1
|
Raza A, Wu W. Metal-organic frameworks in oral drug delivery. Asian J Pharm Sci 2024; 19:100951. [PMID: 39493807 PMCID: PMC11530798 DOI: 10.1016/j.ajps.2024.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/02/2024] [Accepted: 06/23/2024] [Indexed: 11/05/2024] Open
Abstract
Metal-organic frameworks (MOFs) offer innovative solutions to the limitations of traditional oral drug delivery systems through their unique combination of metal ions and organic ligands. This review systematically examines the structural properties and principles of MOFs, setting the stage for their application in drug delivery. It discusses various classes of MOFs, including those based on zirconium, iron, zinc, copper, titanium, aluminum, potassium, and magnesium, assessing their drug-loading capacities, biocompatibility, and controlled release mechanisms. The effectiveness of MOFs is illustrated through case studies that highlight their capabilities in enhancing drug solubility, providing protection against the harsh gastrointestinal environment, and enabling precise drug release. The review addresses potential challenges, particularly the toxicity concerns associated with MOFs, and calls for further research into their biocompatibility and interactions with biological systems. It concludes by emphasizing the potential of MOFs in revolutionizing oral drug delivery, highlighting the critical need for comprehensive research to harness their full potential in clinical applications.
Collapse
Affiliation(s)
- Aun Raza
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
2
|
Oh JY, Seu MS, Barui AK, Ok HW, Kim D, Choi E, Seong J, Lah MS, Ryu JH. A multifunctional protein pre-coated metal-organic framework for targeted delivery with deep tissue penetration. NANOSCALE 2024; 16:14748-14756. [PMID: 38921728 DOI: 10.1039/d4nr02345e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Targeted drug delivery using metal-organic frameworks (MOFs) has shown significant progress. However, the tumor microenvironment (TME) impedes efficient MOF particle transfer into tumor cells. To tackle this issue, we pre-coated nano-sized MOF-808 particles with multifunctional proteins: glutathione S-transferase (GST)-affibody (Afb) and collagenase, aiming to navigate the TME more effectively. The surface of MOF-808 particles is coated with GST-Afb-a fusion protein of GST and human epidermal growth factor receptor 2 (HER2) Afb or epidermal growth factor receptor (EGFR) Afb which has target affinity. We also added collagenase enzymes capable of breaking down collagen in the extracellular matrix (ECM) through supramolecular conjugation, all without chemical modification. By stabilizing these proteins on the surface, GST-Afb mitigate biomolecule absorption, facilitating specific tumor cell targeting. Simultaneously, collagenase degrades the ECM in the TME, enabling deep tissue penetration of MOF particles. Our resulting system, termed collagenase-GST-Afb-MOF-808 (Col-Afb-M808), minimizes undesired interactions between MOF particles and external biological proteins. It not only induces cell death through Afb-mediated cell-specific targeting, but also showcases advanced cellular internalization in 3D multicellular spheroid cancer models, with effective deep tissue penetration. The therapeutic efficacy of Col-Afb-M808 was further assessed via in vivo imaging and evaluation of tumor inhibition following injection of IR-780 loaded Col-Afb-M808 in 4T1tumor-bearing nude mice. This study offers key insights into the regulation of the multifunctional protein-adhesive surface of MOF particles, paving the way for the designing even more effective targeted drug delivery systems with nano-sized MOF particles.
Collapse
Affiliation(s)
- Jun Yong Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Min-Seok Seu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Ayan Kumar Barui
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Hae Won Ok
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Eunshil Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Junmo Seong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Myoung Soo Lah
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Hou Y, Zhu C, Ban G, Shen Z, Liang Y, Chen K, Wang C, Shi H. Advancements and Challenges in the Application of Metal-Organic Framework (MOF) Nanocomposites for Tumor Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6295-6317. [PMID: 38919774 PMCID: PMC11198007 DOI: 10.2147/ijn.s463144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoscale metal-organic frameworks (MOFs) offer high biocompatibility, nanomaterial permeability, substantial specific surface area, and well-defined pores. These properties make MOFs valuable in biomedical applications, including biological targeting and drug delivery. They also play a critical role in tumor diagnosis and treatment, including tumor cell targeting, identification, imaging, and therapeutic methods such as drug delivery, photothermal effects, photodynamic therapy, and immunogenic cell death. The diversity of MOFs with different metal centers, organics, and surface modifications underscores their multifaceted contributions to tumor research and treatment. This review is a summary of these roles and mechanisms. The final section of this review summarizes the current state of the field and discusses prospects that may bring MOFs closer to pharmaceutical applications.
Collapse
Affiliation(s)
- Yingze Hou
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Can Zhu
- Department of Urology, The Second Clinical Medical College of Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kun Chen
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chenbo Wang
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Heng Shi
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
4
|
Oh JY, Jana B, Seong J, An EK, Go EM, Jin S, Ok HW, Seu MS, Bae JH, Lee C, Lee S, Kwon TH, Seo JK, Choi E, Jin JO, Kwak SK, Lah MS, Ryu JH. Unveiling the Power of Cloaking Metal-Organic Framework Platforms via Supramolecular Antibody Conjugation. ACS NANO 2024; 18:15790-15801. [PMID: 38847355 DOI: 10.1021/acsnano.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Targeted drug delivery systems based on metal-organic frameworks (MOFs) have progressed tremendously since inception and are now widely applicable in diverse scientific fields. However, translating MOF agents directly to targeted drug delivery systems remains a challenge due to the biomolecular corona phenomenon. Here, we observed that supramolecular conjugation of antibodies to the surface of MOF particles (MOF-808) via electrostatic interactions and coordination bonding can reduce protein adhesion in biological environments and show stealth shields. Once antibodies are stably conjugated to particles, they were neither easily exchanged with nor covered by biomolecule proteins, which is indicative of the stealth effect. Moreover, upon conjugation of the MOF particle with specific targeted antibodies, namely, anti-CD44, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor (EGFR), the resulting hybrid exhibits an augmented targeting efficacy toward cancer cells overexpressing these receptors, such as HeLa, SK-BR-3, and 4T1, as evidenced by flow cytometry. The therapeutic effectiveness of the antibody-conjugated MOF (anti-M808) was further evaluated through in vivo imaging and the assessment of tumor inhibition effects using IR-780-loaded EGFR-M808 in a 4T1 tumor xenograft model employing nude mice. This study therefore provides insight into the use of supramolecular antibody conjugation as a promising method for developing MOF-based drug delivery systems.
Collapse
Affiliation(s)
- Jun Yong Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junmo Seong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun-Koung An
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hae Won Ok
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Min-Seok Seu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jong-Hoon Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Chaiheon Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seonghwan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eunshil Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myoung Soo Lah
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Liu X, Obacz J, Emanuelli G, Chambers JE, Abreu S, Chen X, Linnane E, Mehta JP, Wheatley AEH, Marciniak SJ, Fairen-Jimenez D. Enhancing Drug Delivery Efficacy Through Bilayer Coating of Zirconium-Based Metal-Organic Frameworks: Sustained Release and Improved Chemical Stability and Cellular Uptake for Cancer Therapy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3588-3603. [PMID: 38681089 PMCID: PMC11044268 DOI: 10.1021/acs.chemmater.3c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
The development of nanoparticle (NP)-based drug carriers has presented an exciting opportunity to address challenges in oncology. Among the 100,000 available possibilities, zirconium-based metal-organic frameworks (MOFs) have emerged as promising candidates in biomedical applications. Zr-MOFs can be easily synthesized as small-size NPs compatible with intravenous injection, whereas the ease of decorating their external surfaces with functional groups allows for targeted treatment. Despite these benefits, Zr-MOFs suffer degradation and aggregation in real, in vivo conditions, whereas the loaded drugs will suffer the burst effect-i.e., the fast release of drugs in less than 48 h. To tackle these issues, we developed a simple but effective bilayer coating strategy in a generic, two-step process. In this work, bilayer-coated MOF NU-901 remained well dispersed in biologically relevant fluids such as buffers and cell growth media. Additionally, the coating enhances the long-term stability of drug-loaded MOFs in water by simultaneously preventing sustained leakage of the drug and aggregation of the MOF particles. We evaluated our materials for the encapsulation and transport of pemetrexed, the standard-of-care chemotherapy in mesothelioma. The bilayer coating allowed for a slowed release of pemetrexed over 7 days, superior to the typical 48 h release found in bare MOFs. This slow release and the related performance were studied in vitro using both A549 lung cancer and 3T mesothelioma cells. Using high-resolution microscopy, we found the successful uptake of bilayer-coated MOFs by the cells with an accumulation in the lysosomes. The pemetrex-loaded NU-901 was indeed cytotoxic to 3T and A549 cancer cells. Finally, we demonstrated the general approach by extending the coating strategy using two additional lipids and four surfactants. This research highlights how a simple yet effective bilayer coating provides new insights into the design of promising MOF-based drug delivery systems.
Collapse
Affiliation(s)
- Xiewen Liu
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Joanna Obacz
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Giulia Emanuelli
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Joseph E. Chambers
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Susana Abreu
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Xu Chen
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Emily Linnane
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Joshua P. Mehta
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stefan J. Marciniak
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David Fairen-Jimenez
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| |
Collapse
|
6
|
Wijesundara YH, Howlett TS, Kumari S, Gassensmith JJ. The Promise and Potential of Metal-Organic Frameworks and Covalent Organic Frameworks in Vaccine Nanotechnology. Chem Rev 2024; 124:3013-3036. [PMID: 38408451 DOI: 10.1021/acs.chemrev.3c00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The immune system's complexity and ongoing evolutionary struggle against deleterious pathogens underscore the value of vaccination technologies, which have been bolstering human immunity for over two centuries. Despite noteworthy advancements over these 200 years, three areas remain recalcitrant to improvement owing to the environmental instability of the biomolecules used in vaccines─the challenges of formulating them into controlled release systems, their need for constant refrigeration to avoid loss of efficacy, and the requirement that they be delivered via needle owing to gastrointestinal incompatibility. Nanotechnology, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), has emerged as a promising avenue for confronting these challenges, presenting a new frontier in vaccine development. Although these materials have been widely explored in the context of drug delivery, imaging, and cancer immunotherapy, their role in immunology and vaccine-related applications is a recent yet rapidly developing field. This review seeks to elucidate the prospective use of MOFs and COFs for biomaterial stabilization, eliminating the necessity for cold chains, enhancing antigen potency as adjuvants, and potentializing needle-free delivery of vaccines. It provides an expansive and critical viewpoint on this rapidly evolving field of research and emphasizes the vital contribution of chemists in driving further advancements.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
7
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
8
|
Niu X, Yuan M, Zhao R, Liu Y, Wang L, Pang Z, Wan S, Zhao H, Li H, Wang K. pH-Tuned Enantioselectivity Reversal in a Defective Chiral Metal Organic Framework. ACS Sens 2024; 9:923-931. [PMID: 38335470 DOI: 10.1021/acssensors.3c02330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The introduction of chirality into easy-scalable metal-organic frameworks (MOFs) gives rise to the development of advanced electrochemical sensors. However, integrating chirality by directly connecting metal ions and chiral ligands is unpredictable. Postmodification synthesis is a common method for synthesizing chiral MOFs, but it reduces the size of chiral channels and poses obstacles to the approach of chiral guest molecules. In this work, missing connection defects were introduced into the chiral MOFs through defect engineering strategies, which enhance the recognition of the target enantiomers. pH can tune enantioselectivity reversal in defective chiral MOFs. The chiral MOFs show enantioselectivity for d-Trp at pH = 5 and l-Trp at pH = 8. From the results of zeta potential, regardless of pH 5 or 8, the chiral MOF has a positive potential. The chiral MOFs are positively charged, while tryptophan is negatively charged when pH = 8. The difference in the positive and negative charge interactions between the two amino acids and chiral MOFs leads to chiral recognition. However, the difference in π-π interaction between chiral MOF and Trp enantiomers mainly drives chiral recognition under pH = 5. This study paves a pathway for the synthesis of defective chiral MOFs and highlights the pH-tuned enantioselectivity reversal.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Luhua Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Shenteng Wan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
9
|
Tehrani Nejad S, Rahimi R, Najafi M, Rostamnia S. Sustainable Gold Nanoparticle (Au-NP) Growth within Interspaces of Porphyrinic Zirconium-Based Metal-Organic Frameworks: Green Synthesis of PCN-224/Au-NPs and Its Anticancer Effect on Colorectal Cancer Cells Assay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3162-3170. [PMID: 38194287 DOI: 10.1021/acsami.3c15398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a simple green synthesis method of the novel metal-organic framework (MOF) nanocomposite PCN-224/Au-NPs (Au-NPs = gold nanoparticles) is described. In this regard, initially, PCN-224 was synthesized. Afterward, in a single-step, one-pot procedure, under visible-light irradiation, Au-NPs were fabricated on PCN-224. The cytotoxicity effect of the synthesized PCN-224/Au-NPs nanocomposite was investigated in human colon cancer cells. Determination of the apoptosis induction was done by the Annexin- V/propidium iodide flow cytometry method. Besides, to ascertain the biocompatibility of the synthesized sample, the cytotoxicity of PCN-224/Au-NPs was evaluated on the human embryonic kidney (HEK)-293 cell line. The substantial anticancer activity with the biocompatibility of the structure, the green facile synthesis, and the MOF surface of the synthesized nanocomposite make it special for utilization in therapeutic applications.
Collapse
Affiliation(s)
- Sajedeh Tehrani Nejad
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mina Najafi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Sadegh Rostamnia
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
10
|
Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective Effects and Therapeutic Potential of Dichloroacetate: Targeting Metabolic Disorders in Nervous System Diseases. Int J Nanomedicine 2023; 18:7559-7581. [PMID: 38106446 PMCID: PMC10725694 DOI: 10.2147/ijn.s439728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Dichloroacetate (DCA) is an investigational drug used to treat lactic acidosis and malignant tumours. It works by inhibiting pyruvate dehydrogenase kinase and increasing the rate of glucose oxidation. Some studies have documented the neuroprotective benefits of DCA. By reviewing these studies, this paper shows that DCA has multiple pharmacological activities, including regulating metabolism, ameliorating oxidative stress, attenuating neuroinflammation, inhibiting apoptosis, decreasing autophagy, protecting the blood‒brain barrier, improving the function of endothelial progenitor cells, improving mitochondrial dynamics, and decreasing amyloid β-protein. In addition, DCA inhibits the enzyme that metabolizes it, which leads to peripheral neurotoxicity due to drug accumulation that may be solved by individualized drug delivery and nanovesicle delivery. In summary, in this review, we analyse the mechanisms of neuroprotection by DCA in different diseases and discuss the causes of and solutions to its adverse effects.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Meiyan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Hongxiang Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhengyan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Yanan Shi
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Jianxin Dong
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Kaifang Wang
- Department of Anesthesia, Tangdu Hospital, Fourth Military Medical University, Xian, Shanxi Province, People’s Republic of China
| | - Xi Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Haiyan Qi
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xiaoyong Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
11
|
Hu Q, Xu L, Huang X, Duan Y, Sun D, Fu Z, Ge Y. Polydopamine-Modified Zeolite Imidazole Framework Drug Delivery System for Photothermal Chemotherapy of Hepatocellular Carcinoma. Biomacromolecules 2023; 24:5964-5976. [PMID: 37938159 DOI: 10.1021/acs.biomac.3c00971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Metal-organic frameworks (MOFs) are promising drug-delivering platforms for their intrinsic capability of loading and releasing different cargoes. To further extend their biomedical practices, the development of collaborative MOF systems with good biocompatibility and synergistic efficacy is essential. Herein, the near-infrared and pH dual-response collaborative zeolitic imidazolate framework-8 (ZIF-8) platform SOR@ZIF-8@PDA (SZP) was constructed, in which the chemotherapeutic drug sorafenib (SOR) was encapsulated in ZIF-8 and via polydopamine (PDA) coating on ZIF-8 by hierarchical self-assembly. PDA coating serves as a photothermal agent for PPT while reducing the toxicity of ZIF-8. SZP achieves intelligent release of therapeutic drugs by responding to the lower pH of the tumor microenvironment and thermal stimulation generated by near-infrared light irradiation. In addition, under light irradiation, SZP could effectively realize treatment of cancer cells through synergistic chemo-photothermal therapy, as evidenced by the enhanced cell apoptosis, inhibited tumor cell proliferation and migration. This collaborative MOFs system showed excellent biocompatibility and antitumor ability in vivo on a mouse HepG2 tumor model. Our results demonstrated that PDA-modified MOFs exhibited a fantastic good development prospect in biomedical applications.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoyu Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuxuan Duan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunfen Ge
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
12
|
Zhang Q, Yan S, Yan X, Lv Y. Recent advances in metal-organic frameworks: Synthesis, application and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165944. [PMID: 37543345 DOI: 10.1016/j.scitotenv.2023.165944] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of crystalline porous hybrid materials with high porosity, large specific surface area and adjustable channel structure and biocompatibility, which are being investigated with increasing interest for energy storage and conversion, gas adsorption/separation, catalysis, sensing and biomedicine. However, the practical applications of MOFs make them release into the environment inevitable, posing a threat to humans and organisms. In this article, we cover advances in the currently available MOFs synthesis methods and the emerging applications of MOFs, especially in the biomedical field (therapeutic agents and bioimaging). Additionally, after evaluating the current status of main exposure routes and affecting factors in the field of MOFs-toxicity, the molecular mechanism is also clarified and identified. Knowledge gaps are identified from such a summarization and frontier development are explored for MOFs. Afterwards, we also present the limitations, challenges, and future perspectives in the study of the entire life cycle of MOFs. This review emphasizes the need for a more targeted discussion of the latest, widely used and effective versatile material class in order to exploit the full potential of high-performance and non-toxicity MOFs in the future.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuguang Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueting Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
13
|
Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, Jaragh-Alhadad LA, Haghighat S, Zhang X, Ten Hagen TLM, Bai Q. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci 2023; 321:103007. [PMID: 37812992 DOI: 10.1016/j.cis.2023.103007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yasaman Vahdani
- Department of Biochemistry and Molecular Medicine, University of Montreal, Canada
| | - Rabeea Siddique
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
14
|
Amer TAM, Palanisamy S, So PB, Vijayaraghavan P, Tzou SC, Lu TT, Lin CH, Wang YM. Sustained Releasable Copper and Zinc Biogenic Ions Co-Assembled in Metal-Organic Frameworks Reinforced Bacterial Eradication and Wound Mitigation in Diabetic Mice. Bioconjug Chem 2023; 34:1688-1703. [PMID: 37552618 DOI: 10.1021/acs.bioconjchem.3c00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The employment of metal-organic framework (MOF)-based nanomaterials has been rapidly increasing in bioapplications owing to their biocompatibility, drug degradation, tunable porosity, and intrinsic biodegradability. This evidence suggests that the multifunctional bimetallic ions can behave as remarkable candidates for infection control and wound healing. In this study, bimetallic MOFs (Zn-HKUST-1 and FolA-Zn-HKUST-1) embedded with and without folic acid were synthesized and used for tissue sealing and repairing incisional wound sites in mice models. For comparison, HKUST-1 and FolA-HKUST-1 were also synthesized. The Brunauer-Emmett-Teller (BET) surface area measured for HKUST-1, FolA-HKUST-1, Zn-HKUST-1, and FolA-Zn-HKUST-1 from N2 isotherms was found to be 1868, 1392, 1706, and 1179 m2/g, respectively. The measurements of contact angle values for Zn-HKUST-1, FolA-HKUST-1, and Zn-FolA-HKUST-1 were identified as 4.95 ± 0.8, 43.6 ± 3.4, and 60.62 ± 2.0°, respectively. For topical application in wound healing, they display a wide range of healing characteristics, including antibacterial and enhanced wound healing rates. In addition, in vitro cell migration and tubulogenic potentials were evaluated. The significant reduction in the wound gap and increased expression levels for CD31, eNOS, VEGF-A, and Ki67 were observed from immunohistological analyses to predict the angiogenesis behavior at the incision wound site. The wound healing rate was analyzed in the excisional dermal wounds of diabetic mice model in vivo. On account of antibacterial potentials and tissue-repairing characteristics of Cu2+ and Zn2+ ions, designing an innovative mixed metal ion-based biomaterial has wide applicability and is expected to modulate the growth of various gradient tissues.
Collapse
Affiliation(s)
- Tarik Abdelkareem Mostafa Amer
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Pamela Berilyn So
- Department of Chemistry, National Taiwan Normal University, Taipei City 116059, Taiwan
| | - Priya Vijayaraghavan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei City 116059, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| |
Collapse
|
15
|
Cretu C, Nicola R, Marinescu SA, Picioruș EM, Suba M, Duda-Seiman C, Len A, Illés L, Horváth ZE, Putz AM. Performance of Zr-Based Metal-Organic Framework Materials as In Vitro Systems for the Oral Delivery of Captopril and Ibuprofen. Int J Mol Sci 2023; 24:13887. [PMID: 37762192 PMCID: PMC10531200 DOI: 10.3390/ijms241813887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Zr-based metal-organic framework materials (Zr-MOFs) with increased specific surface area and pore volume were obtained using chemical (two materials, Zr-MOF1 and Zr-MOF3) and solvothermal (Zr-MOF2) synthesis methods and investigated via FT-IR spectroscopy, TGA, SANS, PXRD, and SEM methods. The difference between Zr-MOF1 and Zr-MOF3 lies in the addition of reactants during synthesis. Nitrogen porosimetry data indicated the presence of pores with average dimensions of ~4 nm; using SANS, the average size of the Zr-MOF nanocrystals was suggested to be approximately 30 nm. The patterns obtained through PXRD were characterized by similar features that point to well-crystallized phases specific for the UIO-66 type materials; SEM also revealed that the materials were composed of small and agglomerate crystals. Thermogravimetric analysis revealed that both materials had approximately two linker deficiencies per Zr6 formula unit. Captopril and ibuprofen loading and release experiments in different buffered solutions were performed using the obtained Zr-based metal-organic frameworks as drug carriers envisaged for controlled drug release. The carriers demonstrated enhanced drug-loading capacity and showed relatively good results in drug delivery. The cumulative percentage of drug release in phosphate-buffered solution at pH 7.4 was higher than that in buffered solution at pH 1.2. The release rate could be controlled by changing the pH of the releasing solution. Different captopril release behaviors were observed when the experiments were performed using a permeable dialysis membrane.
Collapse
Affiliation(s)
- Carmen Cretu
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazu, No. 24, 300223 Timisoara, Romania; (C.C.); (R.N.); (S.-A.M.); (E.-M.P.); (M.S.)
| | - Roxana Nicola
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazu, No. 24, 300223 Timisoara, Romania; (C.C.); (R.N.); (S.-A.M.); (E.-M.P.); (M.S.)
| | - Sorin-Alin Marinescu
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazu, No. 24, 300223 Timisoara, Romania; (C.C.); (R.N.); (S.-A.M.); (E.-M.P.); (M.S.)
| | - Elena-Mirela Picioruș
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazu, No. 24, 300223 Timisoara, Romania; (C.C.); (R.N.); (S.-A.M.); (E.-M.P.); (M.S.)
| | - Mariana Suba
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazu, No. 24, 300223 Timisoara, Romania; (C.C.); (R.N.); (S.-A.M.); (E.-M.P.); (M.S.)
| | - Corina Duda-Seiman
- Biology-Chemistry Department, West University of Timisoara, Johann Heinrich Pestalozzi No. 16, 300115 Timisoara, Romania;
| | - Adel Len
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Konkoly-Thege Miklós Út 29-33, 1121 Budapest, Hungary;
- Faculty of Engineering and Information Technology, University of Pécs, Boszorkány Street 2, 7624 Pécs, Hungary
| | - Levente Illés
- Institute for Technical Physics and Material Science, Centre for Energy Research, Konkoly-Thege Út 29-33, 1121 Budapest, Hungary; (L.I.); (Z.E.H.)
| | - Zsolt Endre Horváth
- Institute for Technical Physics and Material Science, Centre for Energy Research, Konkoly-Thege Út 29-33, 1121 Budapest, Hungary; (L.I.); (Z.E.H.)
| | - Ana-Maria Putz
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazu, No. 24, 300223 Timisoara, Romania; (C.C.); (R.N.); (S.-A.M.); (E.-M.P.); (M.S.)
| |
Collapse
|
16
|
Wiśniewska P, Haponiuk J, Saeb MR, Rabiee N, Bencherif SA. Mitigating Metal-Organic Framework (MOF) Toxicity for Biomedical Applications. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 471:144400. [PMID: 39280062 PMCID: PMC11394873 DOI: 10.1016/j.cej.2023.144400] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline porous materials, consisting of metal ions and organic linkers. These hybrid materials possess exceptional porosity and specific surface area, which have recently garnered significant interest due to their potential applications in gas separation and storage, energy storage, biomedical imaging, and drug delivery. As MOFs are being explored for biomedical applications, it is essential to comprehensively assess their toxicity. Although nearly ninety thousand MOFs have been investigated, evaluating and optimizing their physico-chemical properties in relevant biological systems remain critical for their clinical translation. In this review article, we first provide a brief classification of MOFs based on their chemical structures. We then conduct a comprehensive evaluation of in vitro and in vivo studies that assess the biocompatibility of MOFs. Additionally, we discuss various approaches to mitigate the critical factors associated with MOF toxicity. To this end, the effects of chemistry, particle size, morphology, and particle aggregation are examined. To better understand MOFs' potential toxicity to living organisms, we also delve into the toxicity mechanisms of nanoparticles (NPs). Furthermore, we introduce and evaluate strategies such as surface modification to reduce the inherent toxicity of MOFs. Finally, we discuss current challenges, the path to clinical trials, and new research directions.
Collapse
Affiliation(s)
- Paulina Wiśniewska
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150 Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109 Australia
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, MA 02155, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02155, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02155, USA
| |
Collapse
|
17
|
Zhao C, Shu C, Yu J, Zhu Y. Metal-organic frameworks functionalized biomaterials for promoting bone repair. Mater Today Bio 2023; 21:100717. [PMID: 37545559 PMCID: PMC10401359 DOI: 10.1016/j.mtbio.2023.100717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Bone defects induced by bone trauma, tumors and osteoarthritis greatly affect the life quality and health of patients. The biomaterials with numerous advantages are becoming the most preferred options for repairing bone defects and treating orthopedic diseases. However, their repairing effects remains unsatisfactory, especially in bone defects suffering from tumor, inflammation, and/or bacterial infection. There are several strategies to functionalize biomaterials, but a more general and efficient method is essential for accomplishing the functionalization of biomaterials. Possessing high specific surface, high porosity, controlled degradability and variable composition, metal-organic frameworks (MOFs) materials are inherently advantageous for functionalizing biomaterials, with tremendous improvements having been achieved. This review summarizes recent progresses in MOFs functionalized biomaterials for promoting bone repair and therapeutic effects. In specific, by utilizing various properties of diverse MOFs materials, integrated MOFs functionalized biomaterials achieve enhanced bone regeneration, antibacterial, anti-inflammatory and anti-tumor functions. Finally, the summary and prospects of on the development of MOFs-functionalized biomaterials for promoting bone repair were discussed.
Collapse
Affiliation(s)
- Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Chaoqin Shu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jiangming Yu
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, 200336, PR China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
18
|
Song Q, Chi B, Gao H, Wang J, Wu M, Xu Y, Wang Y, Xu Z, Li L, Wang J, Zhang R. Functionalized nanozyme with drug loading for enhanced tumour combination treatment of catalytic therapy and chemotherapy. J Mater Chem B 2023; 11:6889-6895. [PMID: 37377123 DOI: 10.1039/d3tb01002c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanozyme-based tumour catalytic therapy has attracted widespread attention in recent years, but the therapeutic efficacy is limited due to the trapping of hydroxyl radicals (˙OH) by endogenous glutathione (GSH) in the tumour microenvironment (TME). Zr/Ce-MOFs/DOX/MnO2 is constructed in this work to serve as a new kind of nanozyme for combination chemotherapy and catalytic treatment. Zr/Ce-MOFs can produce ˙OH in a mimic TME, and the MnO2 on the surface could deplete the GSH, further promoting the ˙OH generation. The pH/GSH dual stimulation accelerates the release of anticancer drug doxorubicin (DOX) in tumour tissue for enhanced tumour chemotherapy. Moreover, Mn2+ produced by the reaction of Zr/Ce-MOFs/DOX/MnO2 and GSH can be used as the contrast agent for T1-MRI. The potential antitumour effect of Zr/Ce-MOFs/DOX/MnO2 is demonstrated by in vitro and in vivo cancer treatment tests. This work thus provides a new nanozyme-based platform for enhanced combination chemotherapy and catalytic treatment for tumours.
Collapse
Affiliation(s)
- Qian Song
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Bin Chi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Haiqing Gao
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Junke Wang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yi Xu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Yingxi Wang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Ling Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
19
|
Banks PA, Kleist EM, Ruggiero MT. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat Rev Chem 2023; 7:480-495. [PMID: 37414981 DOI: 10.1038/s41570-023-00487-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 07/08/2023]
Abstract
Terahertz spectroscopy has proved to be an essential tool for the study of condensed phase materials. Terahertz spectroscopy probes the low-frequency vibrational dynamics of atoms and molecules, usually in the condensed phase. These nuclear dynamics, which typically involve displacements of entire molecules, have been linked to bulk phenomena ranging from phase transformations to semiconducting efficiency. The terahertz region of the electromagnetic spectrum has historically been referred to as the 'terahertz gap', but this is a misnomer, as there exist a multitude of methods for accessing terahertz frequencies, and now there are cost-effective instruments that have made terahertz studies much more user-friendly. This Review highlights some of the most exciting applications of terahertz vibrational spectroscopy so far, and provides an in-depth overview of the methods of this technique and its utility to the study of the chemical sciences.
Collapse
Affiliation(s)
- Peter A Banks
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Elyse M Kleist
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
20
|
Li J, Peng H, Ji W, Lu D, Wang N, Peng C, Zhang W, Li M, Li Y. Advances in surface-modified nanometal-organic frameworks for drug delivery. Int J Pharm 2023:123119. [PMID: 37302666 DOI: 10.1016/j.ijpharm.2023.123119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Nanometal-organic frameworks (NMOFs) are porous network structures composed of metal ions or metal clusters through self-assembly. NMOFs have been considered as a promising nano-drug delivery system due to their unique properties such as pore and flexible structures, large specific surface areas, surface modifiability, non-toxic and degradable properties. However, NMOFs face a series complex environment during in vivo delivery. Therefore, surface functionalization of NMOFs is vital to ensure that the structure of NMOFs remain stable during delivery, and can overcome physiological barriers to deliver drugs more accurately to specific sites, and achieve controllable release. In this review, the first part summarizes the physiological barriers that NMOFs faced during drug delivery after intravenous injection and oral administration. The second part summarizes the current main ways to load drugs into NMOFs, mainly including pore adsorption, surface attachment, formation of covalent/coordination bonds between drug molecules and NMOFs, and in situ encapsulation. The third part is the main review part of this paper, which summarizes the surface modification methods of NMOFs used in recent years to overcome the physiological barriers and achieve effective drug delivery and disease therapy, which are mainly divided into physical modifications and chemical modifications. Finally, the full text is summarized and prospected, with the hope to provide ideas for the future development of NMOFs as drug delivery.
Collapse
Affiliation(s)
- Jiaxin Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huan Peng
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Dengyang Lu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nan Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Peng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wen Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Muzi Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
21
|
Oh JY, Choi E, Jana B, Go EM, Jin E, Jin S, Lee J, Bae JH, Yang G, Kwak SK, Choe W, Ryu JH. Protein-Precoated Surface of Metal-Organic Framework Nanoparticles for Targeted Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300218. [PMID: 36864579 DOI: 10.1002/smll.202300218] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
Metal-organic framework (MOF) nanoparticles have recently emerged as a promising vehicle for drug delivery with high porosity and feasibility. However, employing a MOF-based drug delivery system remains a challenge due to the difficulty in controlling interfaces of particles in a biological environment. In this paper, protein corona-blocked Zr6 -based MOF (PCN-224) nanoparticles are presented for targeted cancer therapy with high efficiency. The unmodified PCN-224 surface is precoated with glutathione transferase (GST)-fused targetable affibody (GST-Afb) proteins via simple mixing conjugations instead of chemical modifications that can induce the impairment of proteins. GST-Afb proteins are shown to stably protect the surface of PCN-224 particles in a specific orientation with GST adsorbed onto the porous surface and the GST-linked Afb posed outward, minimizing the unwanted interfacial interactions of particles with external biological proteins. The Afb-directed cell-specific targeting ability of particles and consequent induction of cell death is demonstrated both in vitro and in vivo by using two kinds of Afb, which targets the surface membrane receptor, human epidermal growth factor receptor 2 (HER2) or epidermal growth factor receptor (EGFR). This study provides insight into the way of regulating the protein-adhesive surface of MOF nanoparticles and designing a more effective MOF-hosted targeted delivery system.
Collapse
Affiliation(s)
- Jun Yong Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunshil Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunji Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinhyu Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Hoon Bae
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Gyeongseok Yang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
22
|
Pappas NS, Mason JA. Effect of modulator ligands on the growth of Co 2(dobdc) nanorods. Chem Sci 2023; 14:4647-4652. [PMID: 37152265 PMCID: PMC10155910 DOI: 10.1039/d2sc06869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Control over the size, shape, uniformity, and external surface chemistry of metal-organic framework nanocrystals is important for a wide range of applications. Here, we investigate how monotopic modulators that mimic the coordination mode of native bridging ligands affect the growth of anisotropic Co2(dobdc) (dobdc4- = 2,5-dihydroxy-1,4-benzenedicarboxylic acid) nanorods. Through a combination of transmission electron microscopy (TEM) and nuclear magnetic resonance spectroscopy (NMR) studies, nanorod diameter was found to be strongly correlated to the acidity of the modulator and to the degree of modulator incorporation into the nanorod structure. Notably, highly acidic modulators allowed for the preparation of sub-10 nm nanorods, a previously elusive size regime for the M2(dobdc) family. More broadly, this study provides new insights into the mechanism of modulated growth of metal-organic framework nanoparticles.
Collapse
Affiliation(s)
- Nina S Pappas
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| |
Collapse
|
23
|
Qu L, Wu M, Zhao L, Li J, Pan H. A sandwich electrochemical immunosensor based on MXene@dual MOFs for detection of tumor marker CA125. Mikrochim Acta 2023; 190:147. [PMID: 36947252 DOI: 10.1007/s00604-023-05719-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The detection signal of carbohydrate antigen 125 (CA125) can be quantitatively amplified via the dual metal-organic framework (MOF) sandwich strategy. We propose a versatile method for synthesizing uniform MXene and MIL-101(Fe)-NH2 composites that combine the advantages of both materials to build a base layer with superb performance. MXene exhibits excellent electrical conductivity and high surface area. The mesoporous MIL-101(Fe)-NH2 not only increases the loading capacity of the primary antibody but also possesses the catalytic activity of the metal center (Fe). UiO66 loaded with methylene blue (MB) was fabricated as an electrochemical immunosensor signal tag to enable the detection of CA125. The mixture of MXene and MIL-101(Fe)-NH2 prepared as the substrate was fixed by chitosan rich in amino groups. As the signal amplification sector, UiO66@MB enhanced secondary antibody loading capacity and generated a redox signal enabling the detection of antigenic substances. The proposed electrochemical immunosensor demonstrated high sensitivity with a low limit of detection (LOD) of 0.006 U/mL. Therefore, the dual MOF sandwich-based immunosensor provides a novel method for the early diagnosis of CA125.
Collapse
Affiliation(s)
- Lingli Qu
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Mengdie Wu
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lu Zhao
- School of Materials Science and Engineering, Chang' an University, Xi'an, 710062, Shaanxi, China
| | - Jiang Li
- School of Materials Science and Engineering, Chang' an University, Xi'an, 710062, Shaanxi, China.
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
24
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
25
|
Desai AV, Vornholt SM, Major LL, Ettlinger R, Jansen C, Rainer DN, de Rome R, So V, Wheatley PS, Edward AK, Elliott CG, Pramanik A, Karmakar A, Armstrong AR, Janiak C, Smith TK, Morris RE. Surface-Functionalized Metal-Organic Frameworks for Binding Coronavirus Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9058-9065. [PMID: 36786318 PMCID: PMC9940617 DOI: 10.1021/acsami.2c21187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Since the outbreak of SARS-CoV-2, a multitude of strategies have been explored for the means of protection and shielding against virus particles: filtration equipment (PPE) has been widely used in daily life. In this work, we explore another approach in the form of deactivating coronavirus particles through selective binding onto the surface of metal-organic frameworks (MOFs) to further the fight against the transmission of respiratory viruses. MOFs are attractive materials in this regard, as their rich pore and surface chemistry can easily be modified on demand. The surfaces of three MOFs, UiO-66(Zr), UiO-66-NH2(Zr), and UiO-66-NO2(Zr), have been functionalized with repurposed antiviral agents, namely, folic acid, nystatin, and tenofovir, to enable specific interactions with the external spike protein of the SARS virus. Protein binding studies revealed that this surface modification significantly improved the binding affinity toward glycosylated and non-glycosylated proteins for all three MOFs. Additionally, the pores for the surface-functionalized MOFs can adsorb water, making them suitable for locally dehydrating microbial aerosols. Our findings highlight the immense potential of MOFs in deactivating respiratory coronaviruses to be better equipped to fight future pandemics.
Collapse
Affiliation(s)
- Aamod V. Desai
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Simon M. Vornholt
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Louise L. Major
- School
of Biology, University of St Andrews, Biomedical Sciences Research Complex
North Haugh, St Andrews KY16 9ST, U.K.
| | - Romy Ettlinger
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Christian Jansen
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Daniel N. Rainer
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Richard de Rome
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Venus So
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Paul S. Wheatley
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Ailsa K. Edward
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Caroline G. Elliott
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Atin Pramanik
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Avishek Karmakar
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States of America
| | - A. Robert Armstrong
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Terry K. Smith
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
- School
of Biology, University of St Andrews, Biomedical Sciences Research Complex
North Haugh, St Andrews KY16 9ST, U.K.
| | - Russell E. Morris
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
26
|
Le BQG, Doan TLH. Trend in biodegradable porous nanomaterials for anticancer drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1874. [PMID: 36597015 DOI: 10.1002/wnan.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
In recent years, biodegradable nanomaterials have exhibited remarkable promise for drug administration to tumors due to their high drug-loading capacity, biocompatibility, biodegradability, and clearance. This review will discuss and summarize the trends in utilizing biodegradable nanomaterials for anticancer drug delivery, including biodegradable periodic mesoporous organosilicas (BPMOs) and metal-organic frameworks (MOFs). The distinct structure and features of BPMOs and MOFs will be initially evaluated, as well as their use as delivery vehicles for anticancer drug delivery applications. Then, the themes for the development of each material will be utilized to illustrate their drug delivery performance. Finally, the current obstacles and potential for future development as efficient drug delivery systems will be thoroughly reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Bao Quang Gia Le
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
27
|
Feng J, Chen J, Wang S, Jia M, Zhang Z, Yu T, Xue M. Rational Design of Inhibitor-Encapsulated Bio-MOF-1 for Dual Corrosion Protection. Inorg Chem 2022; 61:18285-18292. [DOI: 10.1021/acs.inorgchem.2c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinhua Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Junnan Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Shuchang Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Miaomiao Jia
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Zhiyu Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Ming Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| |
Collapse
|
28
|
Hao F, Yan Z, Yan X. Recent Advances in Research on the Effect of Physicochemical Properties on the Cytotoxicity of Metal-Organic Frameworks. SMALL SCIENCE 2022; 2:2200044. [PMID: 40212638 PMCID: PMC11935883 DOI: 10.1002/smsc.202200044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Indexed: 05/07/2025] Open
Abstract
Metal-organic frameworks (MOFs) have been utilized with increasing interest in various fields, including gas storage and separation, catalysis, sensing, adsorption, and biomedicine. Recently, the scale-up production and commercialization of MOFs have paved their way to real-world applications. However, the accidental and intentional exposures of MOFs to humans and organisms make an increasing concern on their health risks and sustainable development. Thus, toxicity assessment is essential for the application of MOFs. In vitro toxic evaluation based on cell culture is low cost, fast, and high throughput, making it an ideal model in toxicity research. To understand the cytotoxicity of MOFs, a short review on the effect of key physicochemical factors on cytotoxicity is necessary. Herein, the application of MOFs is summarized and the possible exposure routes of MOFs to humans are discussed. Moreover, the key physicochemical factors affecting the cytotoxicity of MOFs such as chemical composition, size, and shape are also elucidated. It is expected that this short review helps to understand the cytotoxicity of MOFs and sheds light on the importance of the toxicity assessment of MOFs.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetySchool of Food Science and TechnologyJiangnan UniversityWuxi214122China
| | - Zhu‐Ying Yan
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122China
| | - Xiu‐Ping Yan
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetySchool of Food Science and TechnologyJiangnan UniversityWuxi214122China
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationJiangnan UniversityWuxi214122China
| |
Collapse
|
29
|
Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065-6086. [PMID: 35770998 PMCID: PMC9289890 DOI: 10.1039/d0cs01414a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/25/2022]
Abstract
The application of metal-organic frameworks (MOFs) in drug delivery has advanced rapidly over the past decade, showing huge progress in the development of novel systems. Although a large number of versatile MOFs that can carry and release multiple compounds have been designed and tested, one of the main limitations to their translation to the clinic is the limited biological understanding of their interaction with cells and the way they penetrate them. This is a crucial aspect of drug delivery, as MOFs need to be able not only to enter into cells but also to release their cargo in the correct intracellular location. While small molecules can enter cells by passive diffusion, nanoparticles (NPs) usually require an energy-dependent process known as endocytosis. Importantly, the fate of NPs after being taken up by cells is dependent on the endocytic pathways they enter through. However, no general guidelines for MOF particle internalization have been established due to the inherent complexity of endocytosis as a mechanism, with several factors affecting cellular uptake, namely NP size and surface chemistry. In this review, we cover recent advances regarding the understanding of the mechanisms of uptake of nano-sized MOFs (nanoMOFs)s, their journey inside the cell, and the importance of biological context in their final fate. We examine critically the impact of MOF physicochemical properties on intracellular trafficking and successful cargo delivery. Finally, we highlight key unanswered questions on the topic and discuss the future of the field and the next steps for nanoMOFs as drug delivery systems.
Collapse
Affiliation(s)
- Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Salame Haddad
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Zihan Mei
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| |
Collapse
|
30
|
Rabiee N, Ghadiri AM, Alinezhad V, Sedaghat A, Ahmadi S, Fatahi Y, Makvandi P, Saeb MR, Bagherzadeh M, Asadnia M, Varma RS, Lima EC. Synthesis of green benzamide-decorated UiO-66-NH 2 for biomedical applications. CHEMOSPHERE 2022; 299:134359. [PMID: 35318020 DOI: 10.1016/j.chemosphere.2022.134359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing capability of nanocarriers was demonstrated after capping with leaf extract from Citrus tangerine, with a stimuli-responsive effect in acidic media. Targeted delivery was complete to the nucleus and cytoplasm of HT-29 cell, but merely to the cytoplasm of HeLa cell lines. Nanocarrier could be targeted for drug delivery to the cytoplasm of the HeLa cell line and to both the nucleus and cytoplasm of HT-29 cell lines. MOF-based nanocarriers proved authentic in vivo towards kidney and liver tissues with targeted cancerous cells efficiently. Besides, FAAH-like molecules revealed optical biosensor potential with high selectivity (even ˂5 nM LOD) towards ssDNA, sgRNA, and Anti-cas9 proteins.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | | | - Vida Alinezhad
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Anna Sedaghat
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, ZIP, 91501-970, Brazil.
| |
Collapse
|
31
|
Mosavi SH, Zare-Dorabei R. Synthesis of NMOF-5 Using Microwave and Coating with Chitosan: A Smart Biocompatible pH-Responsive Nanocarrier for 6-Mercaptopurine Release on MCF-7 Cell Lines. ACS Biomater Sci Eng 2022; 8:2477-2488. [PMID: 35609182 DOI: 10.1021/acsbiomaterials.2c00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most difficult diseases to treat, threatening the lives of millions of people today. So far, various methods have been used to treat cancer, each having its drawbacks. One of these methods is treatment with anticancer drugs, which unfortunately have severe side effects. One of the causes of these complications is the nonspecific effects of anticancer drugs, which attack normal cells in addition to cancer cells and damage healthy tissues. In this study, we are trying to reduce the side effects and increase the efficacy of the drug by providing smart drug delivery. The metal-organic framework (MOF) was rapidly synthesized using a microwave method and at the nanoscale. The particle size of NMOF-5 was 18-20 nm, and its surface area was 2690 m2·g-1. A chitosan polymer coating was formed on the nanocarrier after 6-mercaptopurine was introduced. The biocompatible nanocarrier exhibited a high capacity to adsorb the drug. The biocompatible nanocarrier slowly and uniformly released 96.78% of the drug in a simulated solution at pH 5 and 20.52% at pH 7.4. This showed that CS-6-MP-NMOF-5 released the drug smartly and pH-sensitively. The stability of the biocompatible nanocarrier was studied at different pH values and remained stable at pH 5 for up to 48 h. The toxicity study of the MCF-7 cell line at different concentrations for 24 h showed the excellent performance of the biocompatible nanocarrier compared to the free drug in terms of toxicity to breast cancer cells.
Collapse
Affiliation(s)
- Seyed Hossein Mosavi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
32
|
Li Q, Liu Y, Zhang Y, Jiang W. Immunogenicity-boosted cancer immunotherapy based on nanoscale metal-organic frameworks. J Control Release 2022; 347:183-198. [PMID: 35526612 DOI: 10.1016/j.jconrel.2022.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
Abstract
Immunotherapy, including checkpoint blockade immunotherapy (CBI), has witnessed remarkable progress in cancer therapy. Nonetheless, significant obstacles to successful immunotherapy remain. Notably, tumour non-responsiveness to immunotherapy due to immunosuppressive tumour microenvironments (TMEs). To revitalize immunosuppressive TMEs various therapeutic strategies have been reported by researchers. Immunostimulatory adjuvant treatments (IAT) are the most widely investigated ones. Due to their biodegradability, compositional tenability, and inherent immune effectiveness, nanoscale metal-organic frameworks (nMOFs) with metal nodes and organic linkers can be used as versatile nanomaterials for IAT. This review summarizes the progress in nMOF-based tumour immunotherapy in promoting immunostimulatory TMEs. And in combination with other cancer immunotherapies to increase tumour immunogenicity and antitumor efficacy. Finally, the challenges of nMOFs in tumour immunotherapy are also discussed.
Collapse
Affiliation(s)
- Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ying Liu
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanru Zhang
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
33
|
Dai Z, Wang Q, Tang J, Qu R, Wu M, Li H, Yang Y, Zhen X, Yu C. A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy. Biomaterials 2022; 284:121533. [DOI: 10.1016/j.biomaterials.2022.121533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
|
34
|
Parsaei M, Akhbari K. MOF-801 as a Nanoporous Water-Based Carrier System for In Situ Encapsulation and Sustained Release of 5-FU for Effective Cancer Therapy. Inorg Chem 2022; 61:5912-5925. [PMID: 35377632 DOI: 10.1021/acs.inorgchem.2c00380] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoporous metal-organic frameworks (MOFs) have been gaining a reputation for their drug delivery applications. In the current work, MOF-801 was successfully prepared by a facile, cost-efficient, and environmentally friendly approach through the reaction of ZrCl4 and fumaric acid as organic linkers to deliver 5-fluorouracil (5-FU). The prepared nanostructure was fully characterized by a series of analytical techniques including Fourier transform infrared spectroscopy, powder X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-vis spectroscopy, 1H NMR spectroscopy, thermogravimetric analysis, high-performance liquid chromatography, and Brunauer-Emmett-Teller analysis. MOF-801 could be used for the delivery of the anticancer drug 5-FU due to its high surface area, suitable pore size, and biocompatible ingredients. Based on in vitro loading and release studies, a high 5-FU loading capacity and pH-dependent drug release behavior were observed. Moreover, the interactions between the structure of MOFs and 5-FU were investigated through Monte Carlo simulation calculations. An in vitro cytotoxicity test was done, and the results indicated that 5-FU@MOF-801 was more potent than 5-FU on SW480 cancerous cells, indicating the highlighted role of this drug delivery system. Finally, the kinetics of drug release was investigated.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
35
|
Ji H, Wang X, Wang P, Gong Y, Wang Y, Liu C, Ji G, Wang X, Wang M. Lanthanide-based metal-organic frameworks solidified by gelatin-methacryloyl hydrogels for improving the accuracy of localization and excision of small pulmonary nodules. J Nanobiotechnology 2022; 20:60. [PMID: 35109862 PMCID: PMC8808773 DOI: 10.1186/s12951-022-01263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
The localization of invisible and impalpable small pulmonary nodules has become an important concern during surgery, since current widely used techniques for localization have a number of limitations, such as invasive features of hookwires and microcoils, and rapid diffusion after injection of indocyanine green (ICG). Lanthanide-based metal–organic frameworks (MOFs) have been proven as potential fluorescent agents because of their prominent luminescent characteristics, including large Stokes shifts, high quantum yields, long decay lifetimes, and undisturbed emissive energies. In addition, lanthanides, such as Eu, can efficiently absorb X-rays for CT imaging. In this study, we synthesized Eu-UiO-67-bpy (UiO = University of Oslo, bpy = 2,2'-bipyridyl) as a fluorescent dye with a gelatin-methacryloyl (GelMA) hydrogel as a liquid carrier. The prepared complex exhibits constant fluorescence emission owing to the luminescent characteristics of Eu and the stable structure of UiO-67-bpy with restricted fluorescence diffusion attributed to the photocured GelMA. Furthermore, the hydrogel provides stiffness to make the injection site tactile and improve the accuracy of localization and excision. Finally, our complex enables fluorescence-CT dual-modal imaging of the localization site. ![]()
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaofeng Wang
- Excellent Science and Technology Innovation Group of Jiangsu Province, College of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Pei Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chang Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
36
|
Ettlinger R, Lächelt U, Gref R, Horcajada P, Lammers T, Serre C, Couvreur P, Morris RE, Wuttke S. Toxicity of metal-organic framework nanoparticles: from essential analyses to potential applications. Chem Soc Rev 2022; 51:464-484. [PMID: 34985082 DOI: 10.1039/d1cs00918d] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the last two decades, the field of metal-organic frameworks (MOFs) has exploded, and MOF nanoparticles in particular are being investigated with increasing interest for various applications, including gas storage and separation, water harvesting, catalysis, energy conversion and storage, sensing, diagnosis, therapy, and theranostics. To further pave their way into real-world applications, and to push the synthesis of MOF nanoparticles that are 'safe-and-sustainable-by-design', this tutorial review aims to shed light on the importance of a systematic toxicity assessment. After clarifying and working out the most important terms and aspects from the field of nanotoxicity, the current state-of-the-art of in vitro and in vivo toxicity studies of MOF nanoparticles is evaluated. Moreover, the key aspects affecting the toxicity of MOF nanoparticles such as their chemical composition, their physico-chemical properties, including their colloidal and chemical stability, are discussed. We highlight the need of more targeted synthesis of MOF nanoparticles that are 'safe-and-sustainable-by-design', and their tailored hazard assessment in the context of their potential applications in order to tap the full potential of this versatile material class in the future.
Collapse
Affiliation(s)
- Romy Ettlinger
- School of Chemistry, University of St. Andrews, St. Andrews, UK.
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.,Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay, Université Paris Saclay, Paris, France
| | | | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Christian Serre
- Département de Chimie, Ecole Normale Supérieure de Paris, Paris, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, Université Paris Saclay, Paris, France
| | - Russell E Morris
- School of Chemistry, University of St. Andrews, St. Andrews, UK.
| | - Stefan Wuttke
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Basque Center for Materials, UPV/EHU Science Park, Leioa, Spain.
| |
Collapse
|
37
|
Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable polymers have been used as carriers in drug delivery systems for more than four decades. Early work used crude natural materials for particle fabrication, whereas more recent work has utilized synthetic polymers. Applications include the macroscale, the microscale, and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable polymers to encapsulate the desired drug payload have been approved for human use by international regulatory agencies. The commercial success of these products has led to further research in the field aimed at bringing forward new formulation types for improved delivery of various small molecule and biologic drugs. Here, we review recent advances in the development of these materials and we provide insight on their drug delivery application. We also address payload encapsulation and drug release mechanisms from biodegradable formulations and their application in approved therapeutic products.
Collapse
|
38
|
S.Al-Otaibi J, Mary Y, Mary Y. Adsorption of a thione bioactive derivative over different silver/gold clusters – DFT investigations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Sharma P, Baishya T, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Das J, Bhattacharyya MK. Structural topologies involving energetically significant antiparallel π-stacking and unconventional N(nitrile)⋯π(fumarate) contacts in dinuclear Zn( ii) and polymeric Mn( ii) compounds: antiproliferative evaluation and theoretical studies. NEW J CHEM 2022. [DOI: 10.1039/d1nj04786h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anticancer activities considering cell viability, apoptosis and molecular docking have been explored in dinuclear Zn(ii) and polymeric Mn(ii) compounds involving energetically significant unconventional N(nitrile)⋯π(fum) contacts.
Collapse
Affiliation(s)
- Pranay Sharma
- Department of Chemistry, Cotton University, Guwahati-781001, Assam, India
| | | | - Rosa M. Gomila
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.7, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.7, 07122 Palma de Mallorca (Baleares), Spain
| | - Miquel Barcelo-Oliver
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.7, 07122 Palma de Mallorca (Baleares), Spain
| | - Akalesh K. Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati-781001, India
| | - Jumi Das
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati-781001, India
| | | |
Collapse
|
40
|
Al-Azawi A, Sulaiman S, Arafat K, Yasin J, Nemmar A, Attoub S. Impact of Sodium Dichloroacetate Alone and in Combination Therapies on Lung Tumor Growth and Metastasis. Int J Mol Sci 2021; 22:ijms222212553. [PMID: 34830434 PMCID: PMC8624089 DOI: 10.3390/ijms222212553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023] Open
Abstract
Metabolic reprogramming has been recognized as an essential emerging cancer hallmark. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been reported to have anti-cancer effects by reversing tumor-associated glycolysis. This study was performed to explore the anti-cancer potential of DCA in lung cancer alone and in combination with chemo- and targeted therapies using two non-small cell lung cancer (NSCLC) cell lines, namely, A549 and LNM35. DCA markedly caused a concentration- and time-dependent decrease in the viability and colony growth of A549 and LNM35 cells in vitro. DCA also reduced the growth of tumor xenografts in both a chick embryo chorioallantoic membrane and nude mice models in vivo. Furthermore, DCA decreased the angiogenic capacity of human umbilical vein endothelial cells in vitro. On the other hand, DCA did not inhibit the in vitro cellular migration and invasion and the in vivo incidence and growth of axillary lymph nodes metastases in nude mice. Treatment with DCA did not show any toxicity in chick embryos and nude mice. Finally, we demonstrated that DCA significantly enhanced the anti-cancer effect of cisplatin in LNM35. In addition, the combination of DCA with gefitinib or erlotinib leads to additive effects on the inhibition of LNM35 colony growth after seven days of treatment and to synergistic effects on the inhibition of A549 colony growth after 14 days of treatment. Collectively, this study demonstrates that DCA is a safe and promising therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Aya Al-Azawi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
| | - Shahrazad Sulaiman
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
| | - Javed Yasin
- Department of Medicine, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates;
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
- Correspondence:
| |
Collapse
|
41
|
Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol 2021; 910:174464. [PMID: 34474029 DOI: 10.1016/j.ejphar.2021.174464] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Colon cancer (CC) kills countless people every year throughout the globe. It persists as one of the highly lethal diseases to be treated because the overall survival rate for CC is meagre. Early diagnosis and efficient treatments are two of the biggest hurdles in the fight against cancer. In the present work, we will review thriving strategies for CC targeted drug delivery and critically explain the most recent progressions on emerging novel nanotechnology-based drug delivery systems. Nanotechnology-based animal and human clinical trial studies targeting CC are discussed. Advancements in nanotechnology-based drug delivery systems intended to enhance cellular uptake, improved pharmacokinetics and effectiveness of anticancer drugs have facilitated the powerful targeting of specific agents for CC therapy. This review provides insight into current progress and future opportunities for nanomedicines as potential curative targets for CC treatment. This information could be used as a platform for the future expansion of multi-functional nano constructs for CC's advanced detection and functional drug delivery.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hashim Abbas
- Queens Medical Center, Nottingham University Hospitals, NHS, Nottingham, UK
| |
Collapse
|
42
|
Yu J, Zong W, Ding Y, Liu J, Chen L, Zhang H, Jiao Q. Fabrication of ω‐Transaminase@Metal‐Organic Framework Biocomposites for Efficiently Synthesizing Benzylamines and Pyridylmethylamines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| | - Weilu Zong
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| | - Yingying Ding
- School of Pharmacy Nanjing Medical University Nanjing 211166 People's Republic of China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| | - Lina Chen
- School of Pharmacy Nanjing Medical University Nanjing 211166 People's Republic of China
| | - Hongjuan Zhang
- School of Pharmacy Nanjing Medical University Nanjing 211166 People's Republic of China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| |
Collapse
|
43
|
Wan Z, Li C, Gu J, Qian J, Zhu J, Wang J, Li Y, Jiang J, Chen H, Luo C. Accurately Controlled Delivery of Temozolomide by Biocompatible UiO-66-NH 2 Through Ultrasound to Enhance the Antitumor Efficacy and Attenuate the Toxicity for Treatment of Malignant Glioma. Int J Nanomedicine 2021; 16:6905-6922. [PMID: 34675514 PMCID: PMC8517532 DOI: 10.2147/ijn.s330187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Background Glioma is the most common and malignant primary brain tumour in adults and has a dismal prognosis. Temozolomide (TMZ) is the only clinical first-line chemotherapy drug for malignant glioma up to present. Due to poor aqueous solubility and toxic effects, TMZ is still inefficient and limited for clinical glioma treatment. Methods UiO-66-NH2 nanoparticle is a zirconium-based framework, constructed by Zr and 2-amino-1,4-benzenedicarboxylic acid (BDC-NH2) with octahedral microporous structure, which can be decomposed by the body into an ionic form to discharge. We prepared the nanoscale metal-organic framework (MOF) of UiO-66-NH2 to load TMZ for therapy of malignant glioma, TMZ is released from UiO-66-NH2 through a porous structure. The ultrasound accelerates its porous percolation and promotes the rapid dissolution of TMZ through low-frequency oscillations and cavitation effect. The biological safety and antitumor efficacy were evaluated both in vitro and in vivo. Results The prepared TMZ@MOF exhibited excellent biocompatibility and biosafety due to minimal drug leakage without ultrasound intervention. We further used the flank model of glioblastoma to verify the in vivo therapeutic effect. TMZ@UiO-66-NH2 nanocomposites could be well delivered to the tumour tissue, which led to local enrichment of the TMZ concentration. Furthermore, TMZ@UiO-66-NH2 nanocomposites under ultrasound demonstrated much more efficient inhibition for tumor growth than TMZ@UiO-66-NH2 nanocomposites and TMZ alone. Meanwhile, the bone marrow suppression side effects of TMZ were significantly reduced by TMZ@UiO-66-NH2 nanocomposites. Conclusion In this work, TMZ@UiO-66-NH2 nanocomposites with ultrasound mediation could effectively improve the killing effect of malignant glioma and decrease TMZ-induced toxicity in normal tissues, demonstrating great potential for the delivery of TMZ in the clinical treatment of malignant gliomas.
Collapse
Affiliation(s)
- Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Chunlin Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jinmao Gu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jiaqi Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinwen Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiahao Jiang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Huairui Chen
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| |
Collapse
|
44
|
Hashemzadeh A, Drummen GPC, Avan A, Darroudi M, Khazaei M, Khajavian R, Rangrazi A, Mirzaei M. When metal-organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B 2021; 9:3967-3982. [PMID: 33908592 DOI: 10.1039/d1tb00155h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers of the gastrointestinal tract constitute one of the most common cancer types worldwide and a ∼58% increase in the global number of cases has been estimated by IARC for the next twenty years. Recent advances in drug delivery technologies have attracted scientific interest for developing and utilizing efficient therapeutic systems. The present review focuses on the use of nanoscale MOFs (Nano-MOFs) as carriers for drug delivery and imaging purposes. In pursuit of significant improvements to current gastrointestinal cancer chemotherapy regimens, systems that allow multiple concomitant therapeutic options (polytherapy) and controlled release are highly desirable. In this sense, MOF-based nanotherapeutics represent a significant step towards achieving this goal. Here, the current state-of-the-art of interdisciplinary research and novel developments into MOF-based gastrointestinal cancer therapy are highlighted and reviewed.
Collapse
Affiliation(s)
- Alireza Hashemzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gregor P C Drummen
- (Bio)Nanotechnology and Hepato/Renal Pathobiology Programs, Bio&Nano Solutions-LAB3BIO, Bielefeld, Germany
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. and Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ruhollah Khajavian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | | | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
45
|
Sun XY, Zhang HJ, Zhao XY, Sun Q, Wang YY, Gao EQ. Dual functions of pH-sensitive cation Zr-MOF for 5-Fu: large drug-loading capacity and high-sensitivity fluorescence detection. Dalton Trans 2021; 50:10524-10532. [PMID: 34259672 DOI: 10.1039/d1dt01772a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials, as carriers of small molecular drugs, have been a focal point in recent years. In this work, a carbazolyl functionalized metal-organic framework, UiO-67-CDC, was successfully synthesized employing the ligand 9H-carbazole-2,7-dicarboxylic acid (9H-2,7-CDC). Postsynthetic approaches targeted the cationization and replacement of the Lewis base carbazole site with two methyl groups, resulting in the positively charged skeleton, which has proven to be a promising carrier for the anticancer drug 5-fluorouracil (5-Fu). The prepared cationic framework UiO-67-CDC-(CH3)2 showed moderately high surface area, hierarchical pore structures, and positive surface characteristics, which effectively and selectivity encapsulated the electron-rich 5-Fu molecules through electrostatic attraction, with a relatively high loading of up to 56.5% (wt%). The drug delivery in simulated blood environment (pH = 7.4) exhibited a more effective release, demonstrating a physiological pH-responsive sustained release. Significantly, the electron-deficient Zr-MOF itself, as a kind of high-sensitivity fluorescence detector, has a unique fluorescence "turn-on" effect with 5-Fu. These results pave the way towards designing surface-engineered MOF materials of interest in drug delivery and fluorescent sensing applications.
Collapse
Affiliation(s)
- Xi-Yu Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Hong-Jing Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Xiao-Yang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Yuan-Yuan Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
46
|
Lázaro IA, Popescu C, Cirujano FG. Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators. Dalton Trans 2021; 50:11291-11299. [PMID: 34342329 DOI: 10.1039/d1dt01773j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic performance of metal-organic frameworks (MOFs) is related to their physicochemical properties, such as particle size, defect chemistry and porosity, which can be potentially controlled by coordination modulation. By combining PXRD, 1HNMR, FT-IR, and N2 uptake measurements we have gained insights into the control of different types of defects (missing linker or missing cluster consequence of the spatial distribution of missing linkers, and a combination of both) by the type of modulator employed. We show that the molar percent of defects, either as missing linkers or as a part of missing cluster defects, is related to the acidity of a modulator and its subsequent incorporation into the UiO-66 structure. Modulators with strong acidity and small size result in a considerable defect induction that causes an increase in the external surface area and mesopore volume, which is beneficial for the ring-opening of epoxides with amines, using UiO-66 defect-modulated MOFs as heterogeneous catalysts.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no 2, 46980 Paterna, Valencia, Spain.
| | | | | |
Collapse
|
47
|
He S, Wu L, Li X, Sun H, Xiong T, Liu J, Huang C, Xu H, Sun H, Chen W, Gref R, Zhang J. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B 2021; 11:2362-2395. [PMID: 34522591 PMCID: PMC8424373 DOI: 10.1016/j.apsb.2021.03.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-organic frameworks (MOFs), comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous, crystalline materials. Their tunable porosity, chemical composition, size and shape, and easy surface functionalization make this large family more and more popular for drug delivery. There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications. This article presents an overall review and perspectives of MOFs-based drug delivery systems (DDSs), starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands. Then, the synthesis and characterization of MOFs for DDSs are developed, followed by the drug loading strategies, applications, biopharmaceutics and quality control. Importantly, a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics, diseases therapy and advanced DDSs. In particular, the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed. Finally, challenges in MOFs development for DDSs are discussed, such as biostability, biosafety, biopharmaceutics and nomenclature.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Li
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengxi Huang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Weidong Chen
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruxandra Gref
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
48
|
Peller M, Lanza A, Wuttke S. MRI‐Active Metal‐Organic Frameworks: Concepts for the Translation from Lab to Clinic. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Peller
- Department of Radiology University Hospital, LMU Munich Munich 80539 Germany
| | - Arianna Lanza
- Center for Nanotechnology Innovation @NEST Istituto Italiano di Tecnologia Pisa 56127 Italy
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Ikerbasque‐Basque Foundation for Science Bilbao 48011 Spain
| |
Collapse
|
49
|
Lázaro IA, Rodrigo-Muñoz JM, Sastre B, Ángel MR, Martí-Gastaldo C, Del Pozo V. The excellent biocompatibility and negligible immune response of the titanium heterometallic MOF MUV-10. J Mater Chem B 2021; 9:6144-6148. [PMID: 34286816 DOI: 10.1039/d1tb00981h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ti-Ca heterometallic MOF MUV-10 exhibits good dispersibility in phosphate buffer and low phosphate-induced degradation in comparison to other MOF systems. It induces no cytotoxicity towards cells of the immune system and no inmune response, making it an attractive candidate for biomedical applications and demonstrating its safe use for other applications.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, Paterna 46980, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
50
|
Huang L, Asghar S, Zhu T, Ye P, Hu Z, Chen Z, Xiao Y. Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opin Drug Deliv 2021; 18:1473-1500. [PMID: 34253129 DOI: 10.1080/17425247.2021.1950685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: The treatment of tumors is one of the most difficult problems in the medical field at present. Patients often use a comprehensive therapy that combines surgery, radiotherapy, and chemotherapy. Photodynamic therapy (PDT) has prominent potential for eradicating various cancers. Chlorin-based photosensitizers (PSs), as one of the most utilized photosensitizers, have many advantages over conventional photosensitizers; however, a successful chlorin-based PDT needs multi-functional nano-carriers for selective photosensitizer delivery. The number of researches about nanoparticles designed for improved chlorin-based PSs is increasing in the current era. In this article, we give a brief review focused on the recent research progress in design of chlorin-based nanoparticles for the treatment of malignant tumors with photodynamic therapy.Areas covered: This review focuses on the current nanoparticle platforms for PDT, and describes different strategies to achieve controllable PDT by chlorin-nano-delivery systems. The challenges and prospects of PDT in clinical applications are also discussed.Expert opinions: The requirement for PDT to eradicate cancers has increased exponentially in recent years. The major clinically used photosensitizers are hydrophobic. The main obstacles in effective delivery of PSs are associated with this intrinsic nature. The design of nano-delivery systems to load PSs is pivotal for PSs' widespread use.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ting Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Panting Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Ziyi Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Zhipeng Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China.,Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| |
Collapse
|