1
|
Sadeghi-Chahnasir F, Amiripour F, Ghasemi S. Ratiometric fluorescence assay for ciprofloxacin in human blood serum and urine samples based on sulfur-doped carbon dots/rhodamine B nanohybrid encapsulated HKUST-1 metal-organic framework. Talanta 2025; 286:127477. [PMID: 39765089 DOI: 10.1016/j.talanta.2024.127477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 03/03/2025]
Abstract
Preparation of carbon dots (CDs) from biomass waste is of great interest due to its low cost synthesis, environmental compatibility and functionalization without adding dangerous chemicals. Herein, S-doped carbon dot (SCD) was synthesized using agricultural waste as carbon precursors and modified in-situ with rhodamine B dye (SCD@RHB) to construct efficient flouresent probe. SCD@RHB was loaded into HKUST-1 metal-organic framework (SCD@RHB/HKUST-1) and the probe was employed as ratiometric flouresent (RF) sensor for the determination of ciprofloxacin (CIP) antibiotic in trace level. The sensor emits two-resolved peaks at 415 and 575 nm under excitation wavelength of 310 nm which are due to the characteristic fluorescence emissions of SCD and RHB, respectively. Under optimal conditions, the emissions of SCD and RHB change oppositely in the presence of CIP which can be used to evaluate the sensing performance of probe. The ratiometric SCD@RHB/HKUST-1 nanohybrid has a wide linear range (0.1-300 μM) with a low detection limit of 21.3 nM along with good sensitivity and selectivity for CIP. The probe was also used for the determination of CIP in human blood and urine samples. The results demonstrated rapid and accurate analysis with reasonable recoveries of 94 to 102 % for blood sample and 94-106 % for urine sample. This strategy provides a conveninet way to design RF sensors based on HKUST-1.
Collapse
Affiliation(s)
| | | | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
2
|
Wang M, Chen Y, Luo H, Wang M, Li L, Xia Z, Xu Y, Huang Y. Construction of enzyme-MOFs composite with carbon dots: A strategy to enhance the activity and increase the growth rate of the enzyme-ZIF-8 composite. Int J Biol Macromol 2025; 291:139985. [PMID: 39832601 DOI: 10.1016/j.ijbiomac.2025.139985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Encapsulating enzymes in metal-organic frameworks (MOFs) enhances enzyme protection and improves the accuracy of inhibitor recognition and screening. Zeolitic imidazolate framework-8 (ZIF-8) has been widely used as a host matrix for enzyme immobilization. However, challenges such as the microporous structure and hydrophobicity of ZIF-8, along with the protonation of 2-methylimidazole, hinder the maintenance of activity and the rapid formation of composite. Herein, a new strategy to synthesize novel enzyme-MOFs composite by encapsulating carbon dots (CDs)-modified enzyme and Fe3O4 nanoparticles within ZIF-8 is presented for the first time. The contribution of CDs in enzyme-MOFs composite was investigated. Characterizations reveal that the CDs-modified enzymes compete with imidazole for Zn ions, inducing mesoporous structures that alleviate diffusion limitations. Modification of enzyme with CDs also modulates enzyme-MOFs interfacial interactions, accelerating the formation of composite. Activity evaluation shows that enzyme-MOFs composite (THR@CDs/Fe3O4@ZIF-8) retains 81.76 % enzyme activity under harsh conditions and maintains 66.0 % of the initial enzyme activity after 10 reuse cycles. This synthesis strategy for the novel enzyme-MOFs composite was proven to be universal. The Km value of THR@CDs/Fe3O4@ZIF-8 (19.32 μM) is lower than that of THR/Fe3O4@ZIF-8, indicating that modification with CDs significantly increases the affinity of enzyme. Furthermore, THR@CDs/Fe3O4@ZIF-8 was effectively utilized for enzyme inhibitor recognition and screening. These results demonstrate that the proposed method is a universal approach for rapidly and controllably fabricating enzyme-ZIF-8 composite with elevated activity and exceptional stability, offering promising potential for advanced drug recognition and screening platforms.
Collapse
Affiliation(s)
- Min Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yanjie Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Hongli Luo
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingyue Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lingling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yong Xu
- Department of Endocrinology and Metabolism Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Li L, Wang H, Fang J. Encapsulating Fe 3O 4 Nanoparticles and Carbon Dots in a Metal-Organic Framework for Magnetic Fluorescent Taggants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42623-42631. [PMID: 39090771 DOI: 10.1021/acsami.4c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Magnetic fluorescent composite nanomaterials have broad application prospects in the fields of biological imaging, anticounterfeiting identification, suspicious object tracking, and identification of latent fingerprints in forensic medicine. For an effective taggant, a clearly visible identifying mark is necessary to enable observers to capture labeling information quickly and accurately, even from a distance. The preparation method of magnetic fluorescent composite materials is complicated and usually needs different surface modification and assembly processes. The limited loading capacity of fluorescent materials also limits the fluorescence properties of the composite, so it is difficult to produce obvious fluorescence as a taggant to meet the requirements of visible labeling. In this study, a core-shell structure of a magnetic fluorescent composite was prepared by using the metal-organic framework ZIF-8 as the host of fluorescent materials and an encapsulation shell coated on the Fe3O4 nanoparticles. The porous ZIF-8 is beneficial for increasing the loading capacity of fluorescent materials to ensure the fluorescence performance of the composite materials. Further modification of the composite surface prevented the desorption of fluorescent materials from the pores of ZIF-8, enabling the samples to maintain good fluorescence properties even after multiple washing cycles. The preparation method is simple, rapid, and cost-effective, and the prepared magnetic fluorescent composite nanomaterial has high magnetic separation performance and fluorescence performance, making it a promising material for identification, marking, and tracking.
Collapse
Affiliation(s)
- Lingwei Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huan Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jixiang Fang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
4
|
Bazazi S, Hashemi E, Mohammadjavadi M, Saeb MR, Liu Y, Huang Y, Xiao H, Seidi F. Metal-organic framework (MOF)/C-dots and covalent organic framework (COF)/C-dots hybrid nanocomposites: Fabrications and applications in sensing, medical, environmental, and energy sectors. Adv Colloid Interface Sci 2024; 328:103178. [PMID: 38735101 DOI: 10.1016/j.cis.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | - Mahdi Mohammadjavadi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Wang X, Wang WX. Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model. ACS NANO 2024; 18:13308-13321. [PMID: 38716827 DOI: 10.1021/acsnano.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Wang Y, Wei X, Su Y, Xu R, Song D, Ding L, Chen Y. Highly sensitive fluoroprobe for detecting Sudan dyes in paprika utilizing carbon dot-embedded zeolitic imidazolate framework-8. Food Chem 2024; 438:137975. [PMID: 37979265 DOI: 10.1016/j.foodchem.2023.137975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
In this manuscript, we synthesized CDs@ZIF-8 through a one-step, in-situ method by integrating green-emitting carbon dots (CDs) with zeolitic imidazolate framework-8 (ZIF-8). The resulting CDs@ZIF-8 was utilized as an ultrasensitive probe for detection, leveraging the inner filter effect. The analysis demonstrated the capability to detect Sudan dyes. Sudan I, for example, could be detected within a concentration range spanning from 0.25 to 70 μM, achieving a remarkable detection limit of 76.56 nM. This established method was effectively employed for detecting Sudan I in paprika. Compared with CDs, CDs@ZIF-8 exhibited a 3.32-fold increase in sensitivity and a wider detection range. This enhanced performance was attributed to the porous ZIF-8, which allowed for the enrichment of targets around CDs and avoided the aggregation of CDs. Additionally, embedding the CDs in ZIF-8 improved their pH stability. Our study provides a new approach for using CDs under limited conditions by leveraging metal-organic frameworks.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaofeng Wei
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yu Su
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Rui Xu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yanhua Chen
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
7
|
Zhang S, Xiao J, Zhong G, Xu T, Zhang X. Design and application of dual-emission metal-organic framework-based ratiometric fluorescence sensors. Analyst 2024; 149:1381-1397. [PMID: 38312079 DOI: 10.1039/d3an02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Metal-organic frameworks (MOFs) are novel inorganic-organic hybridized crystals with a wide range of applications. In the last twenty years, fluorescence sensing based on MOFs has attracted much attention. MOFs can exhibit luminescence from metal nodes, ligands or introduced guests, which provides an excellent fluorescence response in sensing. However, single-signal emitting MOFs are susceptible to interference from concentration, environment, and excitation intensity, resulting in poor accuracy. To overcome the shortcomings, dual-emission MOF-based ratiometric fluorescence sensors have been proposed and rapidly developed. In this review, we first introduce the luminescence mechanisms, synthetic methods, and detection mechanisms of dual-emission MOFs, highlight the strategies for constructing ratiometric fluorescence sensors based on dual-emission MOFs, and classify them into three categories: intrinsic dual-emission and single-emission MOFs with luminescent guests, and non-emission MOFs with other luminescent materials. Then, we summarize the recent advances in dual-emission MOF-based ratiometric fluorescence sensors in various analytical industries. Finally, we discuss the current challenges and prospects for the future development of these sensors.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jingyu Xiao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Geng Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Sadeghi-Chahnasir F, Amiripour F, Ghasemi S. Orange peel-derived carbon dots/Cu-MOF nanohybrid for fluorescence determination of l-ascorbic acid and Fe 3. Anal Chim Acta 2024; 1287:342066. [PMID: 38182373 DOI: 10.1016/j.aca.2023.342066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
Recycling and reuse of biomass waste in synthesis of nanomaterials have recently received much attention as an effective solution for environmental protection and sustainable development. Herein, nitrogen-doped carbon dots (N-CDs) with blue emission were synthesized from the orange peels as a precursor through a simple hydrothermal method and then, modified with ethylenediamine tetraacetic acid (N-CD@EDTA). The N-CD@EDTA was embedded as a fluorophore in Cu-based metal-organic framework (MOF-199) structure (N-CD@EDTA/MOF-199) to construct fluorescence sensor toward l-ascorbic acid (L-AA) determination. The N-CD@EDTA/MOF-199 nanohybrid significantly and selectively turned on toward L-AA determination during the fluorimetric experiments. Under optimal conditions, the probe showed a suitable linear response in the concentration range of 10 nM-100 μM with a low limit of detection (LOD) of 8.6 nM and high sensitivity of 0.201 μM-1. The possible mechanism of recognition and adsorption, including the reduction of Cu 2+ nodes in the MOF-199 structure in the presence of L-AA and the release of trapped N-CD@EDTA into the solution, was explored. Moreover, the N-CD@EDTA/MOF-199/L-AA (100 μM) system was further applied as a fluorescent "on-off" sensor for Fe3+ determination with a LOD of 1.15 μM. The proposed probe was successfully used in orange juice and water samples to determine L-AA and Fe3+ with satisfactory recovery, which displays the promising capability of sensor in real samples. The recoveries obtained by suggested method are consistent with that obtained from high performance liquid chromatography (HPLC) and atomic absorption spectroscopy which confirm the favorable characteristic of the sensor for accurate determination of L-AA and Fe3+ in practical applications.
Collapse
Affiliation(s)
| | | | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
9
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
10
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
11
|
Kanzariya DB, Chaudhary MY, Pal TK. Engineering of metal-organic frameworks (MOFs) for thermometry. Dalton Trans 2023. [PMID: 37183603 DOI: 10.1039/d3dt01048a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-organic frameworks (MOFs ) are excellent candidates for use in chemistry, material sciences and engineering thanks to their interesting qualitative features and potential applications. Quite interestingly, the luminescence of MOFs can be engineered by regulation of the ligand design, metal ion selection and encapsulation of guest molecules within the MOF cavity. Temperature is a very crucial physical parameter and the market share of temperature sensors is rapidly expanding with technology and medicinal advancement. Among the wide variety of available temperature sensors, recently MOFs have emerged as potential temperature sensors with the capacity to precisely measure the temperature. Lanthanide-based thermometry has advantages because of its ratiometric response ability, high quantum yield and photostability, and therefore lanthanide-based MOFs were initially focused on to construct MOF thermometers. As science and technology have gradually changed, it has been observed that with the inclusion of dye, quantum dots, etc. within the MOF cavity, it is possible to develop MOF-based thermometry. This review consolidates the recent advances of MOF-based ratiometric thermometers and their mechanism of energy transfer for determining the temperature (thermal sensitivity and temperature uncertainty). In addition, some fundamental points are also discussed, such as concepts for guiding the design of MOF ratiometric thermometers, thermometric performance and tuning the properties of MOF thermometers.
Collapse
Affiliation(s)
- Dashrathbhai B Kanzariya
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| | - Meetkumar Y Chaudhary
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| | - Tapan K Pal
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
12
|
Peng L, Guo H, Wu N, Liu Y, Wang M, Liu B, Tian J, Wei X, Yang W. Ratiometric fluorescent sensor based on metal-organic framework for selective and sensitive detection of CO 32. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122844. [PMID: 37196552 DOI: 10.1016/j.saa.2023.122844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Carbonate ion (CO32-) is an anion essential for the maintenance of life activities and is of great importance to human health. Here, a novel ratiometric fluorescent probe Eu/CDs@UiO-66-(COOH)2 (ECU) was prepared by introducing europium ions (Eu3+) and carbon dots (CDs) into the UiO-66-(COOH)2 parent framework under the guidance of a post-synthetic modification strategy and used for the detection of CO32- ion in the aqueous environment. Interestingly, when CO32- ions were added to the ECU suspension, the characteristic emission of carbon dots at 439 nm was significantly enhanced, while the characteristic emission of Eu3+ ions at 613 nm was reduced. Therefore, the detection of CO32- ions can be realized through the peak height ratio of the two emissions. The probe had a low detection limit (about 1.08 μM) and a wide linear range (0-350 μM) for the detection of carbonate. In addition, the presence of CO32- ions can cause a significant ratiometric luminescence response and resulted obvious red-to-blue color shift of the ECU under UV light, which will facilitate visual analysis by the naked eye.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Ning Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Yinsheng Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Bingqing Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Jiaying Tian
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Xiaoqin Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
13
|
Wang YN, Xu H, Wang SD, Mao RY, Wen LM, Wang SY, Liu LJ, Sun Y, Lu SQ, Wang F, Yang QF. A water-stable dual-responsive Cd-CP for fluorometric recognition of hypochlorite and acetylacetone in aqueous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121952. [PMID: 36228487 DOI: 10.1016/j.saa.2022.121952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
One novel cadmium(II)-coordination polymer [Cd3L2(datrz)(H2O)3] (CP 1) is controllably synthesized by surmising the astute combination of semi-rigid tricarboxylate acid 4-(2',3'-dicarboxylphenoxy) benzoic acid (H3L) and auxiliary ligand 3,5-diamino-1,2,4-triazole (datrz). Structure analysis shows that CP 1 has a two-dimensional (2D) layer structure with a 5-nodal (43) (44·62) (45·64·8) (45·6) (47·66·82) topology. Further investigations reveal that CP 1 shows superordinary water stability and good thermal stability. The fluorescent explorations suggest that the as-synthesized CP 1 could emit blue light centered at 485 nm, attributing to ligand-based emission. In terms of sensing investigations, CP 1 could act as a fluorescent sensor for detecting hypochlorite (ClO-) and acetylacetone (acac) through fluorescence turn-off process in aqueous solution, and the detection limit could reach 0.18 μM and 0.056 μM, respectively. Further research reveals that it is more likely the N-H···O-Cl hydrogen bonds between -NH2 groups of the triazole ligands and O atoms of ClO- plays the key role in the system, which may serve as a bridge for the energy transfer, leading to fluorescence quenching of the chemosensor. While the photoinduced electron transfer (PET) combined with inner filter effect (IFT) should be responsible for the turn-off fluorescence of CP 1 triggered by acac.
Collapse
Affiliation(s)
- Yan-Ning Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Hao Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shao-Dan Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Run-Yu Mao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lin-Man Wen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Si-Yuan Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lin-Jie Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yue Sun
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shu-Qin Lu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Fan Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qing-Feng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
14
|
Li S, Xiao L, Xiao L, Tan H. Coordination polymer nanoprobe integrated carbon dot and phenol red for turn-on fluorescence detection of urease activity. Mikrochim Acta 2023; 190:79. [PMID: 36719487 DOI: 10.1007/s00604-023-05644-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
The potential of coordination polymers (CPs) as a host of integrating multiple guest species to construct a fluorescence resonance energy transfer (FRET) nanoprobe was demonstrated. The ZnCPs built from zinc(II) and adenine was employed as a model of CPs to integrate carbon dot (CD) and phenol red (PR) for producing the FRET nanoprobe (CD/PR@ZnCPs). Benefiting from the confinement effect of ZnCPs, the integrated CD and PR can be brought in close proximity to favor the occurrence of FRET process from CD to PR, which leads to the quenching of CD fluorescence. However, the FRET process was disrupted upon the red-shift of PR absorption from 428 to 562 nm in alkaline medium, and consequently switches on the fluorescence of CD/PR@ZnCPs. Based on this finding, by utilizing urease to hydrolyze urea and mediate medium pH, a turn-on fluorescent method was established for the detection of urease activity. This fluorescent method has a linear response that covers 5 to 150 U/L urease with a detection limit of 0.74 U/L and exhibits an excellent selectivity over other enzymes. The successful determination of urease in saliva samples demonstrates the applicability of the fluorescent nanoprobe in complex biological matrix.
Collapse
Affiliation(s)
- Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research On Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Lingyu Xiao
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Longqian Xiao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research On Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research On Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
15
|
Metal-organic framework with dual-loading of nickel/nitrogen-doped carbon dots and magnetic nanoparticles for fluorescence detection of fenitrothion in food samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Zhong Y, Guo L, Lu Z, Wang D. 3-Aminophenylboronic acid-functionalized molybdenum disulfide quantum dots for fluorescent determination of hypochlorite. Mikrochim Acta 2022; 190:7. [PMID: 36471018 DOI: 10.1007/s00604-022-05598-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
A simple method is reported for hypochlorite determination based on fluorescence 3-aminophenylboronic acid-functionalized molybdenum disulfide quantum dots (B-MoS2 QDs). B-MoS2 QDs with strong fluorescence at 380 nm have been successfully synthesized by the amidation reaction between APBA and hydrothermal MoS2 QDs. Hypochlorite sensing was proposed utilizing the fluorescent quenching effect of 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB) on B-MoS2 QDs and the fast redox reaction between hypochlorite and TMB. The fluorescent quenching effect of TMB to B-MoS2 QDs was proved to be caused by static dynamic quenching and inner filter effect. A good linear relationship was obtained in the hypochlorite concentration range from 1 to 20 μM, and the limit of detection (LOD) was 36.8 nM. The proposed fluorescent detection assay was simple and fast, taking only 5 min at room temperature. Satisfactory results were obtained in the standard spike recovery tests on tap water and milk samples, which indicate high potential in constructing fluorescent bio-detection assays.
Collapse
Affiliation(s)
- Yaping Zhong
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| | - Lijuan Guo
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
17
|
Tang T, Yuan R, Guo N, Zhu J, Gan X, Li Q, Qin F, Luo W, Wang L, Zhang S, Song H, Jia D. Improving the surface area of metal organic framework-derived porous carbon through constructing inner support by compatible graphene quantum dots. J Colloid Interface Sci 2022; 623:77-85. [DOI: 10.1016/j.jcis.2022.04.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022]
|
18
|
Yan F, Wang X, Wang Y, Yi C, Xu M, Xu J. Sensing performance and mechanism of carbon dots encapsulated into metal-organic frameworks. Mikrochim Acta 2022; 189:379. [PMID: 36087187 DOI: 10.1007/s00604-022-05481-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Metal-organic frameworks (MOFs) can be combined with nanomaterials and the combined composites have excellent optical properties. Carbon dots (CDs) with tiny particle size, non-toxic and rich surface functional groups are novel fluorescent materials. Carbon dots@metal-organic frameworks (CDs@MOFs) are synthesized by encapsulating CDs into MOFs. CDs@MOFs are promising composites for the preparation of a new generation of fluorescence sensors, which combine the hybrid properties of MOFs and the special optical properties of CDs. Urged as such, we are encouraged to categorize according to the sensing mechanisms. These include fluorescence resonance energy transfer (FRET), aggregation-caused quenching (ACQ), static quenching, dynamic quenching, photo-induced electron transfer (PET), inner filter effect (IFE) and so on. Based on the above mechanisms, CDs@MOFs can specifically interact with target analytes to generate fluorescence quenching. This review covers the research progress of CDs@MOFs in recent five years (with 103 refs), synthetic design of CDs@MOFs and introduces the sensing mechanism. The current challenges and future research directions are discussed briefly. The sensing mechanism and applications of CDs@MOFs.
Collapse
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Xiule Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Chunhui Yi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Ming Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemistry, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Jinxia Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemistry, Tiangong University, Tianjin, 300387, People's Republic of China
| |
Collapse
|
19
|
Zhou J, Zhou Q, Chu C. Dyes-modified metal − organic frameworks composite as a sensitive, reversible and ratiometric fluorescent probe for the rapid detection of malachite green. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Yu F, Wang Y, Liu T, Liu X, Jiang H, Wang X. Dual-emissive EY/UiO-66-NH 2 as a ratiometric probe for turn-on sensing and cell imaging of hypochlorite. Analyst 2022; 147:3867-3875. [PMID: 35920663 DOI: 10.1039/d2an00944g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypochlorite plays a vital role in biological systems and our daily life. The rapid and convenient detection of hypochlorite is imperative and significant for disease treatment and human health. In this work, EY/UiO-66-NH2 (EY = eosin Y) was prepared through a hydrothermal process and could be applied to the detection and bioimaging of hypochlorite as a self-calibrating sensing nanoprobe. EY/UiO-66-NH2 features two emissions at 432 nm and 533 nm, and the emission intensity of 533 nm is enhanced with increasing ClO- concentration. EY/UiO-66-NH2 could be utilized as a ratiometric fluorescence sensor of ClO-. The linear range of EY/UiO-66-NH2 towards ClO- is 0.1-200 μM and its detection limit is 46.4 nM. In comparison with previously reported probes for ClO-, EY/UiO-66-NH2 has the advantages of a wide linear range, low detection limit, turn-on fluorescence and ratiometric response. This work provides a new method for ClO- detection in living cells.
Collapse
Affiliation(s)
- Fangfang Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Tengfei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
21
|
Xu ZY, Wu Y, Wang XH, Chen JR, Luo HQ, Li NB. Designing of a high-performance fluorescent small molecule enables dual-mode and ultra-sensitive fluorescence visualizing of HSO 3- and HClO in dried fruit, beverage, and water samples. Food Chem 2022; 397:133754. [PMID: 35882164 DOI: 10.1016/j.foodchem.2022.133754] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
Herein, a novel hemicyanine derivative (E)-3-(1,1-dimethyl-2-(4-(methylthio)styryl)-1H-benzo[e]indol-3-ium-3-yl)propane-1-sulfonate (BIS) has been reasonably designed. Compound BIS is long-wavelength emissive and water-soluble with a large Stokes shift. Intriguingly, probe BIS provides a dual-mode fluorescence response pattern for the sensing of bisulfite (HSO3-) and hypochlorous acid (HClO) with great limit of detections (3.6 and 57.4 nM). First, the 1,4-Michael addition of HSO3- on the conjugated double bond triggers a ratiometric response (I465/I575). Second, the rapid oxidation of HClO on the thioether moiety provides a turn-on response (I575). Evaluation of HSO3- and HClO levels in dried fruit, beverage, and water samples has been carried out with satisfactory results. Moreover, motivated by an impressive chromatic variation (red to blue), smartphone-assisted signal readout system and thin-film sensing platform are facilely constructed for real-time and on-site measurement of HSO3- levels. Furthermore, probe BIS is used for the in vivo imaging of HSO3- in edible fish models.
Collapse
Affiliation(s)
- Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Hu Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing Rong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
22
|
Li Y, Jiang XX, Xie JX, Lv YK. Recent Advances in the Application and Mechanism of Carbon Dots/Metal-Organic Frameworks Hybrids in Photocatalysis and the Detection of Environmental Pollutants. Chem Asian J 2022; 17:e202200283. [PMID: 35460188 DOI: 10.1002/asia.202200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/22/2022] [Indexed: 11/12/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials with simple synthesis conditions, large specific surface area, structural diversity, and a wide range of interesting properties. The integration of MOFs with other materials can provide new multifunctional composites that exhibit both component properties and new characteristics. In recent years, the integration of carbon dots (CDs) into MOFs to form composites has shown improved optical properties and fascinating new characteristics. This review focuses on the design and synthesis strategies of CDs@MOFs composites (including pore-confined synthesis, in situ encapsulation, post-synthesis modification and impregnation method) and their recent research progress in photocatalysis and detection of environmental pollutants. Both the achievements and problems are evaluated and proposed, and the opportunities and challenges of CDs@MOF composite are discussed.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Xiao-Xue Jiang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Jia-Xiu Xie
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Yun-Kai Lv
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
23
|
Lipid membrane anchoring and highly specific fluorescence detection of cancer-derived exosomes based on postfunctionalized zirconium-metal-organic frameworks. Biochem Biophys Res Commun 2022; 609:69-74. [PMID: 35421631 DOI: 10.1016/j.bbrc.2022.03.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 01/06/2023]
Abstract
Cancer-derived exosomes carry a variety of important biomarkers specific to the formation, invasion and metastasis of tumor tissue. Dynamic monitoring of exosomes originated from cancer cells has clinical significance. Here we proposed a novel method to employ zirconium-metal-organic frameworks (Zr-MOFs) for extracting and identifying exosomes from blood. At first UiO-66 was magnetically modified as the adsorbent to anchor exosomes by forming Zr-O-P bonds. Then UiO-66-NH2 modified with anti-EpCAM was used to construct the fluorescent probe to recognize the extracted EpCAM-positive exosomes by forming a "MOF-exosome-MOF" structure. The proposed fluorescence detection method was evaluated by quantifying MCF-7 cell-derived exosomes at the concentration as low as 16.72 particles/μl. This method was successfully applied to analyze exosomes in the plasma samples from healthy donors and breast cancer patients, demonstrating that our method might have a great potential in assisting the early diagnosis and in dynamically monitoring the efficacy of cancer treatment. We believe that the method could be extended to the detection of other biomarkers in exosomes derived from cancer cell.
Collapse
|
24
|
Li L, Qi Z, Han S, Li X, Liu B, Liu Y. Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A Review. Mini Rev Med Chem 2022; 22:2564-2580. [PMID: 35362373 DOI: 10.2174/1389557522666220330152145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
Oral administration is a commonly used, safe, and patient-compliant method of drug delivery. However, due to the multiple absorption barriers in the gastrointestinal tract (GIT), the oral bioavailability of many drugs is low, resulting in a limited range of applications for oral drug delivery. Nanodrug delivery systems have unique advantages in overcoming the multiple barriers to oral absorption and improving the oral bioavailability of encapsulated drugs. Metal-organic frameworks (MOFs) are composed of metal ions and organic linkers assembled by coordination chemistry. Unlike other nanomaterials, nanoscale metal-organic frameworks (nano-MOFs, NMOFs) are increasingly popular for drug delivery systems (DDSs) due to their tunable pore size and easily modified surfaces. This paper summarizes the literature on MOFs in pharmaceutics included in SCI for the past ten years. Then, the GIT structure and oral drug delivery systems are reviewed, and the advantages, challenges, and solution strategies possessed by oral drug delivery systems are discussed. Importantly, two major classes of MOFs suitable for oral drug delivery systems are summarized, and various representative MOFs as oral drug carriers are evaluated in the context of oral drug delivery systems. Finally, the challenges faced by DDSs in the development of MOFs, such as biostability, biosafety, and toxicity, are examined.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| | - Zhaorui Qi
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Shasha Han
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Xurui Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Bingmi Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| |
Collapse
|
25
|
Gao YT, Chen BB, Jiang L, Lv J, Chang S, Wang Y, Qian RC, Li DW, Hafez ME. Dual-Emitting Carbonized Polymer Dots Synthesized at Room Temperature for Ratiometric Fluorescence Sensing of Vitamin B12. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50228-50235. [PMID: 34651499 DOI: 10.1021/acsami.1c12993] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ratiometric fluorescence (FL) probes are highly desirable for highly sensitive and reliable assays. Dual-emitting carbonized polymer dots (CPDs) have great application prospects in building ratiometric FL sensors. However, dual-emitting CPDs are usually synthesized at high temperatures and high pressures, which not only increases the cost but also complicates the structure of CPDs. Here, we developed a facile strategy for the fabrication of dual-emitting CPDs at room temperature using tetrachlorobenzoquinone and ethylenediamine. The formation of CPDs was induced by Schiff base condensation reaction, enabling the following cross-linking polymerization process. The dual-emitting CPDs demonstrate good photostability and antioxidant capacity. Importantly, the typical dual-emission bands of the as-prepared CPDs are found to have a blue emission band at 445 nm with a maximum excitation of 350 nm and a yellow emission band at 575 nm with a maximum excitation of 440 nm. Based on the dual-emitting property of CPDs, a ratiometric FL nanoprobe is obtained for sensitive determination of vitamin B12 (VB12), as the inner filtering and static quenching effects between VB12 and CPDs allow effective quenching of the blue FL of CPDs, while the yellow FL is maintained. The established assay shows linear detection ranges of 0.25-100 μM with a low limit of detection of 0.14 μM. These findings provide new guidance for the facile preparation of CPDs with excellent dual-emitting optical properties, indicating good prospects in biosensing.
Collapse
Affiliation(s)
- Ya-Ting Gao
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lei Jiang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
26
|
One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging. Mikrochim Acta 2021; 188:330. [PMID: 34498123 DOI: 10.1007/s00604-021-04973-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Tunable multicolor carbon dots (CDs) with a quantum yield reach up to 35% were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. Transmission electron microscopy images reveal that the as-prepared CDs possess a small size distribution below 10 nm with bright blue, green, and yellow color emission, designated as b-CDs, g-CDs, and y-CDs, respectively. The in-depth investigations reveal that the multicolor emission CDs with different fraction displays fluorescence emission wavelength ranges from 398 nm (b-CDs), 525 nm (g-CDs), to 553 nm (y-CDs) which could be well modulated by controlling the amount of heteroatom nitrogen especially amino nitrogen onto their surface structures. Further experiments verify the important role of nitrogen content by using rhodamine solely or substituting urea with sulfur containing compounds as precursors to produce corresponding CDs since the performance is lower than that of urea incorporation. Theoretical calculation results also reveal that the increasing amount of amino nitrogen into their surface structures of b-CDs, g-CDs to y-CDs is responsible for reduced band gaps energy, which result in the redshifted wavelength. Benefiting from the excellent photoluminescence properties, wide pH variation range, high photo stability, and low toxicity, these CDs were employed for HClO sensing at 553 nm within the range 5 to 140 μM with a limit of detection (LOD) of 0.27 ± 0.025 μM (n = 3) and multicolor cellular imaging in HeLa cells. Tunable multicolor carbon dots (CDs) were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. The as-prepared CDs exhibit bright blue, green, and yellow color emission which could be well modulated by controlling the increasing incorporation of heteroatom nitrogen especially amino nitrogen into their surface structures. These CDs were employed for HClO sensing and demonstrated to multicolor cellular imaging in HeLa cells.
Collapse
|
27
|
Fan M, Gan T, Yin G, Cheng F, Zhao N. Molecularly imprinted polymer coated Mn-doped ZnS quantum dots embedded in a metal-organic framework as a probe for selective room temperature phosphorescence detection of chlorpyrifos. RSC Adv 2021; 11:27845-27854. [PMID: 35480778 PMCID: PMC9037794 DOI: 10.1039/d1ra05537b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 01/31/2023] Open
Abstract
As one of the most widely used organophosphorus pesticides, chlorpyrifos (CPF) is toxic to humans. However, the rapid, effective and sensitive detection of CPF is still a challenge. In this paper, a novel molecularly imprinted phosphorescent sensor with a core–shell structure (Mn:ZnS QDs@ZIF-8@MIP) using Mn:ZnS quantum dots (QDs) as phosphorescent emitters was prepared for the highly sensitive and selective detection of CPF, and a simple and rapid room-temperature phosphorescence (RTP) detection method for CPF was proposed. For the prepared Mn:ZnS QDs@ZIF-8@MIP, Mn:ZnS QDs had good phosphorescence emission characteristics, ZIF-8 as support materials was used to improve the dispersibility of Mn:ZnS QDs, and molecularly imprinted polymer (MIP) on the surface of ZIF-8 was used to improve the selectivity of Mn:ZnS QDs for CPF. Under the optimal response conditions, the RTP intensity of Mn:ZnS QDs@ZIF-8@MIP showed a rapid response to CPF (less than 5 min), the RTP intensity ratio of P0/P had a good linear relationship with the concentration of CPF in the range of 0–80 μM, and the detection limit of this method was 0.89 μM with the correlation coefficient of 0.99. Moreover, this simple and rapid method has been successfully used to detect CPF in real water samples with satisfactory results, and the recoveries ranged from 92% to 105% with a relative standard deviation of less than 1%. This method combines the advantages of phosphorescence emission and molecular imprinting, and greatly reduces the potential interferences of competitive substances, background fluorescence and scattered light, which opens up a broad prospect for the highly sensitive and selective detection of pollutants in water based on molecularly imprinted phosphorescent sensors. As one of the most widely used organophosphorus pesticides, chlorpyrifos (CPF) is toxic to humans, and Mn:ZnS QDs@ZIF-8@MIP are prepared for the highly sensitive and selective detection of CPF.![]()
Collapse
Affiliation(s)
- Mengxi Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Tingting Gan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences 350 Shu Shan Hu Road Hefei Anhui 230031 China +86 6551 5591530 +86 551 65593691.,Key Laboratory of Optical Monitoring Technology for Environment Hefei Anhui Province 230021 China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences 350 Shu Shan Hu Road Hefei Anhui 230031 China +86 6551 5591530 +86 551 65593691.,Key Laboratory of Optical Monitoring Technology for Environment Hefei Anhui Province 230021 China
| | | | - Nanjing Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China .,Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences 350 Shu Shan Hu Road Hefei Anhui 230031 China +86 6551 5591530 +86 551 65593691.,Key Laboratory of Optical Monitoring Technology for Environment Hefei Anhui Province 230021 China
| |
Collapse
|
28
|
Li S, Hu X, Li Y, Tan H. Fluorescent enzyme-linked immunosorbent assay based on alkaline phosphatase-responsive coordination polymer composite. Mikrochim Acta 2021; 188:263. [PMID: 34287706 DOI: 10.1007/s00604-021-04920-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/27/2021] [Indexed: 11/24/2022]
Abstract
The fabrication of alkaline phosphatase (ALP)-responsive coordination polymer (CP) composite is demonstrated for establishing a fluorescent immunoassay. The CP composite (ThT@GMP/Eu) was synthesized by encapsulating thioflavin T (ThT) into the CP host that was composed of europium ion (Eu3+) and guanine monophosphate (GMP). The ThT@GMP/Eu composite shows a strong fluorescence in aqueous solution due to the confinement effect of GMP/Eu CPs, which restricts the conformational rotation of ThT. However, upon the addition of ALP, the structure of GMP/Eu CPs was disrupted to release ThT into solution. This results in the quenching of the fluorescence of ThT@GMP/Eu. The fluorescence of ThT@GMP/Eu has a linear response that covers 0.8 to 120 mU/mL ALP with a detection limit of 0.26 mU/mL and exhibits excellent specificity towards ALP against other enzymes. On this basis, inspired by the wide application of ALP as an enzyme label in enzyme-linked immunosorbent assay (ELISA), an ALP-based fluorescent immunoassay was further developed for the detection of mouse immunoglobulin G (mIgG). The developed immunoassay displays a linear fluorescent response towards mIgG from 0.8 to 100 ng/mL, and the detection limit is 0.16 ng/mL. The fluorescent immunoassay was successfully applied to the determination of mIgG in serum samples. Schematic of the responsivity of ThT@GMP/Eu to ALP that hydrolyzes GMP to release ThT, which leads to fluorescent quenching, and its application in the construction of a fluorescent immunoassay for mIgG determination.
Collapse
Affiliation(s)
- Shenghua Li
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, People's Republic of China
| | - Xing Hu
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, People's Republic of China
| | - Yong Li
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Hongliang Tan
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, People's Republic of China.
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| |
Collapse
|
29
|
Li Y, He Y, Ge Y, Song G, Zhou J. Smartphone-assisted visual ratio-fluorescence detection of hypochlorite based on copper nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119740. [PMID: 33799190 DOI: 10.1016/j.saa.2021.119740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
A sensitive naked eye and ratio-fluorescence sensor for Curcumin (CCM) and hypochlorite (ClO-) determination based on copper nanoclusters (Cu NCs) was developed. The fluorescence of the Cu NCs can be quenched due to inner filter effect (IFE) between CCM and Cu NCs, and the ratio fluorescence probe was formed. After adding ClO- to Cu NCs-CCM system, the phenolic and methoxy groups of CCM were oxidized to quinones, then the fluorescence of CCM was quenched and the fluorescence of Cu NC was restored. Moreover, the continuous detection of CCM and ClO- is accompanied by the change of solution color. Therefore, CCM and ClO- semiquantitative visual and fluorescence dual channel detection were realized. The detection results show that the detection based on Cu NCs-CCM probe has a wide detection range (0-412 µM) and low detection limit (24 µM), and a good recovery rate is obtained in adulterated milk and tap water detection. Furthermore, smartphone was introduced for image digital colorimetric analysis through the acquisition, recognition and RGB data processing of solution colors, providing an effective scheme for the field rapid detection of hypochlorite.
Collapse
Affiliation(s)
- Yanyue Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yu He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yili Ge
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Gongwu Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jiangang Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
30
|
Yang HY, Li Y, Lee DS. Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P.R. China
| | - Yi Li
- College of Materials and Textile Engineering Jiaxing University Jiaxing Zhejiang Province 314001 P.R. China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
31
|
Sun YQ, Cheng Y, Yin XB. Dual-Ligand Lanthanide Metal-Organic Framework for Sensitive Ratiometric Fluorescence Detection of Hypochlorous Acid. Anal Chem 2021; 93:3559-3566. [PMID: 33570910 DOI: 10.1021/acs.analchem.0c05040] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitivity, selectivity, visible detection, and rapid response are the main concerns for an analytical method. Herein, we reported a metal-organic framework (MOF)-based ratiometric fluorescence detection strategy for hypochlorous acid (HClO). The MOF was prepared with dual ligands, 2-aminoterephthalic acid (BDC-NH2) and dipicolinic acid (DPA) and Eu3+ ions as a metal node, denoted as Eu-BDC-NH2/DPA. The dual-ligand strategy realized the dual emission for ratiometric sensing and visual detection, adjusted the size and morphology of MOFs to obtain a good dispersion for a rapid response, and provided an amino group for the special recognition of HClO. Thus, the MOF exhibited a dual emission derived from BDC-NH2 and Eu3+ ions at 433 and 621 nm, respectively, under a single excitation at 270 nm. A hydrogen bond forms between an -NH2 group and HClO to weaken the blue fluorescence at 433 nm, while the antenna effect emission from Eu3+ ions kept stable, so ratiometric sensing was realized with an easy-to-differentiate color change for visible detection. The ratiometric sensing showed a self-calibration effect and reduced the background. Thus, the high sensitivity, visual detection, low detection limit (37 nM), and short response time (within 20 s) for the detection of HClO were realized with the MOF as a probe. The analysis of real samples demonstrated the practical application of the MOF for HClO. The introduction of mixed ligands is an effective strategy to regulate the emission behaviors of MOFs for the improved analytical performance.
Collapse
Affiliation(s)
- Yi-Qing Sun
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Cheng
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Lu D, Qin M, Liu C, Deng J, Shi G, Zhou T. Ionic Liquid-Functionalized Magnetic Metal-Organic Framework Nanocomposites for Efficient Extraction and Sensitive Detection of Fluoroquinolone Antibiotics in Environmental Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5357-5367. [PMID: 33471500 DOI: 10.1021/acsami.0c17310] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, the hydrophobic carboxyl-functionalized ionic liquid (IL-COOH) was encapsulated into the prepared Fe3O4@Zr-MOFs, and the novel water-stable IL-COOH/Fe3O4@Zr-MOF nanocomposites were first synthesized. The polydopamine-functionalized Fe3O4 was introduced to construct the core-shell structure via layer-by-layer modification, and the controlled growth of Zr-MOFs was achieved, which realized the adjustment of charged properties of nanocomposites and simplified the adsorption or extraction process. The IL-COOH/Fe3O4@Zr-MOFs were fully studied by IR, HNMR, XRD, N2 adsorption-desorption isotherms, TEM, EDS mapping, VSM, and so on. Then, they were employed for the selective adsorption and detection of fluoroquinolone antibiotics (FQs). The adsorption isotherms and kinetics demonstrated that the adsorption process followed a pseudo-second-order kinetic model and the Langmuir isotherm model. Among them, IL-COOH/Fe3O4@UiO-67-bpydc showed the best adsorption performance, and the maximum adsorption capacity of ofloxacin was 438.5 mg g-1. Coupled magnetic solid-phase extraction with HPLC-DAD, a convenient, sensitive, and efficient method for extraction and detection of FQs in environmental water, was developed based on IL-COOH/Fe3O4@UiO-67-bpydc. The recoveries of environmental water were ranging from 90.0 to 110.0%, and the detection limits were lower than 0.02 μg L-1. The novel functionalized composites served as solid-phase adsorbents and liquid-phase extractants. This study also provided a promising strategy for designing and preparing multi-functionalized nanocomposites for the removal or detection of pollutants in environmental samples.
Collapse
Affiliation(s)
- Dingkun Lu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 20062, China
| | - Menghan Qin
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 20062, China
| | - Chang Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 20062, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 20062, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 20062, China
| |
Collapse
|
33
|
Li S, Zhang Z. Recent advances in the construction and analytical applications of carbon dots-based optical nanoassembly. Talanta 2021; 223:121691. [PMID: 33303144 DOI: 10.1016/j.talanta.2020.121691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022]
Abstract
Recently, more and more attention has been focused on the construction and analytical applications of optical nanoassembly through combining carbon dots (CDs) with various other functional nanomaterials. The rational design and manufacture of CDs-based optical nanoassembly will be critical to meeting the needs of analytical science. The last decade has witnessed the immense potential of CDs-based optical nanoassembly in multiple sensing applications owing to their controlled optical properties, adjustable surface chemistry and microscopic morphology. This feature article collects the recent advances in the research and development of CDs-based optical nanoassembly and their applications in analytical sensors, aiming to provide vital insights and suggestions to inspire their broad sensing applications.
Collapse
Affiliation(s)
- Siqiao Li
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhengwei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
34
|
Li B, Suo T, Xie S, Xia A, Ma YJ, Huang H, Zhang X, Hu Q. Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Tao Y, Jiang Y, Huang Y, Liu J, Zhang P, Chen X, Fan Y, Wang L, Xu J. Carbon dots@metal–organic frameworks as dual-functional fluorescent sensors for Fe 3+ ions and nitro explosives. CrystEngComm 2021. [DOI: 10.1039/d1ce00392e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel dual-functional fluorescent composites were prepared, which exhibit excellent fluorescence sensing capabilities for Fe3+, p-NT and 2,4-DNP.
Collapse
Affiliation(s)
- Yufang Tao
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
- Shanghai New Epoch High School
| | - Yansong Jiang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yating Huang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Junning Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ping Zhang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiaodong Chen
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yong Fan
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Li Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jianing Xu
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
36
|
Yi K, Zhang X, Zhang L. Eu 3+@metal-organic frameworks encapsulating carbon dots as ratiometric fluorescent probes for rapid recognition of anthrax spore biomarker. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140692. [PMID: 32653714 DOI: 10.1016/j.scitotenv.2020.140692] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Anthrax spores pose a serious threat to human well-being and life, so it is highly desirable to develop a rapid, sensitive, and selective quantitative assay of calcium pyridine dicarboxylate (CaDPA) as a biomarker of anthrax spores. Herein, carbon dots (CDs) chelated Eu3+@metal-organic framework (Eu-MOFs) as dual-emissive ratiometric fluorescent (RF) probe was successfully fabricated by a simple one-pot in situ selective self-assembly synthetic strategy. The developed RF probe has an effective self-calibration function, which performs a highly sensitive and selective recognition of CaDPA in water and human serum sample. The blue-emitting CDs was employed as an effective fluorescence reference, while the Eu-MOFs exhibited enhanced red fluorescence signal through the coordination interaction with CaDPA chromophore. The sensing mechanism is attributed to that CaDPA can sensitize Eu3+ intrinsic luminescence due to the energy transfer from CaDPA to Eu3+. What's more interesting is that with the continuous drop of CaDPA, the emission color of CDs@Eu-MOF changes from blue to red. The results revealed that CDs@Eu-MOFs RF probe can detect CaDPA effectively in the range of 8-170 μg/L with good linear relationship, and exhibited a remarkable selectivity for CaDPA. More interestingly, a paper-based probe has also been devised for on-site detection of CaDPA. In addition, CaDPA is used as input signal to construct an IHIBITION logic gate device which performs the "off-on" mode. The constructed CDs@Eu-MOF probe can achieve exceptionally rapid, highly sensitive and selective detection of CaDPA, which can further expand the application prospects in environmental and biological analysis.
Collapse
Affiliation(s)
- Kuiyu Yi
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Xiaoting Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
37
|
Dong H, Zhou Y, Zhao L, Hao Y, Zhang Y, Ye B, Xu M. Dual-Response Ratiometric Electrochemical Microsensor for Effective Simultaneous Monitoring of Hypochlorous Acid and Ascorbic Acid in Human Body Fluids. Anal Chem 2020; 92:15079-15086. [PMID: 33118803 DOI: 10.1021/acs.analchem.0c03089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Redox homeostasis between hypochlorous acid (HClO/ClO-) and ascorbic acid (AA) significantly impacts many physiological and pathological processes. Herein, we report a new electrochemical sensor for the simultaneous determination of HClO and AA in body fluids. We first coated a carbon fiber microelectrode (CFME) with a three-dimensional nanocomposite consisting of graphene oxide (GO) and carbon nanotubes (CNTs) to fabricate the CFME/GO-CNT electrode. After the electrochemical reduction of GO (ERGO), we integrated a latent 1-(3,7-bis(dimethylamino)-10H-phenothiazin-10-yl)-2-methylpropan-1-one (MBS) electrochemical molecular recognition probe to monitor HClO and employed anthraquinone (AQ) as an internal reference. The compact CFME/ERGO-CNT/AQ + MBS sensor enabled the accurate and simultaneous measurement of HClO and AA with excellent selectivity and sensitivity. Measurements were highly reproducible, and the sensor was stable and exceptionally biocompatible. We successfully detected changes in the redox cycles of HClO and AA in human body fluids. This sensor is a significant advance for the investigation of reactions involved in cellular redox regulation. More importantly, we have devised a strategy for the design and construction of ratiometric electrochemical biosensors for the simultaneous determination of various bioactive species.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhenghou 450001, Henan Province, PR China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhenghou 450001, Henan Province, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhenghou 450001, Henan Province, PR China
| |
Collapse
|
38
|
Zhang H, Wang B, Yu X, Li J, Shang J, Yu J. Carbon Dots in Porous Materials: Host-Guest Synergy for Enhanced Performance. Angew Chem Int Ed Engl 2020; 59:19390-19402. [PMID: 32452131 DOI: 10.1002/anie.202006545] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 11/06/2022]
Abstract
Carbon dots (CDs) are emerging as a new class of carbon nanomaterials, which have inspired growing interest for their widespread applications in anti-counterfeiting, sensing, bioimaging, optoelectronic and energy-related fields. In terms of the concept of host-guest assembly, immobilizing CDs into porous materials (PMs) has proven to be an effective strategy to avoid the aggregation of bare CDs in solid state, in particular, the host-guest synergy with both merits of CDs and PMs affords composites promising properties in afterglow and tunable emissions, as well as optimizes their performance in optics, catalysis, and energy storage. This Minireview summarizes the recent progress in the research of CDs@PMs, and highlights synthetic strategies of constructing composites and roles of porous matrices in boosting the applications of CDs in diverse areas. The prospect of future exploration and challenges are proposed for designing advanced CDs-based functional nanocomposite materials.
Collapse
Affiliation(s)
- Hongyue Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaowei Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
39
|
Lu D, Liu C, Qin M, Deng J, Shi G, Zhou T. Functionalized ionic liquids-supported metal organic frameworks for dispersive solid phase extraction of sulfonamide antibiotics in water samples. Anal Chim Acta 2020; 1133:88-98. [DOI: 10.1016/j.aca.2020.07.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
|
40
|
Han Y, Yang W, Luo X, He X, Zhao H, Tang W, Yue T, Li Z. Carbon dots based ratiometric fluorescent sensing platform for food safety. Crit Rev Food Sci Nutr 2020; 62:244-260. [PMID: 32876496 DOI: 10.1080/10408398.2020.1814197] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Food safety has become a major global concern and the rapid detection of food nutritional ingredients and contaminants has aroused much more attention. Nanomaterials-based fluorescent sensing holds great potential in designing highly sensitive and selective detection strategies for food safety analysis. Carbon dots (CDs) possess tremendous prospects in fluorescent sensing food ingredients and contaminants due to their superior properties of chemical and photostability, highly fluorescence with tunability, and no/low-toxicity. Numerous endeavors are demanded to contribute to overcoming the challenge of lower sensitivity and selectivity of the sensors interfered by various components in intricate food matrices to ensure food safety and human health. Nanohybrid CDs based ratiometric fluorescent sensing with self-calibration is regarded as an efficient strategy for the CDs based sensors for the specific recognition of target analyte in the food matrices. This work is devoted to reviewing the development of nanohybrid CDs based ratiometric fluorescent sensing platform and the perspectives of the platform for food safety. The applications of nanohybrid CDs in sensing are summarized and the sensing mechanisms are briefly discussed.
Collapse
Affiliation(s)
- Yong Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Weixia Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xueli Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xie He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Haiping Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi, PR China
| |
Collapse
|
41
|
Guo M, Chi J, Li Y, Waterhouse GIN, Ai S, Hou J, Li X. Fluorometric determination of mercury(II) based on dual-emission metal-organic frameworks incorporating carbon dots and gold nanoclusters. Mikrochim Acta 2020; 187:534. [PMID: 32870375 DOI: 10.1007/s00604-020-04508-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Carbon dots and gold nanoclusters co-encapsulated by zeolitic imidazolate framework-8 (CDs/AuNCs@ZIF-8) have been obtained at room temperature. The composite has been applied to the ratiometric fluorescence determination of mercury(II). The composite shows fluorescence emission maxima at 440 and 640 nm under 360 nm excitation, due to the CDs and AuNCs, respectively (associated quantum yields were 18% and 17%, respectively). In the presence of Hg2+, the fluorescence at about 640 nm is quenched, while the fluorescence at about 440 nm is unaffected. The CDs/AuNCs@ZIF-8 composite allows the sensitive detection of Hg2+, with the fluorescence intensity ratio (I640/I440) decreasing linearly with Hg2+ concentration over the range 3-30 nM. The fluorescence emission of the composite changes color from red to blue with increasing Hg2+ under UV excitation, which can easily be discerned visually. This visual detection of Hg2+ is due to the high fluorescence quantum yields of the CDs and AuNCs and the ~ 200 nm separation between the two emission maxima. Graphical abstract (A) Schematic diagram showing the operating principle of the determination for Hg(II). (B) Digital graph of the solutions in absence and presence of 30 nM Hg(II) under a portable UV lamp.
Collapse
Affiliation(s)
- Manli Guo
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Jingtian Chi
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yijing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Geoffrey I N Waterhouse
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.,School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Juying Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xiangyang Li
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
42
|
A simple and sensitive sensor for lactose based on cascade reactions in Au nanoclusters and enzymes co-encapsulated metal-organic frameworks. Food Chem 2020; 339:127863. [PMID: 32871299 DOI: 10.1016/j.foodchem.2020.127863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/05/2023]
Abstract
In this work, one kind of zeolite imidazole frameworks containing bovine serum albumin stabilized Au nanoclusters (AuNCs), β-galactosidase (β-Gal) and glucose oxidase (GOx) (AuNCs/β-Gal/GOx@ZIF-8) were obtained to detect lactose. Compared with other fluorescent nano-materials, AuNCs show distinct advantages as a guest species in ZIF-8, specifically their extremely small size (<1 nm), simple synthesis, excellent biocompatibility and high stability. Furthermore, the bovine serum albumin on their surfaces can promote the formation of ZIF-8 coating; thus, AuNCs were co-encapsulated in ZIF-8 with the enzymes together. X-ray diffraction (XRD) analysis indicates the composite possesses the similar crystalline structure with pure ZIF-8. Fluorescence microscope images, Fourier transform infrared spectra and energy dispersive X-ray spectroscopy indicate the presence of AuNCs in the composite. Owing to the high local concentrations of the fluorescent probe and the quenching agent in AuNCs/β-Gal/GOx@ZIF-8, the quenching rate was enhanced 3.4-fold that of free AuNCs and enzymes in solution.
Collapse
|
43
|
Zhang H, Wang B, Yu X, Li J, Shang J, Yu J. Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hongyue Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- International Center of Future Science Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xiaowei Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jin Shang
- School of Energy and Environment City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- International Center of Future Science Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
44
|
Chen L, Zhang X, Cheng X, Xie Z, Kuang Q, Zheng L. The function of metal-organic frameworks in the application of MOF-based composites. NANOSCALE ADVANCES 2020; 2:2628-2647. [PMID: 36132385 PMCID: PMC9417945 DOI: 10.1039/d0na00184h] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 05/25/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs), as a class of porous crystalline materials formed by organic linkers coordinated-metal ions, have attracted increasing attention due to their unique structures and wide applications. Compared to single components, various well-designed MOF-based composites combining MOFs with other functional materials, such as nanoparticles, quantum dots, natural enzymes and polymers with remarkably enhanced or novel properties have recently been reported. To efficiently and directionally synthesize high-performance MOF-based composites for specific applications, it is vital to understand the structural-functional relationships and role of MOFs. In this review, preparation methods of MOF-based composites are first summarized and then the relationship between the structure and performance is determined. The functions of MOFs in practical use are classified and discussed through various examples, which may help chemists to understand the structural-functional relationship in MOF-based composites from a new perspective.
Collapse
Affiliation(s)
- Luning Chen
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Xibo Zhang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Xiqing Cheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Zhaoxiong Xie
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Qin Kuang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Lansun Zheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| |
Collapse
|
45
|
|
46
|
Preparation, surface functionalization and application of Fe 3O 4 magnetic nanoparticles. Adv Colloid Interface Sci 2020; 281:102165. [PMID: 32361408 DOI: 10.1016/j.cis.2020.102165] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
Abstract
This paper reviews recent developments in the preparation, surface functionalization, and applications of Fe3O4 magnetic nanoparticles. Especially, it includes preparation methods (such as electrodeposition, polyol methods, etc.), organic materials (such as polymers, small molecules, surfactants, biomolecules, etc.) or inorganic materials (such as silica, metals, and metal oxidation/sulfide, functionalized coating of carbon surface, graphene, etc.) and its applications (such as magnetic separation, protein fixation, magnetic catalyst, environmental treatment, medical research, etc.). In the end, some existing challenges and possible future trends in the field were discussed.
Collapse
|
47
|
|
48
|
Chu H, Yao D, Chen J, Yu M, Su L. Double-Emission Ratiometric Fluorescent Sensors Composed of Rare-Earth-Doped ZnS Quantum Dots for Hg 2+ Detection. ACS OMEGA 2020; 5:9558-9565. [PMID: 32363308 PMCID: PMC7191836 DOI: 10.1021/acsomega.0c00861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/08/2020] [Indexed: 05/08/2023]
Abstract
Quantum dots (QDs) are a class of zero-dimensional nanocrystal materials, whose lengths are limited to 2-10 nm. Their unique advantages such as wide excitation spectra, narrow emission spectra, and high quantum yield make their application possible in fluorescence sensing, wherein QDs such as CdSe, CdTe, and CdS are used. Indeed, QDs have a wide range of applications in fluorescence sensing, and there have been many reports of applications based on QDs as ion probes. The emission spectra of QDs can be adjusted by changing the size of the QDs or doping them with other ions/elements. However, the high toxicity of Cd and the poor anti-interference ability of single-emission fluorescent probes greatly limit the applications of QDs in many fields. In this paper, ZnS QDs are doped with the rare-earth element Ce to form a low-toxicity double-emission ratiometric fluorescent sensor, ZnS:Ce, for Hg2+ detection. The results of transmission electron microscopy (TEM), X-ray diffractometry, X-ray photoelectron spectroscopy, and optical spectroscopy show that ZnS:Ce QDs were successfully synthesized. Under the optimal conditions, the concentration of Hg2+ was in the range of 10-100 μM, which had a linear relationship with the fluorescence intensity of the ZnS:Ce QDs: the linear correlation coefficient was 0.998, and the detection limit was 0.82 μM L-1. In addition, the fluorescent sensor had good selectivity for Hg2+, and it was successfully applied to the detection of Hg2+ in laboratory water samples.
Collapse
|
49
|
Oh S, Lee S, Oh M. Zeolitic Imidazolate Framework-Based Composite Incorporated with Well-Dispersed CoNi Nanoparticles for Efficient Catalytic Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18625-18633. [PMID: 32237723 DOI: 10.1021/acsami.0c03756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Incorporation of metal nanocatalysts within a well-defined porous support is of great importance for stabilizing unstable metal nanocatalysts, so that they display an effective and long-lasting catalytic activity. In particular, metal-organic frameworks (MOFs) with a wide range of structures serve as excellent porous supports for stabilizing unstable nanocatalysts. In addition, the development of inexpensive metal nanocatalysts is necessary to replace expensive noble metal nanocatalysts. Herein, we report on a simple method for the preparation of porous MOF-based or carbon-based composites incorporated with catalytically active CoNi alloy nanoparticles. CoNi alloy nanoparticles were produced from the concurrent reduction of Co and Ni ions existing within a zeolitic imidazolate framework (ZIF)-based precursor material during the thermal treatment. In particular, a part of the highly porous ZIF was preserved during the thermal treatment at 400 °C, which eventually resulted in a composite of ZIF and CoNi (CoNi@ZIF). The resulting CoNi@ZIF showed excellent catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol. The synergy between the highly porous ZIF support and the well-dispersed CoNi nanoparticles within CoNi@ZIF provided an outstanding catalytic performance, even with inexpensive transition-metal nanocatalysts. Moreover, the catalytic activity of CoNi@ZIF was well conserved even after five consecutive reactions.
Collapse
Affiliation(s)
- Sojin Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
50
|
Du T, Wang J, Zhang T, Zhang L, Yang C, Yue T, Sun J, Li T, Zhou M, Wang J. An Integrating Platform of Ratiometric Fluorescent Adsorbent for Unconventional Real-Time Removing and Monitoring of Copper Ions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13189-13199. [PMID: 32134628 DOI: 10.1021/acsami.9b23098] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nondegradable heavy metals have caused great dangers to the environment and human health. Combining stimuli-responsive materials with conventional MOF-based adsorbents has been considered an effective method to generate intelligent adsorbents for superior control over the adsorption process. Herein, a smart MOF-based ratiometric fluorescent adsorbent was designed to accurately monitor the progression of the removal of copper ions with dual-emitting fluorescence signal. Unlike the traditional difunctional materials, this delicately designed platform overcomes the huge energy gap to achieve two functions simultaneously. This unconventional platform provides a reliable fluorescent response toward Cu2+ during the removing process, changing linearly related to the degree of the adsorption process, which holds extreme promise in effectively monitoring the adsorption process. The underlying relationship of the adsorption and fluorescence response process toward copper was investigated by density functional theory (DFT) calculations. In particular, because of the favorable ion binding affinity of ZIF-8 and self-calibrating effect of RhB, the as-prepared smart adsorbent demonstrates a superior adsorption performance of 608 mg g-1, broad response range (0.05-200 ppm, 2.07 × 10-7to 8.29 × 10-4 M), ultrahigh sensitivity (0.04 ppm, 1.91 × 10-7 M) toward Cu2+ and strong anti-interference ability. This smart adsorbent opens an intelligent pathway to promote substantial advancements in the fields of environmental monitoring and industrial waste management.
Collapse
Affiliation(s)
- Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianshu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining, Qinghai 810008, P. R. China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Xi'an 710065, China
| | - Mingu Zhou
- Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F UniversityYangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|