1
|
Chen D, Du Y, Wang X, Li H, Wu X, Kuang X, Li C, Zhao J, Xiong Y, Sun M, Tu J, Liu S, Sun C. Phase-separating Pt(IV)-graft-glycopeptides sequentially sensing pH and redox for deep tumor penetration and targeting chemotherapy. J Control Release 2025; 379:743-756. [PMID: 39832748 DOI: 10.1016/j.jconrel.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Active-targeting nanomedicines have been widely employed in cancer treatment for increasing therapeutic index. However, the limited permeability caused by the binding site barrier (BSB) and size hindrances compromises their clinical antitumor efficacy in patients. Herein, learning from the liquid-liquid phase separation (LLPS) of bio-macromolecules, we report phase-separating glycopeptides (HEP) from polyhistidine (PHis) grafted hyaluronic acid (HA), which can sense the tumor extracellular pH and concomitantly overcome size and BSB dilemmas for enhanced tumor penetration. HEP aggregates into nanodroplets in solution at neutral pH. Upon reaching the acidic extracellular environment of tumors, the pH-responsive PHis triggers a phase separation, converting the coacervate nanodroplets into monomeric glycopeptides. This enables HEP conjugated with the platinum prodrug (HEPPt) to deeply penetrate into tumors by overcoming the BSB effect arising from the interaction between nanodroplets and cluster of differentiation 44 (CD44), as well as resolving the size challenges. Moreover, HEPPt in monomeric states exhibits promoted cellular uptake after pH-triggered phase separation, attributed to the transmembrane effect of exposed PHis. Subsequently, the rapid release of Pt(II), triggered by tumor intracellular reducing environment, exerts excellent antitumor activity. The phase-separating glycopeptides represent a promising platform for improving tumor penetration and intracellular delivery of therapeutic agents.
Collapse
Affiliation(s)
- Dali Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Yunai Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Xitong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Huihong Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Xinjiao Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoqin Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Chunjiayu Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianing Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Yerong Xiong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China.
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China.
| | - Siyan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
2
|
Lyu F, Hakariya H, Hiraoka H, Li Z, Matsubara N, Soo Y, Hashiya F, Abe N, Shu Z, Nakamoto K, Kimura Y, Abe H. Intracellular Delivery of Antisense Oligonucleotides by Tri-Branched Cyclic Disulfide Units. ChemMedChem 2024; 19:e202400472. [PMID: 38957922 DOI: 10.1002/cmdc.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Therapeutic oligonucleotides, such as antisense DNA, show promise in treating previously untreatable diseases. However, their applications are still hindered by the poor membrane permeability of naked oligonucleotides. Therefore, it is necessary to develop efficient methods for intracellular oligonucleotide delivery. Previously, our group successfully developed disulfide-based Membrane Permeable Oligonucleotides (MPON), which achieved enhanced cellular uptake and gene silencing effects through an endocytosis-free uptake mechanism. Herein, we report a new molecular design for the next generation of MPON, called trimer MPON. The trimer MPON consists of a tri-branched backbone, three α-lipoic acid units, and a spacer linker between the oligonucleotides and tri-branched cyclic disulfide unit. We describe the design, synthesis, and functional evaluation of the trimer MPON, offering new insights into the molecular design for efficient oligonucleotide delivery.
Collapse
Affiliation(s)
- Fangjie Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hayase Hakariya
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Noriaki Matsubara
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yonghao Soo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Zhaoma Shu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Kosuke Nakamoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
3
|
Chen B, Ren Q, Jiang P, Wu Q, Shuai Q, Yan Y. Combinatorial Synthesis of Alkyl Chain-Capped Poly(β-Amino Ester)s for Effective siRNA Delivery. Macromol Biosci 2024; 24:e2400168. [PMID: 39052313 DOI: 10.1002/mabi.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Poly (β-amino ester) (PBAE) is a class of biodegradable polymers containing ester bonds in their main chain, extensively investigated as cationic polymer carriers for siRNA. Most current PBAE carriers rely on termination with hydrophilic or charged amines. In this study, a polymer platform consisting of 168 PBAE polymers with hydrophobic alkyl chain terminals is constructed through sequential aza-Michael addition. A large number of effective carriers are identified through in vitro screening of the PBAE platform for siLuc delivery to HeLa-Luc cells. Specifically, PA8-C6 and PA8-C8 achieve remarkable gene knockdown efficacies of up to 80% with low cytotoxicity. Certain materials from the PA2 and PA5 series demonstrate potent siRNA delivery capabilities associated with elevated cytotoxicity. The pKa value of PBAE is predominantly determined by the hydrophilic amine side chains rather than the end-capping groups. A pKa range of ≈6.2-6.5 may contribute to the excellent delivery capability for PA8 series carriers. The co-formulation of PBAE carriers with helper lipids leads to the reduced size and surface charges of the polyplex NPs with siRNA, consequently decreasing the cytotoxicity and enhancing siRNA delivery efficacy. These findings hold significant implications for the development of novel degradable polymer carriers for siRNA delivery.
Collapse
Affiliation(s)
- Baiqiu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiong Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qi Shuai
- College of Pharmaceutical Sciences and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
4
|
Ludtke T, Simó C, Gimenez Reyes S, Martinez Moro M, Salvador C, Ritacco H, Andreozzi P, Llop J, Moya SE. A study of complexation and biological fate of polyethyleneimine-siRNA polyplexes in vitro and in vivo by fluorescence correlation spectroscopy and positron emission tomography imaging. NANOSCALE 2024; 16:3525-3533. [PMID: 38273800 DOI: 10.1039/d3nr04026g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
A deeper knowledge on the formation and biological fate of polymer based gene vectors is needed for their translation into therapy. Here, polyplexes of polyethyleneimine (PEI) and silencing RNA (siRNA) are formed with theoretical N/P ratios of 2, 4 and 12. Fluorescence correlation spectroscopy (FCS) is used to study the formation of polyplexes from fluorescently labelled PEI and siRNA. FCS proves the presence of free PEI. From the analysis of the autocorrelation functions it was possible to determine the actual stoichiometry of polyplexes. FCS and fluorescence cross correlation spectroscopy (FCCS) are used to follow the fate of the polyplexes intracellularly. Polyplexes disassemble after 1 day inside cells. Positron emission tomography (PET) studies are conducted with radiolabelled polyplexes prepared with siRNA or PEI labelled with 2,3,5,6-tetrafluorophenyl 6-[18F]-fluoronicotinate ([18F]F-PyTFP). PET studies in healthy mice show that [18F]siRNA/PEI and siRNA/[18F]PEI polyplexes show similar biodistribution patterns with limited circulation in the bloodstream and accumulation in the liver. Higher activity for [18F]PEI in the kidney and bladder suggests the presence of free PEI.
Collapse
Affiliation(s)
- Tanja Ludtke
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
| | - Cristina Simó
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
- Radiochemistry and Nuclear Imaging laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
| | - Santiago Gimenez Reyes
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
- Instituto de Fisica del Sur (IFISUR-CONICET), Av. Alem, Bahia Blanca, Argentina
| | - Marta Martinez Moro
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
| | - Cristian Salvador
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián 20014, Spain
| | - Hernan Ritacco
- Instituto de Fisica del Sur (IFISUR-CONICET), Av. Alem, Bahia Blanca, Argentina
| | - Patrizia Andreozzi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
| | - Sergio E Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
| |
Collapse
|
5
|
Zhang Y, Kim I, Lu Y, Xu Y, Yu DG, Song W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release 2022; 349:963-982. [PMID: 35944751 DOI: 10.1016/j.jconrel.2022.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive drug delivery systems based on polymeric nanovehicles are among the most promising treatment regimens for malignant cancers. Such intelligent systems that release payloads in response to the physiological characteristics of tumor sites have several advantages over conventional drug carriers, offering, in particular, enhanced therapeutic effects and decreased toxicity. The tumor microenvironment (TME) is acidic, suggesting the potential of pH-responsive nanovehicles for enhancing treatment specificity and efficacy. The synthetic polypeptide poly(l-histidine) (PLH) is an appropriate candidate for the preparation of pH-responsive nanovehicles because the pKa of PLH (approximately 6.0) is close to the pH of the acidic TME. In addition, the pendent imidazole rings of PLH yield pH-dependent hydrophobic-to-hydrophilic phase transitions in the acidic TME, triggering the destabilization of nanovehicles and the subsequent release of encapsulated chemotherapeutic agents. Herein, we highlight the state-of-the-art design and construction of pH-responsive nanovehicles based on PLH and discuss the future challenges and perspectives of this fascinating biomaterial for targeted cancer treatment and "benchtop-to-clinic" translation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
6
|
Li J, Yu X, Shi X, Shen M. Cancer nanomedicine based on polyethylenimine-mediated multifunctional nanosystems. PROGRESS IN MATERIALS SCIENCE 2022; 124:100871. [DOI: 10.1016/j.pmatsci.2021.100871] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Sun H, Yu Y, Zhang Y, Li J, Cheng Y, Huang S, Wang W, Zhang X. Glycosylated Nanotherapeutics with β-Lactamase Reversible Competitive Inhibitory Activity Reinvigorates Antibiotics against Gram-Negative Bacteria. Biomacromolecules 2021; 22:2834-2849. [PMID: 34164980 DOI: 10.1021/acs.biomac.1c00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotics are currently first-line therapy for bacterial infections. However, the curative effect of antibiotic remedies is limited due to increasingly prevalent bacterial resistance. The strategy to reverse intrinsic acquired drug resistance presents a promising option for reinvigorating antibiotic therapy. Here, we developed a β-lactamase-inhibiting macromolecule composed of benzoxaborole and dextran for precise transport of β-lactam antibiotics to strains overexpressing β-lactamase. Benzoxaborole-derived nanotherapeutics enabled specific recognition and rapid internalization, and the nanotherapeutics with a high affinity toward bacteria distinctly inhibited the catalytic activity of bacterially secreted β-lactamase by a reversible competitive mechanism. Thus, the system entrapping cefoxitin harbored a significantly enhanced ability to kill drug-resistant Escherichia coli compared to the ability of the drug by specifically overcoming the membrane barrier and acquired resistance mechanism of β-lactamase overproduction. The reversible competitive nanotherapeutics exhibited a robust therapeutic efficacy in rat wounds infected with drug-resistant bacteria; the efficacy was due to efficient bacterial elimination and collateral benzoxaborole-dependent amelioration of the inflammatory response. The above results offered insights into the facile design of precise macromolecular adjuvants to exclusively reverse the acquired bacterial resistance mechanism and increase the utility of antibiotic therapies against antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Haonan Sun
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenbo Wang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coord Chem Rev 2021; 426:213529. [DOI: 10.1016/j.ccr.2020.213529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent Advances in Nanomicelles Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E70. [PMID: 33396938 PMCID: PMC7823398 DOI: 10.3390/nano11010070] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
The efficient and selective delivery of therapeutic drugs to the target site remains the main obstacle in the development of new drugs and therapeutic interventions. Up until today, nanomicelles have shown their prospective as nanocarriers for drug delivery owing to their small size, good biocompatibility, and capacity to effectively entrap lipophilic drugs in their core. Nanomicelles are formed via self-assembly in aqueous media of amphiphilic molecules into well-organized supramolecular structures. Molecular weights and structure of the core and corona forming blocks are important properties that will determine the size of nanomicelles and their shape. Selective delivery is achieved via novel design of various stimuli-responsive nanomicelles that release drugs based on endogenous or exogenous stimulations such as pH, temperature, ultrasound, light, redox potential, and others. This review summarizes the emerging micellar nanocarriers developed with various designs, their outstanding properties, and underlying principles that grant targeted and continuous drug delivery. Finally, future perspectives, and challenges for nanomicelles are discussed based on the current achievements and remaining issues.
Collapse
Affiliation(s)
- Salah M. Tawfik
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Surfactant Laboratory, Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Shavkatjon Azizov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Laboratory of Polysaccharide Chemistry, Institute of Bioorganic Chemistry, Uzbekistan Academy of Science, Tashkent 100125, Uzbekistan
| | - Mohamed R. Elmasry
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Mirkomil Sharipov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| |
Collapse
|
10
|
Wang D, Wang J, Song J, Shen Q, Wang R, Lu W, Pan J, Xie C, Liu M. Guanidyl and imidazolyl integration group-modified PAMAM for gastric adenocarcinoma gene therapy. J Gene Med 2020; 22:e3240. [PMID: 32558063 DOI: 10.1002/jgm.3240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Gene therapy has become a potential strategy for cancer treatment. However, the development of efficient gene vectors restricts the application for cancer gene treatment. Functionalization of polymers with functional groups can significantly improve their transfection efficacy. METHODS Guanidyl can form bidentate hydrogen with the phosphate groups and phosphate groups are present in DNA and cell membranes, thus increasing DNA condensation and cellular uptake. Imidazolyl has high buffering capacity in endosomal/lysosomal acidic environment, facilitating endosome/lysosome escape. We designed a structure-integrated group of guanidyl and imidazolyl, 2-aminoimidazole (AM), which was conjugated to PAMAM generation 2 (G2) for gene therapy of gastric adenocarcinoma. RESULTS Molecular docking results illustrated that G2-AM bound with DNA molecule effectively via multiple interactions. A quantitative luciferase assay showed that the transfection efficacy of G2-AM/pGL3 was approximately 100-fold greater than that of G2/pGL3, 90-fold greater than that of imidazolyl-modified G2 (G2-M) /pGL3 and 100-fold greater than that of G5/pGL3 without additional cytotoxicity. After introducing the pTRAIL gene into gastric adenocarcinoma cells, the apoptosis ratio of gastric adenocarcinoma cells treated with G2-AM/pTRAIL was 36.95%, which is much larger than the corresponding ratio of G2/pTRAIL (7.45%), G2-M/pTRAIL (11.33%) and G5/pTRAIL (23.2%). In a gastric adenocarcinoma xenograft model, the in vivo transfection efficacy of G2-AM/pRFP was much greater than that of G2/pRFP and G2-M/pRFP. CONCLUSIONS These results demonstrate that AM could be modified with cationic polymers for potential application in gene delivery and gastric adenocarcinoma gene therapy.
Collapse
Affiliation(s)
- Dongli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jing Wang
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Qing Shen
- Hangzhou YITU Healthcare Technology Co. Ltd, Hangzhou, China
| | - Ruifeng Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jun Pan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| |
Collapse
|
11
|
Yang X, Li L, Yang Z, Hu J, Lei Y, Li P, Zheng Z. Charge reactions on crystalline/amorphous lanthanum nickel oxide cocatalyst modified hematite photoanode. J Chem Phys 2020; 153:024701. [DOI: 10.1063/5.0012298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Xiaogang Yang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215011, China
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, 36 North 3rd Ring Road, Zhengzhou, Henan 450045, China
| | - Lei Li
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, 36 North 3rd Ring Road, Zhengzhou, Henan 450045, China
- Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, College of Advanced Materials and Energy, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, China
| | - Zhongzheng Yang
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, 36 North 3rd Ring Road, Zhengzhou, Henan 450045, China
| | - Jundie Hu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215011, China
| | - Yan Lei
- Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, College of Advanced Materials and Energy, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, China
| | - Pinjiang Li
- Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, College of Advanced Materials and Energy, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, China
| | - Zhi Zheng
- Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, College of Advanced Materials and Energy, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, China
| |
Collapse
|
12
|
Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020; 21:2966-2982. [DOI: 10.1021/acs.biomac.0c00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
13
|
Faal Maleki M, Jafari A, Mirhadi E, Askarizadeh A, Golichenari B, Hadizadeh F, Jalilzadeh Moghimi SM, Aryan R, Mashreghi M, Jaafari MR. Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting. Int J Pharm 2019; 572:118716. [DOI: 10.1016/j.ijpharm.2019.118716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
|
14
|
Diao L, Tao J, Wang Y, Hu Y, He W. Co-Delivery Of Dihydroartemisinin And HMGB1 siRNA By TAT-Modified Cationic Liposomes Through The TLR4 Signaling Pathway For Treatment Of Lupus Nephritis. Int J Nanomedicine 2019; 14:8627-8645. [PMID: 31806961 PMCID: PMC6839745 DOI: 10.2147/ijn.s220754] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background and purpose Systemic lupus erythematous (SLE) is an autoimmune disease caused by many factors. Lupus nephritis (LN) is a common complication of SLE and represents a major cause of morbidity and mortality. Previous studies have shown the advantages of multi-targeted therapy for LN and that TLR4 signaling is a target of anti-LN drugs. High-mobility group box 1 (HMGB1), a nuclear protein with a proinflammatory cytokine activity, binds specifically to TLR4 to induce inflammation. We aimed to develop PEGylated TAT peptide-cationic liposomes (TAT-CLs) to deliver anti-HMGB1 siRNA and dihydroartemisinin (DHA) to increase LN therapeutic efficiency and explore their treatment mechanism. Methods We constructed the TAT-CLs-DHA/siRNA delivery system using the thin film hydration method. The uptake and localization of Cy3-labeled siRNA were detected by confocal microscopy and flow cytometry. MTT assays were used to detect glomerular mesangial cell proliferation. Real-time PCR, Western blot analysis, and ELISA evaluated the anti-inflammatory mechanism of TAT-CLs-DHA/siRNA. Results We constructed the TAT-CLs-DHA/siRNA delivery system measuring approximately 140 nm with superior storage and serum stabilities. In vitro, it showed significantly greater uptake compared with unmodified liposomes and significant inhibition of glomerular mesangial cell proliferation. TAT-CLs-DHA/siRNA inhibited NF-κB activation in a concentration-dependent manner. Real-time PCR and Western blot analysis showed that TAT-CLs-DHA/siRNA downregulated expression of HMGB1 mRNA and protein. TAT-CLs-DHA/siRNA markedly diminished Toll-like receptor 4 (TLR4) expression and subsequent activation of MyD88, IRAK4, and NF-κB. Conclusion TAT-CLs-DHA/siRNA may have the potential for treatment of inflammatory diseases such as LN mediated by the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Lu Diao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Jin Tao
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Yiqi Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, People's Republic of China
| | - Ying Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Wenfei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
15
|
Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 2019; 21:e3101. [PMID: 31170324 DOI: 10.1002/jgm.3101] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Micelles have demonstrated an excellent ability to deliver several different types of therapeutic agents, including chemotherapy drugs, proteins, small-interfering RNA and DNA, into tumor cells. Cationic micelles, comprising self-assemblies of amphiphilic cationic polymers, have exhibited tremendous promise with respect to the delivery of therapy genes and gene transfection. To date, research in the field has focused on achieving an enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the gene. This review focuses on the micelles as a nanosized carrier system for gene delivery, the system-related modifications for cytoplasm release, stability and biocompatibility, and clinic trials. In accordance with the development of synthetic chemistry and self-assembly technology, the structures and functionalities of micelles can be precisely controlled, and hence the synthetic micelles not only efficiently condense DNA, but also facilitate DNA endocytosis, endosomal escape, DNA uptake and nuclear transport, resulting in a comparable gene transfection of virus.
Collapse
Affiliation(s)
- Haili Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Longhai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
16
|
Luo T, Liang H, Jin R, Nie Y. Virus-inspired and mimetic designs in non-viral gene delivery. J Gene Med 2019; 21:e3090. [PMID: 30968996 DOI: 10.1002/jgm.3090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
Virus-inspired mimics for nucleic acid transportation have attracted much attention in the past decade, especially the derivative microenvironment stimuli-responsive designs. In the present mini-review, the smart designs of gene carriers that overcome biological barriers and realize an efficient delivery are categorized with respect to the different "triggers" provided by tumor cells, including pH, redox potentials, ATP, enzymes and reactive oxygen species. Some dual/multi-responsive gene vectors have also been introduced that show a more precise and efficient delivery in the complicated environment of human body. In addition, inspired by the special recognition mechanisms and components of viruses, improvements in the design of carriers relating to targeting/penetration properties, as well as chemical component evolution, are also addressed.
Collapse
Affiliation(s)
- Tianying Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hong Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Gao Y, Jia L, Wang Q, Hu H, Zhao X, Chen D, Qiao M. pH/Redox Dual-Responsive Polyplex with Effective Endosomal Escape for Codelivery of siRNA and Doxorubicin against Drug-Resistant Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16296-16310. [PMID: 30997984 DOI: 10.1021/acsami.9b02016] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The enhanced endo-lysosomal sequestration still remains a big challenge in overcoming multidrug resistance (MDR). Herein, a dual-responsive polyplex with effective endo-lysosomal escape based on methoxypoly(ethylene glycol)-polylactide-polyhistidine-ss-oligoethylenimine (mPEG- b-PLA-PHis-ssOEI) was developed for codelivering MDR1 siRNA and doxorubicin (DOX). The polyplex showed good encapsulation of DOX and siRNA as well as triggered payload release in response to pH/redox stimuli because of the PHis protonation and the disulfide bond cleavage. The polyplex at an N/P ratio of 7 demonstrated a much higher payload delivery efficiency, MDR1 gene silence efficiency, cytotoxicity against MCF-7/ADR cell, and stronger MCF-7/ADR tumor growth inhibition than the polyplexes at higher N/P ratios. This was attributed to the stronger electrostatic attraction between siRNA and OEIs at higher N/P ratios that suppressed the release of MDR1 siRNA and OEIs, which played a dominant role in overcoming payload endo-lysosomal sequestration by the OEI-induced membrane permeabilization effect. Consequently, the polyplex with effective endo-lysosomal escape provides a rational approach for codelivery of siRNAs and chemotherapy agents for MDR reversal.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Drug Carriers/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Endosomes/chemistry
- Humans
- Hydrogen-Ion Concentration
- Lipids/chemistry
- MCF-7 Cells
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms/drug therapy
- Neoplasms/pathology
- Polyesters/chemistry
- Polyethylene Glycols/chemistry
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
Collapse
Affiliation(s)
| | - Li Jia
- Department of Pharmacy , Heze Medical College , Heze 274000 , P. R. China
| | | | | | | | | | | |
Collapse
|
18
|
Wu S, Bin W, Tu B, Li X, Wang W, Liao S, Sun C. A Delivery System for Oral Administration of Proteins/Peptides Through Bile Acid Transport Channels. J Pharm Sci 2019; 108:2143-2152. [PMID: 30721709 DOI: 10.1016/j.xphs.2019.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Proteins and peptides are poorly absorbed via oral administration because of the gastrointestinal tract environment and lysosomal digestion after apical endocytosis. A delivery system, consisting of a deoxycholic acid-conjugated nanometer-sized carrier, may enhance the absorption of proteins in the intestine via the bile acid pathway. Deoxycholic acid is first conjugated to chitosan. Liposomes are then prepared and loaded with the model drug insulin. Finally, the conjugates are bound to the liposome surface to form deoxycholic acid and chitosan conjugate-modified liposomes (DC-LIPs). This study demonstrates that DC-LIPs can promote the intestinal absorption of insulin via the apical sodium-dependent bile acid transporter, based on observing fluorescently stained tissue slices of the rat small intestine and a Caco-2 cell uptake experiment. Images of intestinal slices revealed that excellent absorption of DC-LIPs is achieved via apical sodium-dependent bile acid transporter, and a flow cytometry experiment proved that DC-LIPs are a highly efficient delivery carrier. Caco-2 cells were also used to study the lysosome escape ability of DC-LIPs. We learned from confocal microscopy photographs that DC-LIPs can protect their contents from being destroyed by the lysosome. Finally, according to pharmacokinetic analyses, insulin-loaded DC-LIPs show a significant hypoglycemic effect with an oral bioavailability of 16.1% in rats with type I diabetes.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wen Bin
- Department of Biochemistry and Molecular Biology, School of Life Sciences and Biological Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Biyun Tu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xifeng Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Suling Liao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Changshan Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
19
|
Zhang X, Kang Y, Liu GT, Li DD, Zhang JY, Gu ZP, Wu J. Poly(cystine–PCL) based pH/redox dual-responsive nanocarriers for enhanced tumor therapy. Biomater Sci 2019; 7:1962-1972. [DOI: 10.1039/c9bm00009g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Illustration of pH/redox dual-responsive poly(cystine–PCL)/PTX NPs for tumor therapy.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Gui-ting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Dan-dan Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | | | - Zhi-peng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
20
|
Xiao YP, Zhang J, Liu YH, Zhang JH, Yu QY, Huang Z, Yu XQ. Low molecular weight PEI-based fluorinated polymers for efficient gene delivery. Eur J Med Chem 2018; 162:602-611. [PMID: 30472606 DOI: 10.1016/j.ejmech.2018.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 02/02/2023]
Abstract
Fluorinated biomaterials have been reported to have promising features as non-viral gene carriers. In this study, a series of fluorinated polymeric gene carriers were synthesized via Michael addition from low molecular weight polyethyleneimine (PEI) and fluorobenzoic acids (FBAs)-based linking compounds with different numbers of fluorine atoms. The structure-activity relationship (SAR) of these materials was systematically investigated. SAR studies showed that fluorine could screen the positive charge of these polymers. However, this shielding effect of fluorine would endow fluorinated polymers with good balance between DNA condensation and release. In vitro transfection results suggested that these fluorinated polymers could mediate efficient gene delivery. Flow cytometry and confocal microscopy studies demonstrated that more efficient cell uptake could be achieved by fluorinated materials with more fluorine atoms. Cytotoxicity assays showed that these fluorinated materials exhibited very low cytotoxicity even at high mass ratios. This study demonstrates that FBA-based fluorinated biopolymers have the potential for practical application.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
21
|
Zhou S, Sun W, Zhai Y. Amphiphilic block copolymer NPs obtained by coupling ricinoleic acid/sebacic acids and mPEG: Synthesis, characterization, and controlled release of paclitaxel. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2201-2217. [PMID: 30285542 DOI: 10.1080/09205063.2018.1532136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Currently, nanoparticles (NPs) made of amphiphilic block copolymer are still an essential part of drug delivery system. Here, we report a novel amphiphilic block copolymer and paclitaxel (PTX)-loaded copolymer NPs for the controlled delivery of PTX. The block copolymer was synthesized via melt polycondensation method of methoxy poly(ethylene glycol) (mPEG), sebacic acid (SA) and ricinoleic acid (RA). A series of characterization approaches such as Fourier Transform Infrared Spectroscopy (FTIR), 1Hydrogen-Nuclear Magnetic Resonance (1H-NMR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD) and Gel Permeation Chromatography (GPC) applied have shown that the amphiphilic block copolymer was prepared as designed. NPs prepared by nanoprecipitation method consist of mPEG segments as the hydrophilic shell and RA-SA segments as the hydrophobic core, hydrophobic PTX was encapsulated as model drug. Subsequently, Transmission Electron Microscopy (TEM) analysis indicated that the spherical NPs have effective mean diameters ranging from 100 to 400 nm. Dynamic Light Scattering (DLS) analysis also revealed the controllable NPs diameter by modulating the mass ratio of RA to SA and drug loading amount (DLA). Besides, biphasic profile with zero order drug release was observed in general in vitro release behaviors of PTX from NPs. Further investigation confirmed that the release behaviors depend on the crystallinity of hydrophobic RA-SA segments. Results above suggest that NPs with amphiphlic block copolymer mPEG-b-P(RA-SA)-b-mPEG have a remarkable potential as a carrier for hydrophobic drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Shiya Zhou
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Wei Sun
- b School of Medical Devices , Shenyang Pharmaceutical University , Shenyang , China
| | - Yinglei Zhai
- b School of Medical Devices , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|