1
|
Zhang X, Li H, Wang G, Zhang Z, Li G, Gao Y, Niu F, Liu J. One-step 3D shrinking method to prepare robust and multifunctional flexible strain sensor with brain cortex-like wrinkled structured. J Colloid Interface Sci 2025; 692:137348. [PMID: 40199178 DOI: 10.1016/j.jcis.2025.137348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 04/10/2025]
Abstract
At the current stage of rapid development in flexible electronics technology, flexible strain sensors face the challenge of integrating multiple functions while maintaining high sensitivity, a wide strain response range, and stable sensing performance in complex and harsh environments. In response to this challenge, we propose a facile and transfer-free one-step 3D-shrinking approach inspired by the wrinkled structure of the brain cortex. This method involves spraying a uniform conductive layer onto a pre-inflated latex balloon and gradually releasing the air, which induces the formation of an intertwined, meandering conductive layer that resembles a brain cortex-like wrinkled structure. The conductive layer at the wrinkles is interlocked and engaged with the latex substrate, thus achieving a robust anchoring effect and effectively balancing the mechanical properties, surface wettability, and sensing performance of the sensor. The wrinkled conductive layer forms a hierarchical micro-nano structure, endowing the sensor with self-cleaning functionality and a water contact angle (WCA) of up to 168.4°. Meanwhile, the sensor exhibits a rapid response time of 100 ms, a gauge factor (GF) up to 2653.3, and a broad strain detection range of 0.1-191 %. More importantly, the sensor maintains excellent electrochemical stability and superhydrophobic durability even after being subjected to water scouring, finger wiping, ultrasonic cleaning, and exposure to humid or corrosive environments. In addition, after undergoing a stretch-release cyclic test lasting up to 30,000 s, the sensor demonstrates regular and repeatable resistance changes, and the wrinkled structure remains intact. Its compact and lightweight design allows it to be easily assembled for dynamically monitoring the full range of human body movements (from subtle pulse beats to large joint movements), air flow, liquid droplet falling height, and variable weather conditions. Consequently, this brain cortex-like wrinkled structure sensor offers a simple and universal fabrication method for high-performance strain sensors, providing valuable insights for advancing the next generation of flexible electronics.
Collapse
Affiliation(s)
- Xuemei Zhang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Hongwei Li
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Guang Wang
- Shaanxi Jingdian Yongcheng Engineering Technology Co., Ltd., Xi'an 710000, China
| | - Zhengxin Zhang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Guixian Li
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yunyan Gao
- Shaanxi Jingyi Chemical Co., Ltd., Yulin 719000, China.
| | - Fengxing Niu
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
2
|
Zhou Y, Pei K, Guo Z. Emerging transparent conductive superhydrophobic surfaces. Adv Colloid Interface Sci 2025; 340:103443. [PMID: 39983326 DOI: 10.1016/j.cis.2025.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/27/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Transparent conductive superhydrophobic surfaces (TCSHSs) represent a novel class of multifunctional materials that concurrently exhibit high transparency, excellent electrical conductivity, and robust superhydrophobicity. These three desirable properties are synergistically combined to provide a wide variety of advantages for various optoelectronic applications with water-repelling capabilities, including solar cells, smart windows, touch screens, and automobile windshields, all of which benefit from self-cleaning, anti-icing, anti-fouling, and anti-corrosion properties. This review aims to provide an overview of recent advancements in the field of TCSHSs. It begins by revisiting the fundamental principles governing superhydrophobic behavior and delving into the underlying mechanisms of various wetting phenomena. The review also highlights the intricate balance among transparency, conductivity, and superhydrophobicity, along with the associated physical principles. Furthermore, it introduces emerging TCSHSs in terms of material types, preparation methods, evaluation criteria, and cutting-edge applications. Finally, it summarizes the critical challenges and promising future prospects for TCSHSs, which will facilitate further development in this field.
Collapse
Affiliation(s)
- Yongshen Zhou
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Ke Pei
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
3
|
Van Nguyen D, Song P, Manshaii F, Bell J, Chen J, Dinh T. Advances in Soft Strain and Pressure Sensors. ACS NANO 2025; 19:6663-6704. [PMID: 39933798 DOI: 10.1021/acsnano.4c15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Soft strain and pressure sensors represent a breakthrough in material engineering and nanotechnology, providing accurate and reliable signal detection for applications in health monitoring, sports management, human-machine interface, or soft robotics, when compared to traditional rigid sensors. However, their performance is often compromised by environmental interference and off-axis mechanical deformations, which lead to nonspecific responses, as well as unstable and inaccurate measurements. These challenges can be effectively addressed by enhancing the sensors' specificity, making them responsive only to the desired stimulus while remaining insensitive to unwanted stimuli. This review systematically examines various materials and design strategies for developing strain and pressure sensors with high specificity for target physical signals, such as tactility, pressure distribution, body motions, or artery pulse. This review highlights approaches in materials engineering that impart special properties to the sensors to suppress interference from factors such as temperature, humidity, and liquid contact. Additionally, it details structural designs that improve sensor performance under different types of off-axis mechanical deformations. This review concludes by discussing the ongoing challenges and opportunities for inspiring the future development of highly specific electromechanical sensors.
Collapse
Affiliation(s)
- Duy Van Nguyen
- School of Engineering and Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Farid Manshaii
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - John Bell
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Jun Chen
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Toan Dinh
- School of Engineering and Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| |
Collapse
|
4
|
Chang S, Yao L, Wang L, Wu Y. Research Progress in the Construction Strategy and Application of Superhydrophobic Wood. Molecules 2025; 30:719. [PMID: 39942821 PMCID: PMC11819681 DOI: 10.3390/molecules30030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Wood serves as a green biomass material with sustainable utilization and environmental friendliness. The modification of wood can be used to obtain superhydrophobic properties and further expand wood's application range. This paper focuses on the development status of superhydrophobic surfaces with micro-/nanoscale rough structures. Based on the surface wettability theory, this paper introduces common methods of superhydrophobic modification of wood materials, compares the advantages and disadvantages of these methods, discusses the relationship between the surface microstructure and wettability, and summarizes the applications of superhydrophobic wood in oil-water separation, self-cleaning, and self-healing. Finally, the future development strategies of superhydrophobic coating materials are elucidated to provide basic theoretical support for the synthesis and diverse applications of superhydrophobic wood and a reference for subsequent research and development.
Collapse
Affiliation(s)
- Siyu Chang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.C.); (Y.W.)
- Inner Mongolia Autonomous Region Russian and Mongolian Imported Wood Processing and Utilization Engineering Technology Research Center, Hohhot 010018, China
| | - Lihong Yao
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.C.); (Y.W.)
- Inner Mongolia Autonomous Region Russian and Mongolian Imported Wood Processing and Utilization Engineering Technology Research Center, Hohhot 010018, China
| | - Lei Wang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.C.); (Y.W.)
| | - Yueqi Wu
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.C.); (Y.W.)
- Inner Mongolia Autonomous Region Russian and Mongolian Imported Wood Processing and Utilization Engineering Technology Research Center, Hohhot 010018, China
| |
Collapse
|
5
|
Uddin Rabbi MB, Haque S, Bedoura S. Advancements in synthesis, immobilization, characterization, and multifaceted applications of silver nanoparticles: A comprehensive review. Heliyon 2024; 10:e40931. [PMID: 39759340 PMCID: PMC11700253 DOI: 10.1016/j.heliyon.2024.e40931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Silver nanoparticles (AgNPs) have attracted significant interest in recent years owing to their unique physicochemical properties, including antimicrobial reduction capabilities, photocatalytic activity, self-cleaning features, superhydrophobicity, and electrical conductivity. Their characteristics render them highly advantageous for various textile, electronics, food and agriculture, water treatment, and biomedical applications. This detailed analysis explores the recent benefits and drawbacks of various synthesis methods, immobilization techniques, and characterization of AgNPs while emphasizing novel strategies that improve their functionality across different substrates. A comprehensive analysis is conducted on various synthesis methods, including physical, chemical, and biological approaches. Additionally, immobilization techniques such as in-situ synthesis, pad-dry-cure, and printing on diverse substrates are thoroughly examined for their role in enhancing the functionality of textile substrates. Advanced characterization techniques, encompassing spectroscopic and microscopic methods, have been reviewed to provide a comprehensive understanding of AgNPs' structural and functional properties. This review highlights the progress made in synthesizing AgNPs, focusing on the ability to control their size and shape for targeted applications. Improved immobilization methods have significantly enhanced the stability of AgNPs in intricate environments. In contrast, advanced characterization techniques facilitate a more accurate control and assessment of the properties of AgNPs. The utilization of AgNPs as an antimicrobial agent for surface and food protection, medical devices, antiviral agents, and therapeutic tools showcases their extensive influence across the field. The cytotoxic effects of AgNPs on the human body have been thoroughly examined. This review examines recent advancements in AgNPs to encourage additional research and the development of innovative formulations. It also highlights future perspectives and research directions to effectively and sustainably utilize the potential of AgNPs.
Collapse
Affiliation(s)
- Md. Belal Uddin Rabbi
- Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Sadia Haque
- Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Sultana Bedoura
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| |
Collapse
|
6
|
Wang J, Liu Y. Self-Driven Gas Spreading on Mesh Surfaces for Regeneration of Underwater Superhydrophobicity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40231-40242. [PMID: 39034615 DOI: 10.1021/acsami.4c07843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Underwater superhydrophobic surfaces stand as a promising frontier in technological applications such as drag reduction, antifouling, and anticorrosion. Unfortunately, the air film, known as the plastron, on these surfaces tends to be unstable. To address this problem, active approaches have been designed to preserve or restore plastrons. In this work, a self-driven gas spreading superhydrophobic mesh (SHM) surface is designed to facilitate recovery of the plastron. The immersed SHM can be "wetted" by gas, even when the plastron is removed. We demonstrate that the injected gas can spread spontaneously along the SHM over a large area, which greatly simplifies the plastron replenishment process. By incorporating a locally coated gas-producing layer, we achieve rapid in situ plastron recovery and long-term immersion stability, extending the plastron lifespan by at least 48 times. We also provide a framework for designing an SHM with suitable structural dimensions for gas spreading. Furthermore, an SHM with asymmetric structural dimensions enables unidirectional gas transport by the capillary pressure difference. This SHM surface shows excellent drag reduction properties (37.2%) and has a high slip recovery coefficient (73.4%) after plastron loss. This facile and scalable method is expected to broaden the range of potential applications involving nonwetting-related fields.
Collapse
Affiliation(s)
- Jiaming Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Yuhong Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Dai Z, Lei M, Ding S, Zhou Q, Ji B, Wang M, Zhou B. Durable superhydrophobic surface in wearable sensors: From nature to application. EXPLORATION (BEIJING, CHINA) 2024; 4:20230046. [PMID: 38855620 PMCID: PMC11022629 DOI: 10.1002/exp.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 06/11/2024]
Abstract
The current generation of wearable sensors often experiences signal interference and external corrosion, leading to device degradation and failure. To address these challenges, the biomimetic superhydrophobic approach has been developed, which offers self-cleaning, low adhesion, corrosion resistance, anti-interference, and other properties. Such surfaces possess hierarchical nanostructures and low surface energy, resulting in a smaller contact area with the skin or external environment. Liquid droplets can even become suspended outside the flexible electronics, reducing the risk of pollution and signal interference, which contributes to the long-term stability of the device in complex environments. Additionally, the coupling of superhydrophobic surfaces and flexible electronics can potentially enhance the device performance due to their large specific surface area and low surface energy. However, the fragility of layered textures in various scenarios and the lack of standardized evaluation and testing methods limit the industrial production of superhydrophobic wearable sensors. This review provides an overview of recent research on superhydrophobic flexible wearable sensors, including the fabrication methodology, evaluation, and specific application targets. The processing, performance, and characteristics of superhydrophobic surfaces are discussed, as well as the working mechanisms and potential challenges of superhydrophobic flexible electronics. Moreover, evaluation strategies for application-oriented superhydrophobic surfaces are presented.
Collapse
Affiliation(s)
- Ziyi Dai
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
- State Key Laboratory of Crystal MaterialsInstitute of Novel SemiconductorsSchool of MicroelectronicsShandong UniversityJinanChina
| | - Ming Lei
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Sen Ding
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Qian Zhou
- School of Physics and ElectronicsCentral South UniversityChangshaChina
| | - Bing Ji
- School of Physics and ElectronicsHunan Normal UniversityChangshaChina
| | - Mingrui Wang
- Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| |
Collapse
|
8
|
Burak D, Seo DC, An HE, Jeong S, Lee SE, Cho SH. Chitosan-Based Structural Color Films for Humidity Sensing with Antiviral Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:351. [PMID: 38392724 PMCID: PMC10892554 DOI: 10.3390/nano14040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
This scientific investigation emphasizes the essential integration of nature's influence in crafting multifunctional surfaces with bio-inspired designs for enhanced functionality and environmental advantages. The study introduces an innovative approach, merging color decoration, humidity sensing, and antiviral properties into a unified surface using chitosan, an organo-biological polymer, to create cost-effective multilayered films through sol-gel deposition and UV photoinduced deposition of metal nanoparticles. The resulting chitosan films showcase diverse structural colors and demonstrate significant antiviral efficiency, with a 50% and 85% virus inhibition rate within a rapid 20 min reaction, validated through fluorescence cell expression and real-time qPCR (polymerase chain reaction) assays. Silver-deposited chitosan films further enhance antiviral activity, achieving remarkable 91% and 95% inhibition in independent assays. These films exhibit humidity-responsive color modifications across a 25-90% relative humidity range, enabling real-time monitoring validated through simulation studies. The proposed three-in-one functional surface can have versatile applications in surface decoration, medicine, air conditioning, and the food industry. It can serve as a real-time humidity sensor for indoor and outdoor surfaces, find use in biomedical devices for continuous humidity monitoring, and offer antiviral protection for frequently handled devices and tools. The customizable colors enhance visual appeal, making it a comprehensive solution for diverse applications.
Collapse
Affiliation(s)
- Darya Burak
- Materials Architecturing Research Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; (D.B.); (H.-E.A.); (S.J.)
- Department of Nanomaterial Science and Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dong-Chan Seo
- Research Animal Resources Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea;
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong-Eun An
- Materials Architecturing Research Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; (D.B.); (H.-E.A.); (S.J.)
- Department of Materials Science and Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sohee Jeong
- Materials Architecturing Research Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; (D.B.); (H.-E.A.); (S.J.)
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea;
| | - So-Hye Cho
- Materials Architecturing Research Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; (D.B.); (H.-E.A.); (S.J.)
- Department of Nanomaterial Science and Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
9
|
Liu T, Liu L, Gou GY, Fang Z, Sun J, Chen J, Cheng J, Han M, Ma T, Liu C, Xue N. Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21721-21745. [PMID: 37098855 DOI: 10.1021/acsami.3c02690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flexible wearable devices have been widely used in biomedical applications, the Internet of Things, and other fields, attracting the attention of many researchers. The physiological and biochemical information on the human body reflects various health states, providing essential data for human health examination and personalized medical treatment. Meanwhile, physiological and biochemical information reveals the moving state and position of the human body, and it is the data basis for realizing human-computer interactions. Flexible wearable physiological and biochemical sensors provide real-time, human-friendly monitoring because of their light weight, wearability, and high flexibility. This paper reviews the latest advancements, strategies, and technologies of flexibly wearable physiological and biochemical sensors (pressure, strain, humidity, saliva, sweat, and tears). Next, we systematically summarize the integration principles of flexible physiological and biochemical sensors with the current research progress. Finally, important directions and challenges of physiological, biochemical, and multimodal sensors are proposed to realize their potential applications for human movement, health monitoring, and personalized medicine.
Collapse
Affiliation(s)
- Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lidan Liu
- Zhucheng Jiayue Central Hospital, Shandong 262200, China
| | - Guang-Yang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Jianhai Sun
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jianqun Cheng
- School of Integrated Circuit, Quanzhou University of Information Engineering, Quanzhou, Fujian 362000, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - Tianjun Ma
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Tian N, Wei J, Zhang J. Design of Waterborne Superhydrophobic Fabrics with High Impalement Resistance and Stretching Stability by Constructing Elastic Reconfigurable Micro-/Micro-/Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6556-6567. [PMID: 37117159 DOI: 10.1021/acs.langmuir.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Superhydrophobic fabrics have great application potential in many fields including wearable electronic devices, sports textiles, and human health monitoring, but good water impalement resistance and stretching stability are the prerequisites. Here, we report the design of waterborne superhydrophobic fabrics with high impalement resistance and stretching stability by constructing elastic reconfigurable micro-/micro-/nanostructures. Following theoretical analysis, two approaches were proposed and employed: (i) regulating distance between the microfibers of polyester fabrics to decrease the solid-liquid contact area, and (ii) forming reconfigurable two-tier hierarchical micro-/nanostructures on the microfibers by stretching during dipping to further decrease the solid-liquid contact area. The effects of microfiber distance and micro-/nanostructures on microfibers on superhydrophobicity and impalement resistance were studied. The superhydrophobic fabrics show excellent impalement resistance as verified by high-speed water impact, water jetting, and rainfall, etc. The fabrics also show excellent stretching stability, as 100% stretching and 1000 cycles of cyclic 100% stretching-releasing have no obvious influence on superhydrophobicity. Additionally, the fabrics show good antifouling property, self-cleaning performance, as well as high abrasion and washing stability. The experimental results agree with the theoretical simulation very well. We anticipate that this study will boost the development of impalement-resistant and stretching-stable superhydrophobic surfaces.
Collapse
Affiliation(s)
- Ning Tian
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinfei Wei
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Guan H, Li H, Lai X, Zeng X. Facile fabrication of flame‐retardant and conductive cotton fabric via layer‐by‐layer assembly for human motion detection. J Appl Polym Sci 2022. [DOI: 10.1002/app.52915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hang Guan
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| |
Collapse
|
12
|
Babu VJ, Anusha M, Sireesha M, Sundarrajan S, Abdul Haroon Rashid SSA, Kumar AS, Ramakrishna S. Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers (Basel) 2022; 14:2219. [PMID: 35683893 PMCID: PMC9182624 DOI: 10.3390/polym14112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
It has become a scientific obligation to unveil the underlying mechanisms and the fabrication methods behind wearable/stretchable strain sensors based on intelligent nanomaterials in order to explore their possible potential in the field of biomedical and healthcare applications. This report is based on an extensive literature survey of fabrication of stretchable strain sensors (SSS) based on nanomaterials in the fields of healthcare, sports, and entertainment. Although the evolution of wearable strain sensors (WSS) is rapidly progressing, it is still at a prototype phase and various challenges need to be addressed in the future in special regard to their fabrication protocols. The biocalamity of COVID-19 has brought a drastic change in humans' lifestyles and has negatively affected nations in all capacities. Social distancing has become a mandatory rule to practice in common places where humans interact with each other as a basic need. As social distancing cannot be ruled out as a measure to stop the spread of COVID-19 virus, wearable sensors could play a significant role in technologically impacting people's consciousness. This review article meticulously describes the role of wearable and strain sensors in achieving such objectives.
Collapse
Affiliation(s)
- Veluru Jagadeesh Babu
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Merum Anusha
- Department of Pharmacology, S V Medical College, Dr NTR University of Health Sciences, Vijayawada 517501, India;
| | - Merum Sireesha
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Syed Sulthan Alaudeen Abdul Haroon Rashid
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - A. Senthil Kumar
- Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| |
Collapse
|
13
|
Elzaabalawy A, Meguid SA. Advances in the development of superhydrophobic and icephobic surfaces. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN 2022; 18:509-547. [PMID: 37520670 PMCID: PMC9132174 DOI: 10.1007/s10999-022-09593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/26/2022] [Indexed: 08/01/2023]
Abstract
Superhydrophobicity and icephobicity are governed by surface chemistry and surface structure. These two features signify a potential advance in surface engineering and have recently garnered significant attention from the research community. This review aims to simulate further research in the development of superhydrophobic and icephobic surfaces in order to achieve their wide-spread adoption in practical applications. The review begins by establishing the fundamentals of the wetting phenomenon and wettability parameters. This is followed by the recent advances in modeling and simulations of the response of superhydrophobic surfaces to static and dynamic droplets contact and impingement, respectively. In view of their versatility and multifunctionality, a special attention is given to the development of these surfaces using nanocomposites. Furthermore, the review considers advances in icephobicity, its comprehensive characterization and its relation to superhydrophobicity. The review also includes the importance of the use of superhydrophobic surface to combat viral and bacterial contamination that exist in fomites.
Collapse
Affiliation(s)
- Assem Elzaabalawy
- Mechanics and Aerospace Design Lab, University of Toronto, Toronto, M5S 3G8 Canada
| | - Shaker A. Meguid
- Mechanics and Aerospace Design Lab, University of Toronto, Toronto, M5S 3G8 Canada
| |
Collapse
|
14
|
Chen D, Zhu S, Li W, Kang Z. Stable superhydrophobic and conductive surface: Fabrication of interstitial coral-like copper nanostructure by self-assembly and spray deposition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
|
16
|
Liu K, Yang C, Zhang S, Wang Y, Zou R, Lee A, Deng Q, Hu N. Multifunctional Slippery Polydimethylsiloxane/Carbon Nanotube Composite Strain Sensor with Excellent Liquid Repellence and Anti-Icing/Deicing Performance. Polymers (Basel) 2022; 14:polym14030409. [PMID: 35160396 PMCID: PMC8838627 DOI: 10.3390/polym14030409] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
In this paper, a multifunctional slippery polydimethylsiloxane/carbon nanotube composite strain sensor (SPCCSS) is prepared using a facile template method. Benefitting from the slippery surface, the SPCCSS shows excellent liquid repellence properties, which can repel various liquids such as oil, cola, yogurt, hot water and some organic solvents. Meanwhile, the SPCCSS has a large strain sensing range (up to 100%), good sensitivity (GF = 3.3) and stable response with 500 cyclic stretches under 20% strain. Moreover, it is also demonstrated that the SPCCSS displays outstanding corrosion resistance (from pH = 1 to pH = 14) and anti-icing (8 min at −20 °C)/photothermal deicing (104 s with NIR power density of 1 W/cm2) properties, broadening its application in extreme acid, alkali and low-temperature conditions. Therefore, the multifunctional SPCCSS with the liquid repellence, anti-corrosion, and anti-icing/deicing properties has potential applications in wearable human motion monitoring tools under complex harsh environments.
Collapse
Affiliation(s)
- Ke Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; (K.L.); (S.Z.); (Y.W.); (R.Z.); (A.L.); (Q.D.)
| | - Chao Yang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; (K.L.); (S.Z.); (Y.W.); (R.Z.); (A.L.); (Q.D.)
- Correspondence: (C.Y.); (N.H.)
| | - Siyuan Zhang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; (K.L.); (S.Z.); (Y.W.); (R.Z.); (A.L.); (Q.D.)
| | - Yao Wang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; (K.L.); (S.Z.); (Y.W.); (R.Z.); (A.L.); (Q.D.)
| | - Rui Zou
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; (K.L.); (S.Z.); (Y.W.); (R.Z.); (A.L.); (Q.D.)
- National Engineering Research Center for Technological Innovation Method and Tool, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Alamusi Lee
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; (K.L.); (S.Z.); (Y.W.); (R.Z.); (A.L.); (Q.D.)
- National Engineering Research Center for Technological Innovation Method and Tool, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qibo Deng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; (K.L.); (S.Z.); (Y.W.); (R.Z.); (A.L.); (Q.D.)
| | - Ning Hu
- National Engineering Research Center for Technological Innovation Method and Tool, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- Correspondence: (C.Y.); (N.H.)
| |
Collapse
|
17
|
Lee S. Superhydrophobicity and conductivity of polyester-conductive fabrics using alkaline hydrolysis. RSC Adv 2022; 12:22911-22921. [PMID: 36106007 PMCID: PMC9377211 DOI: 10.1039/d2ra03996f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
A superhydrophobic conductive fabric is developed to solve the problem of functional deterioration due to oxidation by air and water through alkaline hydrolysis and hydrophobic coating.
Collapse
Affiliation(s)
- Suhyun Lee
- Department of Fashion Design, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
18
|
Wang Y, Peng S, Zhu S, Wang Y, Qiang Z, Ye C, Liao Y, Zhu M. Biomass-Derived, Highly Conductive Aqueous Inks for Superior Electromagnetic Interference Shielding, Joule Heating, and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57930-57942. [PMID: 34797629 DOI: 10.1021/acsami.1c17170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conductive composite inks are widely used in various applications such as flexible electronics. However, grand challenges still remain associated with their relatively low electrical conductivity and require heavy use of organic solvents, which may limit their high performance in broad applications and cause environmental concerns. Here, we report a generalized and eco-friendly strategy to fabricate highly conductive aqueous inks using silver nanowires (AgNWs) and biomass-derived organic salts, including succinic acid-chitosan (SA-chitosan) and sebacic acid-chitosan. SA-chitosan/AgNW composite coatings can be prepared by directly casting conductive aqueous inks on various substrates, followed by subsequently heating for cross-linking. The composite coatings exhibit an ultrahigh electrical conductivity up to 1.4 × 104 S/cm, which are stable after being treated with various organic solvents and/or kept at a high temperature of 150 °C, indicating their high chemical and thermal resistance. The flexibility and performance durability of these composite coatings were demonstrated by a suite of characterization methods, including bending, folding, and adhesion tests. Moreover, a high electromagnetic interference shielding (EMI) effectiveness of 73.3 dB is achieved for SA-chitosan/AgNW composite coatings at a thickness of only 10 μm due to the ultrahigh electrical conductivity. Additionally, we further demonstrated that such conductive composite inks can be used for fabricating functional textiles for a variety of applications with high performance, such as EMI shielding, Joule heating, and strain sensing. The robust and highly conductive inks prepared by this simple and environmental-friendly method hold great promise as important material candidates for the potential large-scale manufacturing of flexible and wearable electronics.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Suping Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shu Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, Donghua University Center for Civil Aviation Composites, Donghua University, Shanghai 200051, China
| | - Yuming Wang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
19
|
Facile preparation of superhydrophobic conductive textiles and the application of real-time sensor of joint motion sensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Wang Z, Zhang X, Cao T, Wang T, Sun L, Wang K, Fan X. Antiliquid-Interfering, Antibacteria, and Adhesive Wearable Strain Sensor Based on Superhydrophobic and Conductive Composite Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46022-46032. [PMID: 34542266 DOI: 10.1021/acsami.1c15052] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conductive hydrogels are promising multifunctional materials for wearable sensors, but their practical applications require combined properties that are difficult to achieve. Herein, we developed a flexible wearable sensor with double-layer structure based on conductive composite hydrogel, which included the outer layer of silicone elastomer (Ecoflex)/silica microparticle composite film and the inner layer of P(AAm-co-HEMA)-MXene-AgNPs hydrogel. Through covalently cross-linking silicone elastomer on the surface of the hydrogel polymer, we bonded a thin Ecoflex film (100 μm) on the P(AAm-co-HEMA)-MXene-AgNPs hydrogel with robust interface, which can easily adhere to the Ecoflex/SiO2 microparticle composite film by silicone glue. The Ecoflex/SiO2 microparticle composite film endows the strain wearable sensor with superhydrophobic function that could maintain the stability under stretching or bending. Moreover, it can effectively resist the interference of water droplets and water flow. The P(AAm-co-HEMA)-MXene-AgNPs hydrogel exhibits outstanding antibacterial activity to inhibit Staphylococcus aureus, Escherichia coli, and even drug-resistant Escherichia coli. In addition, the flexible wearable sensor exhibited good self-adhesive performance by changing the reaction temperature of hydrogel and can adhere strongly onto various materials. The conductive composite hydrogel reported in this work contributes an innovative strategy for the preparation of multifunctional flexible wearable sensor.
Collapse
Affiliation(s)
- Zichao Wang
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xuan Zhang
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tao Cao
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tong Wang
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Linxiao Sun
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Keyao Wang
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaodong Fan
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
21
|
Fabrication of elastic, conductive, wear-resistant superhydrophobic composite material. Sci Rep 2021; 11:12646. [PMID: 34135443 PMCID: PMC8209028 DOI: 10.1038/s41598-021-92231-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 11/08/2022] Open
Abstract
A polydimethylsiloxane (PDMS)/Cu superhydrophobic composite material is fabricated by wet etching, electroless plating, and polymer casting. The surface topography of the material emerges from hierarchical micro/nanoscale structures of etched aluminum, which are rigorously copied by plated copper. The resulting material is superhydrophobic (contact angle > 170°, sliding angle < 7° with 7 µL droplets), electrically conductive, elastic and wear resistant. The mechanical durability of both the superhydrophobicity and the metallic conductivity are the key advantages of this material. The material is robust against mechanical abrasion (1000 cycles): the contact angles were only marginally lowered, the sliding angles remained below 10°, and the material retained its superhydrophobicity. The resistivity varied from 0.7 × 10–5 Ωm (virgin) to 5 × 10–5 Ωm (1000 abrasion cycles) and 30 × 10–5 Ωm (3000 abrasion cycles). The material also underwent 10,000 cycles of stretching and bending, which led to only minor changes in superhydrophobicity and the resistivity remained below 90 × 10–5 Ωm.
Collapse
|
22
|
Shan Y, Liang S, Mao X, Lu J, Liu L, Huang Y, Yang J. Stretchable dual cross-linked silicon elastomer with a superhydrophobic surface and fast triple self-healing ability at room temperature. SOFT MATTER 2021; 17:4643-4652. [PMID: 33949426 DOI: 10.1039/d0sm02175j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stretchable elastomers with superhydrophobic surfaces have potential applications in wearable electronics. However, various types of damage inevitably occur on these elastomers in actual application, resulting in the deterioration of the superhydrophobic properties. In this work, superhydrophobic elastomers (HB-imine-BZn-PDMS), was fabricated by employing a dual-layered structure. The bottom layer was a silicon elastomer (imine-BZn-PDMS) with an imine/coordination dual cross-linked structure and room temperature self-healing efficiency of 94%. The top layer was imine-BZn-PDMS/silica nanocomposites to provide superhydrophobic properties. The HB-imine-BZn-PDMS elastomer exhibited fast triple self-healing ability at room temperature toward surface oxidation/decomposition, ruptures, or pinholes, and high durability under abrasion and stretching. The dual dynamic bonds of imine-BZn-PDMS enabled fast recovery of superhydrophobicity in 20 min at room temperature via bond exchange, after generating pinholes across the elastomer. Following surface chemical damage, the HB-imine-BZn-PDMS elastomer also exhibited fast (40 min) room-temperature self-healing ability, which is superior to that of most current self-healing superhydrophobic materials.
Collapse
Affiliation(s)
- Yuxing Shan
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Shuai Liang
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Xiangkai Mao
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Jie Lu
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Lili Liu
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Yawen Huang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Junxiao Yang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
23
|
Goharshenas Moghadam S, Parsimehr H, Ehsani A. Multifunctional superhydrophobic surfaces. Adv Colloid Interface Sci 2021; 290:102397. [PMID: 33706199 DOI: 10.1016/j.cis.2021.102397] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Surface wetting has a significant influence on the performance and applications of the materials. The superhydrophobic surfaces have water repellency due to low surface energy chemistry and micro/nanostructure roughness. The amazing applications of superhydrophobic surfaces (SHSs) lead to increase attention to superhydrophobicity in recent decades. The SHSs have been fabricated through chemical and physical methods. The further properties of SHSs as functions such as self-healing, anti-bacterial, anti-fouling, and stimuli-responsiveness are considered as the functions of the SHSs. The Multifunctional SHSs (MSHSs) that contained superhydrophobicity and at least two other properties as the next generation of the SHSs are swiftly developed in recent years. The multiple applications of the MSHSs are originated from specific morphology and functional groups of the MSHSs. The functions (properties) of the MSHSs are categorized into three groups including self-cleaning properties, restrictive properties, and smart properties. Designing and keeping surface structure plays a significant role in fabricating durable MSHSs. However, there is a big challenge to design and also scale up mechanochemical durable MSHSs. Based on state-of-the-art investigations, establishing a self-healing function can improve the durability of SHSs. The durable self-healing MSHSs can enhance the performance of the other functions and lifespan of the surface. In this review, all surface structures and superhydrophobic agents in MSHSs are investigated. The perspective of the MSHSs determined the next generation of the MSHSs have several significant parameters including durability, stability, more functions, more responsiveness, and environmentally friendly features for fabricating the large-scale MSHSs and enhancing their applications.
Collapse
|
24
|
Li X, Yu H, Kang X, Chen G, Zhu M, Xu J. Effect of injection molding on structure and properties of poly(styrene‐ethylene‐butylene‐styrene) and its nanocomposite with functionalized montmorillonite. J Appl Polym Sci 2021. [DOI: 10.1002/app.49633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoyan Li
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Hui Yu
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Xiong Kang
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Gang Chen
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Ming Zhu
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Jianjun Xu
- Department Technology and Characterization DSM Materials Science Center Geleen The Netherlands
| |
Collapse
|
25
|
Baldelli A, Ou J, Li W, Amirfazli A. Spray-On Nanocomposite Coatings: Wettability and Conductivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11393-11410. [PMID: 32822195 DOI: 10.1021/acs.langmuir.0c01020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanocomposite coatings, i.e., a combination of nanocompounds, and a polymer matrix together with suitable additives and solvents is a very versatile method for producing multifunctional coatings. Some of the most desired coating properties have a high repellency to liquids (e.g., superhydrophobic and/or superoleophobic) and electrical and thermal conductivities. From a practical perspective, coatings that can be sprayed are very suitable for large-scale production, conformity, and reduced time and cost. Carbon-based, metallic, and ceramic are the three groups of nanocompounds commonly used to formulate spray-on nanocomposite coatings. In this invited feature article, we discuss the applications, advantages, and challenges of using such nanocompounds to produce coatings with good water repellency or/and elevated electrical or/and thermal conductivities. We also discuss the role of additives and solvents briefly in relation to the properties of the coatings. Important spraying parameters, such as stand-off distance and its influence on the final coating properties, will also be examined. Our overall aim is to provide a guideline for the production of practical multifunctional nanocomposites utilizing carbon-based, metallic, or ceramic nanoparticles or nanofibers that covers both aspects of in-air wettability and conductivity under one umbrella.
Collapse
Affiliation(s)
- Alberto Baldelli
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
- Department of Mechanical Engineering University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Junfei Ou
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Wen Li
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Alidad Amirfazli
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
26
|
Zhang L, Li H, Lai X, Gao T, Zeng X. Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44360-44370. [PMID: 32901483 DOI: 10.1021/acsami.0c13442] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A lot of attention has recently been focused on wearable strain sensors because of their promising applications in the rising areas of human motion detection, health monitoring, and smart human-machine interaction. However, the design and fabrication of self-healable strain sensors with superior overall properties including stretchability, sensitivity, response ability, stability, and durability is still a huge challenge. Herein, we report an innovative self-healable strain sensor with exceptional overall performance constructed with three-dimensional binary-conductive-network silver nanowire-coated thiolated graphene foam (AgNWs@TGF) and room-temperature self-healing functionalized polyurethane (FPU) elastomer. Taking advantage of the good ductility and continuity of the AgNWs@TGF binary structure and the excellent resilience of the FPU, the strain sensor exhibits good stretchability (up to 60% strain), high sensitivity [gauge factor (GF) of 11.8 at 60% strain and detection limit of 0.1% strain], fast response ability (response/recovery time of 40/84 ms), and exceptional durability for 800 cycles of fatigue test. Besides, the highly flexible polydimethylsiloxane chains, strong intermolecular hydrogen bonding, and dynamic exchange reaction of aromatic disulfides ensure the sensor excellent recovery property of electrical conductivity, and the GF of sensor after self-healed only increases slightly. More importantly, the sensor is successfully applied for detecting a variety of human motions including pulse beats, voice recognitions, various joint movements, and handwriting. The method for preparing room-temperature self-healable strain sensor is facile, scalable, and cost-effective. The finds provide a new perspective on fabricating new-generation high-performance and functional strain sensors for health monitoring, wearable electronics, and intelligent robots.
Collapse
Affiliation(s)
- Lin Zhang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Tianyuan Gao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
27
|
Shan Y, Zhou Z, Bai H, Wang T, Liu L, Zhao X, Huang Y. Recovery of the self-cleaning property of silicon elastomers utilizing the concept of reversible coordination bonds. SOFT MATTER 2020; 16:8473-8481. [PMID: 32820790 DOI: 10.1039/d0sm01264e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stretchable elastomers with superhydrophobic surfaces and self-cleaning abilities are fabricated for use in wearable electronics. However, scratches or ruptures are inevitable on these elastomers, thus deteriorating their self-cleaning ability. To solve this problem, in this work, we explored the ability of a self-healing silicon elastomer to recover its self-cleaning property. A cross-linked silicon elastomer (Zn-IC-PDMS) was fabricated by incorporating imidazole-zinc coordination bonds. The superhydrophobic Zn-IC-PDMS surface was synthesized by sequentially spraying polystyrene (PS) and silica particles on it to form a micro/nano complex structure. Our study shows that the surface of the elastomer exhibited a high water-contact angle (CA) (155°), low sliding angle (SA) (∼3°), and self-cleaning ability. In addition, the surface rapidly recovered its self-cleaning ability at room temperature after ruptures had been formed across the elastomer. SEM images and photographs revealed that the recovery of the self-cleaning ability was attributed to the self-healing behavior of the Zn-IC-PDMS.
Collapse
Affiliation(s)
- Yuxing Shan
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Zhi Zhou
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Haoming Bai
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Ting Wang
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Lili Liu
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Xiuli Zhao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yawen Huang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
28
|
A cellulose nanoarchitectonic: Multifunctional and robust superhydrophobic coating toward rapid and intelligent water-removing purpose. Carbohydr Polym 2020; 243:116444. [DOI: 10.1016/j.carbpol.2020.116444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/25/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023]
|
29
|
Cho YS, Nam S, Jeong S, Kim YS. Low-cost fabrication of flexible water-repellent film by spray coating of a hydrophobic nanoparticle dispersion. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1627883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Young-Sang Cho
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University , Siheung-si, Gyeonggi-do , Republic of Korea
| | - Soyoung Nam
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University , Siheung-si, Gyeonggi-do , Republic of Korea
| | - Sol Jeong
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University , Siheung-si, Gyeonggi-do , Republic of Korea
| | - Young-Seok Kim
- Display Components & Materials Research Center, Korea Electronics Technology Institute , Seongnam-si , Gyeonggi-do , Korea
| |
Collapse
|
30
|
Jiang G, Hu J, Chen L. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8435-8443. [PMID: 32640799 DOI: 10.1021/acs.langmuir.0c00823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Substrates of the superhydrophobic surface are important for their application. Preparation of a flexible superhydrophobic surface has drawn more and more attention. In this work, a flexible substrate was made using a semicuring spray method to obtain a flexible superhydrophobic surface with excellent abrasion resistance on the surface of a room temperature vulcanized silicone rubber. Results show that under a bending condition, excellent superhydrophobic properties are still maintained. The Cassie-Baxter model and Wenzel model can be used to estimate the static water contact angle for regular roughness surfaces. There are few numerical theoretical models to predict contact angle or wetting mode for irregular micronanostructures superhydrophobic surfaces. The fractal theory can be used to transform the equation of the Wenzel model and obtain the fractal wetting theory suitable for fractal structures on irregular rough surfaces. However, this fractal-wetting model cannot be applied to the Cassie-Baxter state, which is always suitable for superhydrophobic surfaces. A new method was developed to calculate the static water contact angle of water droplets in the Cassie-Baxter model state. Using image identification and the splitting surface method, a new model is constructed based on the fractal theory. Experimental data for water contact angles on the flexible superhydrophobic surface with SiC/CNTs micronanostructures is in agreement with the simulated values.
Collapse
Affiliation(s)
- Guo Jiang
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, P.R. China
| | - Jinhuan Hu
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, P.R. China
| | - Liang Chen
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, P.R. China
| |
Collapse
|
31
|
Yu H, Li J, Chen G, Zhang R, Li Y, Qiu B, Li X. Effects of phosphate
emulsion‐based
montmorillonite on structure and properties of
poly(styrene‐ethylene‐butylene‐styrene)
triblock copolymer. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Yu
- University of Shanghai for Science and Technology Shanghai China
| | - Jun Li
- Shanghai Aircraft Manufacturing Co., Ltd. Shanghai China
| | - Gang Chen
- University of Shanghai for Science and Technology Shanghai China
| | - Ruifeng Zhang
- University of Shanghai for Science and Technology Shanghai China
| | - Yangyang Li
- University of Shanghai for Science and Technology Shanghai China
| | - Biwei Qiu
- University of Shanghai for Science and Technology Shanghai China
| | - Xiaoyan Li
- University of Shanghai for Science and Technology Shanghai China
| |
Collapse
|
32
|
Li H, Feng X, Peng Y, Zeng R. Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability. NANOSCALE 2020; 12:7700-7711. [PMID: 32211633 DOI: 10.1039/c9nr10699e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by lotus leaves, superhydrophobic surfaces (SHS) have been fabricated by many methods due to their various properties such as self-cleaning, anti-corrosion, and anti-biofouling properties. In recent years, inspired by Nepenthes pitcher plants, the 'slippery liquid-infused porous surface' (SLIPS) has attracted numerous researchers' attention because it not only shows ability corresponding to SHS but also exhibits durability in some aspects due to the continuous and homogeneous liquid-infused surfaces. In this paper, we firstly used a facile hydrothermal method and modification to fabricate SHS on a Mg alloy substrate. After the infusion of a lubricant by a spin-coating method, the transformation from the SHS to SLIPS can be achieved. The SLIPS exhibits an excellent self-cleaning property compared to the SHS, except that the water droplet rolls on the SHS and slides on the SLIPS. Moreover, the SLIPS demonstrates better anti-corrosion and anti-biofouling properties, and is obviously superior to SHS for use on the Mg alloy substrate. The enhanced anti-corrosion and anti-biofouling properties of the SLIPS are because the continuously infused lubricant replaces the air trapped in the micro-pores. Importantly, compared with SHS, the SLIPS shows excellent thermally assisted healing properties. The results of this work indicate that the SLIPS is expected to be an efficient method for improving the water-repellent, self-cleaning, anti-biofouling and anti-corrosion properties of magnesium alloys.
Collapse
Affiliation(s)
- Hao Li
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | | | | | | |
Collapse
|
33
|
Cai C, Wei Z, Huang Y, Ding C, Wang P, Song J, Deng L, Fu Y, Zhong WH. Ultralight Programmable Bioinspired Aerogels with an Integrated Multifunctional Surface for Self-Cleaning, Oil Absorption, and Thermal Insulation via Coassembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11273-11286. [PMID: 32043864 DOI: 10.1021/acsami.0c00308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Creating a configurable and controllable surface for structure-integrated multifunctionality of ultralight aerogels is of significance but remains a huge challenge because of the critical limitations of mechanical vulnerability and structural processability. Herein, inspired by Salvinia minima, the facile and one-step coassembly approach is developed to allow the structured aerogels to spontaneously replicate Salvinia-like textures for function-adaptable surfaces morphologically. The in situ superimposed construction of bioinspired topography and intrinsic topology is for the first time performed for programmable binary architectures with multifunctionality without engendering structural vulnerability and functional disruption. By introducing the binding groups for hydrophobicity tailoring, functionalized nanocellulose (f-NC) is prepared via mechanochemistry as a structural, functional, and topographical modifier for a multitasking role. The self-generated bioinspired surface with f-NC greatly maintains the structural unity and mechanical robustness, which enable self-adaptability and self-supporting of surface configurations. With fine-tuning of nucleation-driving, the binary microstructures can be controllably diversified for structure-adaptable multifunctionalities. The resulting ultralight S. minima-inspired aerogels (e.g., 0.054 g cm-3) presented outstanding temperature-endured elasticity (e.g., 90.7% high-temperature compress-recovery after multiple cycles), durable superhydrophobicity, anti-icing properties, oil absorbency efficiency (e.g., 60.2 g g-1), and thermal insulating (e.g., 0.075 W mK-1), which are superior to these reported on the overall performance. This coassembly strategy offers the opportunities for the design of ultralight materials with topography- and function-tailorable features to meet the increasing demands in many fields such as smart surfaces and self-cleaning coatings.
Collapse
Affiliation(s)
- Chenyang Cai
- School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zechang Wei
- School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yangze Huang
- School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chenfeng Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 10029, China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Pei Wang
- School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianyue Song
- School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Leixin Deng
- School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Fu
- School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - W H Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
34
|
Xue CH, Tian QQ, Jia ST, Zhao LL, Ding YR, Li HG, An QF. The fabrication of mechanically durable and stretchable superhydrophobic PDMS/SiO2 composite film. RSC Adv 2020; 10:19466-19473. [PMID: 35515442 PMCID: PMC9054060 DOI: 10.1039/d0ra02029j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Stretchable superhydrophobic film was fabricated by casting silicone rubber polydimethylsiloxane (PDMS) on a SiO2 nanoparticle-decorated template and subsequent stripping. PDMS endowed the resulting surface with excellent flexibility and stretchability. The use of nanoparticles contributed to the sustained roughening of the surface, even under large strain, offering mechanically durable superhydrophobicity. The resulting composite film could maintain its superhydrophobicity (water contact angle ≈ 161° and sliding angle close to 0°) under a large stretching strain of up to 100% and could withstand 500 stretching–releasing cycles without losing its superhydrophobic properties. Furthermore, the obtained film was resistant to long term exposure to different pH solutions and ultraviolet light irradiation, as well as to manual destruction, sandpaper abrasion, and weight pressing. Stretchable superhydrophobic film was fabricated by casting silicone rubber polydimethylsiloxane (PDMS) on a SiO2 nanoparticle-decorated template and subsequent stripping.![]()
Collapse
Affiliation(s)
- Chao-Hua Xue
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education
| | - Qian-Qian Tian
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Shun-Tian Jia
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Ling-Ling Zhao
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Ya-Ru Ding
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Hui-Gui Li
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Qiu-Feng An
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| |
Collapse
|
35
|
Lee DE, Choi EY, Yang HJ, Murthy ASN, Singh T, Lim JM, Im J. Highly stretchable superhydrophobic surface by silica nanoparticle embedded electrospun fibrous mat. J Colloid Interface Sci 2019; 555:532-540. [PMID: 31404837 DOI: 10.1016/j.jcis.2019.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS Obtaining simultaneous stretchability and superhydrophobicity remains a great challenge in stretchable electronics, and wearable devices. Inspired by natural surfaces, such as lotus leaf, surface roughness and coating materials are the fundamental requirements to achieve superhydrophobicity. EXPERIMENTS We prepared an elastic fibrous mat by electrospinning of a composite solution made of thermoplastic elastomer as an organic polymer matrix, and silica nanoparticles as inorganic additives to support surface roughness. To enhance hydrophobicity, the pristine mat was immersed into a solution of fluorinated material, which can decrease the surface energy. FINDINGS The pristine fibrous mat showed high stretchability (with more than 1000% strain), and superhydrophobicity (with a contact angle of 156°, and a sliding angle of 7.8°). Superhydrophobicity did not disappear when the fibrous mat was stretched up to 1000%. Sliding angles were less than 10° under different strain levels only in longitudinal direction, suggesting the stretchable superhydrophobic surface is effective in rolling off the water droplet in one direction. The fibrous mat was repeatedly stretched 1000 times to 1000% strain; the material showed stable stretchability and superhydrophobicity. Based on these observations, the resulting fibrous mat appears to be in the Cassie-Baxter wetting state.
Collapse
Affiliation(s)
- Da-Eun Lee
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Eun-Young Choi
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hye-Jin Yang
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Akula S N Murthy
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Tejinder Singh
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jong-Min Lim
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea.
| | - Jungkyun Im
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea.
| |
Collapse
|
36
|
Yang H, Xu K, Xu C, Fan D, Cao Y, Xue W, Pang J. Femtosecond Laser Fabricated Elastomeric Superhydrophobic Surface with Stretching-Enhanced Water Repellency. NANOSCALE RESEARCH LETTERS 2019; 14:333. [PMID: 31650340 PMCID: PMC6813406 DOI: 10.1186/s11671-019-3140-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/26/2019] [Indexed: 05/26/2023]
Abstract
Highly stretchable and robust superhydrophobic surfaces have attracted tremendous interest due to their broad application prospects. In this work, silicone elastomers were chosen to fabricate superhydrophobic surfaces with femtosecond laser texturing method, and high stretchability and tunable adhesion of the superhydrophobic surfaces were demonstrated successfully. To our best knowledge, it is the first time flexible superhydrophobic surfaces with a bearable strain up to 400% are fabricated by simple laser ablation. The test also shows that the strain brings no decline of water repellency but an enhancement to the superhydrophobic surfaces. In addition, a stretching-induced transition from "petal" state to "lotus" state of the laser-textured surface was also demonstrated by non-loss transportation of liquid droplets. Our results manifest that femtosecond laser ablating silicone elastomer could be a promising way for fabricating superhydrophobic surface with distinct merits of high stretchability, tunable adhesion, robustness, and non-fluorination, which is potentially useful for microfluidics, biomedicine, and liquid repellent skin.
Collapse
Affiliation(s)
- Huan Yang
- Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou, 325035 China
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118 China
| | - Kaichen Xu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576 Singapore
| | - Changwen Xu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Dianyuan Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Yu Cao
- Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou, 325035 China
| | - Wei Xue
- Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou, 325035 China
| | - Jihong Pang
- Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou, 325035 China
| |
Collapse
|
37
|
Ren M, Hu X, Li Y, Shao H, Jiang P, Zeng W, Wang C, Tang C. Crack growth-driven wettability transition on carbon black/polybutadiene nanocomposite coatings via stretching. SOFT MATTER 2019; 15:7678-7685. [PMID: 31490524 DOI: 10.1039/c9sm01234f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ordered topography patterns with a mechanical response are usually designed to achieve wettability switching by geometric parameter changes through mechanical stimuli. However, their fabrication often needs expensive and complicated micro/nano-fabrication processing (e.g. photolithography and ion etching). In this study, a nano-carbon black (CB)/polybutadiene (PB) coating with a Wenzel superhydrophobic state was prepared on a rubber substrate by a facile method combining solution mixing and spraying coating. By stretching the composite coating, the generated cracks divided the continuous coating into new micro-nano mastoids, resulting in the formation of new hierarchical roughness for Cassie superhydrophobicity. The Wenzel-to-Cassie transition behavior was dependent on the CB loading in the coating. During stretching, the cracks propagated more rapidly in the coating with higher CB loading and induced the desired hierarchical structure to consequently enable the Wenzel-to-Cassie transition earlier at a lower stretching strain. The stretched coating presented good anti-wetting (a sliding angle of 5°) and low water adhesion. After releasing, the coating returned to its original Wenzel state by structure recovery. Thus, the switchable wettability of the coating can be adopted for no-loss water droplet transfer by controlling the droplet adhesion through cyclic stretching-releasing, and exhibits good potential for microfluidic and biomedical applications.
Collapse
Affiliation(s)
- Meng Ren
- Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, China.
| | - Xin Hu
- Chemical and Biological Engineering (CBE), Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yongsheng Li
- Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, China.
| | - Hong Shao
- Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, China.
| | - Peng Jiang
- Leshan Shizhong District Environmental Monitoring Station, No. 2000 Changqing Road, Shizhong District, Leshan City, 614000, China
| | - Wenwen Zeng
- Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, China.
| | - Cong Wang
- Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, China.
| | - Changyu Tang
- Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, China.
| |
Collapse
|
38
|
Wu L, Wang L, Guo Z, Luo J, Xue H, Gao J. Durable and Multifunctional Superhydrophobic Coatings with Excellent Joule Heating and Electromagnetic Interference Shielding Performance for Flexible Sensing Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34338-34347. [PMID: 31441631 DOI: 10.1021/acsami.9b11895] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Superhydrophobic coatings have wide applications in many fields. However, superhydrophobic and smart coatings with multifunctionality and their applications in flexible sensing electronics are seldom reported. In this work, durable, superhydrophobic, and anticorrosive coatings with excellent Joule heating and electromagnetic interference (EMI) shielding performance are prepared on the basis of Ag precursor reduction and synchronous nonsolvent induced phase separation. Silver nanoparticles (AgNPs) coated with the copolymer (polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene: SEBS) are uniformly distributed on the target substrate, forming mechanically durable conductive network. SEBS could not only endow the surface coating with superhydrophobicity but also improve the interaction among individual Ag nanoparticles and the interfacial adhesion between AgNPs and the substrate. The multifunctional coating possesses excellent anticorrosive, self-cleaning, and deicing properties. The high conductivity endows the coatings with excellent Joule heating and EMI shielding performance. The multifunctional coating can be applied to a variety of different substrates with outstanding surface stability and reliability. The conductivity for the smart coating can reach as high as 107 S/cm with the EMI shielding effectiveness up to 37.8 dB. At a low applied voltage of 1 V, the conductive fabric can be heated up to over 80 °C in 60 s and displays good recyclability during dozens of heating and cooling cycles. The Joule heating-induced temperature increase could be used for efficient surface deicing. When used for the flexible and wearable strain sensors, the multifunctional coating has a very low strain detection limit of 0.5% and large sensitivity (with the gauge factor as high as 1075) and excellent repeatability. In addition, it can be used for precisely monitoring different body motions, including both large and subtle joint movement.
Collapse
Affiliation(s)
- Lisheng Wu
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Ling Wang
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Zheng Guo
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Junchen Luo
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
- State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu , Sichuan 610065 , China
| |
Collapse
|
39
|
Luo XT, Li CJ. Bioinspired Mechanically Robust Metal-Based Water Repellent Surface Enabled by Scalable Construction of a Flexible Coral-Reef-Like Architecture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901919. [PMID: 31390158 DOI: 10.1002/smll.201901919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Mechanical robustness is a central concern for moving artificial superhydrophobic surfaces to application practices. It is believed that bulk hydrophilic materials cannot be use to construct micro/nanoarchitectures for superhydrophobicity since abrasion-induced exposure of hydrophilic surfaces leads to remarkable degradation of water repellency. To address this challenge, the robust mechanical durability of a superhydrophobic surface with metal (hydrophilic) textures, through scalable construction of a flexible coral-reef-like hierarchical architecture on various substrates including metals, glasses, and ceramics, is demonstrated. Discontinuous coral-reef-like Cu architecture is built by solid-state spraying commercial electrolytic Cu particles (15-65 µm) at supersonic particle velocities. Subsequent flame oxidation is applied to introduce a porous hard surface oxide layer. Owing to the unique combination of the flexible coral-reef-like architecture and self-similar manner of the fluorinated hard oxide surface layer, the coating surface retains its water repellency with an extremely low roll-off angle (<2°) after cyclic sand-paper abrasion, mechanical bending, sand-grit erosion, knife-scratching, and heavy loading of simulated acid rain droplets. Strong adhesion to glass, ceramics, and metals up to 34 MPa can be achieved without using adhesive. The results show that the present superhydrophobic coating can have wide outdoor applications for self-cleaning and corrosion protection of metal parts.
Collapse
Affiliation(s)
- Xiao-Tao Luo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Chang-Jiu Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
40
|
Du J, Zhou C, Chen L, Cheng J, Pi P, Zuo J, Shen W, Jin S, Tan L, Dong L. Gate-Embedding Strategy for Pore Size Manipulation on Stainless Steel Mesh: Toward Highly Efficient Water-in-Oil Nanoemulsions Separation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | - Jiang Cheng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Pihui Pi
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jihao Zuo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | | | | | | | | |
Collapse
|
41
|
Li Q, Liu H, Zhang S, Zhang D, Liu X, He Y, Mi L, Zhang J, Liu C, Shen C, Guo Z. Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21904-21914. [PMID: 31124646 DOI: 10.1021/acsami.9b03421] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recently, a paper-based (PB) strain sensor has turned out to be an ideal substitute for the polymer-based one because of the merits of renewability, biodegradability, and low cost. However, the hygroexpansion and degradation of the paper after absorbing water are the great challenges for the practical applications of the PB strain sensor. Herein, the superhydrophobic electrically conductive paper was fabricated by simply dip-coating the printing paper into the carbon black (CB)/carbon nanotube (CNT)/methyl cellulose suspension and hydrophobic fumed silica (Hf-SiO2) suspension successively to settle the problem. Because of the existence of ultrasensitive microcrack structures in the electrically conductive CB/CNT layer, the sensor was capable of detecting an ultralow strain as low as 0.1%. During the tension strain range of 0-0.7%, the sensor exhibited a gauge factor of 7.5, almost 3 times higher than that of the conventional metallic-based sensors. In addition, the sensor displayed frequency-independent and excellent durability and reproductivity over 1000 tension cycles. Meanwhile, the superhydrophobic Hf-SiO2 layer with a micro-nano structure and low surface energy endowed the sensor with outstanding waterproof and self-cleaning properties, as well as great sustainability toward cyclic strain and harsh corrosive environment. Finally, the PB strain sensor could effectively monitor human bodily motions such as finger/elbow joint/throat movement and pulse in real time, especially for the wet or rainy conditions. All these pave way for the fabrication of a high-performance PB strain sensor.
Collapse
Affiliation(s)
- Qianming Li
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou , Henan 450002 , China
| | - Hu Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou , Henan 450002 , China
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Shuaidi Zhang
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou , Henan 450002 , China
| | - Dianbo Zhang
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou , Henan 450002 , China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou , Henan 450002 , China
| | - Yuxin He
- College of Chemical Engineering and Pharmaceutics , Henan University of Science and Technology , Luoyang , Henan 471023 , China
| | - Liwei Mi
- Center for Advanced Materials Research , Zhongyuan University of Technology , Zhengzhou , Henan 450007 , China
| | - Jiaoxia Zhang
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou , Henan 450002 , China
- Technology Development Center for Polymer Processing Engineering, Guangdong Colleges and Universities , Guangdong Industry Technical College , Guangzhou , Guangdong 510641 , China
| | - Changyu Shen
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou , Henan 450002 , China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
42
|
Jing X, Guo Z. Multifunctional WS2&M-AgNPs superhydrophobic conductive sponges for application in various sensors. NEW J CHEM 2019. [DOI: 10.1039/c9nj00167k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superhydrophobic conductive sponge is prepared by an easy method based on WS2 nanosheets and modified Ag nanoparticles in this work, which is promising to apply in various sensors derived from superior liquid repellence, thermo stability, conductive property, mechanical and chemical durability.
Collapse
Affiliation(s)
- Xueshan Jing
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education
- Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education
- Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
| |
Collapse
|
43
|
Shan H, Liu J, Li X, Li Y, Tezel FH, Li B, Wang S. Nanocoated amphiphobic membrane for flux enhancement and comprehensive anti-fouling performance in direct contact membrane distillation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|