1
|
Ding M, Wu W, Liu R, Niu B, Chen H, Fang X, Chen H, Shen C, Gao H. Preparation and application of thyme essential oil@halloysite nanotubes-loaded multifunctional pullulan/gelatin/PVA aerogels. Int J Biol Macromol 2025; 309:142917. [PMID: 40203906 DOI: 10.1016/j.ijbiomac.2025.142917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Blueberries are susceptible to microbial contamination and mechanical damage after harvesting, thereby accelerating their quality deterioration. Therefore, in the present work, thyme essential oil@halloysite nanotubes (TEO@HNTs)-loaded pullulan/gelatin/PVA (PGP) aerogels with antimicrobial activities and cushioning properties were developed to address these issues. The results showed that TEO achieved a 91.1 % encapsulation efficiency in HNTs and hydrogen bonding interactions were formed between TEO and HNTs. TEO@HNTs improved the crystallinity, thermal stability, compression properties, and surface hydrophobicity of the PGP aerogels. The TEO@HNTs-loaded aerogels exhibited a sustained release of TEO and antimicrobial activity against E. coli (inhibition zone of 13.92 mm), S. aureus (inhibition zone of 16.55 mm), and B. cinerea. Moreover, the aerogels offered good cushioning for blueberries when subjected to mechanical impact, thus maintaining their quality during storage. In addition, cell cytotoxicity analysis showed that cell viability exceeded 94 %, indicating the excellent biocompatibility of the TEO@HNTs-loaded aerogels. The above results suggested promising prospects for the development of a multifunctional aerogel to maintain the quality of food products, such as blueberries, which are susceptible to microbial contamination and mechanical damage.
Collapse
Affiliation(s)
- Mingke Ding
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Chaoyi Shen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Zhang M, Wang Y, Yin X, Xue M, Zhao X, Zheng R, Qiu J, Zhu Z. Chlorogenic acid-assisted dopamine‑sodium alginate composite nanofiber membranes for promoting wound healing. Carbohydr Polym 2025; 354:123298. [PMID: 39978891 DOI: 10.1016/j.carbpol.2025.123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/22/2025]
Abstract
Developing safe and effective novel wound dressings to enhance full-thickness skin wound regeneration is highly desirable. In this study, we firstly incorporated chlorogenic acid (CA) into dopamine (DA) functionalized alginate (Alg-DA) conjugates and utilized polyvinyl alcohol (PVA) as the carrier polymer to fabricate a series of novel multifunctional composite nanofiber membranes (PVA/Alg-DA/CA) for promoting wound healing. These nanofiber membranes exhibited high water absorption, water vapor transmission rate, porosity, and hydrophilicity properties. The CA endowed the PVA/Alg-DA/CA membranes with excellent antibacterial properties, and the superior antioxidant activity to effectively protect cells from oxidative damage. Meanwhile, capitalizing on the unique nanofiber architecture, as well as the inherent biofunctional activities of CA and Alg-DA, these membranes exhibited remarkable biocompatibility, fostering a conducive environment for fibroblast adhesion and proliferation. Moreover, wound healing assessments and histopathological analyses revealed that composite membranes could promote neovascularization and tissue remodeling, and thus accelerating wound closure in the mouse full-thickness wound defect model. Additionally, the upregulation of key healing markers including CD31 and TGF-β1 protein expressions, further corroborated the ability of multifunctional membrane to stimulate the wound healing cascade. This multifunctional membranes with biosafety and therapeutic outcomes are a promising candidate for wound dressing to promote skin repair.
Collapse
Affiliation(s)
- Meng Zhang
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271000, China
| | - Yinchuan Wang
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271000, China
| | - Xueling Yin
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Mei Xue
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271000, China
| | - Xin Zhao
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271000, China
| | - Runxiao Zheng
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271000, China.
| | - Zhihong Zhu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
3
|
Verma D, Okhawilai M, Subramani K, Chandrasekaran K, Kasemsiri P, Uyama H. Cefixime loaded bare and functionalized halloysite nanocarriers and their biomedical applications. ENVIRONMENTAL RESEARCH 2024; 252:118927. [PMID: 38631467 DOI: 10.1016/j.envres.2024.118927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Effective drug delivery for is the foremost requirement for the complete recovery of the disease. Nanomedicine and nanoengineering has provided so many spaces and ideas for the drug delivery design, whether controlled, targeted, or sustained. Different types of nanocarriers or nanoparticles are aggressively designed for the drug delivery applications. Clay minerals are identified as a one of the potential nanocarrier for the drug delivery. Owing to their biocompatibility and very low cytotoxicity, clay minerals showing effective therapeutic applications. In the present investigation, clay mineral, i.e., Halloysite nano tubes are utilized as a nanocarrier for the delivery of antibiotic cefixime (CFX), a third-generation cephalosporin. The HNT was first functionalized with the sulfuric acid and then further treated with the 3-(aminopropyl)triethoxysilane (APTES). The drug is loaded on three different classifications of HNTs, i.e., Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT and their comparative analysis is established. Different characterization techniques such as X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), Transmission electron microscopy TEM), Brunauer-Emmett-Teller (BET), adsorption studies, and Thermogravimetric analysis (TGA) were performed to evaluate their chemical, structural, morphological, and thermal properties. TGA confirmed the encapsulation efficiency of Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT as 42.65, 52.19, and 53.43%, respectively. Disk diffusion and MTT assay confirmed that the drug loaded HNTs have potential antibacterial activities and less cytotoxicity. The adsorption capacity of CFX with different HNTs are evaluated and Different adsorption and kinetic models have been discussed. Drug release studies shows that APTES-CFX-HNT showing sustained release of cefixime as compared to Bare-CFX-HNT and Acid-CFX-HNT.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Karthik Subramani
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center, Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Piskláková L, Skuhrovcová K, Bártová T, Seidelmannová J, Vondrovic Š, Velebný V. Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats. Polymers (Basel) 2024; 16:664. [PMID: 38475347 DOI: 10.3390/polym16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Nanofibrous materials represent a very promising form of advanced carrier systems that can be used industrially, especially in regenerative medicine as highly functional bandages, or advanced wound dressings. By incorporation of antimicrobial additives directly into the structure of the nanofiber carrier, the functionality of the layer is upgraded, depending on the final requirement-bactericidal, bacteriostatic, antiseptic, or a generally antimicrobial effect. Such highly functional nanofibrous layers can be prepared mostly by electrospinning technology from both synthetic and natural polymers. The presence of a natural polymer in the composition is very advantageous. Especially in medical applications where, due to the presence of the material close to the human body, the healing process is more efficient and without the occurrence of an unwanted inflammatory response. However, converting natural polymers into nanofibrous form, with a homogeneously distributed and stable additive, is a great challenge. Thus, a combination of natural and synthetic materials is often used. This review clearly summarizes the issue of the incorporation and effectiveness of different types of antimicrobial substances, such as nanoparticles, antibiotics, common antiseptics, or substances of natural origin, into electrospun nanofibrous layers made of mostly natural polymer materials. A section describing the problematic aspects of antimicrobial polymers is also included.
Collapse
Affiliation(s)
- Lenka Piskláková
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kristýna Skuhrovcová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Tereza Bártová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Štěpán Vondrovic
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
5
|
Shen C, Yang X, Wang D, Li J, Zhu C, Wu D, Chen K. Carboxymethyl chitosan and polycaprolactone-based rapid in-situ packaging for fruit preservation by solution blow spinning. Carbohydr Polym 2024; 326:121636. [PMID: 38142080 DOI: 10.1016/j.carbpol.2023.121636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
Nanofiber packaging has not yet gained practical application in fruit preservation because of some limitations, such as low production rate and utilization, and failure due to poor adhesion to the fruit. Herein, to solve this issue, a novel fruit packaging method based on solution blow spinning (SBS), called in-situ packaging, was pioneered. Specifically, carboxymethyl chitosan (CMCH) and polycaprolactone (PCL) were chosen as substrate materials and cherry tomatoes were selected as demonstration subjects. CMCH/PCL nanofibers were deposited directly onto the surface of cherry tomatoes by SBS, forming a tightly adherent and stable fiber coating in 8 min. Also, this in-situ packaging could be easily peeled off by hand. The in-situ packaging was an excellent carrier for active substances and was effective in inhibiting gray mold on cherry tomatoes. The in-situ packaging film formed a barrier on the surface of cherry tomatoes to limit moisture penetration, resulting in reduced respiration of fruits, which led to reduced weight and firmness loss. In addition, metabolomics and color analysis revealed that the in-situ packaging delayed ripening of cherry tomatoes after harvest. Overall, the in-situ packaging method developed in the present work provides a new solution for post-harvest fruit preservation.
Collapse
Affiliation(s)
- Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangzheng Yang
- College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Da Wang
- College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Jiangkuo Li
- Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, PR China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
6
|
Gan C, Hu H, Meng Z, Zhu X, Gu R, Wu Z, Sun W, Han P, Wang H, Dou G, Gan H. Local Clays from China as Alternative Hemostatic Agents. Molecules 2023; 28:7756. [PMID: 38067486 PMCID: PMC10708434 DOI: 10.3390/molecules28237756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, the coagulation properties of inorganic minerals such as kaolin and zeolite have been demonstrated. This study aimed to assess the hemostatic properties of three local clays from China: natural kaolin from Hainan, natural halloysite from Yunnan, and zeolite synthesized by our group. The physical and chemical properties, blood coagulation performance, and cell biocompatibility of the three materials were tested. The studied materials were characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). All three clays showed different morphologies and particle size, and exhibited negative potentials between pH 6 and 8. The TGA and DSC curves for kaolin and halloysite were highly similar. Kaolin showed the highest water absorption capacity (approximately 93.8% ± 0.8%). All three clays were noncytotoxic toward L929 mouse fibroblasts. Kaolin and halloysite showed blood coagulation effects similar to that exhibited by zeolite, indicating that kaolin and halloysite are promising alternative hemostatic materials.
Collapse
Affiliation(s)
- Changjiao Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
- National Medical Products Administration Institute of Executive Development, 16 Xi Zhan Nan Road, Beijing 100073, China
| | - Hongjie Hu
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Wenzhong Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Peng Han
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hongliang Wang
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| |
Collapse
|
7
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
8
|
Abdulmalik S, Gallo J, Nip J, Katebifar S, Arul M, Lebaschi A, Munch LN, Bartly JM, Choudhary S, Kalajzic I, Banasavadi-Siddegowdae YK, Nukavarapu SP, Kumbar SG. Nanofiber matrix formulations for the delivery of Exendin-4 for tendon regeneration: In vitro and in vivo assessment. Bioact Mater 2023; 25:42-60. [PMID: 36733930 PMCID: PMC9876843 DOI: 10.1016/j.bioactmat.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Tendon and ligament injuries are the most common musculoskeletal injuries, which not only impact the quality of life but result in a massive economic burden. Surgical interventions for tendon/ligament injuries utilize biological and/or engineered grafts to reconstruct damaged tissue, but these have limitations. Engineered matrices confer superior physicochemical properties over biological grafts but lack desirable bioactivity to promote tissue healing. While incorporating drugs can enhance bioactivity, large matrix surface areas and hydrophobicity can lead to uncontrolled burst release and/or incomplete release due to binding. To overcome these limitations, we evaluated the delivery of a peptide growth factor (exendin-4; Ex-4) using an enhanced nanofiber matrix in a tendon injury model. To overcome drug surface binding due to matrix hydrophobicity of poly(caprolactone) (PCL)-which would be expected to enhance cell-material interactions-we blended PCL and cellulose acetate (CA) and electrospun nanofiber matrices with fiber diameters ranging from 600 to 1000 nm. To avoid burst release and protect the drug, we encapsulated Ex-4 in the open lumen of halloysite nanotubes (HNTs), sealed the HNT tube endings with a polymer blend, and mixed Ex-4-loaded HNTs into the polymer mixture before electrospinning. This reduced burst release from ∼75% to ∼40%, but did not alter matrix morphology, fiber diameter, or tensile properties. We evaluated the bioactivity of the Ex-4 nanofiber formulation by culturing human mesenchymal stem cells (hMSCs) on matrix surfaces for 21 days and measuring tenogenic differentiation, compared with nanofiber matrices in basal media alone. Strikingly, we observed that Ex-4 nanofiber matrices accelerated the hMSC proliferation rate and elevated levels of sulfated glycosaminoglycan, tendon-related genes (Scx, Mkx, and Tnmd), and ECM-related genes (Col-I, Col-III, and Dcn), compared to control. We then assessed the safety and efficacy of Ex-4 nanofiber matrices in a full-thickness rat Achilles tendon defect with histology, marker expression, functional walking track analysis, and mechanical testing. Our analysis confirmed that Ex-4 nanofiber matrices enhanced tendon healing and reduced fibrocartilage formation versus nanofiber matrices alone. These findings implicate Ex-4 as a potentially valuable tool for tendon tissue engineering.
Collapse
Affiliation(s)
- Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Jack Gallo
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jonathan Nip
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sara Katebifar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Michael Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Amir Lebaschi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Lucas N. Munch
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jenna M. Bartly
- Department of Immunology, Center on Aging, University of Connecticut Health, Farmington, CT, USA
| | - Shilpa Choudhary
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, USA
| | | | - Syam P. Nukavarapu
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
9
|
Feketshane Z, Adeyemi SA, Ubanako P, Ndinteh DT, Ray SS, Choonara YE, Aderibigbe BA. Dissolvable sodium alginate-based antibacterial wound dressing patches: Design, characterization, and in vitro biological studies. Int J Biol Macromol 2023; 232:123460. [PMID: 36731706 DOI: 10.1016/j.ijbiomac.2023.123460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
The treatment of infected wounds in patients with highly sensitive skin is challenging. Some of the available wound dressings cause further skin tear and bleeding upon removal thereby hindering the healing process. In this study, dissolvable antibacterial wound dressing patches loaded with cephalexin monohydrate were prepared from different amounts of sodium alginate (SA) and carboxymethyl cellulose (CMC) by the solvent casting evaporation technique. The patches displayed good tensile strength (3.83-13.83 MPa), appropriate thickness (0.09 to 0.31 mm) and good flexibility (74-98 %) suitable for the skin. The patches displayed good biodegradability and low moisture uptake suitable to prevent microbial invasion on the wound dressings upon storage. The release profile of the drug from the patches was sustained in the range of 47-80 % for 48 h, revealing their capability to inhibit bacterial infection. The biological assay showed that the patches did not induce cytotoxic effects on HaCaT cells, revealing good biocompatibility. The antimicrobial effect of the patches on the different strains of bacteria used in the study was significant. The cell migration (66.7-74.3 %) to the scratched gap was promising revealing the patches' capability to promote wound closure. The results obtained show that the wound dressings are potential materials for the treatment of infected wounds.
Collapse
Affiliation(s)
- Z Feketshane
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| | - S A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - P Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - D T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - S S Ray
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Y E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - B A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa.
| |
Collapse
|
10
|
Diep E, Schiffman JD. Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS APPLIED BIO MATERIALS 2023; 6:951-964. [PMID: 36791266 DOI: 10.1021/acsabm.2c01055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Living bacteria are used in biotechnologies that lead to improvements in health care, agriculture, and energy. Encapsulating bacteria into flexible and modular electrospun polymer fabrics that maintain their viability will further enable their use. This review will first provide a brief overview of electrospinning before examining the impact of electrospinning parameters, such as precursor composition, applied voltage, and environment on the viability of encapsulated bacteria. Currently, the use of nanofiber scaffolds to deliver live probiotics into the gut is the most researched application space; however, several additional applications, including skin probiotics (wound bandages) and menstruation products have also been explored and will be discussed. The use of bacteria-loaded nanofibers as seed coatings that promote plant growth, for the remediation of contaminated wastewaters, and in energy-generating microbial fuel cells are also covered in this review. In summary, electrospinning is an effective method for encapsulating living microorganisms into dry polymer nanofibers. While these living composite scaffolds hold potential for use across many applications, before their use in commercial products can be realized, numerous challenges and further investigations remain.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
11
|
Shahabi N, Soleimani S, Ghorbani M. Investigating functional properties of halloysite nanotubes and propolis used in reinforced composite film based on soy protein/basil seed gum for food packaging application. Int J Biol Macromol 2023; 231:123350. [PMID: 36681220 DOI: 10.1016/j.ijbiomac.2023.123350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effect of halloysite nanotubes (HNTs) on the physicochemical characteristics of the soy protein isolated/basil seed gum (SPI/BSG) film activated with propolis (PP). The obtained results of scanning electron microscope (SEM), thermal gravimetric analysis (TGA), and tensile investigations illustrated that the addition of HNTs as nanofiller led to positive changes in the morphology, thermal stability, and mechanical characteristics of SPI/BSG films. The barrier properties of films considerably decreased with incorporation of HNTs. Furthermore, the encapsulation of PP as bioactive agent into the produced films significantly increased (P < 0.05) the antioxidant potential of the samples in DPPH radical-scavenging activity assays. The antibacterial effects of film also significantly increased (P < 0.05) after the encapsulation of PP. In conclusion, the produced films illustrated acceptable efficiency for usage in food packaging system.
Collapse
Affiliation(s)
- Nasim Shahabi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Sajad Soleimani
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Wang X, Zhu Y, Mu B, Wang A. Incorporation of clay minerals into magnesium phosphate bone cement for enhancing mechanical strength and bioactivity. Biomed Mater 2023; 18. [PMID: 36657175 DOI: 10.1088/1748-605x/acb4cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
The poor mechanical strength and bioactivity of magnesium phosphate bone cements (MPCs) are the vital defects for bone reconstruction. Clay minerals have been widely used in biomedical field due to the good reinforcing property and cytocompatibility. Here, laponite, sepiolite or halloysite were incorporated to fabricate MPCs composite, and the composition, microstructure, setting time, compressive strength, thermal stability, degradation performance,in vitrobioactivity and cell viability of MPCs composite were investigated. The results suggested that the MPCs composite possessed appropriate setting time, high mechanical strength and good thermal stability. By contrast, MPCs composite containing 3.0 wt.% of sepiolite presented the highest compressive strength (33.45 ± 2.87 MPa) and the best thermal stability. The degradation ratio of MPCs composite was slightly slower than that of MPCs, and varied in simulated body fluid and phosphate buffer solution. Therefore, the obtained MPCs composite with excellent bioactivity and cell viability was expected to meet the clinical requirements for filling bone defect.
Collapse
Affiliation(s)
- Xiaomei Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
13
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Massaro M, Ciani R, Cinà G, Colletti CG, Leone F, Riela S. Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook. Antibiotics (Basel) 2022; 11:antibiotics11121761. [PMID: 36551418 PMCID: PMC9774400 DOI: 10.3390/antibiotics11121761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections represent one of the major causes of mortality worldwide. Therefore, over the years, several nanomaterials with antibacterial properties have been developed. In this context, clay minerals, because of their intrinsic properties, have been efficiently used as antimicrobial agents since ancient times. Halloysite nanotubes are one of the emerging nanomaterials that have found application as antimicrobial agents in several fields. In this review, we summarize some examples of the use of pristine and modified halloysite nanotubes as antimicrobial agents, scaffolds for wound healing and orthopedic implants, fillers for active food packaging, and carriers for pesticides in food pest control.
Collapse
|
15
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds' antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022, València, Spain
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - AlaaAA. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, UK
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| |
Collapse
|
16
|
Jaberifard F, Ramezani S, Ghorbani M, Arsalani N, Mortazavi Moghadam F. Investigation of wound healing efficiency of multifunctional eudragit/soy protein isolate electrospun nanofiber incorporated with ZnO loaded halloysite nanotubes and allantoin. Int J Pharm 2022; 630:122434. [PMID: 36435502 DOI: 10.1016/j.ijpharm.2022.122434] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
One significant aspect of the current therapeutic agents employed in wound healing involves the engineering of nano polymeric scaffolds to mimic the properties of extracellular matrix (ECM). The present work aimed to prepare and evaluate Eudragit® L100 (EU) nanofibers in combination with soy protein isolate (SPI). Allantoin (Ala) with a 2 wt% was encapsulated as a model drug renowned for its anti-inflammatory and antioxidant agents. Moreover, the synthesized ZnO-halloysite nanotubes (ZHNTs) with different concentrations of 1, 3, and 5 wt% were incorporated into the EU/SPI/Ala nanofiber as a reinforcing filler and a remarkable antibacterial agent. The scanning electron microscope (SEM) analysis showed that by increasing the weight percentage of SPI from 1 % to 2.5 %, the average diameter of nanofibers decreased from 132.3 ± 51.3 nm to 126.7 ± 47.2 nm. It was 223.5 ± 95.6 nm for nanofibers containing 5 wt% ZHNTs (the optimal sample). The evaluation of in vitro release kinetics of Ala for 24 h, showed a burst release during the first 2 h and a sustained release during the subsequent times. Moreover, the structure, crystallinity, and thermal stability of synthesized nanofibers were characterized by Fourier Transform Infrared Spectrometry (FTIR), X-ray diffraction (XRD), and Thermo gravimetric analysis (TGA), respectively. In vitro degradation and mechanical characteristics of these nanofibers were studied. Furthermore, the capability of the nanofibers for cell proliferation was revealed through the MTT test and field emission scanning electron microscopy (FESEM) images of cell attachment. The antimicrobial activity of EU/SPI/Ala/ZHNTs showed that this sample with high ZHNTs content (5 w%t) had the most remarkable antibacterial activity against S. aureus. The results revealed that EU/SPI/Ala/ZHNTs mats could be promising potential wound dressings.
Collapse
Affiliation(s)
- Farnaz Jaberifard
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Ramezani
- Nanofiber Research Center, Asian Nanostructures Technology Co. (ANSTCO), Zanjan, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasser Arsalani
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Fatemeh Mortazavi Moghadam
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Dube S, Rawtani D, Khatri N, Parikh G. A deep delve into the chemistry and biocompatibility of halloysite nanotubes: A new perspective on an idiosyncratic nanocarrier for delivering drugs and biologics. Adv Colloid Interface Sci 2022; 309:102776. [DOI: 10.1016/j.cis.2022.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
|
18
|
Mohammadzadehmoghadam S, LeGrand CF, Wong CW, Kinnear BF, Dong Y, Coombe DR. Fabrication and Evaluation of Electrospun Silk Fibroin/Halloysite Nanotube Biomaterials for Soft Tissue Regeneration. Polymers (Basel) 2022; 14:polym14153004. [PMID: 35893969 PMCID: PMC9332275 DOI: 10.3390/polym14153004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
The production of nanofibrous materials for soft tissue repair that resemble extracellular matrices (ECMs) is challenging. Electrospinning uniquely produces scaffolds resembling the ultrastructure of natural ECMs. Herein, electrospinning was used to fabricate Bombyx mori silk fibroin (SF) and SF/halloysite nanotube (HNT) composite scaffolds. Different HNT loadings were examined, but 1 wt% HNTs enhanced scaffold hydrophilicity and water uptake capacity without loss of mechanical strength. The inclusion of 1 wt% HNTs in SF scaffolds also increased the scaffold’s thermal stability without altering the molecular structure of the SF, as revealed by thermogravimetric analyses and Fourier transform infrared spectroscopy (FTIR), respectively. SF/HNT 1 wt% composite scaffolds better supported the viability and spreading of 3T3 fibroblasts and the differentiation of C2C12 myoblasts into aligned myotubes. These scaffolds coated with decellularised ECM from 3T3 cells or primary human dermal fibroblasts (HDFs) supported the growth of primary human keratinocytes. However, SF/HNT 1 wt% composite scaffolds with HDF-derived ECM provided the best microenvironment, as on these, keratinocytes formed intact monolayers with an undifferentiated, basal cell phenotype. Our data indicate the merits of SF/HNT 1 wt% composite scaffolds for applications in soft tissue repair and the expansion of primary human keratinocytes for skin regeneration.
Collapse
Affiliation(s)
- Soheila Mohammadzadehmoghadam
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA 6102, Australia;
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia; (C.F.L.); (C.-W.W.); (B.F.K.)
| | - Catherine F. LeGrand
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia; (C.F.L.); (C.-W.W.); (B.F.K.)
- Curtin Medical School, Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Chee-Wai Wong
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia; (C.F.L.); (C.-W.W.); (B.F.K.)
- Curtin Medical School, Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Beverley F. Kinnear
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia; (C.F.L.); (C.-W.W.); (B.F.K.)
- Curtin Medical School, Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Yu Dong
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA 6102, Australia;
- Correspondence: (Y.D.); (D.R.C.)
| | - Deirdre R. Coombe
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia; (C.F.L.); (C.-W.W.); (B.F.K.)
- Curtin Medical School, Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
- Correspondence: (Y.D.); (D.R.C.)
| |
Collapse
|
19
|
Shen C, Yang Z, Rao J, Wu J, Sun C, Sun C, Wu D, Chen K. Chlorogenic acid-loaded sandwich-structured nanofibrous film developed by solution blow spinning: Characterization, release behavior and antimicrobial activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
21
|
Doustdar F, Olad A, Ghorbani M. Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery. Carbohydr Polym 2022; 282:119127. [DOI: 10.1016/j.carbpol.2022.119127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
|
22
|
Kass LE, Nguyen J. Nanocarrier-hydrogel composite delivery systems for precision drug release. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1756. [PMID: 34532989 PMCID: PMC9811486 DOI: 10.1002/wnan.1756] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023]
Abstract
Hydrogels are a class of biomaterials widely implemented in medical applications due to their biocompatibility and biodegradability. Despite the many successes of hydrogel-based delivery systems, there remain challenges to hydrogel drug delivery such as a burst release at the time of administration, a limited ability to encapsulate certain types of drugs (i.e., hydrophobic drugs, proteins, antibodies, and nucleic acids), and poor tunability of geometry and shape for controlled drug release. This review discusses two main important advances in hydrogel fabrication for precision drug release: first, the incorporation of nanocarriers to diversify their drug loading capability, and second, the design of hydrogels using 3D printing to precisely control drug dosing and release kinetics via high-resolution structures and geometries. We also outline ongoing challenges and discuss opportunities to further optimize drug release from hydrogels for personalized medicine. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Juliane Nguyen
- Corresponding author: Juliane Nguyen, Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA,
| |
Collapse
|
23
|
Perera WPTD, Dissanayake DMRK, Unagolla JM, De Silva RT, Bathige SDNK, Pahalagedara LR. Albumin grafted coaxial electrosparyed polycaprolactone-zinc oxide nanoparticle for sustained release and activity enhanced antibacterial drug delivery. RSC Adv 2022; 12:1718-1727. [PMID: 35425191 PMCID: PMC8978970 DOI: 10.1039/d1ra07847j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022] Open
Abstract
One of the most serious issues faced by the healthcare sector is the development of multidrug resistance among various pathogens. It is such that developing new and more capable drugs takes far too long to counter such resistance. In order to overcome these concerns, this study focused on improving upon the coaxial electrospraying process by producing cloxacillin loaded albumin polycaprolactone (PCL) with a ZnO coating for sustained and activity enhanced drug delivery. Albumin-grafted, polycaprolactone-coated, zinc oxide-loaded cloxacillin (APCL-CLOX-ZnO) nanoparticles with a diameter of 85-110 nm were obtained via a coaxial electrospray technique. The encapsulation efficiency of cloxacillin of ZnO-CLOX was found to be approximately 60%. The loading efficiencies of ZnO-CLOX and APCL-CLOX-ZnO were found to be 40% and 28% respectively. Albumin was employed in order to impart immune evasion properties to the formulation. Drug-loaded ZnO NPs were analyzed using SEM, TEM, FT-IR and TGA. This novel formulation was shown to possess sustained release characteristics owing to the PCL and albumin coatings, relative to uncoated counterparts. ZnO-CLOX and APCL-CLOX-ZnO exhibited 72% and 52% cloxacillin release within 24 h. APCL-CLOX-ZnO exhibited potent antimicrobial activity against S. epidermidis, B. cereus and P. aeruginosa and some activity against E. coli with inhibition zones 32 ± 1.4, 34 ± 0.3, 32 ± 0.6 and 11 ± 0.4 mm, respectively. Cytotoxicity studies against murine preosteoblast cells revealed that the albumin-PCL coating served to drastically reduce initial toxicity against healthy mammalian cells. In vitro lung deposition study showed 70% of APCL-CLOX-ZnO particles can reach up to the alveoli level. Therefore, this novel coaxial nanoformulation may serve as a promising drug delivery platform for the treatment of bacterial infections including respiratory tract complications.
Collapse
Affiliation(s)
- W Pamoda Thavish D Perera
- Academy of the Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - D M Ranga K Dissanayake
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Department of Pharmacy and Pharmaceutical Sciences, University of Sri Jayewardenepura Gangodawila Nugegoda 10250 Sri Lanka
| | - Janitha M Unagolla
- Department of Bioengineering, College of Engineering, University of Toledo Toledo OH 43607 USA
| | - Rangika T De Silva
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - Sanjaya D N K Bathige
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - Lakshitha R Pahalagedara
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| |
Collapse
|
24
|
Deshmukh SB, Kulandainathan AM, Murugavel K. A review on Biopolymer-derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater Sci 2022; 10:4424-4442. [DOI: 10.1039/d2bm00820c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique aspects of polymer-derived nanofibers provide significant potential in the area of biomedical and health care applications. Much research has demonstrated several plausible nanofibers to overcome the modern-day challenges in...
Collapse
|
25
|
Ullah A, Sarwar MN, Wang FF, Kharaghani D, Sun L, Zhu C, Yoshiko Y, Mayakrishnan G, Lee JS, Kim IS. In vitro biocompatibility, antibacterial activity, and release behavior of halloysite nanotubes loaded with diclofenac sodium salt incorporated in electrospun soy protein isolate/hydroxyethyl cellulose nanofibers. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Abstract
In recent years, nanomaterials have attracted significant research interest for applications in biomedicine. Many kinds of engineered nanomaterials, such as lipid nanoparticles, polymeric nanoparticles, porous nanomaterials, silica, and clay nanoparticles, have been investigated for use in drug delivery systems, regenerative medicine, and scaffolds for tissue engineering. Some of the most attractive nanoparticles for biomedical applications are nanoclays. According to their mineralogical composition, approximately 30 different nanoclays exist, and the more commonly used clays are bentonite, halloysite, kaolinite, laponite, and montmorillonite. For millennia, clay minerals have been extensively investigated for use in antidiarrhea solutions, anti-inflammatory agents, blood purification, reducing infections, and healing of stomach ulcers. This widespread use is due to their high porosity, surface properties, large surface area, excellent biocompatibility, the potential for sustained drug release, thermal and chemical stability. We begin this review by discussing the major nanoclay types and their application in biomedicine, focusing on current research areas for halloysite in biomedicine. Finally, recent trends and future directions in HNT research for biomedical application are explored.
Collapse
|
27
|
Munteanu BS, Vasile C. Encapsulation of Natural Bioactive Compounds by Electrospinning-Applications in Food Storage and Safety. Polymers (Basel) 2021; 13:3771. [PMID: 34771329 PMCID: PMC8588354 DOI: 10.3390/polym13213771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Packaging is used to protect foods from environmental influences and microbial contamination to maintain the quality and safety of commercial food products, to avoid their spoilage and to extend their shelf life. In this respect, bioactive packaging is developing to additionally provides antibacterial and antioxidant activity with the same goals i.e., extending the shelf life while ensuring safety of the food products. New solutions are designed using natural antimicrobial and antioxidant agents such as essential oils, some polysaccharides, natural inorganic nanoparticles (nanoclays, oxides, metals as silver) incorporated/encapsulated into appropriate carriers in order to be used in food packaging. Electrospinning/electrospraying are receiving attention as encapsulation methods due to their cost-effectiveness, versatility and scalability. The electrospun nanofibers and electro-sprayed nanoparticles can preserve the functionality and protect the encapsulated bioactive compounds (BC). In this review are summarized recent results regarding applications of nanostructured suitable materials containing essential oils for food safety.
Collapse
Affiliation(s)
| | - Cornelia Vasile
- Laboratory of Physical Chemistry of Polymers, “P. Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
28
|
Shen C, Cao Y, Rao J, Zou Y, Zhang H, Wu D, Chen K. Application of solution blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial nanofibers for food packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Zhang X, Zhang Q, Xue Y, Wang Y, Zhou X, Li Z, Li Q. Simple and green synthesis of calcium alginate/AgCl nanocomposites with low-smoke flame-retardant and antimicrobial properties. CELLULOSE (LONDON, ENGLAND) 2021; 28:5151-5167. [PMID: 33776253 PMCID: PMC7982765 DOI: 10.1007/s10570-021-03825-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/09/2021] [Indexed: 05/23/2023]
Abstract
Fire hazards and infectious diseases result in great threats to public safety and human health, thus developing multi-functional materials to deal with these issues is critical and yet has remained challenging to date. In this work, we report a facile and eco-friendly synthetic approach for the preparation of calcium alginate/silver chloride (CA/AgCl) nanocomposites with dual functions of excellent flame-retardant and antibacterial activity. Multi characterization techniques and antibacterial assays were performed to investigate the flame-retardant and antibacterial properties of the CA/AgCl nanocomposites. The obtained results show that the CA/AgCl nanocomposites exhibited much higher limiting oxygen index value (> 60%) than that of CA (48%) with a UL-94 rating of V-0. Moreover, CA/AgCl particularly displayed an efficiently smoke-suppressive feature by achieving a total smoke release value of 2.7 m2/m2, which was reduced by 91%, compared to CA. The antibacterial rates of the CA/AgCl nanocomposites against E. coli and S. aureus were measured to be 99.67% and 99.77%, respectively, while CA showed quite weak antibacterial rates. In addition, the flame-retardant and antibacterial mechanisms were analyzed and proposed based on the experimental data. This study provides a novel nanocomposite material with both flame-retardant and antibacterial properties which show promising application prospects in the fields of decorative materials and textile industry.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Qing Zhang
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Yun Xue
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Yanwei Wang
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Xiaodong Zhou
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Zichao Li
- Institute of Biomedical Engineering, College of Life Sciences, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
| | - Qun Li
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
30
|
Huang Q, He F, Yu J, Zhang J, Du X, Li Q, Wang G, Yu Z, Chen S. Microfluidic spinning-induced heterotypic bead-on-string fibers for dual-cargo release and wound healing. J Mater Chem B 2021; 9:2727-2735. [PMID: 33683250 DOI: 10.1039/d0tb02305a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of dual-release pharmaceutical microfibers provides an ideal material for new biomedical applications. We describe a microfluidic spinning method for engineering heterotypic bead-on-string fibers with the ability to carry dual cargos and to deliver on demand. The core of our technology is to combine microfluidic spinning with biomaterial preparation, in which hydrophobic and hydrophilic cargos can be integrated into a bead-on-string microfiber structure. We demonstrate the loading of bovine serum albumin (BSA) in the sodium alginate phase and ibuprofen in the polylactic acid (PLA) phase, respectively. The heterotypic bead-on-string fibers are biocompatible and show hemostatic ability in vivo. These heterotypic bead-on-string fibers are then woven as a skin scaffold and shown to promote wound healing by loading antibacterial and anti-inflammatory cargos.
Collapse
Affiliation(s)
- Qiu Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydr Polym 2020; 247:116711. [DOI: 10.1016/j.carbpol.2020.116711] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
|
32
|
Liao J, Zhang Y, Yang H. Hybrid membrane with controllable surface microroughness by micro-nano structure processing for diluted PM 2.5 capture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115249. [PMID: 32738727 DOI: 10.1016/j.envpol.2020.115249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/04/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Tremendous efforts have been devoted by researchers on air particulate matter pollution for the increasing harm, however, the Air Pollution Index (API) from "good" to "excellent" is something hard to achieve. Here, halloysite nanotubes/polyvinyl alcohol (HNTs/PVA) hybrid membrane with surface micro-nano structure processing using a one-step method for efficient PM2.5 capture was prepared. The filtration efficiency is 45.35% and the pressure drop is 41.57 Pa of composite membrane with a 60 wt% halloysite dosage. Specially, it resulted in a relatively safer PM index value of about 16.54, which tends to be more stringent than the restriction by Government of China (PM2.5 < 35 μg/m3). The filtration performance was mainly attributed to the controllable microroughness surface as well as the hierarchical structure constructed by one-step method, which has a functional role in obstruction and adsorption for diluted PM2.5. The methodology can employ halloysite onto various polymers, like polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylonitrile (PAN) and also polycaprolactone (PCL) to yield hybrid membranes with the similar modification of surface and structure. Such versatile membrane filters can be purposely designed and scaled up, which endows the existing hybrid membrane with great potentials in both residential and public areas pollution control to achieve a healthier living environment.
Collapse
Affiliation(s)
- Juan Liao
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yi Zhang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Huaming Yang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
33
|
Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Al-Enizi A, Aldalbahi A, El-Hamshary H, El-Newehy MH. Core-shell nanofibers from poly(vinyl alcohol) based biopolymers using emulsion electrospinning as drug delivery system for cephalexin drug. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1832517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- PG and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirapalli, India
| | - Syed Ali Padusha Mohamed Khan
- PG and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirapalli, India
| | - Badr M. Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed H. El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
34
|
Yan L, Wang H, Xu H, Zheng R, Shen Z. Epidermal stimulating factors-gelatin/polycaprolactone coaxial electrospun nanofiber: ideal nanoscale material for dermal substitute. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:60-75. [PMID: 32896222 DOI: 10.1080/09205063.2020.1816110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, an ideal nano-scale material, named epidermal stimulating (ES) factors-gelatin/polycaprolactone (GT/PCL) nanofiber, was fabricated using a coaxial electrospinning technique. The ES-GT/PCL nanofibers possessed a highly porous structure with qualified mechanical properties for transplantation. With ES factors stored in the core and GT/PCL in the shell, the ES factors could be protected and released in a sustained manner. After seeding L929 cell line on ES-GT/PCL nanofibers for 7 days in vitro, the proliferation of cells was nearly 1.5 folds compared to the control group. The in vivo study showed that ES-GT/PCL nanofibers can accelerate skin wound healing rate during the healing course, especially on the early stage. The epidermal and dermal thickness, as well as skin appendages and fat tissue, were the most similar to the native skin. These findings provided valuable insights into the addition of multiple bioactive factors to nanometre biomaterials, and optimising the advantages of the compositions as a promising potential dermal substitute construct.
Collapse
Affiliation(s)
- Li Yan
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Haoyu Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Xu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Rui Zheng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhengyu Shen
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Perera WPTD, Dissanayake RK, Ranatunga UI, Hettiarachchi NM, Perera KDC, Unagolla JM, De Silva RT, Pahalagedara LR. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Adv 2020; 10:30785-30795. [PMID: 35516060 PMCID: PMC9056367 DOI: 10.1039/d0ra05755j] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/12/2020] [Indexed: 12/25/2022] Open
Abstract
Zinc oxide nanoparticles and curcumin have been shown to be excellent antimicrobial agents and promising anticancer agents, both on their own as well as in combination. Together, they have potential as alternatives/supplements to antibiotics and traditional anticancer drugs. In this study, different morphologies of zinc oxide-grafted curcumin nanocomposites (ZNP-Cs) were synthesized and characterized using SEM, TGA, FTIR, XRD and UV-vis spectrophotometry. Antimicrobial assays were conducted against both Gram negative and Gram-positive bacterial stains. Spherical ZnO-curcumin nanoparticles (SZNP-Cs) and rod-shaped ZnO-curcumin nanoparticles showed the most promising activity against tested bacterial strains. The inhibition zones for these curcumin-loaded ZnO nanocomposites were consistently larger than their bare counterparts or pure curcumin, revealing an additve effect between the ZnO and curcumin components. The potential anticancer activity of the synthesized nanocomposites was studied on the rhabdomyosarcoma RD cell line via MTT assay, while their cytotoxic effects were tested against human embryonic kidney cells using the resazurin assay. SZNP-Cs exhibited the best balance between the two, showing the lowest toxicity against healthy cells and good anticancer activity. The results of this investigation demonstrate that the nanomatrix synthesized can act as an effective, additively-enhanced combination delivery/therapeutic agent, holding promise for anticancer therapy and other biomedical applications.
Collapse
Affiliation(s)
- W P T D Perera
- Academy of the Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - Ranga K Dissanayake
- Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Allied Health Sciences, University of Sri Jayewardenepura Gangodawila Nugegoda 10250 Sri Lanka
| | - U I Ranatunga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo 25 Kynsey Road Colombo 00800 Sri Lanka
| | - N M Hettiarachchi
- Academy of the Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - K D C Perera
- Academy of the Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - Janitha M Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, University of Toledo Toledo OH 43607 USA
| | - R T De Silva
- Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - L R Pahalagedara
- Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| |
Collapse
|
36
|
Development of Chlorhexidine Loaded Halloysite Nanotube Based Experimental Resin Composite with Enhanced Physico-Mechanical and Biological Properties for Dental Applications. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective: The objective of this study was to explore the effect of Chlorhexidine-loaded Halloysite nanotubes (HNT/CHX) fillers (diverse mass fractions from 1 to 10 wt.%) on physicochemical, morphological and biological properties of newly developed experimental dental resin composite, in order to compare with the properties of composites composed of conventional glass fillers. Methods: The dental resin composites were prepared by incorporating various proportions of HNT/CHX. Six different groups of specimens: control group and five groups composed of varied mass fractions of HNT/CHX (e.g., 1.0, 2.5, 5.0, 7.5 and 10 wt.%) as fillers in each group were fabricated. Mechanical properties of the composites were monitored, using UTM. The degree of conversion of dental resin composites and their depth of cure were also evaluated. Antimicrobial properties of dental composites were studied in vitro by applying agar diffusion test on strain Streptococcus mutans and cytotoxicity were studied using NIH-3T3 cell line. Results: The incorporation of varied mass fractions (1.0 to 5.0 wt.%) of HNT/CHX in dental resins composites enhanced mechanical properties considerably with significant antibacterial activity. The slight decrease in curing depth and degree of conversion values of composites indicates its durability. No cytotoxicity was noticed on NIH-3T3 cell lines. Significance: Consistent distribution of HNT/CHX as a filler into dental composites could substantially improve not only mechanical properties but also biological properties of dental composites.
Collapse
|
37
|
Mokhena TC, Mochane MJ, Mtibe A, John MJ, Sadiku ER, Sefadi JS. Electrospun Alginate Nanofibers Toward Various Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E934. [PMID: 32093142 PMCID: PMC7078630 DOI: 10.3390/ma13040934] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Alginate has been a material of choice for a spectrum of applications, ranging from metal adsorption to wound dressing. Electrospinning has added a new dimension to polymeric materials, including alginate, which can be processed to their nanosize levels in order to afford unique nanostructured materials with fascinating properties. The resulting nanostructured materials often feature high porosity, stability, permeability, and a large surface-to-volume ratio. In the present review, recent trends on electrospun alginate nanofibers from over the past 10 years toward advanced applications are discussed. The application of electrospun alginate nanofibers in various fields such as bioremediation, scaffolds for skin tissue engineering, drug delivery, and sensors are also elucidated.
Collapse
Affiliation(s)
- Teboho Clement Mokhena
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa;
- Advanced Polymer Composites, Centre of Nanostructured and Advanced Material, CSIR, Pretoria 0184, South Africa;
| | - Mokgaotsa Jonas Mochane
- Department of Life Sciences, Central University of Technology Free State, Private Bag X20539, Bloemfontein 9301, South Africa;
| | - Asanda Mtibe
- Advanced Polymer Composites, Centre of Nanostructured and Advanced Material, CSIR, Pretoria 0184, South Africa;
| | - Maya Jacob John
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa;
- Advanced Polymer Composites, Centre of Nanostructured and Advanced Material, CSIR, Pretoria 0184, South Africa;
- School of Mechanical, Industrial & Aeronautical Engineering, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Emmanuel Rotimi Sadiku
- Institute of NanoEngineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa;
| | - Jeremia Shale Sefadi
- Department of Physical and Earth Sciences (PES), Sol Plaatje University, Kimberley 8301, South Africa
| |
Collapse
|
38
|
Barot T, Rawtani D, Kulkarni P, Hussain CM, Akkireddy S. Physicochemical and biological assessment of flowable resin composites incorporated with farnesol loaded halloysite nanotubes for dental applications. J Mech Behav Biomed Mater 2020; 104:103675. [PMID: 32174431 DOI: 10.1016/j.jmbbm.2020.103675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to fabricate flowable resin composites, by incorporating Farnesol loaded Halloysite Nanotubes (Fa-HNT) as a filler and evaluate their physicochemical as well as biological properties. Chemical and morphological characterization of antibacterial filler, Fa-HNT were performed using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM). The antibacterial filler was mixed into composite material consisting of methacrylate monomers and dental glass fillers at concentrations of 1-20% (wt./wt.). It was observed that addition of mass fractions of Fa-HNT causes enhancement of compressive strength as well as flexural modulus of the composite. However, it significantly decreases flexural strength and degree of conversion. A significant antibacterial activity of dental composite was observed with increase in the area of zone of inhibition against the strains of Streptococcus mutans (S. mutans). There was no cytotoxicity observed by Fa-HNT resin composites on NIH-3T3 (mouse embryonic fibroblast cells) cell lines. A favourable integration of antibacterial filler with significant mechanical properties was achieved at concentrations from 7 to 13 wt% of Fa-HNT in dental composites, which is desirable in dentistry.
Collapse
Affiliation(s)
- Tejas Barot
- Institute of Research and Development, Gujarat Forensic Sciences University, sector 9, near Police Bhawan, Gandhinagar-382007, Gujarat, India
| | - Deepak Rawtani
- Institute of Research and Development, Gujarat Forensic Sciences University, sector 9, near Police Bhawan, Gandhinagar-382007, Gujarat, India.
| | - Pratik Kulkarni
- Institute of Research and Development, Gujarat Forensic Sciences University, sector 9, near Police Bhawan, Gandhinagar-382007, Gujarat, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 161 Warren St., University Heights, Newark, NJ 07102, USA
| | | |
Collapse
|
39
|
Feng Y, Wang Q, He M, Zhao W, Liu X, Zhao C. Nonadherent Zwitterionic Composite Nanofibrous Membrane with a Halloysite Nanocarrier for Sustained Wound Anti-Infection and Cutaneous Regeneration. ACS Biomater Sci Eng 2020; 6:621-633. [PMID: 33463235 DOI: 10.1021/acsbiomaterials.9b01547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Wound dressing synechia and sustained postoperative bacterial infection would cause serious secondary damage to nascent cutaneous tissue and impede normal regeneration of injured wound. Endowing wound dressings with nonadherent capability and long-lasting antibacterial property could optimize the postoperative wound healing conditions and promote wound tissue neogenesis, which have important clinical application value and demand. In this study, novel nanocarrier-embedded zwitterionic composite nanofibrous membranes are fabricated using the co-electrospinning/photo-cross-linking method for the purpose of painless removal and eliminating long-lasting antibacterial infection during postoperative wound therapy. The prepared membranes possess good biocompatibility, excellent antibiofouling ability against both bacteria and plasma proteins, and platelet and L929 cell adhesion. Furthermore, in vitro and in vivo antibacterial evaluations exhibit that the composite nanofibrous membranes with a sustained drug release profile could effectively inhibit bacterial proliferation for at least 16 days. Additionally, in vivo wound regeneration assessment indicates that the obtained membranes could better enhance skin regeneration than the commercial 3M Tegaderm film, which highlights the application prospect of such novel zwitterionic composite nanofibrous membranes for sustained postoperative wound anti-infection and cutaneous regeneration.
Collapse
Affiliation(s)
- Yunbo Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Qian Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Min He
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiaoling Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
40
|
Taemeh MA, Shiravandi A, Korayem MA, Daemi H. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym 2020; 228:115419. [DOI: 10.1016/j.carbpol.2019.115419] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 11/15/2022]
|
41
|
Manatunga DC, Godakanda VU, de Silva RM, de Silva KMN. Recent developments in the use of organic-inorganic nanohybrids for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1605. [PMID: 31826328 DOI: 10.1002/wnan.1605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - V Umayangana Godakanda
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
42
|
Massaro M, Armetta F, Cavallaro G, Chillura Martino DF, Gruttadauria M, Lazzara G, Riela S, d'Ischia M. Effect of halloysite nanotubes filler on polydopamine properties. J Colloid Interface Sci 2019; 555:394-402. [DOI: 10.1016/j.jcis.2019.07.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
43
|
Huang K, Ou Q, Xie Y, Chen X, Fang Y, Huang C, Wang Y, Gu Z, Wu J. Halloysite Nanotube Based Scaffold for Enhanced Bone Regeneration. ACS Biomater Sci Eng 2019; 5:4037-4047. [DOI: 10.1021/acsbiomaterials.9b00277] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Keqing Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China
| | - Qianmin Ou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Yunyi Xie
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Xuewen Chen
- Agriculture and Forestry Yan Jiaxian Innovative Class, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Yifei Fang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China
| | - Chunlin Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China
| | - Yan Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P.R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P.R. China
| |
Collapse
|
44
|
Wu Y, Zhang Y, Ju J, Yan H, Huang X, Tan Y. Advances in Halloysite Nanotubes-Polysaccharide Nanocomposite Preparation and Applications. Polymers (Basel) 2019; 11:E987. [PMID: 31167380 PMCID: PMC6630597 DOI: 10.3390/polym11060987] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 01/17/2023] Open
Abstract
Halloysite nanotubes (HNTs), novel 1D natural materials with a unique tubular nanostructure, large aspect ratio, biocompatibility, and high mechanical strength, are promising nanofillers to improve the properties of polymers. In this review, we summarize the recent progress toward the development of polysaccharide-HNTs composites, paying attention to the main existence forms and wastewater treatment application particularly. The purification of HNTs and fabrication of the composites are discussed first. Polysaccharides, such as alginate, chitosan, starch, and cellulose, reinforced with HNTs show improved mechanical, thermal, and swelling properties. Finally, we summarize the unique characteristics of polysaccharide-HNTs composites and review the recent development of the practical applications.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yongzhi Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Junping Ju
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Hao Yan
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yeqiang Tan
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
45
|
Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering. Carbohydr Polym 2019; 213:27-38. [DOI: 10.1016/j.carbpol.2019.02.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
|
46
|
Udangawa RN, Mikael PE, Mancinelli C, Chapman C, Willard CF, Simmons TJ, Linhardt RJ. Novel Cellulose-Halloysite Hemostatic Nanocomposite Fibers with a Dramatic Reduction in Human Plasma Coagulation Time. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15447-15456. [PMID: 30977359 DOI: 10.1021/acsami.9b04615] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-performance cellulose-halloysite hemostatic nanocomposite fibers (CHNFs) are fabricated using a one-step wet-wet electrospinning process and evaluated for human plasma coagulation by activated partial thromboplastin time. These novel biocompatible CHNFs exhibit 2.4 times faster plasma coagulation time compared with the industry gold standard QuikClot Combat Gauze (QCG). The CHNFs have superior antileaching property of clay with 3 times higher post-wetting clotting activity compared to QCG. The CHNFs also coagulate whole blood 1.3 times faster than the QCG and retain twice the clotting performance after washing. Halloysite clay is also more effective in plasma coagulation than commercial kaolin clay. The physical and thermal properties of the CHNFs were evaluated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, and thermogravimetric analysis. CHNFs show a 7-fold greater clay loading than QCG and their small average diameter of 450 ± 260 nm affords a greater specific surface area (33.6 m2 g-1) compared with the larger average diameter of 12.6 ± 0.9 μm for QCG with a specific surface area of 1.6 m2 g-1. The CHNFs were shown to be noncytotoxic and human primary fibroblasts proliferated on the composite material. The drastic reduction in coagulation time makes this novel nanocomposite a potential lifesaving material for victims of rapid blood loss such as military personnel and patients undergoing major surgical procedures or to aid in the treatment of unexpected bleeding episodes of patients suffering from hereditary blood clotting disorders. Since a person can die within minutes of heavy bleeding, every second counts for stopping traumatic hemorrhaging.
Collapse
|
47
|
P. S, C.R. R, Sundaran SP, Binoy A, Mishra N, A. S. In-vitro evaluation on drug release kinetics and antibacterial activity of dextran modified polyurethane fibrous membrane. Int J Biol Macromol 2019; 126:717-730. [DOI: 10.1016/j.ijbiomac.2018.12.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
|
48
|
Ahmad YH, Mohamed AT, Mahmoud KA, Aljaber AS, Al-Qaradawi SY. Natural clay-supported palladium catalysts for methane oxidation reaction: effect of alloying. RSC Adv 2019; 9:32928-32935. [PMID: 35529723 PMCID: PMC9073133 DOI: 10.1039/c9ra06804j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022] Open
Abstract
Bimetallic Pd-supported halloysite nanotubes revealed outstanding catalytic activity towards catalytic methane oxidation especially PdNi.
Collapse
Affiliation(s)
- Yahia H. Ahmad
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Assem T. Mohamed
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Khaled A. Mahmoud
- Qatar Environment and Energy Research Institute (QEERI)
- Hamad Bin Khalifa University (HBKU)
- Doha 5825
- Qatar
| | - Amina S. Aljaber
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Siham Y. Al-Qaradawi
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| |
Collapse
|