1
|
Saha T, Mehrotra S, Gupta P, Kumar A. Exosomal miRNA combined with anti-inflammatory hyaluronic acid-based 3D bioprinted hepatic patch promotes metabolic reprogramming in NAFLD-mediated fibrosis. Biomaterials 2025; 318:123140. [PMID: 39892017 DOI: 10.1016/j.biomaterials.2025.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/03/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex metabolic disorder, where the underlying molecular mechanisms are mostly not well-understood and therefore, warrants the need for therapeutic interventions targeting several metabolic pathways as a unified response. Of late, promising outcomes have been observed with mesenchymal stem cell-derived exosomes. However, reduced bioavailability due to systemic delivery and the need for repeated fresh isolation hinders their feasibility for clinical applications. In this regard, an 'off-the-shelf' 3D bioprinted hyaluronic acid-based hepatic patch to deliver encapsulated exosomes alone/or with hepatocytes (as dual-therapy) is developed as a holistic approach for ameliorating the disease condition and promoting tissue regeneration. The bioprinted hepatic patch demonstrated sustained and localized release of exosomes (∼82 % in 21 days), and healthy liver tissue-like mechanical properties while being biocompatible and biodegradable. Assessment in NAFLD rat models displayed alleviation of the altered biochemical parameters such as fat deposition, deranged liver functions, disrupted lipid, glucose, and insulin metabolism along with a reduction in localized inflammation, and associated liver fibrosis. The study suggests that a synergistic effect between the miRNA population of released exosomes, cell therapy, and the bioprinted matrix materials is crucial in targeting multiple complex metabolic pathways associated with the severity of the disease.
Collapse
Affiliation(s)
- Triya Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| | - Purva Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
2
|
Liu C, Sun M, Lin L, Luo Y, Peng L, Zhang J, Qiu T, Liu Z, Yin J, Yu M. Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future. Mater Today Bio 2025; 31:101503. [PMID: 40018056 PMCID: PMC11867546 DOI: 10.1016/j.mtbio.2025.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Peripheral nerve injuries are a prevalent global issue that has garnered great concern. Although autografts remain the preferred clinical approach to repair, their efficacy is hampered by factors like donor scarcity. The emergence of nerve guidance conduits as novel tissue engineering tools offers a promising alternative strategy. This review aims to interpret nerve guidance conduits and their commercialization from both clinical and laboratory perspectives. To enhance comprehension of clinical situations, this article provides a comprehensive analysis of the clinical efficacy of nerve conduits approved by the United States Food and Drug Administration. It proposes that the initial six months post-transplantation is a critical window period for evaluating their efficacy. Additionally, this study conducts a systematic discussion on the research progress of laboratory conduits, focusing on biomaterials and add-on strategies as pivotal factors for nerve regeneration, as supported by the literature analysis. The clinical conduit materials and prospective optimal materials are thoroughly discussed. The add-on strategies, together with their distinct obstacles and potentials are deeply analyzed. Based on the above evaluations, the development path and manufacturing strategy for the commercialization of nerve guidance conduits are envisioned. The critical conclusion promoting commercialization is summarized as follows: 1) The optimization of biomaterials is the fundamental means; 2) The phased application of additional strategies is the emphasized direction; 3) The additive manufacturing techniques are the necessary tools. As a result, the findings of this research provide academic and clinical practitioners with valuable insights that may facilitate future commercialization endeavors of nerve guidance conduits.
Collapse
Affiliation(s)
- Chundi Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
3
|
Jeon Y, Kim M, Song KH. Development of Hydrogels Fabricated via Stereolithography for Bioengineering Applications. Polymers (Basel) 2025; 17:765. [PMID: 40292646 PMCID: PMC11945500 DOI: 10.3390/polym17060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
The architectures of hydrogels fabricated with stereolithography (SLA) 3D printing systems have played various roles in bioengineering applications. Typically, the SLA systems successively illuminated light to a layer of photo-crosslinkable hydrogel precursors for the fabrication of hydrogels. These SLA systems can be classified into point-scanning types and digital micromirror device (DMD) types. The point-scanning types form layers of hydrogels by scanning the precursors with a focused light, while DMD types illuminate 2D light patterns to the precursors to form each hydrogel layer at once. Overall, SLA systems were cost-effective and allowed the fabrication of hydrogels with good shape fidelity and uniform mechanical properties. As a result, hydrogel constructs fabricated with the SLA 3D printing systems were used to regenerate tissues and develop lab-on-a-chip devices and native tissue-like models.
Collapse
Affiliation(s)
- Youngjin Jeon
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
| | - Minji Kim
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
- Research Center of Brain-Machine Interface, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Nguyen TD, Nguyen TQ, Vo VT, Nguyen TH. Advances in three-dimensional printing of hydrogel formulations for vascularized tissue and organ regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-43. [PMID: 39899080 DOI: 10.1080/09205063.2024.2449294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
Over the last decades, three-dimensional (3D) printing has emerged as one of the most promising alternative tissue and organ regeneration technologies. Recent advances in 3D printing technology, particularly in hydrogel-derived bioink formulations, offer promising solutions for fabricating intricate, biomimetic scaffolds that promote vascularization. In this review, we presented numerous studies that have been conducted to fabricate 3D-printed hydrogel vascularized constructs with significant advancements in printing integumentary systems, cardiovascular systems, vascularized bone tissues, skeletal muscles, livers, and kidneys. Furthermore, this work also discusses the engineering considerations, current challenges, proposed solutions, and future outlooks of 3D bioprinting.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| |
Collapse
|
5
|
Bigham A, Zarepour A, Khosravi A, Iravani S, Zarrabi A. 3D and 4D printing of MXene-based composites: from fundamentals to emerging applications. MATERIALS HORIZONS 2024; 11:6257-6288. [PMID: 39279736 DOI: 10.1039/d4mh01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The advent of three-dimensional (3D) and four-dimensional (4D) printing technologies has significantly improved the fabrication of advanced materials, with MXene-based composites emerging as a particularly promising class due to their exceptional electrical, mechanical, and chemical properties. This review explores the fundamentals of MXenes and their composites, examining their unique characteristics and the underlying principles of their synthesis and processing. We highlight the transformative potential of 3D and 4D printing techniques in tailoring MXene-based materials for a wide array of applications. In the field of tissue regeneration, MXene composites offer enhanced biocompatibility and mechanical strength, making them ideal for scaffolds and implants. For drug delivery, the high surface area and tunable surface chemistry of MXenes enable precise control over drug release profiles. In energy storage, MXene-based electrodes exhibit superior conductivity and capacity, paving the way for next-generation batteries and supercapacitors. Additionally, the sensitivity and selectivity of MXene composites make them excellent candidates for various (bio)sensing applications, from environmental monitoring to biomedical diagnostics. By integrating the dynamic capabilities of 4D printing, which introduces time-dependent shape transformations, MXene-based composites can further adapt to complex and evolving functional requirements. This review provides a comprehensive overview of the current state of research, identifies key challenges, and discusses future directions for the development and application of 3D and 4D printed MXene-based composites. Through this exploration, we aim to underscore the significant impact of these advanced materials and technologies on diverse scientific and industrial fields.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
6
|
Yergeshov A, Zoughaib M, Dayob K, Kamalov M, Luong D, Zakirova A, Mullin R, Salakhieva D, Abdullin TI. Newly Designed PCL-Wrapped Cryogel-Based Conduit Activated with IKVAV Peptide Derivative for Peripheral Nerve Repair. Pharmaceutics 2024; 16:1569. [PMID: 39771548 PMCID: PMC11677967 DOI: 10.3390/pharmaceutics16121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. Methods: In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart. The optimized cryogel scaffold was combined with polycaprolactone (PCL)-based shell tube to form a suturable nerve conduit (NC) to be implanted into sciatic nerve diastasis in rats. Results: The NC constituents did not impair the viability of primary skin fibroblasts. Concentration-dependent effects of the peptide component on interrelated viscoelastic and swelling properties of the cryogels as well as on proliferation and morphological differentiation of neurogenic PC-12 cells were established, also indicating the existence of an optimal-density range of the introduced peptide. The in vivo implanted NC sustained the connection of the nerve stumps with partial degradation of the PCL tube over eight weeks, whereas the core-filling cryogel profoundly improved local electromyographic recovery and morphological repair of the nerve tissues, confirming the regenerative activity of the developed scaffold. Conclusions: These results provide proof-of-concept for the development of a newly designed PN conduit prototype based on IKVAV-activated cryogel, and they can be exploited to create other ECM-mimicking scaffolds.
Collapse
Affiliation(s)
- Abdulla Yergeshov
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Mohamed Zoughaib
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Kenana Dayob
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marat Kamalov
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Duong Luong
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Albina Zakirova
- Academy of Postgraduate Education under FSBU FSCC of FMBA of Russia, Department of Oncology and Plastic Surgery, 91 Volokolamsk Highway, 125371 Moscow, Russia
| | - Ruslan Mullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- State Autonomous Healthcare Institution Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, 138 Orenburg Highway, 420064 Kazan, Russia
| | - Diana Salakhieva
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
| | - Timur I. Abdullin
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
7
|
Srivastava E, Qayoom I, Kumar A. Reduced Graphene Oxide-Substituted Nanohydroxyapatite: Rejuvenating Bone-Nerve Crosstalk with Electrical Cues in a Fragility Fracture Rat Model under Hyperglycemia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59738-59751. [PMID: 39467155 DOI: 10.1021/acsami.4c10206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Diabetes has currently acquired the status of epidemic worldwide, and among its various pathological consequences like retinopathy and nephropathy, bone fragility fractures from diabetic osteopathy occurs in later stages and is equally destructive. Chronic hyperglycemia culminates into deteriorating microvasculature and quality of bone, making it prone to fractures. Among these, hip fractures are most common, especially in older diabetic patients apart from underlying neuropathy. Our study is an attempt to ameliorate hip fragility fracture and nerve trauma with electrical stimulation as an interface in a chronic diabetic rat model. We have fabricated reduced graphene oxide-substituted hydroxyapatite as an electroactive bone substitute and incorporated it into chitosan gelatin cryogels. The in situ reduction of graphene oxide during sintering of hydroxyapatite imparts higher potential to the fabricated composite in dealing with problem at question. The cryogels depicted optimum in vitro biocompatibility and enhanced mineralization after ectopic subcutaneous implantation in rats. The therapeutic potency of composite cryogels was evaluated in a hip fracture model with compression to the sciatic nerve in diabetic rats, mimicking the severe clinical trauma. The presence of cryogels in the femoral neck canal coupled with electrical stimulation and biochemical factors significantly improved bone regeneration in diabetic rats as depicted with microcomputed tomography analysis and histology images. The application of electrical stimulation also ameliorated the nerve trauma observed with 70% improvement in electrophysiological parameters such as the compound muscle action potential with combinatorial therapy. We therefore report the successful implication of a multitarget therapy in a chronic diabetic rat model unraveling the bone-nerve crosstalk with electroactive smart cryogels.
Collapse
Affiliation(s)
- Ekta Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Excellence in Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
8
|
Wang Z, Zheng Y, Qiao L, Ma Y, Zeng H, Liang J, Ye Q, Shen K, Liu B, Sun L, Fan Z. 4D-Printed MXene-Based Artificial Nerve Guidance Conduit for Enhanced Regeneration of Peripheral Nerve Injuries. Adv Healthc Mater 2024; 13:e2401093. [PMID: 38805724 DOI: 10.1002/adhm.202401093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 05/30/2024]
Abstract
Repairing larger defects (>5 mm) in peripheral nerve injuries (PNIs) remains a significant challenge when using traditional artificial nerve guidance conduits (NGCs). A novel approach that combines 4D printing technology with poly(L-lactide-co-trimethylene carbonate) (PLATMC) and Ti3C2Tx MXene nanosheets is proposed, thereby imparting shape memory properties to the NGCs. Upon body temperature activation, the printed sheet-like structure can quickly self-roll into a conduit-like structure, enabling optimal wrapping around nerve stumps. This design enhances nerve fixation and simplifies surgical procedures. Moreover, the integration of microchannel expertly crafted through 4D printing, along with the incorporation of MXene nanosheets, introduces electrical conductivity. This feature facilitates the guided and directional migration of nerve cells, rapidly accelerating the healing of the PNI. By leveraging these advanced technologies, the developed NGCs demonstrate remarkable potential in promoting peripheral nerve regeneration, leading to substantial improvements in muscle morphology and restored sciatic nerve function, comparable to outcomes achieved through autogenous nerve transplantation.
Collapse
Affiliation(s)
- Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Yan Zheng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Liang Qiao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Yuanya Ma
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Huajing Zeng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Jiachen Liang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Qian Ye
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China
| |
Collapse
|
9
|
Xin GD, Liu XY, Fan XD, Zhao GJ. Exosomes repairment for sciatic nerve injury: a cell-free therapy. Stem Cell Res Ther 2024; 15:214. [PMID: 39020385 PMCID: PMC11256477 DOI: 10.1186/s13287-024-03837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.
Collapse
Affiliation(s)
- Guang-Da Xin
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Xue-Yan Liu
- Cardiology Department, China-Japan Union Hospital of Jilin Universit, Changchun, Jilin Province, 130000, China
| | - Xiao-Di Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Guan-Jie Zhao
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
10
|
Li L, Chu Z, Li S, Zheng T, Wei S, Zhao Y, Liu P, Lu Q. BDNF-loaded chitosan-based mimetic mussel polymer conduits for repair of peripheral nerve injury. Front Cell Dev Biol 2024; 12:1431558. [PMID: 39011392 PMCID: PMC11246889 DOI: 10.3389/fcell.2024.1431558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Care for patients with peripheral nerve injury is multifaceted, as traditional methods are not devoid of limitations. Although the utilization of neural conduits shows promise as a therapeutic modality for peripheral nerve injury, its efficacy as a standalone intervention is limited. Hence, there is a pressing need to investigate a composite multifunctional neural conduit as an alternative treatment for peripheral nerve injury. In this study, a BDNF-loaded chitosan-based mimetic mussel polymer conduit was prepared. Its unique adhesion characteristics allow it to be suture-free, improve the microenvironment of the injury site, and have good antibacterial properties. Researchers utilized a rat sciatic nerve injury model to evaluate the progression of nerve regeneration at the 12-week postoperative stage. The findings of this study indicate that the chitosan-based mimetic mussel polymer conduit loaded with BDNF had a substantial positive effect on myelination and axon outgrowth. The observed impact demonstrated a favorable outcome in terms of sciatic nerve regeneration and subsequent functional restoration in rats with a 15-mm gap. Hence, this approach is promising for nerve tissue regeneration during peripheral nerve injury.
Collapse
Affiliation(s)
- Lei Li
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ziyue Chu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shihao Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tong Zheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shusheng Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peilai Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Xu C, Wu P, Yang K, Mu C, Li B, Li X, Wang Z, Liu Z, Wang X, Luo Z. Multifunctional Biodegradable Conductive Hydrogel Regulating Microenvironment for Stem Cell Therapy Enhances the Nerve Tissue Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309793. [PMID: 38148305 DOI: 10.1002/smll.202309793] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Indexed: 12/28/2023]
Abstract
The nerve guidance conduits incorporated with stem cells, which can differentiate into the Schwann cells (SCs) to facilitate myelination, shows great promise for repairing the severe peripheral nerve injury. The innovation of advanced hydrogel materials encapsulating stem cells, is highly demanded for generating supportive scaffolds and adaptive microenvironment for nerve regeneration. Herein, this work demonstrates a novel strategy in regulating regenerative microenvironment for peripheral nerve repair with a biodegradable conductive hydrogel scaffold, which can offer multifunctional capabilities in immune regulation, enhancing angiogenesis, driving SCs differentiation, and promoting axon regrowth. The biodegradable conductive hydrogel is constructed by incorporation of polydopamine-modified silicon phosphorus (SiP@PDA) nanosheets into a mixture of methacryloyl gelatin and decellularized extracellular matrix (GelMA/ECM). The biomimetic electrical microenvironment performs an efficacious strategy to facilitate macrophage polarization toward a pro-healing phenotype (M2), meanwhile the conductive hydrogel supports vascularization in regenerated tissue through sustained Si element release. Furthermore, the MSCs 3D-cultured in GelMA/ECM-SiP@PDA conductive hydrogel exhibits significantly increased expression of genes associated with SC-like cell differentiation, thus facilitating the myelination and axonal regeneration. Collectively, both the in vitro and in vivo studies demonstrates that the rationally designed biodegradable multifunctional hydrogel significantly enhances nerve tissues repair.
Collapse
Affiliation(s)
- Chao Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ping Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kun Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhouguang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
12
|
Etayo-Escanilla M, Campillo N, Ávila-Fernández P, Baena JM, Chato-Astrain J, Campos F, Sánchez-Porras D, García-García ÓD, Carriel V. Comparison of Printable Biomaterials for Use in Neural Tissue Engineering: An In Vitro Characterization and In Vivo Biocompatibility Assessment. Polymers (Basel) 2024; 16:1426. [PMID: 38794619 PMCID: PMC11125121 DOI: 10.3390/polym16101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Nervous system traumatic injuries are prevalent in our society, with a significant socioeconomic impact. Due to the highly complex structure of the neural tissue, the treatment of these injuries is still a challenge. Recently, 3D printing has emerged as a promising alternative for producing biomimetic scaffolds, which can lead to the restoration of neural tissue function. The objective of this work was to compare different biomaterials for generating 3D-printed scaffolds for use in neural tissue engineering. For this purpose, four thermoplastic biomaterials, ((polylactic acid) (PLA), polycaprolactone (PCL), Filaflex (FF) (assessed here for the first time for biomedical purposes), and Flexdym (FD)) and gelatin methacrylate (GelMA) hydrogel were subjected to printability and mechanical tests, in vitro cell-biomaterial interaction analyses, and in vivo biocompatibility assessment. The thermoplastics showed superior printing results in terms of resolution and shape fidelity, whereas FD and GelMA revealed great viscoelastic properties. GelMA demonstrated a greater cell viability index after 7 days of in vitro cell culture. Moreover, all groups displayed connective tissue encapsulation, with some inflammatory cells around the scaffolds after 10 days of in vivo implantation. Future studies will determine the usefulness and in vivo therapeutic efficacy of novel neural substitutes based on the use of these 3D-printed scaffolds.
Collapse
Affiliation(s)
- Miguel Etayo-Escanilla
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18012 Granada, Spain
| | - Noelia Campillo
- REGEMAT 3D, Avenida Del Conocimiento 41, A-111, 18016 Granada, Spain (J.M.B.)
- BRECA Health Care S.L., Avenida Del Conocimiento 41, 18016 Granada, Spain
| | - Paula Ávila-Fernández
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - José Manuel Baena
- REGEMAT 3D, Avenida Del Conocimiento 41, A-111, 18016 Granada, Spain (J.M.B.)
- BRECA Health Care S.L., Avenida Del Conocimiento 41, 18016 Granada, Spain
| | - Jesús Chato-Astrain
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - David Sánchez-Porras
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Óscar Darío García-García
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
13
|
Wang Z, Li S, Wu Z, Kang Y, Xie S, Cai Z, Shan X, Li Q. Pulsed electromagnetic field-assisted reduced graphene oxide composite 3D printed nerve scaffold promotes sciatic nerve regeneration in rats. Biofabrication 2024; 16:035013. [PMID: 38604162 DOI: 10.1088/1758-5090/ad3d8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Peripheral nerve injuries can lead to sensory or motor deficits that have a serious impact on a patient's mental health and quality of life. Nevertheless, it remains a major clinical challenge to develop functional nerve conduits as an alternative to autologous grafts. We applied reduced graphene oxide (rGO) as a bioactive conductive material to impart electrophysiological properties to a 3D printed scaffold and the application of a pulsed magnetic field to excite the formation of microcurrents and induce nerve regeneration.In vitrostudies showed that the nerve scaffold and the pulsed magnetic field made no effect on cell survival, increased S-100βprotein expression, enhanced cell adhesion, and increased the expression level of nerve regeneration-related mRNAs.In vivoexperiments suggested that the protocol was effective in promoting nerve regeneration, resulting in functional recovery of sciatic nerves in rats, when they were damaged close to that of the autologous nerve graft, and increased expression of S-100β, NF200, and GAP43. These results indicate that rGO composite nerve scaffolds combined with pulsed magnetic field stimulation have great potential for peripheral nerve rehabilitation.
Collapse
Affiliation(s)
- Zichao Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Shijun Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Zongxi Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510030, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510030, People's Republic of China
| | - Yifan Kang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Zhigang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Xiaofeng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Qing Li
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Center of Digital Dentistry, Second Clinical Division, Peking University School and Hospital of Stomatology and National Center of Stomatology, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| |
Collapse
|
14
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Ramesh PA, Sethuraman S, Subramanian A. Multichannel Conduits with Fascicular Complementation: Significance in Long Segmental Peripheral Nerve Injury. ACS Biomater Sci Eng 2024; 10:2001-2021. [PMID: 38487853 DOI: 10.1021/acsbiomaterials.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite the advances in tissue engineering approaches, reconstruction of long segmental peripheral nerve defects remains unsatisfactory. Although autologous grafts with proper fascicular complementation have shown meaningful functional recovery according to the Medical Research Council Classification (MRCC), the lack of donor nerve for such larger defect sizes (>30 mm) has been a serious clinical issue. Further clinical use of hollow nerve conduits is limited to bridging smaller segmental defects of denuded nerve ends (<30 mm). Recently, bioinspired multichannel nerve guidance conduits (NGCs) gained attention as autograft substitutes as they mimic the fascicular connective tissue microarchitecture in promoting aligned axonal outgrowth with desirable innervation for complete sensory and motor function restoration. This review outlines the hierarchical organization of nerve bundles and their significance in the sensory and motor functions of peripheral nerves. This review also emphasizes the major challenges in addressing the longer nerve defects with the role of fascicular arrangement in the multichannel nerve guidance conduits and the need for fascicular matching to accomplish complete functional restoration, especially in treating long segmental nerve defects. Further, currently available fabrication strategies in developing multichannel nerve conduits and their inconsistency in existing preclinical outcomes captured in this review would seed a new process in designing an ideal larger nerve conduit for peripheral nerve repair.
Collapse
Affiliation(s)
- Preethy Amruthavarshini Ramesh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| |
Collapse
|
16
|
Trâmbițaș C, Cordoș BA, Dorobanțu DC, Vintilă C, Ion AP, Pap T, Camelia D, Puiac C, Arbănași EM, Ciucanu CC, Mureșan AV, Arbănași EM, Russu E. Application of Adipose Stem Cells in 3D Nerve Guidance Conduit Prevents Muscle Atrophy and Improves Distal Muscle Compliance in a Peripheral Nerve Regeneration Model. Bioengineering (Basel) 2024; 11:184. [PMID: 38391670 PMCID: PMC10886226 DOI: 10.3390/bioengineering11020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Peripheral nerve injuries (PNIs) represent a significant clinical problem, and standard approaches to nerve repair have limitations. Recent breakthroughs in 3D printing and stem cell technologies offer a promising solution for nerve regeneration. The main purpose of this study was to examine the biomechanical characteristics in muscle tissue distal to a nerve defect in a murine model of peripheral nerve regeneration from physiological stress to failure. METHODS In this experimental study, we enrolled 18 Wistar rats in which we created a 10 mm sciatic nerve defect. Furthermore, we divided them into three groups as follows: in Group 1, we used 3D nerve guidance conduits (NGCs) and adipose stem cells (ASCs) in seven rats; in Group 2, we used only 3D NGCs for seven rats; and in Group 3, we created only the defect in four rats. We monitored the degree of atrophy at 4, 8, and 12 weeks by measuring the diameter of the tibialis anterior (TA) muscle. At the end of 12 weeks, we took the TA muscle and analyzed it uniaxially at 10% stretch until failure. RESULTS In the group of animals with 3D NGCs and ASCs, we recorded the lowest degree of atrophy at 4 weeks, 8 weeks, and 12 weeks after nerve reconstruction. At 10% stretch, the control group had the highest Cauchy stress values compared to the 3D NGC group (0.164 MPa vs. 0.141 MPa, p = 0.007) and the 3D NGC + ASC group (0.164 MPa vs. 0.123 MPa, p = 0.007). In addition, we found that the control group (1.763 MPa) had the highest TA muscle stiffness, followed by the 3D NGC group (1.412 MPa), with the best muscle elasticity showing in the group in which we used 3D NGC + ASC (1.147 MPa). At failure, TA muscle samples from the 3D NGC + ASC group demonstrated better compliance and a higher degree of elasticity compared to the other two groups (p = 0.002 and p = 0.008). CONCLUSIONS Our study demonstrates that the combination of 3D NGC and ASC increases the process of nerve regeneration and significantly improves the compliance and mechanical characteristics of muscle tissue distal to the injury site in a PNI murine model.
Collapse
Affiliation(s)
- Cristian Trâmbițaș
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Bogdan Andrei Cordoș
- Veterinary Experimental Base, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Dorin Constantin Dorobanțu
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Cristian Vintilă
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Alexandru Petru Ion
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Timea Pap
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - David Camelia
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Claudiu Puiac
- Clinic of Anesthesiology and Intensive Care, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Emil Marian Arbănași
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Claudiu Constantin Ciucanu
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Adrian Vasile Mureșan
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Eliza Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Eliza Russu
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| |
Collapse
|
17
|
Wan T, Zhang FS, Qin MY, Jiang HR, Zhang M, Qu Y, Wang YL, Zhang PX. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - Molecular mechanisms and delivery platforms. Biomed Pharmacother 2024; 170:116024. [PMID: 38113623 DOI: 10.1016/j.biopha.2023.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Ming-Yu Qin
- Suzhou Medical College, Soochow University, Suzhou 215026, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yang Qu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China; Peking University People's Hospital Qingdao Hospital, Qingdao 266000, China.
| |
Collapse
|
18
|
Joshi A, Choudhury S, Asthana S, Homer-Vanniasinkam S, Nambiar U, Chatterjee K. Emerging 4D fabrication of next-generation nerve guiding conduits: a critical perspective. Biomater Sci 2023; 11:7703-7708. [PMID: 37981830 DOI: 10.1039/d3bm01299a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The latest advancements in the field of manufacturing for biomedicine, digital health, targeted therapy, and personalized medicine have fuelled the fabrication of smart medical devices. Four-dimensional (4D) fabrication strategies, which combine the manufacturing of three-dimensional (3D) parts with smart materials and/or design, have proved beneficial in creating customized and self-fitting structures that change their properties on demand with time. These frontier techniques that yield dynamic implants can indeed alleviate various drawbacks of current clinical practices, such as the use of sutures and complex microsurgeries and associated inflammation, among others. Among various clinical applications, 4D fabrication has lately made remarkable progress in the development of next-generation nerve-guiding conduits for treating peripheral nerve injuries (PNIs) by improving the end-to-end co-aptation of transected nerve endings. The current perspective highlights the relevance of 4D fabrication in developing state-of-the-art technologies for the treatment of PNIs. Various 4D fabrication/bio-fabrication techniques for PNI treatment are summarized while identifying the challenges and opportunities for the future. Such advancements hold immense promise for improving the quality of life of patients suffering from nerve damage and the potential for extending the treatment of many other disorders. Although the techniques are being described for PNIs, they will lend themselves suitably to certain cases of cranial nerve injuries as well.
Collapse
Affiliation(s)
- Akshat Joshi
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.
| | - Sonal Asthana
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Hepatobiliary and Multi-Organ Transplantation Surgery, Aster CMI Hospital, Bangalore 560024, India
| | - Shervanthi Homer-Vanniasinkam
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Mechanical Engineering and Division of Surgery, University College London, WC1E 7JE, UK
| | - Uma Nambiar
- Bagchi-Parthasarathy Hospital, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
19
|
Namini MS, Daneshimehr F, Beheshtizadeh N, Mansouri V, Ai J, Jahromi HK, Ebrahimi-Barough S. Cell-free therapy based on extracellular vesicles: a promising therapeutic strategy for peripheral nerve injury. Stem Cell Res Ther 2023; 14:254. [PMID: 37726794 PMCID: PMC10510237 DOI: 10.1186/s13287-023-03467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
Peripheral nerve injury (PNI) is one of the public health concerns that can result in a loss of sensory or motor function in the areas in which injured and non-injured nerves come together. Up until now, there has been no optimized therapy for complete nerve regeneration after PNI. Exosome-based therapies are an emerging and effective therapeutic strategy for promoting nerve regeneration and functional recovery. Exosomes, as natural extracellular vesicles, contain bioactive molecules for intracellular communications and nervous tissue function, which could overcome the challenges of cell-based therapies. Furthermore, the bioactivity and ability of exosomes to deliver various types of agents, such as proteins and microRNA, have made exosomes a potential approach for neurotherapeutics. However, the type of cell origin, dosage, and targeted delivery of exosomes still pose challenges for the clinical translation of exosome therapeutics. In this review, we have focused on Schwann cell and mesenchymal stem cell (MSC)-derived exosomes in nerve tissue regeneration. Also, we expressed the current understanding of MSC-derived exosomes related to nerve regeneration and provided insights for developing a cell-free MSC therapeutic strategy for nerve injury.
Collapse
Affiliation(s)
- Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Kargar Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Mankavi F, Ibrahim R, Wang H. Advances in Biomimetic Nerve Guidance Conduits for Peripheral Nerve Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2528. [PMID: 37764557 PMCID: PMC10536071 DOI: 10.3390/nano13182528] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Injuries to the peripheral nervous system are a common clinical issue, causing dysfunctions of the motor and sensory systems. Surgical interventions such as nerve autografting are necessary to repair damaged nerves. Even with autografting, i.e., the gold standard, malfunctioning and mismatches between the injured and donor nerves often lead to unwanted failure. Thus, there is an urgent need for a new intervention in clinical practice to achieve full functional recovery. Nerve guidance conduits (NGCs), providing physicochemical cues to guide neural regeneration, have great potential for the clinical regeneration of peripheral nerves. Typically, NGCs are tubular structures with various configurations to create a microenvironment that induces the oriented and accelerated growth of axons and promotes neuron cell migration and tissue maturation within the injured tissue. Once the native neural environment is better understood, ideal NGCs should maximally recapitulate those key physiological attributes for better neural regeneration. Indeed, NGC design has evolved from solely physical guidance to biochemical stimulation. NGC fabrication requires fundamental considerations of distinct nerve structures, the associated extracellular compositions (extracellular matrices, growth factors, and cytokines), cellular components, and advanced fabrication technologies that can mimic the structure and morphology of native extracellular matrices. Thus, this review mainly summarizes the recent advances in the state-of-the-art NGCs in terms of biomaterial innovations, structural design, and advanced fabrication technologies and provides an in-depth discussion of cellular responses (adhesion, spreading, and alignment) to such biomimetic cues for neural regeneration and repair.
Collapse
Affiliation(s)
| | | | - Hongjun Wang
- Department of Biomedical Engineering, Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (F.M.); (R.I.)
| |
Collapse
|
21
|
Joshi A, Choudhury S, Baghel VS, Ghosh S, Gupta S, Lahiri D, Ananthasuresh GK, Chatterjee K. 4D Printed Programmable Shape-Morphing Hydrogels as Intraoperative Self-Folding Nerve Conduits for Sutureless Neurorrhaphy. Adv Healthc Mater 2023; 12:e2300701. [PMID: 37017130 DOI: 10.1002/adhm.202300701] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Indexed: 04/06/2023]
Abstract
There are only a few reports of implantable 4D printed biomaterials, most of which exhibit slow deformations rendering them unsuitable for in situ surgical deployment. In this study, a hydrogel system is engineered with defined swelling behaviors, which demonstrated excellent printability in extrusion-based 3D printing and programmed shape deformations post-printing. Shape deformations of the spatially patterned hydrogels with defined infill angles are computationally predicted for a variety of 3D printed structures, which are subsequently validated experimentally. The gels are coated with gelatin-rich nanofibers to augment cell growth. 3D-printed hydrogel sheets with pre-programmed infill patterns rapidly self-rolled into tubes in vivo to serve as nerve-guiding conduits for repairing sciatic nerve defects in a rat model. These 4D-printed hydrogels minimized the complexity of surgeries by tightly clamping the resected ends of the nerves to assist in the healing of peripheral nerve damage, as revealed by histological evaluation and functional assessments for up to 45 days. This work demonstrates that 3D-printed hydrogels can be designed for programmed shape changes by swelling in vivo to yield 4D-printed tissue constructs for the repair of peripheral nerve damage with the potential to be extended in other areas of regenerative medicine.
Collapse
Affiliation(s)
- Akshat Joshi
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Saswat Choudhury
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Vageesh Singh Baghel
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Souvik Ghosh
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Molecular Endocrinology Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sumeet Gupta
- Department of Pharmacy, Maharshi Markandeshwar University, Mullana, 133207, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - G K Ananthasuresh
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Kaushik Chatterjee
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
22
|
Zennifer A, Thangadurai M, Sundaramurthi D, Sethuraman S. Additive manufacturing of peripheral nerve conduits - Fabrication methods, design considerations and clinical challenges. SLAS Technol 2023; 28:102-126. [PMID: 37028493 DOI: 10.1016/j.slast.2023.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Tissue-engineered nerve guidance conduits (NGCs) are a viable clinical alternative to autografts and allografts and have been widely used to treat peripheral nerve injuries (PNIs). Although these NGCs are successful to some extent, they cannot aid in native regeneration by improving native-equivalent neural innervation or regrowth. Further, NGCs exhibit longer recovery period and high cost limiting their clinical applications. Additive manufacturing (AM) could be an alternative to the existing drawbacks of the conventional NGCs fabrication methods. The emergence of the AM technique has offered ease for developing personalized three-dimensional (3D) neural constructs with intricate features and higher accuracy on a larger scale, replicating the native feature of nerve tissue. This review introduces the structural organization of peripheral nerves, the classification of PNI, and limitations in clinical and conventional nerve scaffold fabrication strategies. The principles and advantages of AM-based techniques, including the combinatorial approaches utilized for manufacturing 3D nerve conduits, are briefly summarized. This review also outlines the crucial parameters, such as the choice of printable biomaterials, 3D microstructural design/model, conductivity, permeability, degradation, mechanical property, and sterilization required to fabricate large-scale additive-manufactured NGCs successfully. Finally, the challenges and future directions toward fabricating the 3D-printed/bioprinted NGCs for clinical translation are also discussed.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
23
|
Lin Y, Yu J, Zhang Y, Hayat U, Liu C, Huang X, Lin H, Wang JY. 4D printed tri-segment nerve conduit using zein gel as the ink for repair of rat sciatic nerve large defect. BIOMATERIALS ADVANCES 2023; 151:213473. [PMID: 37245344 DOI: 10.1016/j.bioadv.2023.213473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Zein has enormous potential for application in biomedical field due to biodegradation and biocompatibility, we have recently prepared zein gel as a possible 3D printing ink. Our previous studies found that the pore structure in zein material can reduce early inflammation, promote the polarization of macrophages toward the M2 phenotype, and accelerate nerve regeneration. To further explore the role of zein in nerve repair, we used 4D printing technique to create nerve conduits with zein protein gel, and designed 2 types of tri-segment conduits with different degradation rates. Structural parts printed in support baths with higher water content show faster degradation rates than those printed in support baths with lower water content. The conduits that degraded quickly at both ends and slowly in the middle (CB75-CB40-CB75) and the conduits that degraded slowly at both ends and quickly in the middle (CB40-CB75-CB40) were 4D printed, respectively. Animal experiments suggest that the CB75-CB40-CB75 conduit is better for nerve repair, which may be because its degradation pattern can match to the pattern of nerve regeneration better. Our new strategy through 4D printing indicated that fine modulation in conduit degradation can affect efficacy of nerve repair significantly.
Collapse
Affiliation(s)
- Yaofa Lin
- Department of Orthopaedics, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai 201803, China
| | - Jinwen Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yubei Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Uzma Hayat
- Jiaxing Yaojiao Medical Device Co. Ltd., 321 Jiachuang Road, Jiaxing 314032, China
| | - Chang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyun Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai 200040, China
| | - Haodong Lin
- Department of Orthopaedics, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai 201803, China; Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai 200080, China.
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Jiaxing Yaojiao Medical Device Co. Ltd., 321 Jiachuang Road, Jiaxing 314032, China.
| |
Collapse
|
24
|
Fang Y, Wang C, Liu Z, Ko J, Chen L, Zhang T, Xiong Z, Zhang L, Sun W. 3D Printed Conductive Multiscale Nerve Guidance Conduit with Hierarchical Fibers for Peripheral Nerve Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205744. [PMID: 36808712 PMCID: PMC10131803 DOI: 10.1002/advs.202205744] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Nerve guidance conduits (NGCs) have become a promising alternative for peripheral nerve regeneration; however, the outcome of nerve regeneration and functional recovery is greatly affected by the physical, chemical, and electrical properties of NGCs. In this study, a conductive multiscale filled NGC (MF-NGC) consisting of electrospun poly(lactide-co-caprolactone) (PCL)/collagen nanofibers as the sheath, reduced graphene oxide /PCL microfibers as the backbone, and PCL microfibers as the internal structure for peripheral nerve regeneration is developed. The printed MF-NGCs presented good permeability, mechanical stability, and electrical conductivity, which further promoted the elongation and growth of Schwann cells and neurite outgrowth of PC12 neuronal cells. Animal studies using a rat sciatic nerve injury model reveal that the MF-NGCs promote neovascularization and M2 transition through the rapid recruitment of vascular cells and macrophages. Histological and functional assessments of the regenerated nerves confirm that the conductive MF-NGCs significantly enhance peripheral nerve regeneration, as indicated by improved axon myelination, muscle weight increase, and sciatic nerve function index. This study demonstrates the feasibility of using 3D-printed conductive MF-NGCs with hierarchically oriented fibers as functional conduits that can significantly enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Chengjin Wang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Zibo Liu
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Jeonghoon Ko
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Li Chen
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Ting Zhang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Zhuo Xiong
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Lei Zhang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Wei Sun
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
- Department of Mechanical EngineeringDrexel UniversityPhiladelphiaPA19104USA
| |
Collapse
|
25
|
Perrelle JM, Boreland AJ, Gamboa JM, Gowda P, Murthy NS. Biomimetic Strategies for Peripheral Nerve Injury Repair: An Exploration of Microarchitecture and Cellularization. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:21-37. [PMID: 38343513 PMCID: PMC10857769 DOI: 10.1007/s44174-022-00039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 02/15/2024]
Abstract
Injuries to the nervous system present formidable challenges to scientists, clinicians, and patients. While regeneration within the central nervous system is minimal, peripheral nerves can regenerate, albeit with limitations. The regenerative mechanisms of the peripheral nervous system thus provide fertile ground for clinical and scientific advancement, and opportunities to learn fundamental lessons regarding nerve behavior in the context of regeneration, particularly the relationship of axons to their support cells and the extracellular matrix environment. However, few current interventions adequately address peripheral nerve injuries. This article aims to elucidate areas in which progress might be made toward developing better interventions, particularly using synthetic nerve grafts. The article first provides a thorough review of peripheral nerve anatomy, physiology, and the regenerative mechanisms that occur in response to injury. This is followed by a discussion of currently available interventions for peripheral nerve injuries. Promising biomaterial fabrication techniques which aim to recapitulate nerve architecture, along with approaches to enhancing these biomaterial scaffolds with growth factors and cellular components, are then described. The final section elucidates specific considerations when developing nerve grafts, including utilizing induced pluripotent stem cells, Schwann cells, nerve growth factors, and multilayered structures that mimic the architectures of the natural nerve.
Collapse
Affiliation(s)
- Jeremy M. Perrelle
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ, USA
| | - Jasmine M. Gamboa
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Prarthana Gowda
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - N. Sanjeeva Murthy
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
26
|
Yan L, Entezari A, Zhang Z, Zhong J, Liang J, Li Q, Qi J. An experimental and numerical study of the microstructural and biomechanical properties of human peripheral nerve endoneurium for the design of tissue scaffolds. Front Bioeng Biotechnol 2022; 10:1029416. [PMID: 36545684 PMCID: PMC9762494 DOI: 10.3389/fbioe.2022.1029416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Biomimetic design of scaffold architectures represents a promising strategy to enable the repair of tissue defects. Natural endoneurium extracellular matrix (eECM) exhibits a sophisticated microstructure and remarkable microenvironments conducive for guiding neurite regeneration. Therefore, the analysis of eECM is helpful to the design of bionic scaffold. Unfortunately, a fundamental lack of understanding of the microstructural characteristics and biomechanical properties of the human peripheral nerve eECM exists. In this study, we used microscopic computed tomography (micro-CT) to reconstruct a three-dimensional (3D) eECM model sourced from mixed nerves. The tensile strength and effective modulus of human fresh nerve fascicles were characterized experimentally. Permeability was calculated from a computational fluid dynamic (CFD) simulation of the 3D eECM model. Fluid flow of acellular nerve fascicles was tested experimentally to validate the permeability results obtained from CFD simulations. The key microstructural parameters, such as porosity is 35.5 ± 1.7%, tortuosity in endoneurium (X axis is 1.26 ± 0.028, Y axis is 1.26 ± 0.020 and Z axis is 1.17 ± 0.03, respectively), tortuosity in pore (X axis is 1.50 ± 0.09, Y axis is 1.44 ± 0.06 and Z axis is 1.13 ± 0.04, respectively), surface area-to-volume ratio (SAVR) is 0.165 ± 0.007 μm-1 and pore size is 11.8 ± 2.8 μm, respectively. These were characterized from the 3D eECM model and may exert different effects on the stiffness and permeability. The 3D microstructure of natural peripheral nerve eECM exhibits relatively lower permeability (3.10 m2 × 10-12 m2) than other soft tissues. These key microstructural and biomechanical parameters may play an important role in the design and fabrication of intraluminal guidance scaffolds to replace natural eECM. Our findings can aid the development of regenerative therapies and help improve scaffold design.
Collapse
Affiliation(s)
- Liwei Yan
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China
| | - Ali Entezari
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, Australia,School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Zhongpu Zhang
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, Australia
| | - Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Jing Liang
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia,*Correspondence: Jian Qi, ; Qing Li,
| | - Jian Qi
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China,Guangdong Provincial Key Laboratory for Orthopedics and Traumatology, Guangzhou, China,*Correspondence: Jian Qi, ; Qing Li,
| |
Collapse
|
27
|
Wei S, Hu Q, Ma J, Dai X, Sun Y, Han G, Meng H, Xu W, Zhang L, Ma X, Peng J, Wang Y. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioact Mater 2022; 18:300-320. [PMID: 35387172 PMCID: PMC8961471 DOI: 10.1016/j.bioactmat.2022.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Compared to conventional artificial nerve guide conduits (NGCs) prepared using natural polymers or synthetic polymers, acellular nerve grafts (ACNGs) derived from natural nerves with eliminated immune components have natural bionic advantages in composition and structure that polymer materials do not have. To further optimize the repair effect of ACNGs, in this study, we used a composite technology based on supercritical carbon dioxide (scCO2) extraction to process the peripheral nerve of a large mammal, the Yorkshire pig, and obtained an innovative Acellular nerve xenografts (ANXs, namely, CD + scCO2 NG). After scCO2 extraction, the fat and DNA content in CD + scCO2 NG has been removed to the greatest extent, which can better supported cell adhesion and proliferation, inducing an extremely weak inflammatory response. Interestingly, the protein in the CD + scCO2 NG was primarily involved in signaling pathways related to axon guidance. Moreover, compared with the pure chemical decellularized nerve graft (CD NG), the DRG axons grew naturally on the CD + scCO2 NG membrane and extended long distances. In vivo studies further revealed that the regenerated nerve axons had basically crossed the CD + scCO2 NG 3 weeks after surgery. 12 weeks after surgery, CD + scCO2 NG was similar to autologous nerves in improving the quality of nerve regeneration, target muscle morphology and motor function recovery and was significantly better than hollow NGCs and CD NG. Therefore, we believe that the fully decellularized and fat-free porcine ACNGs may be the most promising “bridge” for repairing human nerve defects at this stage and for some time to come. The native adipose tissue inside acellular nerve xenografts hinders regenerated nerve fibers. Environmentally friendly scCO2 extraction has natural advantages in reducing fat content. Natural three-dimensional nerve basement membrane tube structure guides regenerating axons.
Collapse
|
28
|
Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 2022; 218:930-968. [PMID: 35896130 DOI: 10.1016/j.ijbiomac.2022.07.140] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
The three-dimensional printing (3DP) also known as the additive manufacturing (AM), a novel and futuristic technology that facilitates the printing of multiscale, biomimetic, intricate cytoarchitecture, function-structure hierarchy, multi-cellular tissues in the complicated micro-environment, patient-specific scaffolds, and medical devices. There is an increasing demand for developing 3D-printed products that can be utilized for organ transplantations due to the organ shortage. Nowadays, the 3DP has gained considerable interest in the tissue engineering (TE) field. Polylactide (PLA) and polycaprolactone (PCL) are exemplary biomaterials with excellent physicochemical properties and biocompatibility, which have drawn notable attraction in tissue regeneration. Herein, the recent advancements in the PLA and PCL biodegradable polymer-based composites as well as their reinforcement with hydrogels and bio-ceramics scaffolds manufactured through 3DP are systematically summarized and the applications of bone, cardiac, neural, vascularized and skin tissue regeneration are thoroughly elucidated. The interaction between implanted biodegradable polymers, in-vivo and in-vitro testing models for possible evaluation of degradation and biological properties are also illustrated. The final section of this review incorporates the current challenges and future opportunities in the 3DP of PCL- and PLA-based composites that will prove helpful for biomedical engineers to fulfill the demands of the clinical field.
Collapse
|
29
|
Zhao C, Lv Q, Wu W. Application and Prospects of Hydrogel Additive Manufacturing. Gels 2022; 8:gels8050297. [PMID: 35621595 PMCID: PMC9141908 DOI: 10.3390/gels8050297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogel has become a commonly used material for 3D and 4D printing due to its favorable biocompatibility and low cost. Additive manufacturing, also known as 3D printing, was originally referred to as rapid prototyping manufacturing. Variable-feature rapid prototyping technology, also known as 4D printing, is a combination of materials, mathematics, and additives. This study constitutes a literature review to address hydrogel-based additive manufacturing technologies, introducing the characteristics of commonly used 3D printing hydrogel methods, such as direct ink writing, fused deposition modeling, and stereolithography. With this review, we also investigated the stimulus types, as well as the advantages and disadvantages of various stimulus-responsive hydrogels in smart hydrogels; non-responsive hydrogels; and various applications of additive manufacturing hydrogels, such as neural catheter preparation and drug delivery. The opportunities, challenges, and future prospects of hydrogel additive manufacturing technologies are discussed.
Collapse
Affiliation(s)
- Changlong Zhao
- Department of Mechanical and Vehicle Engineering, Changchun University, Changchun 130012, China; (C.Z.); (Q.L.)
| | - Qiyin Lv
- Department of Mechanical and Vehicle Engineering, Changchun University, Changchun 130012, China; (C.Z.); (Q.L.)
| | - Wenzheng Wu
- Department of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
- Correspondence:
| |
Collapse
|
30
|
Lai CSE, Leyva-Aranda V, Kong VH, Lopez-Silva TL, Farsheed AC, Cristobal CD, Swain JWR, Lee HK, Hartgerink JD. A Combined Conduit-Bioactive Hydrogel Approach for Regeneration of Transected Sciatic Nerves. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00132. [PMID: 35446025 PMCID: PMC11097895 DOI: 10.1021/acsabm.2c00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.
Collapse
Affiliation(s)
- Cheuk Sun Edwin Lai
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Victoria H Kong
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Tania L Lopez-Silva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Carlo D Cristobal
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
31
|
Deng P, Chen F, Zhang H, Chen Y, Zhou J. Multifunctional Double-Layer Composite Hydrogel Conduit Based on Chitosan for Peripheral Nerve Repairing. Adv Healthc Mater 2022; 11:e2200115. [PMID: 35396930 DOI: 10.1002/adhm.202200115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Peripheral nerve regeneration and functional recovery is a major challenge in clinical practice. Nerve conduit is an effective treatment for peripheral nerve repair, but the traditional hollow nerve conduit is not satisfactory in peripheral nerve repair due to the limitation of cell migration and nutrient transport. Herein, the double cross-linked hydrogels with injectable, self-healing, and conductive properties are synthesized by the Schiff base reaction between polyaniline-modified carboxymethyl chitosan and aldehyde-modified Pluronic F-127 (F127-CHO), and the hydrophobic interaction of F127-CHO. The conductive hydrogel is injected into the cavity of chitosan conduit prepared by electrodeposition. The inner conductive hydrogel and the outer chitosan conduit are formed into a whole through the Schiff base reaction to obtain a double-layer composite hydrogel nerve conduit. The double-layer composite hydrogel neural conduit loaded with 7,8-dihydroxyflavone (DHF) has excellent degradability, biocompatibility, antioxidant activity, and Schwann cell proliferation activity. In the rat sciatic nerve defect model, the double-layer composite hydrogel nerve conduit significantly promotes sciatic nerve regeneration compared with the chitosan hollow conduit. Surprisingly, the repair ability of double-layered hydrogel nerve conduit loaded with DHF is comparable to that of autologous transplantation. Therefore, this multifunctional double-layer composite hydrogel conduit has great potential for peripheral nerve repairing.
Collapse
Affiliation(s)
- Pengpeng Deng
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
- Department of Biomedical Engineering Hubei Province Key Laboratory of Allergy and Immune Related Diseases School of Basic Medical Science Wuhan University Wuhan 430071 China
| | - Feixiang Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Haodong Zhang
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| | - Yun Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| |
Collapse
|
32
|
Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103875. [PMID: 35182046 PMCID: PMC9036027 DOI: 10.1002/advs.202103875] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Indexed: 05/07/2023]
Abstract
The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Lesan Yan
- Biomedical Materials and Engineering Research Center of Hubei ProvinceState Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Zhiming Song
- Department of Sports MedicineThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
33
|
Farzan A, Borandeh S, Seppälä J. Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Kang NU, Lee SJ, Gwak SJ. Fabrication Techniques of Nerve Guidance Conduits for Nerve Regeneration. Yonsei Med J 2022; 63:114-123. [PMID: 35083896 PMCID: PMC8819402 DOI: 10.3349/ymj.2022.63.2.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/27/2022] Open
Abstract
Neuronal loss and axonal degeneration after spinal cord injury or peripheral injury result in the loss of sensory and motor functions. Nerve regeneration is a complicated and medical challenge that requires suitable guides to bridge nerve injury gaps and restore nerve function. Due to the hostility of the microenvironment in the lesion, multiple conditions should be fulfilled to achieve improved functional recovery. Many nerve conduits have been fabricated using various natural and synthetic polymers. The design and material of the nerve guide conduits were carefully reviewed. A detailed review was conducted on the fabrication method of the nerve guide conduit for nerve regeneration. The typical fabrication methods used to fabricate nerve conduits are dip coating, solvent casting, micropatterning, electrospinning, and additive manufacturing. The advantages and disadvantages of the fabrication methods were reported, and research to overcome these limitations was reviewed. Extensive reviews have focused on the biological functions and in vivo performance of polymeric nerve conduits. In this paper, we emphasize the fabrication method of nerve conduits by polymers and their properties. By learning from the existing candidates, we can advance the strategies for designing novel polymeric systems with better properties for nerve regeneration.
Collapse
Affiliation(s)
- Nae-Un Kang
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, Iksan, Korea
| | - Seung-Jae Lee
- Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, Iksan, Korea.
| | - So-Jung Gwak
- Department of Chemical Engineering, College of Engineering, Wonkwang University, Iksan, Korea.
| |
Collapse
|
35
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
36
|
Casanova MR, Reis RL, Martins A, Neves NM. Stimulation of Neurite Outgrowth Using Autologous NGF Bound at the Surface of a Fibrous Substrate. Biomolecules 2021; 12:25. [PMID: 35053173 PMCID: PMC8773656 DOI: 10.3390/biom12010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerve injury still remains a major clinical challenge, since the available solutions lead to dysfunctional nerve regeneration. Even though autologous nerve grafts are the gold standard, tissue engineered nerve guidance grafts are valid alternatives. Nerve growth factor (NGF) is the most potent neurotrophic factor. The development of a nerve guidance graft able to locally potentiate the interaction between injured neurons and autologous NGF would be a safer and more effective alternative to grafts that just release NGF. Herein, a biofunctional electrospun fibrous mesh (eFM) was developed through the selective retrieval of NGF from rat blood plasma. The neurite outgrowth induced by the eFM-NGF systems was assessed by culturing rat pheochromocytoma (PC12) cells for 7 days, without medium supplementation. The biological results showed that this NGF delivery system stimulates neuronal differentiation, enhancing the neurite growth more than the control condition.
Collapse
Affiliation(s)
- Marta R. Casanova
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark–Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (M.R.C.); (R.L.R.); (A.M.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark–Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (M.R.C.); (R.L.R.); (A.M.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark–Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (M.R.C.); (R.L.R.); (A.M.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark–Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (M.R.C.); (R.L.R.); (A.M.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
37
|
Han Y, Yin J. Industry news: the additive manufacturing of nerve conduits for the treatment of peripheral nerve injury. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00166-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
39
|
Yang Z, Yang Y, Xu Y, Jiang W, Shao Y, Xing J, Chen Y, Han Y. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration. Stem Cell Res Ther 2021; 12:442. [PMID: 34362437 PMCID: PMC8343914 DOI: 10.1186/s13287-021-02528-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Efficient and stable delivery of neurotrophic factors (NTFs) is crucial to provide suitable microenvironment for peripheral nerve regeneration. Neurotrophin-3 (NT-3) is an important NTF during peripheral nerve regeneration which is scarce in the first few weeks of nerve defect. Exosomes are nanovesicles and have been served as promising candidate for biocarrier. In this work, NT-3 mRNA was encapsulated in adipose-derived stem cell (ADSC)-derived exosomes (ExoNT-3). These engineered exosomes were applied as NT-3 mRNA carrier and then were loaded in nerve guidance conduit (ExoNT-3-NGC) to bridge rat sciatic nerve defect. METHOD NT-3 mRNA was encapsulated in exosomes by forcedly expression of NT-3 mRNA in the donor ADSCs. ExoNT-3 were co-cultured with SCs in vitro; after 24 h of culture, the efficiency of NT-3 mRNA delivery was evaluated by qPCR, western blotting and ELISA. Then, ExoNT-3 were loaded in alginate hydrogel to construct the nerve guidance conduits (ExoNT-3-NGC). ExoNT-3-NGC were implanted in vivo to reconstruct 10 mm rat sciatic nerve defect. The expression of NT-3 was measured 2 weeks after the implantation operation. The sciatic nerve functional index (SFI) was examined at 2 and 8 weeks after the operation. Moreover, the therapeutic effect of ExoNT-3-NGC was also evaluated by morphology assay, immunofluorescence staining of regenerated nerves, function evaluation of gastrocnemius muscles after 8 weeks of implantation. RESULTS The engineered exosomes could deliver NT-3 mRNA to the recipient cells efficiently and translated into functional protein. The constructed NGC could realize stable release of exosomes at least for 2 weeks. After NGC implantation in vivo, ExoNT-3-NGC group significantly promote nerve regeneration and improve the function recovery of gastrocnemius muscles compared with control exosomes (Exoempty-NGC) group. CONCLUSION In this work, NGC was constructed to allow exosome-mediated NT-3 mRNA delivery. After ExoNT-3-NGC implantation in vivo, the level of NT-3 could restore which enhance the nerve regeneration. Our study provide a potential approach to improve nerve regeneration.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Yang
- Xi'an Daxing Hospital, Xi'an, 710016, Shaanxi, China
| | - Yichi Xu
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weiqian Jiang
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Shao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiahua Xing
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Youbai Chen
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan Han
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
40
|
Singh A, Raghav A, Shiekh PA, Kumar A. Transplantation of engineered exosomes derived from bone marrow mesenchymal stromal cells ameliorate diabetic peripheral neuropathy under electrical stimulation. Bioact Mater 2021; 6:2231-2249. [PMID: 33553812 PMCID: PMC7829156 DOI: 10.1016/j.bioactmat.2021.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a long-term complication associated with nerve dysfunction and uncontrolled hyperglycemia. In spite of new drug discoveries, development of effective therapy is much needed to cure DPN. Here, we have developed a combinatorial approach to provide biochemical and electrical cues, considered to be important for nerve regeneration. Exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) were fused with polypyrrole nanoparticles (PpyNps) containing liposomes to deliver both the cues in a single delivery vehicle. We developed DPN rat model and injected intramuscularly the fused exosomal system to understand its long-term therapeutic effect. We found that the fused system along with electrical stimulation normalized the nerve conduction velocity (57.60 ± 0.45 m/s) and compound muscle action potential (16.96 ± 0.73 mV) similar to healthy control (58.53 ± 1.10 m/s; 18.19 ± 1.45 mV). Gastrocnemius muscle morphology, muscle mass, and integrity were recovered after treatment. Interestingly, we also observed paracrine effect of delivered exosomes in controlling hyperglycemia and loss in body weight and also showed attenuation of damage to the tissues such as the pancreas, kidney, and liver. This work provides a promising effective treatment and also contribute cutting edge therapeutic approach for the treatment of DPN.
Collapse
Affiliation(s)
- Anamika Singh
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Alok Raghav
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Parvaiz Ahmad Shiekh
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| |
Collapse
|
41
|
Chen F, Wu M, Wu P, Xiao A, Ke M, Huselstein C, Cai L, Tong Z, Chen Y. Natural Flammulina velutipes-Based Nerve Guidance Conduit as a Potential Biomaterial for Peripheral Nerve Regeneration: In Vitro and In Vivo Studies. ACS Biomater Sci Eng 2021; 7:3821-3834. [PMID: 34297535 DOI: 10.1021/acsbiomaterials.1c00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The treatment and repair of serious peripheral nerve injuries remain challenging in the clinical practice, while the application of multifunctional nerve guidance conduits (NGCs) based on naturally derived polymers has attracted much attention in recent years because of their excellent physicochemical properties and biological characteristics. Flammulina velutipes (Curt. ex FV) is a popular edible mushroom characterized by hollow tubular structures, antibacterial activities, and high nutritional properties. In this study, FV is utilized to construct NGCs (labeled FVC) via a freeze-drying technique without chemical modifications. The morphology, physical properties, cellular biocompatibility, antibacterial properties, and nerve regeneration capacity of FVC were assessed both in vitro and in vivo. FVC is composed of hollow tubes and evenly irregular interconnected micropores with 73.8 ± 5.5% porosity and 476.1 ± 12.9 μm hollow tube diameter. The inner surface of the FVC presents multiple microgrooves elongated parallel to the long axis. Moreover, FVC possessed strong antibacterial activity and could inhibit Gram-positive Staphylococcus aureus growth by up to 96.0% and Gram-negative Escherichia coli growth by up to 94.8% in vitro. FVC exhibited excellent biocompatibility and effectively promoted PC-12 cell proliferation and elongation in vitro. When applied to repair critical-sized sciatic nerve defects, FVC could effectively stimulate nerve functional recovery and axonal outgrowth in a rat model. Interestingly, Western blot analysis indicated that growth-associated protein 43 (GAP-43) had increased expression levels in the FVC group compared with the autograft group. This result suggested that by activating the Janus activated kinase2 (JAK2)/Phosphorylation ofsignal transducer and activator of transcription-3 (STAT3) signaling pathway, FVC upregulated Phosphorylation of signal transducer and activator of transcription-3 (P-STAT3) in vivo, resulting in the secretion of GAP-43. Collectively, a natural NGC FVC was fabricated based on FV without chemical modifications. The morphology, physical properties, cellular biocompatibility, antibacterial properties, and nerve regeneration capacity of FVC provide new insights for its further optimization and application in the field of nerve tissue engineering.
Collapse
Affiliation(s)
- Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ping Wu
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ao Xiao
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Meifang Ke
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Céline Huselstein
- CNRS UMR 7561 and FR CNRS-INSERM 32.09 Nancy University, Vandœuvre-lès-Nancy 54500, France
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zan Tong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
42
|
Alastra G, Aloe L, Baldassarro VA, Calzà L, Cescatti M, Duskey JT, Focarete ML, Giacomini D, Giardino L, Giraldi V, Lorenzini L, Moretti M, Parmeggiani I, Sannia M, Tosi G. Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application? Front Neurosci 2021; 15:695592. [PMID: 34335170 PMCID: PMC8319677 DOI: 10.3389/fnins.2021.695592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.
Collapse
Affiliation(s)
- Giuseppe Alastra
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | - Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Jason Thomas Duskey
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Letizia Focarete
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Daria Giacomini
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- IRET Foundation, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Giraldi
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Irene Parmeggiani
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sannia
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Giovanni Tosi
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
43
|
Huang Y, Wu W, Liu H, Chen Y, Li B, Gou Z, Li X, Gou M. 3D printing of functional nerve guide conduits. BURNS & TRAUMA 2021; 9:tkab011. [PMID: 34212061 PMCID: PMC8240533 DOI: 10.1093/burnst/tkab011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nerve guide conduits (NGCs), as alternatives to nerve autografts and allografts, have been widely explored as an advanced tool for the treatment of peripheral nerve injury. However, the repairing efficiency of NGCs still needs significant improvements. Functional NGCs that provide a more favorable microenvironment for promoting axonal elongation and myelination are of great importance. In recent years, 3D printing technologies have been widely applied in the fabrication of customized and complex constructs, exhibiting great potential for tissue engineering applications, especially for the construction of functional NGCs. In this review, we introduce the 3D printing technologies for manufacturing functional NGCs, including inkjet printing, extrusion printing, stereolithography-based printing and indirect printing. Further, we summarize the current methods and strategies for constructing functional NGCs, such as designing special conduit architectures, using appropriate materials and co-printing with different biological cues. Finally, the challenges and prospects for construction of functional NGCs are also presented.
Collapse
Affiliation(s)
- Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
44
|
Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100427. [PMID: 34038626 PMCID: PMC8295195 DOI: 10.1002/adhm.202100427] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Nerve guidance conduits with multifunctional features could offer microenvironments for improved nerve regeneration and functional recovery. However, the challenge remains to optimize multiple cues in nerve conduit systems due to the interplay of these factors during fabrication. Here, a modular assembly for the fabrication of nerve conduits is utilized to address the goal of incorporating multifunctional guidance cues for nerve regeneration. Silk-based hollow conduits with suitable size and mechanical properties, along with silk nanofiber fillers with tunable hierarchical anisotropic architectures and microporous structures, are developed and assembled into conduits. These conduits supported improves nerve regeneration in terms of cell proliferation (Schwann and PC12 cells) and growth factor secretion (BDNF, brain-derived neurotrophic factor) in vitro, and the in vivo repair and functional recovery of rat sciatic nerve defects. Nerve regeneration using these new conduit designs is comparable to autografts, providing a path towards future clinical impact.
Collapse
Affiliation(s)
- Qingqing Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Xiang Gao
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
45
|
Yan Z, Qian Y, Fan C. Biomimicry in 3D printing design: implications for peripheral nerve regeneration. Regen Med 2021; 16:683-701. [PMID: 34189955 DOI: 10.2217/rme-2020-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nerve guide conduits (NGCs) connect dissected nerve stumps and effectively repair short-range peripheral nerve defects. However, for long-range defects, autografts show better therapeutic effects, despite intrinsic limitations. Recent evidence shows that biomimetic design is essential for high-performance NGCs, and 3D printing is a promising fabricating technique. The current work includes a brief review of the challenges for peripheral nerve regeneration. The authors propose a potential solution using biomimetic 3D-printed NGCs as alternative therapies. The assessment of biomimetic designs includes microarchitecture, mechanical property, electrical conductivity and biologics inclusion. The applications of 3D printing in preparing NGCs and present strategies to improve therapeutic effects are also discussed.
Collapse
Affiliation(s)
- Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
46
|
Lytkina DN, Fedorishin DA, Kalachikova PM, Plyaskina AA, Babeshin AR, Kurzina IA. Cryo-Structured Materials Based on Polyvinyl Alcohol and Hydroxyapatite for Osteogenesis. J Funct Biomater 2021; 12:jfb12010018. [PMID: 33807513 PMCID: PMC8006254 DOI: 10.3390/jfb12010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
The application of various materials in biomedical procedures has recently experienced rapid growth. One of the areas is the treatment of many of different types of bone-related diseases and disorders by using biodegradable polymer-ceramic composites. We have developed a material based on cryogel polyvinyl alcohol, mineralized with calcium phosphate. Composites were obtained by cyclic freezing-thawing, the synthesis of calcium phosphates was carried out in situ under the influence of microwave radiation with heating and stirring. The components of the composites were determined using the methods of IR-spectroscopy and scanning electron microscopy and electron probe microanalyzer, as well as their morphology and surface properties. The biological compatibility of the material was investigated in vivo for a Wistar rat. The assessment of the quality of bone formation between the cryogel-based implant and the damaged bone was carried out by computed tomography. An improvement in the consolidation of the bone defect is observed in the bone with the composite in comparison with the control bone.
Collapse
Affiliation(s)
- Daria N. Lytkina
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
| | - Dmitriy A. Fedorishin
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
| | - Polina M. Kalachikova
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Anastasiya A. Plyaskina
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
| | - Aleksandr R. Babeshin
- Department of Surgical Diseases with a Course in Traumatology and Orthopedics, Siberian State Medical University, Moskovsky trakt 2, 634055 Tomsk, Russia;
| | - Irina A. Kurzina
- Chemical Department, National Research Tomsk State University, Lenin 36, 634050 Tomsk, Russia; (D.N.L.); (D.A.F.); (P.M.K.); (A.A.P.)
- Correspondence: ; Tel.: +7-913-882-1028
| |
Collapse
|
47
|
Singh A, Shiekh PA, Qayoom I, Srivastava E, Kumar A. Evaluation of polymeric aligned NGCs and exosomes in nerve injury models in diabetic peripheral neuropathy condition. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Shiekh PA, Andrabi SM, Singh A, Majumder S, Kumar A. Designing cryogels through cryostructuring of polymeric matrices for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Ucar B, Kajtez J, Foidl BM, Eigel D, Werner C, Long KR, Emnéus J, Bizeau J, Lomora M, Pandit A, Newland B, Humpel C. Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomater 2021; 121:250-262. [PMID: 33242639 DOI: 10.1016/j.actbio.2020.11.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Protection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum. The biomaterials (either alone or loaded with GDNF) were locally applied onto the brain co-slices and fiber growth between the co-slices was evaluated after three weeks in culture based on staining for tyrosine hydroxylase (TH). Collagen hydrogels loaded with GDNF slightly promoted the TH+ nerve fiber growth towards the dorsal striatum, while GDNF loaded microspheres embedded within the hydrogels did not provide an improvement. Cryogels alone or loaded with GDNF also enhanced TH+ fiber growth. Lines of GDNF immobilized onto the membrane inserts via microcontact printing also significantly improved TH+ fiber growth. In conclusion, this study shows that various biomaterials and tissue engineering techniques can be employed to regenerate the nigrostriatal pathway in organotypic brain slices. This comparison of techniques highlights the relative merits of different technologies that researchers can use/develop for neuronal regeneration strategies.
Collapse
Affiliation(s)
- Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Janko Kajtez
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Denmark
| | - Bettina M Foidl
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Germany
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Denmark
| | - Joëlle Bizeau
- SFI Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Mihai Lomora
- SFI Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- SFI Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
50
|
Olăreț E, Drăgușin DM, Serafim A, Lungu A, Șelaru A, Dobranici A, Dinescu S, Costache M, Boerașu I, Vasile BȘ, Steinmüller-Nethl D, Iovu H, Stancu IC. Electrospinning Fabrication and Cytocompatibility Investigation of Nanodiamond Particles-Gelatin Fibrous Tubular Scaffolds for Nerve Regeneration. Polymers (Basel) 2021; 13:polym13030407. [PMID: 33514051 PMCID: PMC7865256 DOI: 10.3390/polym13030407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
This paper reports the electrospinning fabrication of flexible nanostructured tubular scaffolds, based on fish gelatin (FG) and nanodiamond nanoparticles (NDs), and their cytocompatibility with murine neural stem cells. The effects of both nanofiller and protein concentration on the scaffold morphology, aqueous affinity, size modification at rehydration, and degradation are assessed. Our findings indicate that nanostructuring with low amounts of NDs may modify the fiber properties, including a certain regional parallel orientation of fiber segments. NE-4C cells form dense clusters that strongly adhere to the surface of FG50-based scaffolds, while also increasing FG concentration and adding NDs favor cellular infiltration into the flexible fibrous FG70_NDs nanocomposite. This research illustrates the potential of nanostructured NDs-FG fibers as scaffolds for nerve repair and regeneration. We also emphasize the importance of further understanding the effect of the nanofiller-protein interphase on the microstructure and properties of electrospun fibers and on cell-interactivity.
Collapse
Affiliation(s)
- Elena Olăreț
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Diana-Maria Drăgușin
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Andrada Serafim
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Aida Șelaru
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences “Victor Babes”, 050096 Bucharest, Romania
| | - Alexandra Dobranici
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
- The Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
- The Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| | - Iulian Boerașu
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.B.); (B.Ș.V.)
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.B.); (B.Ș.V.)
- National Research Center for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | | | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Izabela-Cristina Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
- Correspondence:
| |
Collapse
|