreased by 64%. Moreover, S-GO-Albendazole was approximately 18% more effective at neutralizing protoscoleces than Albendazole and 14% and 31% more effective at improving the expression of the mentioned genes, respectively (p < 0.05). In addition, the number of surviving protoscoleces after exposure to the mentioned concentration reduced by approximately 99%. Conclusions S-GO, despite not having significant lethality on protoscoleces, significantly increased the lethality of Albendazole and, therefore, is a suitable nanocarrier. However, we recommend conducting in vivo and clinical studies to more accurately determine this nanocomplex's potential and side effects.
Collapse
Affiliation(s)
| | - Mohammad Shafie'ei
- Student Research CommitteeFaculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh Lashkarizadeh
- Pathology and Stem Cell Research CenterDepartment of PathologySchool of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in IranKerman University of Medical Sciences, Kerman, Iran
| | - Ghazaleh Sheibani
- Medical Student of First Faculty of Medicine Charles University, Kateřinskǎ 32, Prague 2 121 08, Czech Republic
| | - Zahra Akbari
- Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Haniyeh Daneshafruz
- Department of ChemistryShahid Bahonar University of Kerman, Kerman 76169, Iran
| | - Ali Derakhshani
- Research Center for Hydatid Disease in IranKerman University of Medical Sciences, Kerman, Iran
| | - Faham Khamesipour
- Halal Research Center of the Islamic Republic of Iran (IRI)Iran Food and Drug AdministrationMinistry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
8
|
Gayathri K, Vidya R. Carbon nanomaterials as carriers for the anti-cancer drug doxorubicin: a review on theoretical and experimental studies. NANOSCALE ADVANCES 2024; 6:3992-4014. [PMID: 39114152 PMCID: PMC11302188 DOI: 10.1039/d4na00278d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024]
Abstract
The incidence of cancer is increasing worldwide in a life-threatening manner. In such a scenario, the development of anti-cancer drugs with minimal side effects and effective drug delivery systems is of paramount importance. Doxorubicin (DOX) is one of the powerful anti-cancer drugs from the chemical family anthracycline, which is used to treat a wide variety of cancers, including breast, prostate, ovarian, and hematological malignancies. However, DOX has been associated with many side effects, including lethal cardiotoxicity, baldness, gastrointestinal disturbances and cognitive function impairment. Even though DOX is administered in liposomal formulations to reduce its toxicity and enhance its therapeutic profile, the liposomal formulations themselves have certain therapeutic profile limitations such as "palmar-plantar erythrodysesthesia (PPE)", which shows severe swelling and redness in the skin, thus restricting the dosage and reducing patient compliance. In contemporary chemotherapy research, there is a great interest in the utilization of nanomaterials for precise and targeted drug delivery applications, especially using carbon-based nanomaterials. This review provides a comprehensive overview of both experimental and theoretical scientific works, exploring diverse forms of carbon-based materials such as graphene, graphene oxide, and carbon nanotubes that function as carriers for DOX. In addition, the review consolidates information on the fate of the carriers after the delivery of the payload at the site of action through different imaging techniques and the various pathways through which the body eliminates these nanomaterials. In conclusion, the review presents a detailed overview of the toxicities associated with these carriers within the human body, contributing to the development of enhanced drug delivery systems.
Collapse
Affiliation(s)
- K Gayathri
- Centre for Materials Informatics(C-mAIn), Sir. C.V. Raman Science Block, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
- Department of Physics, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
| | - R Vidya
- Centre for Materials Informatics(C-mAIn), Sir. C.V. Raman Science Block, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
- Department of Physics, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
| |
Collapse
|
9
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Yadav SK, Das S, Lincon A, Saha S, BoseDasgupta S, Ray SK, Das S. Gelatin-decorated Graphene oxide: A nanocarrier for delivering pH-responsive drug for improving therapeutic efficacy against atherosclerotic plaque. Int J Pharm 2024; 651:123737. [PMID: 38176480 DOI: 10.1016/j.ijpharm.2023.123737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The progressive inflammatory disease atherosclerosis promotes myocardial infarction, stroke, and heart attack. Anti-inflammatory drugs treat severe atherosclerosis. They are inadequate bioavailability and cause adverse effects at higher doses. A new nanomaterial coupled pH-apperceptive drug delivery system for atherosclerotic plaque is outlined here. We have synthesized a Graphene Oxide-Gelatin-Atorvastatin (GO-Gel-ATR) nanodrug characterized by spectroscopic and imaging techniques. The encapsulation efficiency of GO-Gel-ATR (79.2%) in the loading process is observed to be better than GO-ATR (66.8%). The internal milieu of the plaque cells has a pH of 6.8. The GO-Gel-ATR displays sustained and cumulative release profile at pH 6.8 compared to ATR and GO-ATR. Our proposed nanocomposite demonstrated high cytocompatibility up to 100μg/mL in foam cells induced by Oxidized-Low Density Lipoprotein (Ox-LDL) and Lipopolysaccharides (LPS) compared to normal macrophages for 24 and 48 h. The uptake efficacy of the nanodrugs is shown to be enhanced in foam cells compared to normal macrophage. Oil red O staining of foam cells with and without drugs confirmed therapeutic efficacy. Foam cells treated with nanocomposite had more lipids efflux than ATR. The finding of the in-vitro study reveals that the GO-Gel-ATR nanocomposite carriers have the potential to deliver anti-atherosclerotic drugs effectively and inhibit atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Sandeep Kumar Yadav
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Shreyasi Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Abhijit Lincon
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Saradindu Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Somdeb BoseDasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Samit K Ray
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
11
|
Sadeghi MS, Sangrizeh FH, Jahani N, Abedin MS, Chaleshgari S, Ardakan AK, Baeelashaki R, Ranjbarpazuki G, Rahmanian P, Zandieh MA, Nabavi N, Aref AR, Salimimoghadam S, Rashidi M, Rezaee A, Hushmandi K. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. ENVIRONMENTAL RESEARCH 2023; 237:117027. [PMID: 37659647 DOI: 10.1016/j.envres.2023.117027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negar Jahani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahdi Sadegh Abedin
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Chaleshgari
- Department of Avian Diseases, Faculty of Veterinary Medicine, Chamran University, Ahvaz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Reza Baeelashaki
- Department of Food Hygiene and Quality Control, Division of Animal Feed Hygiene, Faculty of Veterinary Medicine, Islamic Azad University, Shabestar Branch, Shabestar, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Hu D, Xia M, Wu L, Liu H, Chen Z, Xu H, He C, Wen J, Xu X. Challenges and advances for glioma therapy based on inorganic nanoparticles. Mater Today Bio 2023; 20:100673. [PMID: 37441136 PMCID: PMC10333687 DOI: 10.1016/j.mtbio.2023.100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most serious central nervous system diseases, with high mortality and poor prognosis. Despite the continuous development of existing treatment methods, the median survival time of glioma patients is still only 15 months. The main treatment difficulties are the invasive growth of glioma and the obstruction of the blood-brain barrier (BBB) to drugs. With rapid advancements in nanotechnology, inorganic nanoparticles (INPs) have shown favourable application prospects in the diagnosis and treatment of glioma. Due to their extraordinary intrinsic features, INPs can be easily fabricated, while doping with other elements and surface modification by biological ligands can be used to enhance BBB penetration, targeted delivery and biocompatibility. Guided glioma theranostics with INPs can improve and enhance the efficacy of traditional methods such as chemotherapy, radiotherapy and gene therapy. New strategies, such as immunotherapy, photothermal and photodynamic therapy, magnetic hyperthermia therapy, and multifunctional inorganic nanoplatforms, have also been facilitated by INPs. This review emphasizes the current state of research and clinical applications of INPs, including glioma targeting and BBB penetration enhancement methods, in vivo and in vitro biocompatibility, and diagnostic and treatment strategies. As such, it provides insights for the development of novel glioma treatment strategies.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Miao Xia
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Linxuan Wu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hanmeng Liu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhigang Chen
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jian Wen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| |
Collapse
|
13
|
Ashrafizadeh M, Hushmandi K, Mirzaei S, Bokaie S, Bigham A, Makvandi P, Rabiee N, Thakur VK, Kumar AP, Sharifi E, Varma RS, Aref AR, Wojnilowicz M, Zarrabi A, Karimi‐Maleh H, Voelcker NH, Mostafavi E, Orive G. Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioeng Transl Med 2023; 8:e10325. [PMID: 36684100 PMCID: PMC9842052 DOI: 10.1002/btm2.10325] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Üniversite CaddesiTuzla, IstanbulTurkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials ‐ National Research Council (IPCB‐CNR)NaplesItaly
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials InterfacesPontedera, PisaItaly
| | - Navid Rabiee
- School of Engineering, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vijay Kumar Thakur
- School of EngineeringUniversity of Petroleum & Energy Studies (UPES)DehradunUttarakhandIndia
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC)EdinburghUK
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR)Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and Technologies, Hamadan University of Medical SciencesHamadanIran
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacky UniversityOlomoucCzech Republic
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Xsphera Biosciences Inc.BostonMassachusettsUSA
| | - Marcin Wojnilowicz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and Environment, University of Electronic Science and Technology of ChinaChengduPR China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein CampusJohannesburgSouth Africa
| | - Nicolas H. Voelcker
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoriaAustralia
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Gorka Orive
- NanoBioCel Research Group, School of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI(UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- Singapore Eye Research InstituteSingapore
| |
Collapse
|
14
|
MTX-PEG-modified CG/DMMA polymeric micelles for targeted delivery of doxorubicin to induce synergistic autophagic death against triple-negative breast cancer. Breast Cancer Res 2023; 25:3. [PMID: 36635685 PMCID: PMC9837947 DOI: 10.1186/s13058-022-01599-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
The chemotherapy of triple-negative breast cancer based on doxorubicin (DOX) regimens suffers from great challenges on toxicity and autophagy raised off-target. In this study, a conjugate methotrexate-polyethylene glycol (shorten as MTX-PEG)-modified CG/DMMA polymeric micelles were prepared to endue DOX tumor selectivity and synergistic autophagic flux interference to reduce systematic toxicity and to improve anti-tumor capacity. The micelles could effectively promote the accumulation of autophagosomes in tumor cells and interfere with the degradation process of autophagic flux, collectively inducing autophagic death of tumor cells. In vivo and in vitro experiments showed that the micelles could exert improved anti-tumor effect and specificity, as well as reduced accumulation and damage of chemotherapeutic drugs in normal organs. The potential mechanism of synergistic autophagic death exerted by the synthesized micelles in MDA-MB-231 cells has been performed by autophagic flux-related pathway.
Collapse
|
15
|
Detection and modulation of neurodegenerative processes using graphene-based nanomaterials: Nanoarchitectonics and applications. Adv Colloid Interface Sci 2023; 311:102824. [PMID: 36549182 DOI: 10.1016/j.cis.2022.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disorders (NDDs) are caused by progressive loss of functional neurons following the aggregation and fibrillation of proteins in the central nervous system. The incidence rate continues to rise alarmingly worldwide, particularly in aged population, and the success of treatment remains limited to symptomatic relief. Graphene nanomaterials (GNs) have attracted immense interest on the account of their unique physicochemical and optoelectronic properties. The research over the past two decades has recognized their ability to interact with aggregation-prone neuronal proteins, regulate autophagy and modulate the electrophysiology of neuronal cells. Graphene can prevent the formation of higher order protein aggregates and facilitate the clearance of such deposits. In this review, after highlighting the role of protein fibrillation in neurodegeneration, we have discussed how GN-protein interactions can be exploited for preventing neurodegeneration. A comprehensive understanding of such interactions would contribute to the exploration of novel modalities for controlling neurodegenerative processes.
Collapse
|
16
|
Li Z, Xiao H, Li J, Yang Z, Jiang J, Ji J, Peng C, He Y. Graphene Oxide-Based Highly Sensitive Assay of Circulating MicroRNAs for Early Prediction of the Response to Neoadjuvant Chemotherapy in Breast Cancer. Anal Chem 2022; 94:16254-16264. [DOI: 10.1021/acs.analchem.2c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongtao Xiao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Junjie Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhongzhu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun Jiang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Juan Ji
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
17
|
Homem NC, Miranda C, Teixeira MA, Teixeira MO, Domingues JM, Seibert D, Antunes JC, Amorim MTP, Felgueiras HP. Graphene oxide-based platforms for wound dressings and drug delivery systems: A 10 year overview. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
19
|
Stimuli-responsive nanoassemblies for targeted delivery against tumor and its microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188779. [PMID: 35977690 DOI: 10.1016/j.bbcan.2022.188779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023]
Abstract
Despite the emergence of various cancer treatments, such as surgery, chemotherapy, radiotherapy, and immunotherapy, their use remains restricted owing to their limited tumor elimination efficacy and side effects. The use of nanoassemblies as delivery systems in nanomedicine for tumor diagnosis and therapy is flourishing. These nanoassemblies can be designed to have various shapes, sizes, and surface charges to meet the requirements of different applications. It is crucial for nanoassemblies to have enhanced delivery of payloads while inducing minimal to no toxicity to healthy tissues. In this review, stimuli-responsive nanoassemblies capable of combating the tumor microenvironment (TME) are discussed. First, various TME characteristics, such as hypoxia, oxidoreduction, adenosine triphosphate (ATP) elevation, and acidic TME, are described. Subsequently, the unique characteristics of the vascular and stromal TME are differentiated, and multiple barriers that have to be overcome are discussed. Furthermore, strategies to overcome these barriers for successful drug delivery to the targeted site are reviewed and summarized. In conclusion, the possible challenges and prospects of using these nanoassemblies for tumor-targeted delivery are discussed. This review aims at inspiring researchers to develop stimuli-responsive nanoassemblies for tumor-targeted delivery for clinical applications.
Collapse
|
20
|
Li J, Li Y, Zhong Z, Fu X, Li Z. One-pot self-assembly fabrication of chitosan coated hollow sphere for pH/ glutathione dual responsive drug delivery. Colloids Surf B Biointerfaces 2022; 218:112773. [PMID: 36007312 DOI: 10.1016/j.colsurfb.2022.112773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Chitosan-coated poly (methacrylic acid) (PMAA) hollow spheres with 64 ± 3% drug loading capacity and low drug leakage (7 ± 2%, 54 h) were prepared through a novel one-pot two-step self-assembly process. Site-specific doxorubicin (DOX) loading and chitosan coating were achieved by electrostatic interaction to fulfill efficient drug loading and well-controlled drug release behavior. In vitro drug release profile revealed the pH and glutathione (GSH) dual responsive fast triggered drug release behavior, reaching 62 ± 3% during the first 10 h. And completely drug release could be achieved in 54 h. The high drug content and sensitive tumor microenvironment responsibility lead to similar anti-cancer efficiency with free doxorubicin in in vitro MTT assay. This self-assembly guided one-pot two-step fabrication process was proved to be an effective and convenient way to prepare the well-defined multi-layer structure and might be further employed in fabricating high-performance drug delivery systems.
Collapse
Affiliation(s)
- Jiagen Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China.
| | - Yaqi Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China
| | - Zhanqiong Zhong
- Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Xiaohong Fu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China.
| | - Zhonghui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China.
| |
Collapse
|
21
|
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022; 350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in nanotechnology have enabled us to develop sophisticated multifunctional nanoparticles or nanosystems for targeted diagnosis and treatment of several illnesses, including cancers. To effectively treat any solid tumor, the therapy should preferably target just the malignant cells/tissue with minor damage to normal cells/tissues. Graphene oxide (GO) nanoparticles have gained considerable interest owing to their two-dimensional planar structure, chemical/mechanical stability, excellent photosensitivity, superb conductivity, high surface area, and good biocompatibility in cancer therapy. Many compounds have been functionalized on the surface of GO to increase their biological applications and minimize cytotoxicity. The review presents an overview of the physicochemical characteristics, strategies for various modifications, toxicity and biocompatibility of graphene and graphene oxide, current trends in developing GO-based nano constructs as a drug delivery cargo and other biological applications, including chemo-photothermal therapy, chemo-photodynamic therapy, bioimaging, and theragnosis in cancer. Further, the review discusses the challenges and opportunities of GO, GO-based nanomaterials for the said applications. Overall, the review focuses on the therapeutic potential of strategically developed GO nanomedicines and comprehensively discusses their opportunities and challenges in cancer therapy.
Collapse
Affiliation(s)
- Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sree Lakshmi Vemula
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahima Tejasvni Gupta
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahesh Vilasrao Giram
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sangishetty Akhil Kumar
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
22
|
Zou Y, Yan R, Wang H, Zhong K, Wang S. NIR‐Responsive Polyurethane Nanocomposites Based on PDA@FA Nanoparticles with Synergistic Antibacterial Effect. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuke Zou
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
| | - Rui Yan
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu 610065 P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu 610065 P. R. China
| | - Kai Zhong
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
| | - Shuang Wang
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
23
|
Bai J, Wang J, Feng Y, Yao Y, Zhao X. Stability-tunable core-crosslinked polymeric micelles based on an imidazole-bearing block polymer for pH-responsive drug delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Wang Y, Ke J, Guo X, Gou K, Sang Z, Wang Y, Bian Y, Li S, Li H. Chiral mesoporous silica nano-screws as an efficient biomimetic oral drug delivery platform through multiple topological mechanisms. Acta Pharm Sin B 2022; 12:1432-1446. [PMID: 35530160 PMCID: PMC9072246 DOI: 10.1016/j.apsb.2021.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
In the microscale, bacteria with helical body shapes have been reported to yield advantages in many bio-processes. In the human society, there are also wisdoms in knowing how to recognize and make use of helical shapes with multi-functionality. Herein, we designed atypical chiral mesoporous silica nano-screws (CMSWs) with ideal topological structures (e.g., small section area, relative rough surface, screw-like body with three-dimension chirality) and demonstrated that CMSWs displayed enhanced bio-adhesion, mucus-penetration and cellular uptake (contributed by the macropinocytosis and caveolae-mediated endocytosis pathways) abilities compared to the chiral mesoporous silica nanospheres (CMSSs) and chiral mesoporous silica nanorods (CMSRs), achieving extended retention duration in the gastrointestinal (GI) tract and superior adsorption in the blood circulation (up to 2.61- and 5.65-times in AUC). After doxorubicin (DOX) loading into CMSs, DOX@CMSWs exhibited controlled drug release manners with pH responsiveness in vitro. Orally administered DOX@CMSWs could efficiently overcome the intestinal epithelium barrier (IEB), and resulted in satisfactory oral bioavailability of DOX (up to 348%). CMSWs were also proved to exhibit good biocompatibility and unique biodegradability. These findings displayed superior ability of CMSWs in crossing IEB through multiple topological mechanisms and would provide useful information on the rational design of nano-drug delivery systems.
Collapse
Key Words
- APTES, 3-aminopropyltriethoxysilane
- AR, aspect ratio
- AUC0‒∞, area under the curve
- CMSRs, chiral mesoporous silica nanorods
- CMSSs, chiral mesoporous silica nanospheres
- CMSWs, chiral mesoporous silica nano-screws
- CMSs, chiral mesoporous silicas nanoparticles
- Cd, drug loading capacity
- Chiral mesoporous silica
- Cmax, maximum concentration
- DAPI, 4,6-diamidino-2-phenylindole
- DCM, dichloromethane
- DOX, doxorubicin
- EDC·HCl, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
- FBS, fetal bovine serum
- FITC, Fluorescein isothiocyanate
- Frel, relative bioavailability
- GI, gastrointestinal
- Geometric topological structure
- HOBT, 1-hydroxybenzotriazole
- IEB, intestinal epithelium barrier
- IR, infrared spectroscopy
- Intestinal epithelium barrier
- MRT0‒∞, mean residence time
- MSNs, mesoporous silica nanoparticles
- Morphology
- Mβ-CD, methyl-β-cyclodextrin
- N-PLA, N-palmitoyl-l-alanine
- NPs, nanoparticles
- Nano-screw
- Oral adsorption
- PBS, phosphate buffer solution
- RBCs, red blood cells
- RITC, rhodamine B isothiocyanate
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SBET, Specific surface area
- SBF, simulated body fluid
- SD, Sprague–Dawley
- SGF, simulated gastric fluid
- SIF, simulated intestinal fluid
- TEOS, ethylsilicate
- Tmax, peak time
- Vt, pore volume
- WBJH, pore diameter
- XRD, X-ray diffractometry
- nano-DDS, nano-drug delivery systems
- t1/2, half-life
Collapse
|
25
|
Madeo LF, Sarogni P, Cirillo G, Vittorio O, Voliani V, Curcio M, Shai-Hee T, Büchner B, Mertig M, Hampel S. Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1648. [PMID: 35268879 PMCID: PMC8911244 DOI: 10.3390/ma15051648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022]
Abstract
With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100-170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Tyler Shai-Hee
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Bernd Büchner
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Mertig
- Institute of Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| |
Collapse
|
26
|
Abstract
Chitosan (CS) and graphene oxide (GO) nanocomposites have received wide attention in biomedical fields due to the synergistic effect between CS which has excellent biological characteristics and GO which owns great physicochemical, mechanical, and optical properties. Nanocomposites based on CS and GO can be fabricated into a variety of forms, such as nanoparticles, hydrogels, scaffolds, films, and nanofibers. Thanks to the ease of functionalization, the performance of these nanocomposites in different forms can be further improved by introducing other functional polymers, nanoparticles, or growth factors. With this background, the current review summarizes the latest developments of CS-GO nanocomposites in different forms and compositions in biomedical applications including drug and biomacromolecules delivery, wound healing, bone tissue engineering, and biosensors. Future improving directions and challenges for clinical practice are proposed as well.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
27
|
Yan K, Feng Y, Gao K, Shi X, Zhao X. Fabrication of hyaluronic acid-based micelles with glutathione-responsiveness for targeted anticancer drug delivery. J Colloid Interface Sci 2022; 606:1586-1596. [PMID: 34500160 DOI: 10.1016/j.jcis.2021.08.129] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
Hyaluronic acid (HA), a natural polymer, has gained much attention recently because of its good biocompatibility and extensive availability. Herein, a novel drug delivery system based on hyaluronic acid-tetraphenyl ethylene conjugate (HA-SS-TPE) with glutathione (GSH)-responsiveness for targeted drug delivery is designed. During the self-assembly of HA-SS-TPE, doxorubicin (DOX) is loaded to form DOX-loaded polymeric micelles. These as-prepared DOX-loaded polymeric micelles not only exhibit fluorescent emission, but also fast glutathione-triggered dissociation to unload DOX by responding to tumor microenvironments. In-vitro investigations showed that the DOX-loaded polymeric micelles presented a higher intracellular release ratio in CD44-positive cells (ES2 and Hela) than in CD44-negative cells (MCF-7 and L929). Notably, in vivo investigations showed that DOX@HA-SS-TPE significantly suppressed tumor growth. As a result, such a GSH-responsive drug delivery system with fluorescent feature provides a potential treatment for CD44-overexpressing cancers.
Collapse
Affiliation(s)
- Ke Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yecheng Feng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ke Gao
- Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of medical science, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiaojing Shi
- Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of medical science, Zhengzhou University, Zhengzhou 450052, P. R. China.
| | - Xubo Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
28
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
29
|
Khorsandi Z, Borjian-Boroujeni M, Yekani R, Varma RS. Carbon nanomaterials with chitosan: A winning combination for drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Chen H, Xing L, Guo H, Luo C, Zhang X. Dual-targeting SERS-encoded graphene oxide nanocarrier for intracellular co-delivery of doxorubicin and 9-aminoacridine with enhanced combination therapy. Analyst 2021; 146:6893-6901. [PMID: 34633394 DOI: 10.1039/d1an01237a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A graphene oxide (GO)-based nanocarrier that imparts tumor-selective delivery of dual-drug with enhanced therapeutic index, is introduced. GO is conjugated with Au@Ag and Fe3O4 nanoparticles, which facilitates it with SERS tracking and magnetic targeting abilities, followed by the covalent binding of the anti-HER2 antibody, thus allowing it to both actively and passively target SKBR3 cells, human breast cancer cells expressed with HER2. Intracellular drug delivery behaviors are probed using SERS spectroscopy in a spatiotemporal manner, which demonstrates that nanocarriers are internalized into the lysosomes and release the drug in response to the acidic microenvironment. The nanocarriers loaded with dual-drug possess increased cancer cytotoxicity in comparison to those loaded with a single drug. Attractively, the enhanced cytotoxicity against cancer cells is achieved with relatively low concentrations of the drug, which is demonstrated to be involved in the drug adsorption status. These results may give us the new prospects to design GO-based delivery systems with rational drug dosages, thus achieving optimal therapeutic response of the multi-drug with increased tumor selectivity and reduced side effects.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Longqiang Xing
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Huiru Guo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Caixia Luo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Xuedian Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| |
Collapse
|
31
|
Li L, Zhang P, Li C, Guo Y, Sun K. In vitro/vivo antitumor study of modified-chitosan/carboxymethyl chitosan "boosted" charge-reversal nanoformulation. Carbohydr Polym 2021; 269:118268. [PMID: 34294300 DOI: 10.1016/j.carbpol.2021.118268] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Major obstacles in the development of nanoformulations as efficient drug delivery systems are the rapid clearance from blood circulation and lysosomal entrapment. To overcome these problems, a polysaccharide-based core-shell type charge-switchable nanoformulation (CS-LA-DMMA/CMCS/PAMAM@DOX) is constructed to improve antitumor efficacy of DOX. By applying carboxymethyl chitosan (CMCS) as bridge polymer and negatively charged chitosan-derivative as outer shell, the stability and pH-sensitivity of this nanoformulation is promisingly enhanced. Furthermore, the positively charged PAMAM@DOX could escape from lysosomes via "proton sponge effect" and "cationic-anionic interaction with lysosome membranes". Admirable cellular uptake and high apoptosis/necrosis rate were detected in this study. In vitro assays demonstrate that the CS-LA-DMMA/CMCS/PAMAM@DOX was internalized into HepG2 cells predominantly via the clathrin-mediated endocytosis pathway. Excitingly, in vivo studies showed that high accumulation of CS-LA-DMMA/CMCS/PAMAM@DOX in tumor tissue led to enhanced tumor inhibition. Compared with free DOX, the tumor inhibition rate of nanoformulation was improved up to 226%.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Congcong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yan Guo
- Department of Development Planning & Discipline Construction, Yantai University, Yantai 264005, PR China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai 264003, PR China.
| |
Collapse
|
32
|
Feng B, Zhu Y, Wu J, Huang X, Song R, Huang L, Feng X, Zeng W. Monitoring intracellular pH fluctuation with an excited-state intramolecular proton transfer-based ratiometric fluorescent sensor. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Sattari S, Adeli M, Beyranvand S, Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int J Nanomedicine 2021; 16:5955-5980. [PMID: 34511900 PMCID: PMC8416335 DOI: 10.2147/ijn.s249712] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional nanomaterials are emerging as promising candidates for a wide range of biomedical applications including tissue engineering, biosensing, pathogen incapacitation, wound healing, and gene and drug delivery. Graphene, due to its high surface area, photothermal property, high loading capacity, and efficient cellular uptake, is at the forefront of these materials and plays a key role in this multidisciplinary research field. Poor water dispersibility and low functionality of graphene, however, hamper its hybridization into new nanostructures for future nanomedicine. Functionalization of graphene, either by covalent or non-covalent methods, is the most useful strategy to improve its dispersion in water and functionality as well as processability into new materials and devices. In this review, recent advances in functionalization of graphene derivatives by different (macro)molecules for future biomedical applications are reported and explained. In particular, hydrophilic functionalization of graphene and graphene oxide (GO) to improve their water dispersibility and physicochemical properties is discussed. We have focused on the anticancer drug delivery of polyfunctional graphene sheets.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohammad Nemati
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
34
|
Xiong K, Zhou Y, Karges J, Du K, Shen J, Lin M, Wei F, Kou J, Chen Y, Ji L, Chao H. Autophagy-Dependent Apoptosis Induced by Apoferritin-Cu(II) Nanoparticles in Multidrug-Resistant Colon Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38959-38968. [PMID: 34379404 DOI: 10.1021/acsami.1c07223] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy continues to be the most commonly applied strategy for cancer. Despite the impressive clinical success obtained with several drugs, increasing numbers of (multi)drug-resistant tumors are reported. To overcome this shortcoming, novel drug candidates and delivery systems are urgently needed. Herein, a therapeutic copper polypyridine complex encapsulated in natural nanocarrier apoferritin is reported. The generated nanoparticles showed higher cytotoxicity toward various (drug-resistant) cancer cell lines than noncancerous cells. The study of the mechanism revealed that the compound triggers cell autophagy-dependent apoptosis. Promisingly, upon injection of the nanodrug conjugate into the bloodstream of a mouse model bearing a multidrug-resistant colon tumor, a strong tumor growth inhibition effect was observed. To date, this is the first study describing the encapsulation of a copper complex in apoferritin that acts by autophagy-dependent apoptosis.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ying Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Kejie Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Mingwei Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Junfeng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
35
|
Qiu Y, Bai J, Feng Y, Shi X, Zhao X. Use of pH-Active Catechol-Bearing Polymeric Nanogels with Glutathione-Responsive Dissociation to Codeliver Bortezomib and Doxorubicin for the Synergistic Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36926-36937. [PMID: 34319074 DOI: 10.1021/acsami.1c10328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synergistic therapy holds promising potential in cancer treatment. Here, the inclusion of catechol moieties, a disulfide cross-linked structure, and pendent carboxyl into the network of polymeric nanogels with glutathione (GSH)-responsive dissociation and pH-sensitive release is first disclosed for the codelivery of doxorubicin (DOX) and bortezomib (BTZ) in synergistic cancer therapy. The pendent carboxyl groups and catechol moieties are exploited to absorb DOX through electrostatic interaction and conjugate BTZ through boronate ester, respectively. Both electrostatic interactions and boronate ester are stable at neutral or alkaline pH, while they are instable in an acidic environment to further recover the activities of BTZ and DOX. The polymeric nanogels possess a superior stability to prevent the premature leakage of drugs in a physiological environment, while their structure is destroyed in response to a typical endogenous stimulus (GSH) to unload drugs. The dissociation of the drug-loaded nanogels accelerates the intracellular release of DOX and BTZ and further enhances the therapeutic efficacy. In vitro and in vivo investigations revealed that the dual-drug loaded polymeric nanogels exhibited a strong ability to suppress tumor growth. This study thus proposes a new perspective on the production of multifunctional polymeric nanogels through the introduction of different functional monomers.
Collapse
Affiliation(s)
- Yudian Qiu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jie Bai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yecheng Feng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaojing Shi
- Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xubo Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
36
|
Zhang M, Zhang S, Zhang K, Zhu Z, Miao Y, Qiu Y, Zhang P, Zhao X. Self-assembly of polymer-doxorubicin conjugates to form polyprodrug micelles for pH/enzyme dual-responsive drug delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Khan A, Alamry KA. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr Res 2021; 506:108368. [PMID: 34111686 DOI: 10.1016/j.carres.2021.108368] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is the most abundant natural biopolymer, after cellulose. It is mainly derived from the fungi, shrimp's shells, and exoskeleton of crustaceans, through the deacetylation of chitin. The ecological sustainability associated with its exercise and the flexibility of chitosan owing to its active functional hydroxyl and amino groups makes it a promising candidate for a wide range of applications through a variety of modifications. The biodegradability and biocompatibility of chitosan and its derivatives along with their various chemical functionalities make them promising carriers for pharmaceutical, nutritional, medicinal, environmental, agriculture, drug delivery, and biotechnology applications. The present work aims to provide a detailed and organized description of modified chitosan and its derivatives-based nanomaterials for biomedical applications. We addressed the biological and physicochemical benefits of nanocomposite materials made up of chitosan and its derivatives in various formulations, including improved physicochemical stability and cells/tissue interaction, controlled drug release, and increased bioavailability and efficacy in clinical practice. Moreover, several modification techniques and their effective utilization are also reviewed and collected in this review.
Collapse
Affiliation(s)
- Ajahar Khan
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Khalid A Alamry
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
38
|
Shim J, Kang J, Yun SI. Chitosan-dipeptide hydrogels as potential anticancer drug delivery systems. Int J Biol Macromol 2021; 187:399-408. [PMID: 34314799 DOI: 10.1016/j.ijbiomac.2021.07.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022]
Abstract
A novel chitosan-dipeptide hydrogel was fabricated through a combination of self-assembly of 9-fluorenylmethoxycarbonyl-modified diphenylalanine (Fmoc-FF) and its electrostatic interaction with glycol chitosan (GCS). Hydrogel strength and stability depended on its composition. The highest gel strength was observed at a Fmoc-FF mass fraction (ϕFF) of 0.85, whereby the highest combined strength of the two interactions was achieved. As the ϕFF increased above 0.6, gel stability decreased in buffered solution at pH 7.46. The incorporation of doxorubicin (DOX) as a cationic model drug significantly increased the stability of the complex hydrogels. DOX-loaded hydrogels exhibited slow DOX release, probably due to the drug's strong binding to Fmoc-FF via electrostatic attraction and the high gel stability. These hydrogels also exhibited excellent thixotropic features that facilitated the development of injectable self-healing drug delivery systems. Notably, DOX release was significantly accelerated as the pH of the medium decreased from 7.46 to 5.5 and 4.0, possibly due to hydrogel components' protonation. The DOX-loaded hydrogel exhibited notable cytotoxicity against A549 human lung cancer cells, which suggests the newly developed hydrogel to be a promising candidate vehicle for the localized and controlled drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Jaemin Shim
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea
| | - Jiseon Kang
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea
| | - Seok Il Yun
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea.
| |
Collapse
|
39
|
Liu L, Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Song Y, Sun Y. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00087-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
In the last decade, graphene oxide-based nanomaterials, such as graphene oxide (GO) and reduced graphene oxide (rGO), have attracted more and more attention in the field of biomedicine. Due to the versatile surface functionalization, ultra-high surface area, and excellent biocompatibility of graphene oxide-based nanomaterials, which hold better promise for potential applications than among other nanomaterials in biomedical fields including drug/gene delivery, biomolecules detection, tissue engineering, especially in cancer treatment.
Results
Here, we review the recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. A comprehensive and in-depth depiction of unique property of graphene oxide-based multifunctional nanomaterials is first interpreted, with particular descriptions about the suitability for applying in cancer therapy. Afterward, recently emerging representative applications of graphene oxide-based multifunctional nanomaterials in antitumor therapy, including as an ideal carrier for drugs/genes, phototherapy, and bioimaging, are systematically summarized. Then, the biosafety of the graphene oxide-based multifunctional nanomaterials is reviewed.
Conclusions
Finally, the conclusions and perspectives on further advancing the graphene oxide-based multifunctional nanomaterials toward potential and versatile development for fundamental researches and nanomedicine are proposed.
Graphic abstract
Collapse
|
40
|
Zheng D, Zhao J, Li Y, Zhu L, Jin M, Wang L, Liu J, Lei J, Li Z. Self-Assembled pH-Sensitive Nanoparticles Based on Ganoderma lucidum Polysaccharide-Methotrexate Conjugates for the Co-delivery of Anti-tumor Drugs. ACS Biomater Sci Eng 2021; 7:3764-3773. [PMID: 34213326 DOI: 10.1021/acsbiomaterials.1c00663] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In tumor therapy, polymer nanoparticles are ideal drug delivery materials because they can mask the disadvantages of anti-tumor drugs such as poor solubility in water, high toxicity, and side effects. However, most polymer-based nanoparticles do not themselves have anti-tumor properties. Herein, a novel pH-sensitive nanoparticle drug delivery system based on Ganoderma lucidum polysaccharides (GLPs), which have demonstrated anti-tumor activities, was designed to enable the delivery of methotrexate (MTX) and 10-hydroxycamptothecin (HCPT) to tumor cells, where they could exert synergistic anti-tumor effects. The prepared nanoparticles were irregularly spherical in shape with a uniform particle size of ∼190 nm, and they exhibited a high drug-loading capacity (MTX 21.5% and HCPT 22.6%) and excellent biocompatibility. Moreover, the loaded MTX and HCPT units were rapidly released under acidic conditions within the tumor cells while remaining stable under normal physiological conditions. Meanwhile, compared to free MTX and HCPT, the GLP-APBA-MTX/HCPT nanoparticles presented exhibited better tumor suppressive effects and fewer side effects in vivo, which indicates that they may be an effective anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jingyang Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yucheng Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Mengchen Jin
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zhonglong Li
- Department of Acupuncture and Massage, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, No. 1 Dongdan Dahua Road, Dongcheng District, Beijing 100730, China
| |
Collapse
|
41
|
Ghobashy MM, Elbarbary AM, Hegazy DE. Gamma radiation synthesis of a novel amphiphilic terpolymer hydrogel pH-responsive based chitosan for colon cancer drug delivery. Carbohydr Polym 2021; 263:117975. [PMID: 33858572 DOI: 10.1016/j.carbpol.2021.117975] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Particularly, chitosan (Cs) loaded with drug cannot pass through the colonic region, often leading in the bursting drug release in the stomach due to its solubility in gastric contents. The novelty of the current article is to solve this limitation by performing gamma irradiation cross-linking of Cs with two anionic polymers of (acrylic acid)-co-(2-acrylamido-2-methylpropane-sulfonic acid) (AAc/AMPS) to give amphiphilic hydrogel. The shifted in the characteristic FTIR peaks of Cs in the (Cs/AAc/AMPS) confirm the exits of inter-molecular interactions that make Cs and (AAc/AMPS) are miscible. Swelling experiments under different pH indicated that the (Cs/AAc/AMPS) hydrogels were significantly sensitive to pH change. The results give the possibility to use the obtained (Cs/AAc/AMPS) hydrogel on drug delivery system. The in vitro Fluorouracil (5-FU) releasing from (Cs/AAc/AMPS) matrix was examined under the influence of pH1 and pH7.The results confirmed the hydrogels capability to release 96 % of 5-FU drug at pH 7 after 7 h.
Collapse
Affiliation(s)
- Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, P.O. Box 8029, Egypt.
| | - Ahmed M Elbarbary
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, P.O. Box 8029, Egypt.
| | - Dalia E Hegazy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, P.O. Box 8029, Egypt
| |
Collapse
|
42
|
Yao W, Liu C, Wang N, Zhou H, Shafiq F, Yu S, Qiao W. O-nitrobenzyl liposomes with dual-responsive release capabilities for drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Optimized mesoporous silica nanoparticle-based drug delivery system with removable manganese oxide gatekeeper for controlled delivery of doxorubicin. J Colloid Interface Sci 2021; 592:227-236. [PMID: 33662827 DOI: 10.1016/j.jcis.2021.02.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/30/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Rapid progress has been made for mesoporous silica nanoparticle (MSN) in recent years; however, efforts to fabricate MSN with adjustable size have been met with limited advancement in drug delivery, especially for the synthesis of MSN with adjustable size in the range of 150-300 nm. Herein we report the construction of a series of MSNs with adjustable specific surface area, size, and pore structure, depending on the different silicon monomers selected. The optimized MSN showed large specific surface area and appropriate size distribution for efficiently anchoring doxorubicin (DOX) through the imine linkage formed. Based on the remarkable features of the unique MSN, a novel MSN-based drug delivery system was prepared through the introduction of polydopamine/manganese oxide (PDA/MnO2) coating, which reduced the premature leakage of drugs in physiological environments, and yet facilitated drug release when destroyed by responding to endogenous glutathione (GSH) at the tumor sites. Notably, the transformation of MnO2 to Mn2+ resulted in the collapse of the PDA/MnO2 coating, which facilitated drug release and therefore indicated the controlled release feature. It was demonstrated that the drug-loaded MSN-based drug delivery system delivered drugs into cancer cells and showed effective inhibition against cancer cell growth. These results suggested that the emergence of MSN with adjustable size can expand the application of MSN in drug delivery.
Collapse
|
44
|
|
45
|
Saadat M, Mostafaei F, Mahdinloo S, Abdi M, Zahednezhad F, Zakeri-Milani P, Valizadeh H. Drug delivery of pH-Sensitive nanoparticles into the liver cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021; 26:3085. [PMID: 34064173 PMCID: PMC8196792 DOI: 10.3390/molecules26113085] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Paola Varvarà
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
- Advanced Technologies Network Center, University of Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
47
|
Tu L, Luo Z, Wu YL, Huo S, Liang XJ. Gold-based nanomaterials for the treatment of brain cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0524. [PMID: 34002583 PMCID: PMC8185869 DOI: 10.20892/j.issn.2095-3941.2020.0524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Brain cancer, also known as intracranial cancer, is one of the most invasive and fatal cancers affecting people of all ages. Despite the great advances in medical technology, improvements in transporting drugs into brain tissue have been limited by the challenge of crossing the blood-brain barrier (BBB). Fortunately, recent endeavors using gold-based nanomaterials (GBNs) have indicated the potential of these materials to cross the BBB. Therefore, GBNs might be an attractive therapeutic strategy against brain cancer. Herein, we aim to present a comprehensive summary of current understanding of the critical effects of the physicochemical properties and surface modifications of GBNs on BBB penetration for applications in brain cancer treatment. Furthermore, the most recent GBNs and their impressive performance in precise bioimaging and efficient inhibition of brain tumors are also summarized, with an emphasis on the mechanism of their effective BBB penetration. Finally, the challenges and future outlook in using GBNs for brain cancer treatment are discussed. We hope that this review will spark researchers' interest in constructing more powerful nanoplatforms for brain disease treatment.
Collapse
Affiliation(s)
- Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
48
|
Nazir S, Umar Aslam Khan M, Shamsan Al-Arjan W, Izwan Abd Razak S, Javed A, Rafiq Abdul Kadir M. Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
49
|
Hu X, Yan L, Wang Y, Xu M. Ion-imprinted sponge produced by ice template-assisted freeze drying of salecan and graphene oxide nanosheets for highly selective adsorption of mercury (II) ion. Carbohydr Polym 2021; 258:117622. [PMID: 33593534 DOI: 10.1016/j.carbpol.2021.117622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 01/12/2023]
Abstract
As a kind of potential heavy metal absorbent, polysaccharide-based materials are limited by the complicated preparation method and bad selectivity toward targeted ion. Here, a fantastic sponge was produced by combining salecan and graphene oxide (GO) nanosheets via ice template-assisted freeze drying and ion-imprinting technologies. The intense intermolecular interactions between salecan and GO gave the sponge high stability. The swelling, morphology, and mechanical stiffness of the material showed highly dependent on the salecan content. Additionally, the influence of salecan content, pH, initial ion concentration, and contact time on Hg2+ adsorption was extensively investigated. Adsorption kinetics and equilibrium isotherms perfectly fitted in the pseudo-second-order and Freundlich models, reflecting the multilayer chemical-adsorption mediated mechanism. Most strikingly, the ion-imprinted sponge exhibited strong selectivity toward Hg2+ and outstanding stability with recyclability over usage of five times. These investigations provide the guidance for the construction of promising polysaccharide-based adsorbents for the remediation of Hg2+-polluted water.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province, Nanjing 210042, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Beijing 100714, China; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China.
| | - Linlin Yan
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongmei Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Man Xu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| |
Collapse
|
50
|
Jonoush ZA, Farahani M, Bohlouli M, Niknam Z, Golchin A, Hatamie S, Rezaei-Tavirani M, Omidi M, Zali H. Surface Modification of Graphene and its Derivatives for Drug Delivery Systems. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x17999200507093954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nowadays, carbon-based nanostructure materials are regarded as promising carriers for
drug delivery to improve the effective treatment of diseases. The formation of covalent and noncovalent
molecular bonds can be used for surface modification of nano-carriers in order to manipulate
their toxicity, water solubility, and cellular internalization. Graphene and its derivatives have
shown important potential in drug delivery systems. Among different graphene derivatives, Graphene
Oxide (GO) is the most extensively used derivative. GO sheets have possessed certain oxygen
functional groups including carboxylic acid groups at the edges, epoxy and hydroxyl groups on the
basal planes. The oxygen groups on the surface of GO sheets enhance their capabilities for functionalization
with chemical and bioactive molecules. In this review, we highlight the recent researches
about the effect of reactive sites on the surface of GO and its derivatives in drug delivery systems.
Therefore, the application of GO and its derivatives have been discussed as a delivery system in cancer
treatment, gene therapy, and combination therapy, followed by discussions on their related issues.
Finally, the review will provide a future perspective to the applications of GO-based materials as part
of drug delivery systems, and may open up new viewpoints to motivate broader interests across these
interdisciplinary fields.
Collapse
Affiliation(s)
- Zahra A. Jonoush
- Department of Immunology, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadie Hatamie
- Department of Power Mechanical Engineering National Tsing Hua University Hsinchu 30013, Taiwan
| | | | - Meisam Omidi
- School of Dentistry, Marquette University, Wisconsin, United States
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|