1
|
Li P, Li J, Cheng J, Huang J, Li J, Xiao J, Duan X. Hypoxia-responsive liposome enhances intracellular delivery of photosensitizer for effective photodynamic therapy. J Control Release 2025; 377:277-287. [PMID: 39561946 DOI: 10.1016/j.jconrel.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Liposomes, especially polyethylene glycol (PEG)-modified long-circulating liposomes, have been approved for market use, due to good biocompatibility, passive tumor targeting, and sustained drug release. PEG-modified long-circulating liposomes address issues such as poor stability and rapid clearance by the reticuloendothelial system. However, they still face challenges like hindering drug uptake by tumor cells and preventing tumor penetration. Inspired by the hypoxic tumor microenvironment, we constructed a hypoxia-responsive liposome (PAO-L) to enhance the intracellular uptake and photodynamic therapy (PDT) effect of chlorin e6 (Ce6). The intelligent hypoxia-cleavable PEG-AZO-OA (PAO) was prepared by coupling PEG and octadecylamine (OA) to hypoxia-sensitive azobenzene-4,4'-dicarboxylic acid (AZO) through amide reaction. The synthesized PAO was further incorporated into Ce6-loaded liposomes to enhance the circulation stability, while promote the tumor penetration and internalization by the responsive shedding of PEG from liposome surface upon reaching the hypoxic tumor tissue. PAO-L mediated PDT significantly inhibited the growth of B16F10 and 4T1 tumors, as well as lung metastasis of 4T1 breast cancer. The excellent therapeutic effect and good tolerability make PAO-L a promising candidate for enhanced PDT.
Collapse
Affiliation(s)
- Peishan Li
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaxin Li
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinmei Cheng
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junyi Huang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jinhui Li
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Guo X, Han L, Chen W, He H, Zhang W, Huang C, Wang X. Hypoxia and Singlet Oxygen Dual-Responsive Micelles for Photodynamic and Chemotherapy Therapy Featured with Enhanced Cellular Uptake and Triggered Cargo Delivery. Int J Nanomedicine 2024; 19:247-261. [PMID: 38229704 PMCID: PMC10790668 DOI: 10.2147/ijn.s432407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction Combination therapy provides better outcomes than a single therapy and becomes an efficient strategy for cancer treatment. In this study, we designed a hypoxia- and singlet oxygen-responsive polymeric micelles which contain azo and nitroimidazole groups for enhanced cellular uptake, repaid cargo release, and codelivery of photosensitizer Ce6 and hypoxia-activated prodrug tirapazamine TPZ (DHM-Ce6@TPZ), which could be used for combining Ce6-mediated photodynamic therapy (PDT) and PDT-activated chemotherapy to enhance the therapy effect of cancer. Methods The hypoxia- and singlet oxygen-responsive polymeric micelles DHM-Ce6@TPZ were prepared by film hydration method. The morphology, physicochemical properties, stimuli responsiveness, in vitro singlet oxygen production, cellular uptake, and cell viability were evaluated. In addition, the in vivo therapeutic effects of the micelles were verified using a tumor xenograft mice model. Results The resulting dual-responsive micelles not only increased the concentration of intracellular photosensitizer and TPZ, but also facilitated photosensitizer and TPZ release for enhanced integration of photodynamic and chemotherapy therapy. As a photosensitizer, Ce6 induced PDT by generating toxic singlet reactive oxygen species (ROS), resulting in a hypoxic tumor environment to activate the prodrug TPZ to achieve efficient chemotherapy, thereby evoking a synergistic photodynamic and chemotherapy therapeutic effect. The cascade synergistic therapeutic effect of DHM-Ce6@TPZ was effectively evaluated both in vitro and in vivo to inhibit tumor growth in a breast cancer mice model. Conclusion The designed multifunctional micellar nano platform could be a convenient and powerful vehicle for the efficient co-delivery of photosensitizers and chemical drugs for enhanced synergistic photodynamic and chemotherapy therapeutic effect of cancer.
Collapse
Affiliation(s)
- Xuliang Guo
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Lefei Han
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Wenyu Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Huixin He
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Weijin Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Chaoqi Huang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Xiu Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| |
Collapse
|
3
|
Veider F, Sanchez Armengol E, Bernkop-Schnürch A. Charge-Reversible Nanoparticles: Advanced Delivery Systems for Therapy and Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304713. [PMID: 37675812 DOI: 10.1002/smll.202304713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/24/2023] [Indexed: 09/08/2023]
Abstract
The past two decades have witnessed a rapid progress in the development of surface charge-reversible nanoparticles (NPs) for drug delivery and diagnosis. These NPs are able to elegantly address the polycation dilemma. Converting their surface charge from negative/neutral to positive at the target site, they can substantially improve delivery of drugs and diagnostic agents. By specific stimuli like a shift in pH and redox potential, enzymes, or exogenous stimuli such as light or heat, charge reversal of NP surface can be achieved at the target site. The activated positive surface charge enhances the adhesion of NPs to target cells and facilitates cellular uptake, endosomal escape, and mitochondrial targeting. Because of these properties, the efficacy of incorporated drugs as well as the sensitivity of diagnostic agents can be essentially enhanced. Furthermore, charge-reversible NPs are shown to overcome the biofilm formed by pathogenic bacteria and to shuttle antibiotics directly to the cell membrane of these microorganisms. In this review, the up-to-date design of charge-reversible NPs and their emerging applications in drug delivery and diagnosis are highlighted.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| |
Collapse
|
4
|
Wang W, Kevin Tang KW, Pyatnitskiy I, Liu X, Shi X, Huo D, Jeong J, Wynn T, Sangani A, Baker A, Hsieh JC, Lozano AR, Artman B, Fenno L, Buch VP, Wang H. Ultrasound-Induced Cascade Amplification in a Mechanoluminescent Nanotransducer for Enhanced Sono-Optogenetic Deep Brain Stimulation. ACS NANO 2023; 17:24936-24946. [PMID: 38096422 PMCID: PMC10932741 DOI: 10.1021/acsnano.3c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Remote and genetically targeted neuromodulation in the deep brain is important for understanding and treatment of neurological diseases. Ultrasound-triggered mechanoluminescent technology offers a promising approach for achieving remote and genetically targeted brain modulation. However, its application has thus far been limited to shallow brain depths due to challenges related to low sonochemical reaction efficiency and restricted photon yields. Here we report a cascaded mechanoluminescent nanotransducer to achieve efficient light emission upon ultrasound stimulation. As a result, blue light was generated under ultrasound stimulation with a subsecond response latency. Leveraging the high energy transfer efficiency of focused ultrasound in brain tissue and the high sensitivity to ultrasound of these mechanoluminescent nanotransducers, we are able to show efficient photon delivery and activation of ChR2-expressing neurons in both the superficial motor cortex and deep ventral tegmental area after intracranial injection. Our liposome nanotransducers enable minimally invasive deep brain stimulation for behavioral control in animals via a flexible, mechanoluminescent sono-optogenetic system.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kai Wing Kevin Tang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiangping Liu
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xi Shi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - David Huo
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jinmo Jeong
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas Wynn
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arjun Sangani
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Baker
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ju-Chun Hsieh
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anakaren Romero Lozano
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brinkley Artman
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lief Fenno
- Department of Psychiatry & Behavioral Science, The University of Texas at Austin Dell Medical School, Austin, Texas 78712, United States
| | - Vivek P Buch
- Department of Neurosurgery, Stanford University, Stanford, California 94304, United States
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Li D, Ren T, Ge Y, Wang X, Sun G, Zhang N, Zhao L, Zhong R. A multi-functional hypoxia/esterase dual stimulus responsive and hyaluronic acid-based nanomicelle for targeting delivery of chloroethylnitrosouea. J Nanobiotechnology 2023; 21:291. [PMID: 37612719 PMCID: PMC10464291 DOI: 10.1186/s12951-023-02062-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Carmustine (BCNU), a vital type of chloroethylnitrosourea (CENU), inhibits tumor cells growth by inducing DNA damage at O6 position of guanine and eventually forming dG-dC interstrand cross-links (ICLs). However, the clinical application of BCNU is hindered to some extent by the absence of tumor selectivity, poor stability and O6-alkylguanine-DNA alkyltransferase (AGT) mediated drug resistance. In recent years, tumor microenvironment has been widely utilized for advanced drug delivery. In the light of the features of tumor microenvironment, we constructed a multifunctional hypoxia/esterase-degradable nanomicelle with AGT inhibitory activity named HACB NPs for tumor-targeting BCNU delivery and tumor sensitization. HACB NPs was self-assembled from hyaluronic acid azobenzene AGT inhibitor conjugates, in which O6-BG analog acted as an AGT inhibitor, azobenzene acted as a hypoxia-responsive linker and carboxylate ester bond acted as both an esterase-sensitive switch and a connector with hyaluronic acid (HA). The obtained HACB NPs possessed good stability, favorable biosafety and hypoxia/esterase-responsive drug-releasing ability. BCNU-loaded HACB/BCNU NPs exhibited superior cytotoxicity and apoptosis-inducing ability toward the human uterine cervix carcinoma HeLa cells compared with traditional combined medication of BCNU plus O6-BG. In vivo studies further demonstrated that after a selective accumulation in the tumor site, the micelles could respond to hypoxic tumor tissue for rapid drug release to an effective therapeutic dosage. Thus, this multifunctional stimulus-responsive nanocarrier could be a new promising strategy to enhance the anticancer efficacy and reduce the side effects of BCNU and other CENUs.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Yunxuan Ge
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
7
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
8
|
Wang Y, Zhang H, Wang J, Tang G, Bai H. An Engineered Design of Self-Assembly Nanomedicine Guided by Molecular Dynamic Simulation for Photodynamic and Hypoxia-Directed Therapy. Mol Pharm 2023; 20:2128-2137. [PMID: 36848620 DOI: 10.1021/acs.molpharmaceut.2c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
To overcome the hypoxia barrier in tumor therapy, a hypoxia-activated prodrug of docetaxel (DTX-PNB) was synthesized and self-assembled with indocyanine green (ICG), forming a combination nanomedicine ISDNN. With the guidance of molecular dynamic simulation, the ISDNN construction could be accurately controlled, achieving uniform size distribution and high drug loading up to 90%. Within the hypoxic tumor environment, ISDNN exerted ICG-mediated photodynamic therapy and aggravated hypoxia to boost DTX-PNB activation for chemotherapy, enabling enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haotian Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Wang W, Wu X, Kevin Tang KW, Pyatnitskiy I, Taniguchi R, Lin P, Zhou R, Capocyan SLC, Hong G, Wang H. Ultrasound-Triggered In Situ Photon Emission for Noninvasive Optogenetics. J Am Chem Soc 2023; 145:1097-1107. [PMID: 36606703 DOI: 10.1021/jacs.2c10666] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Optogenetics has revolutionized neuroscience understanding by allowing spatiotemporal control over cell-type specific neurons in neural circuits. However, the sluggish development of noninvasive photon delivery in the brain has limited the clinical application of optogenetics. Focused ultrasound (FUS)-derived mechanoluminescence has emerged as a promising tool for in situ photon emission, but there is not yet a biocompatible liquid-phase mechanoluminescence system for spatiotemporal optogenetics. To achieve noninvasive optogenetics with a high temporal resolution and desirable biocompatibility, we have developed liposome (Lipo@IR780/L012) nanoparticles for FUS-triggered mechanoluminescence in brain photon delivery. Synchronized and stable blue light emission was generated in solution under FUS irradiation due to the cascade reactions in liposomes. In vitro tests revealed that Lipo@IR780/L012 could be triggered by FUS for light emission at different stimulation frequencies, resulting in activation of opsin-expressing spiking HEK cells under the FUS irradiation. In vivo optogenetic stimulation further demonstrated that motor cortex neurons could be noninvasively and reversibly activated under the repetitive FUS irradiation after intravenous injection of lipid nanoparticles to achieve limb movements.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
| | - Kai Wing Kevin Tang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rayna Taniguchi
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Peter Lin
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard Zhou
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sam Lander C Capocyan
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
de Santana WMO, Pochapski DJ, Pulcinelli SH, Fontana CR, Santilli CV. Polymeric micelles–mediated photodynamic therapy. NANOMATERIALS FOR PHOTODYNAMIC THERAPY 2023:105-139. [DOI: 10.1016/b978-0-323-85595-2.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Prospects for hypoxia-based drug delivery platforms for the elimination of advanced metastatic tumors: From 3D modeling to clinical concepts. J Control Release 2023; 353:1002-1022. [PMID: 36516901 DOI: 10.1016/j.jconrel.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Hypoxia is a unique characteristic of the solid tumor microenvironment. Hypoxia contributes to multi-drug resistance, metastasis and cancer relapse through numerous molecular pathways, but at the same time provides an opportunity for the development of novel drugs or modalities specifically targeting hypoxic tumor regions. Given the high significance of tumor hypoxia in therapeutic results, we here discuss a variety of hypoxia-adopted strategies, and their potential and utility in the treatment of deep-seated hypoxic tumor cells. We discuss the merits and demerits of these approaches, as well as their combination with other approaches such as photodynamic therapy. We also survey the currently available 3D hypoxia modeling systems, in particular organoid-based microfluidics. Finally, we discuss the potential and the current status of preclinical tumor hypoxia approaches in clinical trials for advanced cancer. We believe that multi-modal imaging and therapeutic hypoxia adopted drug delivery platforms could provide better efficacy and safety profiles, and more importantly personalized therapy. Determining the hypoxia status of tumors could offer a second chance for the clinical translation of hypoxia-based agents, such as hypoxia activated prodrugs (HAPs) from bench to bedside.
Collapse
|
12
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Wang W, Tasset A, Pyatnitskiy I, Mohamed HG, Taniguchi R, Zhou R, Rana M, Lin P, Capocyan SLC, Bellamkonda A, Chase Sanders W, Wang H. Ultrasound triggered organic mechanoluminescence materials. Adv Drug Deliv Rev 2022; 186:114343. [PMID: 35580814 PMCID: PMC10202817 DOI: 10.1016/j.addr.2022.114343] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Ultrasound induced organic mechanoluminescence materials have become one of the focal topics in wireless light sources since they exhibit high spatiotemporal resolution, biocompatibility and excellent tissue penetration depth. These properties promote great potential in ultrahigh sensitive bioimaging with no background noise and noninvasive nanodevices. Recent advances in chemistry, nanotechnology and biomedical research are revolutionizing ultrasound induced organic mechanoluminescence. Herein, we try to summarize some recent researches in ultrasound induced mechanoluminescence that use various materials design strategies based on the molecular conformational changes and cycloreversion reaction. Practical applications, like noninvasive bioimaging and noninvasive optogenetics, are also presented and prospected.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Aaron Tasset
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Heba G Mohamed
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Rayna Taniguchi
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Richard Zhou
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Manini Rana
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Lin
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Sam Lander C Capocyan
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Bellamkonda
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - W Chase Sanders
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Hypoxia responsive fucoidan-based micelles for oxidative stress-augmented chemotherapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Lee S, Kim Y, Lee ES. Hypoxia-Responsive Azobenzene-Linked Hyaluronate Dot Particles for Photodynamic Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14050928. [PMID: 35631514 PMCID: PMC9142920 DOI: 10.3390/pharmaceutics14050928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we developed ultra-small hyaluronate dot particles that selectively release phototoxic drugs into a hypoxic tumor microenvironment. Here, the water-soluble hyaluronate dot (dHA) was covalently conjugated with 4,4′-azodianiline (Azo, as a hypoxia-sensitive linker) and Ce6 (as a photodynamic antitumor agent), producing dHA particles with cleavable Azo bond and Ce6 (dHA-Azo-Ce6). Importantly, the inactive Ce6 (self-quenched state) in the dHA-Azo-Ce6 particles was switched to the active Ce6 (dequenched state) via the Azo linker (–N=N–) cleavage in a hypoxic environment. In vitro studies using hypoxia-induced HeLa cells (treated with CoCl2) revealed that the dHA-Azo-Ce6 particle enhanced photodynamic antitumor inhibition, suggesting its potential as an antitumor drug candidate in response to tumor hypoxia.
Collapse
Affiliation(s)
- Sohyeon Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea; (S.L.); (Y.K.)
| | - Yoonyoung Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea; (S.L.); (Y.K.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea; (S.L.); (Y.K.)
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea
- Correspondence: ; Tel.: +82-02-2164-4921
| |
Collapse
|
16
|
Sarkar D, Chowdhury M, Das PK. Naphthalimide-Based Azo-Functionalized Supramolecular Vesicle in Hypoxia-Responsive Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3480-3492. [PMID: 35261245 DOI: 10.1021/acs.langmuir.1c03334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular materials that respond to external triggers are being extensively utilized in developing spatiotemporal control in biomedical applications ranging from drug delivery to diagnostics. The present article describes the development of self-assembled vesicles in 1:9 (v/v), tetrahydrofuran (THF)-water by naphthalimide-based azo moiety containing amphiphile (NI-Azo) where azo moiety would act as the stimuli-responsive junction. The self-assembly of NI-Azo took place through H-type of aggregation. Microscopic and spectroscopic analyses confirmed the formation of supramolecular vesicles with a dimension of 200-250 nm. Azo (-N═N-) moiety is known to get reduced to amine derivatives in the presence of the azoreductase enzyme, which is overexpressed in the hypoxic microenvironment. The absorbance intensity of this characteristic azo (-N═N-) moiety of NI-Azo (1:9 (v/v), THF-water) at 458 nm got diminished in the presence of both extracellular and intracellular bacterial azoreductase extracted from Escherichia coli bacteria. The same observation was noted in the presence of sodium dithionite (mimic of azoreductase), indicating that azoreductase/sodium dithionite induced azo bond cleavage of NI-Azo, which was confirmed by matrix-assisted laser desorption ionization time-of-flight spectrometric data of the corresponding aromatic amine fragments. The anticancer drug, curcumin, was encapsulated inside NI-Azo vesicles that successfully killed B16F10 cells (cancer cells) in CoCl2-induced hypoxic environment owing to the azoreductase-responsive release of drug. The cancer cell killing efficiency by curcumin-loaded NI-Azo vesicles in the hypoxic condition was 2.15-fold higher than that of the normoxic environment and 2.4-fold higher compared to that of native curcumin in the hypoxic condition. Notably, cancer cell killing efficiency of curcumin-loaded NI-Azo vesicles was 4.5- and 1.9-fold higher than that of noncancerous NIH3T3 cells in normoxic and hypoxic environments, respectively. Cell killing was found to be primarily through the early apoptotic pathway.
Collapse
Affiliation(s)
- Deblina Sarkar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
17
|
Wu Y, Li J, Zhong X, Shi J, Cheng Y, He C, Li J, Zou L, Fu C, Chen M, Zhang J, Gao H. A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy. Asian J Pharm Sci 2022; 17:206-218. [PMID: 35582637 PMCID: PMC9091603 DOI: 10.1016/j.ajps.2021.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
The combination of Ce6, an acknowledged photosensitizer, and TPL, a natural anticancer agent, has been demonstrated as a useful strategy to reinforce the tumor growth suppression, as well as decrease the systemic side effects compared with their monotherapy. However, in view of the optimal chemo-photodynamic combination efficiency, there is still short of the feasible nanovehicle to steadily co-deliver Ce6 and TPL, and stimuli-responsively burst release drugs in tumor site. Herein, we described the synergistic antitumor performance of a pH-sensitive supramolecular nanosystem, mediated by the host–guest complexing between β-CD and acid pH-responsive amphiphilic co-polymer mPEG-PBAE-mPEG, showing the shell–core structural micelles with the tight β-CD layer coating. Both Ce6 and TPL were facilely co-loaded into the spherical supramolecular NPs (TPL+Ce6/NPs) by one-step nanoprecipitation method, with an ideal particle size (156.0 nm), acid pH-responsive drug release profile, and enhanced cellular internalization capacity. In view of the combination benefit of photodynamic therapy and chemotherapy, as well as co-encapsulation in the fabricated pH-sensitive supramolecular NPs, TPL+Ce6/NPs exhibited significant efficacy to suppress cellular proliferation, boost ROS level, lower MMP, and promote cellular apoptosis in vitro. Particularly, fluorescence imaging revealed that TPL+Ce6/NPs preferentially accumulated in the tumor tissue area, with higher intensity than that of free Ce6. As expected, upon 650-nm laser irradiation, TPL+Ce6/NPs exhibited a cascade of amplified synergistic chemo-photodynamic therapeutic benefits to suppress tumor progression in both hepatoma H22 tumor-bearing mice and B16 tumor-bearing mice. More importantly, lower systemic toxicity was found in the tumor-bearing mice treated with TPL+Ce6/NPs. Overall, the designed supramolecular TPL+Ce6/NPs provided a promising alternative approach for chemo-photodynamic therapy in tumor treatment.
Collapse
Affiliation(s)
- Yihan Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingjing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Xuemei Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinfeng Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfen Cheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenglin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiaxin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Corresponding author.
| | - Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Corresponding author.
| |
Collapse
|
18
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Zhou Q, Mohammed F, Wang Y, Wang J, Lu N, Li J, Ge Z. Hypoxia-responsive block copolymer polyprodrugs for complementary photodynamic-chemotherapy. J Control Release 2021; 339:130-142. [PMID: 34560158 DOI: 10.1016/j.jconrel.2021.09.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023]
Abstract
The inherent hypoxic microenvironment of solid tumors has an important influence on tumor growth, distant metastasis, and invasiveness. The heterogeneous distribution of hypoxic regions inside tumors limits the therapeutic efficacy of O2-assisted therapeutic strategy (e.g. photodynamic therapy (PDT)). On the other hand, the hypoxia-activable prodrugs cannot work effectively in the regions with enough O2 concentration. To address the issues, we prepare a block copolymer polyprodrug consisting of polyethylene glycol (PEG) and copolymerized segments of nitroimidazole-linked camptothecin (CPT) methacrylate and 5,10,15,20-tetraphenylporphyrin (TPP)-containing methacrylate monomers for complementary photodynamic-chemotherapy. The polyprodrug can self-assemble into polymeric micelles in aqueous solution with suitable size and high stability. After intravenous injection, the polyprodrug micelles show tumor accumulation. Followed by light irradiation (650 nm) at tumor sites, TPP moieties induce singlet oxygen (1O2) production in the oxygen-rich area to exert PDT and cause transformation of the oxygen-rich areas into hypoxia. Simultaneously, in the hypoxic areas, the hypoxia-responsive polyprodrugs can be activated to release free CPT due to the cleavage of nitroimidazole linkages. The polyprodrug micelles with the segments for PDT and hypoxia-activable CPT efficiently suppress the growth of HeLa tumors. The well-defined polyprodrug amphiphiles offer an effective strategy to overcome the disadvantages of single treatment of PDT or hypoxia-responsive prodrugs for complementary photodynamic-chemotherapy of cancers.
Collapse
Affiliation(s)
- Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fathelrahman Mohammed
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingbo Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Junjie Li
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
20
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
21
|
Dutta D, Zhou Q, Mukerabigwi JF, Lu N, Ge Z. Hypoxia-Responsive Polyprodrug Nanocarriers for Near-Infrared Light-Boosted Photodynamic Chemotherapy. Biomacromolecules 2021; 22:4857-4870. [PMID: 34689560 DOI: 10.1021/acs.biomac.1c01152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The hypoxia environment inside tumors is tightly associated with tumor growth, metastasis, and drug resistance. However, the heterogonous distribution of hypoxic areas limits the efficacy of hypoxia-activatable drug delivery systems. Herein, we report the hypoxia-activable block copolymer polyprodrugs, which are composed of poly(ethylene glycol) (PEG) and copolymerized segments of ortho-nitrobenzyl-linked camptothecin (CPT) methacrylate and 2-(piperidin-1-yl)ethyl methacrylate (PEMA) monomers. After self-assembly in aqueous solution, indocyanine green (ICG) photosensitizers were encapsulated to formulate ICG-loaded micellar nanoparticles (ICG@CPTNB) for near-infrared (NIR) light-boosted photodynamic therapy (PDT), tumor hypoxia aggravation, and responsive drug activation. Through intravenous injection and prolonged blood circulation, the nanoparticles can accumulate into tumor efficiently. Tumor acidity-triggered charge transition of PEMA units remarkably promotes cellular internalization of the nanoparticles. Upon exposure to NIR laser irradiation, ICG inside the nanoparticles produced reactive oxygen species (ROS) along with local hypothermia. Simultaneously, the oxygen consumption during ROS production aggravated the intratumoral hypoxia, which amplified hypoxia-responsive self-immolative CPT release from the nanoparticles. The combined photodynamic chemotherapy using hypoxia-responsive polyprodrug nanoparticles, ICG@CPTNB, overcomes the limitations of single therapy of hypoxia-activable prodrugs or PDT, which remarkably improves the efficiency of tumor growth suppression.
Collapse
Affiliation(s)
- Debabrata Dutta
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jean Felix Mukerabigwi
- Department of Applied Chemistry, College of Science and Technology, University of Rwanda, 3900 Kigali, Rwanda
| | - Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.,School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
22
|
Zhang B, Xu Z, Zhou W, Liu Z, Zhao J, Gou S. A light-controlled multi-step drug release nanosystem targeting tumor hypoxia for synergistic cancer therapy. Chem Sci 2021; 12:11810-11820. [PMID: 34659720 PMCID: PMC8442699 DOI: 10.1039/d1sc01888d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is a major obstacle for cancer therapy due to its association with cell proliferation, tumor distant metastasis, and treatment resistance. In this study, a hypoxia-activated bifunctional prodrug (CC5) was designed, synthesized and encapsulated by a photo-responsive ruthenium complex-derived polymer to yield a light-controlled multi-step drug release system (CC5-RuCa) for synergistic therapy against tumor hypoxia. Under NIR irradiation, CC5-RuCa not only generated ROS to kill the cancer cells in the exterior of the tumor but also released the prodrug CC5 with enhanced intratumoral penetration in the severe hypoxia region inside the tumor tissue. In vivo studies on MDA-MB-231 xenograft models revealed that CC5-RuCa with preferential accumulation in the tumor exhibited highly efficient tumor regression through the synergistic effect of photodynamic therapy and hypoxia-activated chemotherapy.
Collapse
Affiliation(s)
- Bin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Zichen Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
- Nanjing Junruo Institute of Biomedicine Nanjing 211100 China
| |
Collapse
|
23
|
Li K, Zhang Y, Hussain A, Weng Y, Huang Y. Progress of Photodynamic and RNAi Combination Therapy in Cancer Treatment. ACS Biomater Sci Eng 2021; 7:4420-4429. [PMID: 34427082 DOI: 10.1021/acsbiomaterials.1c00765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) is a noninvasive and effective local treatment for cancers that produces selective damage to target tissues and cells. However, PDT alone is unlikely to completely inhibit tumor metastasis and/or local tumor recurrence. RNA interference (RNAi) is a phenomenon of gene silencing mediated by exogenous or endogenous double-stranded RNA (dsRNA). RNAi has entered a golden period of development, with the approval of four treatments employing RNAi. PDT in combination with RNAi therapy to inhibit related targets has been a research hotspot, with better clinical outcomes than monotherapy. In this review, the progress of PDT and small interfering RNA (siRNA) targeting different genes is discussed, while the achievements of the combined immunotherapy are reviewed.
Collapse
Affiliation(s)
- Kun Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuquan Zhang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhua Weng
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
24
|
Yang DC, Wang S, Weng XL, Zhang HX, Liu JY, Lin Z. Singlet Oxygen-Responsive Polymeric Nanomedicine for Light-Controlled Drug Release and Image-Guided Photodynamic-Chemo Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33905-33914. [PMID: 34278780 DOI: 10.1021/acsami.1c09044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coencapsulation of chemotherapeutic agents and photosensitizers into nanocarriers can help to achieve a combination of chemotherapy and photodynamic therapy for superior antitumor effects. However, precise on-demand drug release remains a major challenge. In addition, the loaded photosensitizers usually tend to aggregate, which can significantly weaken their fluorescent signals and photodynamic activities. To address these issues, herein, a smart nanocarrier termed as singlet oxygen-responsive nanoparticle (SOR-NP) was constructed by introducing singlet oxygen (1O2)-sensitive aminoacrylate linkers into amphiphilic mPEG-b-PCL copolymers. Boron dipyrromethene (BDP) and paclitaxel (PTX) as model therapeutic agents were coloaded into an 1O2-responsive nanocarrier for realizing light-controlled drug release and combination cancer treatment. This polymeric nanocarrier could substantially relieve the aggregation of encapsulated BDP due to the presence of a long hydrophobic chain. Therefore, the formed SOR-NPBDP/PTX nanodrug could generate bright fluorescent signals and high levels of 1O2, which could mediate cell death via PDT and rupture aminoacrylate linker simultaneously, leading to collapse of SOR-NPBDP/PTX and subsequent PTX release. The light-triggered drug release and combined anticancer effects of SOR-NPBDP/PTX were validated in HepG2 and MCF-7 cancer cells and H22 tumor-bearing mice. This study provides a promising strategy for tumor-specific drug release and selective photodynamic-chemo combination treatment.
Collapse
Affiliation(s)
- De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuai Wang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao-Lu Weng
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hong-Xia Zhang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
25
|
Wang X, Wu M, Zhang X, Li F, Zeng Y, Lin X, Liu X, Liu J. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. J Nanobiotechnology 2021; 19:204. [PMID: 34238297 PMCID: PMC8265128 DOI: 10.1186/s12951-021-00952-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT), a typical reactive oxygen species (ROS)-dependent treatment with high controllability, has emerged as an alternative cancer therapy modality but its therapeutic efficacy is still unsatisfactory due to the limited light penetration and constant oxygen consumption. With the development of another ROS-dependent paradigm ferroptosis, several efforts have been made to conquer the poor efficacy by combining these two approaches; however the biocompatibility, tumor-targeting capacity and clinical translation prospect of current studies still exist great concerns. Herein, a novel hypoxia-responsive nanoreactor BCFe@SRF with sorafenib (SRF) loaded inside, constructed by covalently connecting chlorin e6 conjugated bovine serum albumin (BSA-Ce6) and ferritin through azobenzene (Azo) linker, were prepared to offer unmatched opportunities for high-efficient PDT and ferroptosis synergistic therapy. RESULTS The designed BCFe@SRF exhibited appropriate size distribution, stable dispersity, excellent ROS generation property, controllable drug release capacity, tumor accumulation ability, and outstanding biocompatibility. Importantly, the BCFe@SRF could be degraded under hypoxia environment to release BSA-Ce6 for laser-triggered PDT, ferritin for iron-catalyzed Fenton reaction and SRF for tumor antioxidative defense disruption. Meanwhile, besides PDT effects, it was found that BCFe@SRF mediated treatment upon laser irradiation in hypoxic environment not only could accelerate lipid peroxidation (LPO) generation but also could deplete intracellular glutathione (GSH) and decrease glutathione peroxidase (GPX4) expression, which was believed as three symbolic events during ferroptosis. All in all, the BCFe@SRF nanoreactor, employing multiple cascaded pathways to promote intracellular ROS accumulation, presented remarkably outstanding antitumor effects both in vitro and in vivo. CONCLUSION BCFe@SRF could serve as a promising candidate for synergistic PDT and ferroptosis therapy, which is applicable to boost oxidative damage within tumor site and will be informative to future design of ROS-dependent therapeutic nanoplatforms.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Feida Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| | - Xiaolong Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Jingfeng Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, People's Republic of China.
| |
Collapse
|
26
|
Self-preparation system using glucose oxidase-inspired nitroreductase amplification for cascade-responsive drug release and multidrug resistance reversion. Biomaterials 2021; 275:120927. [PMID: 34119887 DOI: 10.1016/j.biomaterials.2021.120927] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023]
Abstract
Early antitumor therapy is an important determinant of survival in patients with cancer. Utilization of specific pathological states, such as hypoxia, greatly promotes the development of intelligent drug delivery systems (DDSs) for targeted antitumor therapy. However, a slight decrease in oxygen levels in early-stage tumors is not sufficient to trigger hypoxia-responsive drug release. Nitroreductase (NTR) is overexpressed in bioreductive hypoxic cancers, and its expression level has been verified to be directly related to hypoxic status. Herein, using glucose oxidase (GOx) as an O2-consuming agent to exacerbate hypoxia, a cascade strategy of GOx-induced overexpression of NTR and amplified NTR-catalyzed release was proposed for early antitumor therapy. Briefly, NTR-sensitive p-nitrobenzyl chloroformate (PNZ-Cl) was adopted to conjugate with the polysaccharide chitosan (CS) and self-assemble into CS-PNZ-Cl micelles. These polymer micelles possess the dual abilities to specifically immobilize GOx and load mitoxantrone (MIT) to form the NTR-responsive nanocascade reactor GOx/MIT@CS-PNZ-Cl. First, as a "key", tumor hypoxia triggers the initial release of GOx, which serves as the O2-consuming agent when catalyzing its reaction with glucose, which is accompanied by H2O2 production. Depleted oxygen levels facilitate the expression of NTR, which in turn amplifies the capacity of the nanocascade reactor to decompose into secondary micelles for enhanced intratumoral permeation. GOx-inspired NTR amplification further elicits MIT release, realizing a synergistic "domino effect" cascade. In addition, upregulated H2O2 has been shown to effectively reverse GSH-mediated MIT resistance, reaching the superior tumor inhibition rate of 93.08%. This GOx-based NTR-responsive nanocascade reactor provides amplification of the bioreductive hypoxic tumor microenvironment for early antitumor therapy.
Collapse
|
27
|
Shin Y, Husni P, Kang K, Lee D, Lee S, Lee E, Youn Y, Oh K. Recent Advances in pH- or/and Photo-Responsive Nanovehicles. Pharmaceutics 2021; 13:725. [PMID: 34069233 PMCID: PMC8157172 DOI: 10.3390/pharmaceutics13050725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
The combination of nanotechnology and chemotherapy has resulted in more effective drug design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting. Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves the efficacy and safety of treatment through spatiotemporal manipulation of light. Additionally, pH-induced delivery is one of the most widely studied strategies for targeting the acidic micro-environment of solid tumors. Accordingly, in this review, we discuss representative strategies for designing DDSs using light as an exogenous signal or pH as an endogenous trigger.
Collapse
Affiliation(s)
- Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Patihul Husni
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Kioh Kang
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Dayoon Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Sehwa Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Eunseong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Yuseok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kyungtaek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| |
Collapse
|
28
|
Shen Y, Dong C, Xiang H, Li C, Zhuang F, Chen Y, Lu Q, Chen Y, Huang B. Engineering Oxygen-Irrelevant Radical Nanogenerator for Hypoxia-Independent Magnetothermodynamic Tumor Nanotherapy. SMALL METHODS 2021; 5:e2001087. [PMID: 34927851 DOI: 10.1002/smtd.202001087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 06/14/2023]
Abstract
Tumor hypoxia substantially lowers the treatment efficacy of oxygen-relevant therapeutic modalities because the production of reactive oxygen species in oxygen-relevant anticancer modalities is highly dependent on oxygen level in tumor tissues. Here a distinctive magnetothermodynamic anticancer strategy is developed that takes the advantage of oxygen-irrelevant free radicals produced from magnetothermal decomposable initiators for inducing cancer-cell apoptosis in vitro and tumor suppression in vivo. Free-radical nanogenerator is constructed through in situ engineering of a mesoporous silica coating on the surface of superparamagnetic Mn and Co-doped nanoparticles (MnFe2 O4 @CoFe2 O4 , denoted as Mag) toward multifunctionality, where mesoporous structure provides reservoirs for efficient loading of initiators and the Mag core serves as in situ heat source under alternating magnetic field (AMF) actuation. Upon exposure to an exogenous AMF, the magnetic hyperthermia effect of superparamagnetic core lead to the rapid decomposition of the loaded/delivered initiators (AIPH) to produce oxygen-irrelevant free radicals. Both the magnetothermal effect and generation of toxic free radicals under AMF actuation are synergistically effective in promoting cancer-cell death and tumor suppression in the hypoxic tumor microenvironment. The prominent therapeutic efficacy of this radical nanogenerator represents an intriguing paradigm of oxygen-irrelevant nanoplatform for AMF-initiated synergistic cancer treatment.
Collapse
Affiliation(s)
- Yujia Shen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Cuixian Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Yixin Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Qing Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| |
Collapse
|
29
|
Krishna G, Srileka V, Singara Charya M, Abu Serea ES, Shalan AE. Biogenic synthesis and cytotoxic effects of silver nanoparticles mediated by white rot fungi. Heliyon 2021; 7:e06470. [PMID: 33786393 PMCID: PMC7988327 DOI: 10.1016/j.heliyon.2021.e06470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 03/05/2021] [Indexed: 01/21/2023] Open
Abstract
Silver nanoparticles (AgNPs) were successfully synthesized using silver nitrate via the biological route using the culture filtrate of Ganoderma enigmaticum as well as Trametes ljubarskyi white rot fungi materials at room temperature. The proposed synthetic technique was applied for the first time for AgNPs preparation via the biological route through a low-cost pathway, which considered as an adequate direction of preparation compared to the commercial methods. This study reports the in vitro cytotoxic effect of biologically synthesized AgNPs in disposing of the human lung cancer cell line (A549) and human breast cancer cell (MCF-7) by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. In addition, the viability of the tested cell lines was tested after treatment for 24 h in the presence of the prepared nanoparticles. The obtained results indicated the reduced viability of cancer cell lines with improving concentrations of AgNPs (40-120 μg/mL) at 24 h. Furthermore, at 120 μg/mL concentration, the fungal nanoparticles showed substantial cytotoxic effects toward the treated cells. Consequently, the results designated that the biologically synthesized silver nanoparticles have effective behavior for treating A549 and MCF-7 cancer cells from the laboratory experiment approach; however, additional studies are required to validate these results in vivo models as anticancer agents depending on their cytotoxic activity.
Collapse
Affiliation(s)
- Gudikandula Krishna
- Department of Microbiology, Kakatiya University, Warangal 506009, Telangana, India
| | - V. Srileka
- Chaitanya Degree and PG. College, Kakatiya University, Warangal 506009, Telangana, India
| | - M.A. Singara Charya
- Department of Microbiology, Kakatiya University, Warangal 506009, Telangana, India
| | - Esraa Samy Abu Serea
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
- Chemistry & Biochemistry Department, Faculty of Science, Cairo University, 12613, Egypt
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| |
Collapse
|
30
|
Zhou H, Qin F, Chen C. Designing Hypoxia-Responsive Nanotheranostic Agents for Tumor Imaging and Therapy. Adv Healthc Mater 2021; 10:e2001277. [PMID: 32985141 DOI: 10.1002/adhm.202001277] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/06/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia, a common feature of most solid tumors, plays an important role in tumor proliferation, metastasis, and invasion, leading to drug, radiation, and photodynamic therapy resistance, and resulting in a sharp reduction in the disease-free survival rate of tumor patients. The lack of sufficient blood supply to the interior regions of tumors hinders the delivery of traditional drugs and contrast agents, interfering with their accumulation in the hypoxic region, and preventing efficient theranostics. Thus, there is a need for the fabrication of novel tumor theranostic agents that overcome these obstacles. Reports, in recent years, of hypoxia-responsive nanomaterials may provide with such means. In this review, a comprehensive description of the physicochemical and biological characteristics of hypoxic tumor tissues is provided, the principles of designing the hypoxia-responsive tumor theranostic agents are discussed, and the recent research into hypoxia-triggered nanomaterials is examined. Additionally, other hypoxia-associated responsive strategies, the current limitations, and future prospects for hypoxia-responsive nanotheranostic agents in tumor treatment are discussed.
Collapse
Affiliation(s)
- Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- Research Unit of Nanoscience and Technology Chinese Academy of Medical Sciences Beijing 100190 China
| | - Fenglan Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- Research Unit of Nanoscience and Technology Chinese Academy of Medical Sciences Beijing 100190 China
| |
Collapse
|
31
|
Du J, Shi T, Long S, Chen P, Sun W, Fan J, Peng X. Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213604] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
33
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
34
|
Zhou S, Hu X, Xia R, Liu S, Pei Q, Chen G, Xie Z, Jing X. A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angew Chem Int Ed Engl 2020; 59:23198-23205. [PMID: 32852145 DOI: 10.1002/anie.202008732] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The innate hypoxic microenvironment of most solid tumors has a major influence on tumor growth, invasiveness, and distant metastasis. Here, a hypoxia-activated self-immolative prodrug of paclitaxel (PTX2 -Azo) was synthesized and encapsulated by a peptide copolymer decorated with the photosensitizer chlorin e6 (Ce6) to prepare light-boosted PTX nanoparticle (Ce6/PTX2 -Azo NP). In this nanoparticle, PTX2 -Azo prevents premature drug leakage and realizes specific release in hypoxic tumor microenvironment and the photosensitizer Ce6 not only efficiently generates singlet oxygen under light irradiation but also acts as a positive amplifier to promote the release of PTX. The combination of photodynamic therapy (PDT) and chemotherapy results in excellent antitumor efficacy, demonstrating the great potential for synergistic cancer therapy.
Collapse
Affiliation(s)
- Shiyu Zhou
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Guang Chen
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
35
|
Zhou S, Hu X, Xia R, Liu S, Pei Q, Chen G, Xie Z, Jing X. A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shiyu Zhou
- Department of Thyroid Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Guang Chen
- Department of Thyroid Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
36
|
Li Y, Jeon J, Park JH. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Lett 2020; 490:31-43. [DOI: 10.1016/j.canlet.2020.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
|
37
|
He X, Yang X, Li D, Cao Z. Red and NIR Light-Responsive Polymeric Nanocarriers for On-Demand Drug Delivery. Curr Med Chem 2020; 27:3877-3887. [DOI: 10.2174/0929867326666190215113522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
Red and NIR light-responsive polymeric nanocarriers capable of on-demand drug delivery
have gained tremendous attention for their great potential in cancer therapy. Various strategies have
been applied to fabricate such nanocarriers, and they have demonstrated significant therapeutic efficacy
and minimal toxicity to normal tissues. Here, we will review the current developments in various
red and NIR light-responsive polymeric nanocarriers with respect to their use in on-demand drug
delivery, including facilitation of drug internalization and boosting of drug release at targeted sites.
We summarize their components and design strategies, and highlight the mechanisms by which the
photoactivatable variations enhance drug uptake and drug release. We attempt to provide new insights
into the fabrication of red and NIR light-responsive polymeric nanocarriers for on-demand
drug delivery.
Collapse
Affiliation(s)
- Xinyu He
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Dongdong Li
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Ziyang Cao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
38
|
Ihsanullah KM, Kumar BN, Zhao Y, Muhammad H, Liu Y, Wang L, Liu H, Jiang W. Stepwise-activatable hypoxia triggered nanocarrier-based photodynamic therapy for effective synergistic bioreductive chemotherapy. Biomaterials 2020; 245:119982. [DOI: 10.1016/j.biomaterials.2020.119982] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/15/2023]
|
39
|
Ma W, Chen X, Fu L, Zhu J, Fan M, Chen J, Yang C, Yang G, Wu L, Mao G, Yang X, Mou X, Gu Z, Cai X. Ultra-efficient Antibacterial System Based on Photodynamic Therapy and CO Gas Therapy for Synergistic Antibacterial and Ablation Biofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22479-22491. [PMID: 32329344 DOI: 10.1021/acsami.0c01967] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, with the emergence of various kinds of drug-resistant bacteria, existing antibiotics have become inefficient in killing these bacteria, and the formation of biofilms has further weakened the therapeutic effect. More problematically, the massive use and abuse of antibiotics have caused severe side effects. Thus, the development of ultra-efficient and safe antibacterial systems is urgently needed. Herein, a photodynamic therapy (PDT)-driven CO-controlled delivery system (Ce6&CO@FADP) is developed for synergistic antibacterial and ablation biofilms. Ce6&CO@FADP is constructed using a fluorinated amphiphilic dendritic peptide (FADP) and physically loaded with Ce6 and CORM-401. After efficiently entering the bacteria, Ce6&CO@FADP can rapidly release CO intracellularly by the massive consumption of the H2O2 generated during the PDT process, without affecting the generation of singlet oxygen (1O2). As such, the combination of CO and 1O2 exerts notable synergistic antibacterial and biofilm ablation effects both in vitro and in vivo (including subcutaneous bacterial infection and biofilm catheter models) experiments. More importantly, all biosafety assessments suggest the good biocompatibility of Ce6&CO@FADP. Together, these results reveal that Ce6&CO@FADP is an efficient and safe antibacterial system, which has essential application prospects for the treatment of bacterial infections and ablation of biofilms in vivo.
Collapse
Affiliation(s)
- Wei Ma
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), No. 158 Shangtang Road, 310014 Hangzhou, Zhejiang Province, P. R. China
| | - Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), No. 158 Shangtang Road, 310014 Hangzhou, Zhejiang Province, P. R. China
| | - Jingwu Zhu
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Mengni Fan
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Junpeng Chen
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Chao Yang
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Guangzhen Yang
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Lihuang Wu
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Genxiang Mao
- Department of Geriatrics, Zhejiang Hospital, Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, No. 1229 Gudun Road, 310013 Hangzhou, Zhejiang Province, P. R. China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), No. 158 Shangtang Road, 310014 Hangzhou, Zhejiang Province, P. R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), No. 158 Shangtang Road, 310014 Hangzhou, Zhejiang Province, P. R. China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Xiaojun Cai
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| |
Collapse
|
40
|
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020; 10:4557-4588. [PMID: 32292515 PMCID: PMC7150471 DOI: 10.7150/thno.38069] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, much progress has been motivated in stimuli-responsive nanocarriers, which could response to the intrinsic physicochemical and pathological factors in diseased regions to increase the specificity of drug delivery. Currently, numerous nanocarriers have been engineered with physicochemical changes in responding to external stimuli, such as ultrasound, thermal, light and magnetic field, as well as internal stimuli, including pH, redox potential, hypoxia and enzyme, etc. Nanocarriers could respond to stimuli in tumor microenvironments or inside cancer cells for on-demanded drug delivery and accumulation, controlled drug release, activation of bioactive compounds, probes and targeting ligands, as well as size, charge and conformation conversion, etc., leading to sensing and signaling, overcoming multidrug resistance, accurate diagnosis and precision therapy. This review has summarized the general strategies of developing stimuli-responsive nanocarriers and recent advances, presented their applications in drug delivery, tumor imaging, therapy and theranostics, illustrated the progress of clinical translation and made prospects.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, 610041, China
| |
Collapse
|
41
|
Zhang J, Zhou ZH, Li L, Luo YL, Xu F, Chen Y. Dual Stimuli-Responsive Supramolecular Self-Assemblies Based on the Host–Guest Interaction between β-Cyclodextrin and Azobenzene for Cellular Drug Release. Mol Pharm 2020; 17:1100-1113. [DOI: 10.1021/acs.molpharmaceut.9b01142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- JianGuo Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Zi-Hao Zhou
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Lin Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Yashao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| |
Collapse
|
42
|
Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, Chen Y, Luo X, Zhang H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020; 237:119827. [PMID: 32036302 DOI: 10.1016/j.biomaterials.2020.119827] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT), as a non-invasive therapeutic modality that is alternative to radiotherapy and chemotherapy, is extensively investigated for cancer treatments. Although conventional organic photosensitizers (PSs) are still widely used and have achieved great progresses in PDT, the disadvantages such as hydrophobicity, poor stability within PDT environment and low cell/tissue specificity largely limit their clinical applications. Consequently, nano-agents with promising physicochemical and optical properties have emerged as an attractive alternative to overcome these drawbacks of traditional PSs. Herein, the up-to-date advances in the fabrication and fascinating applications of various nanomaterials in PDT have been summarized, including various types of nanoparticles, carbon-based nanomaterials, and two-dimensional nanomaterials, etc. In addition, the current challenges for the clinical use of PDT, and the corresponding strategies to address these issues, as well as future perspectives on further improvement of PDT have also been discussed.
Collapse
Affiliation(s)
- Jianming Chen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Zhongjian Xie
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Qiqiao Zeng
- Department of Ophthalmology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen City, Guangdong Province, 518020, PR China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Xiaoling Luo
- Department of Ophthalmology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen City, Guangdong Province, 518020, PR China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
43
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
44
|
Xu Z, Pan C, Yuan W. Light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable micelles for synergistic photodynamic therapy and chemotherapy. Biomater Sci 2020; 8:3348-3358. [DOI: 10.1039/d0bm00328j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The micelles self-assembled from POEGMA-b-PCL-Azo-PCL-b-POEGMA present light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable properties for synergistic photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Zhangting Xu
- Department of Interventional and Vascular surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Chang Pan
- Department of Interventional and Vascular surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Weizhong Yuan
- Department of Interventional and Vascular surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| |
Collapse
|
45
|
Faal Maleki M, Jafari A, Mirhadi E, Askarizadeh A, Golichenari B, Hadizadeh F, Jalilzadeh Moghimi SM, Aryan R, Mashreghi M, Jaafari MR. Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting. Int J Pharm 2019; 572:118716. [DOI: 10.1016/j.ijpharm.2019.118716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
|
46
|
Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C. Fighting Hypoxia to Improve PDT. Pharmaceuticals (Basel) 2019; 12:E163. [PMID: 31671658 PMCID: PMC6958374 DOI: 10.3390/ph12040163] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) has drawn great interest in recent years mainly due to its low side effects and few drug resistances. Nevertheless, one of the issues of PDT is the need for oxygen to induce a photodynamic effect. Tumours often have low oxygen concentrations, related to the abnormal structure of the microvessels leading to an ineffective blood distribution. Moreover, PDT consumes O2. In order to improve the oxygenation of tumour or decrease hypoxia, different strategies are developed and are described in this review: 1) The use of O2 vehicle; 2) the modification of the tumour microenvironment (TME); 3) combining other therapies with PDT; 4) hypoxia-independent PDT; 5) hypoxia-dependent PDT and 6) fractional PDT.
Collapse
Affiliation(s)
- Ludivine Larue
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | | | - Amina Ben-Mihoub
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Albert Moussaron
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Noémie Thomas
- Biologie, Signaux et Systèmes en Cancérologie et Neurosciences, CRAN, UMR 7039, Université de Lorraine, CNRS, 54000 Nancy, France.
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| |
Collapse
|
47
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
48
|
Wang W, Liu S, Chen B, Yan X, Li S, Ma X, Yu X. DNA-Inspired Adhesive Hydrogels Based on the Biodegradable Polyphosphoesters Tackified by a Nucleobase. Biomacromolecules 2019; 20:3672-3683. [DOI: 10.1021/acs.biomac.9b00642] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenliang Wang
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Sanrong Liu
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Binggang Chen
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Xinxin Yan
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Shengran Li
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Xiaojing Ma
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xifei Yu
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| |
Collapse
|
49
|
Feng X, Dixon H, Glen‐Ravenhill H, Karaosmanoglu S, Li Q, Yan L, Chen X. Smart Nanotechnologies to Target Tumor with Deep Penetration Depth for Efficient Cancer Treatment and Imaging. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xue Feng
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Hannah Dixon
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Harriet Glen‐Ravenhill
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Sena Karaosmanoglu
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Quan Li
- School of EngineeringInstitute for Energy SystemsThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Li Yan
- Monash Institute of Pharmaceutical SciencesMonash University Parkville Victoria 3052 Australia
| | - Xianfeng Chen
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
- Translational Medicine CenterThe Second Affiliated HospitalGuangzhou Medical University Guangzhou 510182 P. R. China
| |
Collapse
|
50
|
Yan Q, Guo X, Huang X, Meng X, Liu F, Dai P, Wang Z, Zhao Y. Gated Mesoporous Silica Nanocarriers for Hypoxia-Responsive Cargo Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24377-24385. [PMID: 31195793 DOI: 10.1021/acsami.9b04142] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mesoporous silica nanocarriers (MSNs) are appealing in terms of their large cavity surface area and high loading capacity, but they have been suffering from premature cargo release. Herein, we report a gated smart MSN that is sensitive to low oxygen concentration (i.e., hypoxia) via taking advantage of the superior electron-accepting ability of the azobenzene moiety. The azobenzene polymer was employed as the responsive gate-keeper that was deposited on the MSN surface, followed by coating with amphiphilic Pluronic F68 for steric stabilization. The obtained nanocarriers were less than 200 nm. The in vitro polymer degradation was spectrophotometrically witnessed via the employment of a reducing agent, namely, sodium dithionite, with a strong electron-donating ability. The hypoxia-responsive cargo release from the gated MSN was quantitatively demonstrated in breast cancer cells (MCF-7) using the fluorescence resonance energy transfer (FRET) technique where coumarin 6 and rhodamine B was selected as the FRET donor and acceptor, respectively. The FRET ratio was used as the index and decreased linearly over time under hypoxia, whereas it almost remained steady under normoxia. In addition, a model photosensitizer, namely, chlorin e6, was also loaded in the gated MSN whose toxicity under hypoxia was verified. This study developed a hypoxia-responsive MSN with the azobenzene polymer as the removable gate-keeper, which would expand the application of MSNs in pharmaceutical and biomedical areas since the low oxygen concentration is a unique trigger in many pathological conditions.
Collapse
Affiliation(s)
- Qi Yan
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xuliang Guo
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xiaoli Huang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xuan Meng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Fang Liu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Peipei Dai
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| |
Collapse
|