1
|
Zhang L, Zhao B, Du W, Liu Q, Jiao C, Liu H, Sun S. Ion-conductive hydrogel sensor prepared with alginate crosslinker for wide-range motion and temperature monitoring. Carbohydr Polym 2025; 354:123278. [PMID: 39978926 DOI: 10.1016/j.carbpol.2025.123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/22/2025]
Abstract
Flexible wearable electronic devices have gained widespread attention due to their comfort and real-time information transmission capabilities. However, they often exhibit poor stretchability, low sensitivity, and limited functionality, which restricts their practical applications. Herein, a conductive hydrogel (PNAL, a polymer synthesized from polyvinyl alcohol, nipaam, acrylic acid, and lithium chloride) that responds to both strain and temperature simultaneously was developed using a natural polysaccharide composite (SA-AGE) synthesized from sodium alginate (SA) and allyl glycidyl ether (AGE) as a crosslinking agent. These hydrogels were fabricated into multifunctional sensors capable of detecting strain and temperature with high sensitivity (gauge factor up to 1.12 and temperature coefficients of resistance up to -1.20 %/°C) and reliable stability (1000 cycles). Importantly, by adjusting the molar ratio of NIPAAm to AA, the volume phase transition temperature (VPTT) of the hydrogel can be easily controlled. When the temperature increases, the hydrogel changes from translucent to white and opaque within 20 s; when the temperature decreases, it returns to its original state. Based on the color-changing property of the hydrogel in response to temperature variations, it can serve as a visible color-changing sticker, providing early warning for patients with fever, thus significantly improving traditional temperature measurement methods.
Collapse
Affiliation(s)
- Long Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; Dezhou Industrial Technology Research Institute, North University of China, Dezhou 253034, China
| | - Benbo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; Dezhou Industrial Technology Research Institute, North University of China, Dezhou 253034, China.
| | - Wenhao Du
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; Dezhou Industrial Technology Research Institute, North University of China, Dezhou 253034, China; State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China.
| | - Quantian Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; Dezhou Industrial Technology Research Institute, North University of China, Dezhou 253034, China
| | - Chenglong Jiao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; Dezhou Industrial Technology Research Institute, North University of China, Dezhou 253034, China
| | - Haoyu Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; Dezhou Industrial Technology Research Institute, North University of China, Dezhou 253034, China
| | - Shixiong Sun
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; Dezhou Industrial Technology Research Institute, North University of China, Dezhou 253034, China
| |
Collapse
|
2
|
Zhao Z, Shen Y, Hu R, Xu D. Advances in flexible ionic thermal sensors: present and perspectives. NANOSCALE 2024; 17:187-213. [PMID: 39575937 DOI: 10.1039/d4nr03423f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ionic thermal sensors (ITSs) represent a promising frontier in sensing technology, offering unique advantages over conventional electronic sensors. Comprising a polymer matrix and electrolyte, these sensors possess inherent flexibility, stretchability, and biocompatibility, allowing them to establish stable and intimate contact with soft surfaces without inducing mechanical or thermal stress. Through an ion migration/dissociation mechanism similar to biosensing, ITSs ensure low impedance contact and high sensitivity, especially in physiological monitoring applications. This review provides a comprehensive overview of ionic thermal sensing mechanisms, contrasting them with their electronic counterparts. Additionally, it explores the intricacy of the sensor architecture, detailing the roles of active sensing elements, stretchable electrodes, and flexible substrates. The decoupled sensing mechanisms for skin-inspired multimodal sensors are also introduced based on several representative examples. The latest applications of ITS are categorized into ionic skin (i-skin), healthcare, spatial thermal perception, and environment detection, regarding their materials, structures, and operation modes. Finally, the perspectives of ITS research are presented, emphasizing the significance of standardized sensing parameters and emerging requirements for practical applications.
Collapse
Affiliation(s)
- Zehao Zhao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| | - Yun Shen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| | - Run Hu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Applied Physics, Kyung Hee University, Yongin-Si, Gyeonggi-do 17104, Republic of Korea
| | - Dongyan Xu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| |
Collapse
|
3
|
Xu R, Xu T, She M, Ji X, Li G, Zhang S, Zhang X, Liu H, Sun B, Shen G, Tian M. Skin-Friendly Large Matrix Iontronic Sensing Meta-Fabric for Spasticity Visualization and Rehabilitation Training via Piezo-Ionic Dynamics. NANO-MICRO LETTERS 2024; 17:90. [PMID: 39694974 DOI: 10.1007/s40820-024-01566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 12/20/2024]
Abstract
Rehabilitation training is believed to be an effectual strategy that can reduce the risk of dysfunction caused by spasticity. However, achieving visualization rehabilitation training for patients remains clinically challenging. Herein, we propose visual rehabilitation training system including iontronic meta-fabrics with skin-friendly and large matrix features, as well as high-resolution image modules for distribution of human muscle tension. Attributed to the dynamic connection and dissociation of the meta-fabric, the fabric exhibits outstanding tactile sensing properties, such as wide tactile sensing range (0 ~ 300 kPa) and high-resolution tactile perception (50 Pa or 0.058%). Meanwhile, thanks to the differential capillary effect, the meta-fabric exhibits a "hitting three birds with one stone" property (dryness wearing experience, long working time and cooling sensing). Based on this, the fabrics can be integrated with garments and advanced data analysis systems to manufacture a series of large matrix structure (40 × 40, 1600 sensing units) training devices. Significantly, the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allow this visualization training strategy extendable to various common disease monitoring. Therefore, we believe that our study overcomes the constraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.
Collapse
Affiliation(s)
- Ruidong Xu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Tong Xu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Minghua She
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xinran Ji
- Academy of Arts & Design of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ganghua Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Shijin Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xinwei Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Liu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
4
|
Ji Y, Li T, Abo-Dief HM, Abualnaja KM, Wei M, Zhang J, Wang X, Zhang J, Guo Z, El-Bahy ZM, Wei H. Polyacrylamide/starch hydrogels doped with layered double hydroxides towards strain sensing applications. Int J Biol Macromol 2024; 280:136333. [PMID: 39482133 DOI: 10.1016/j.ijbiomac.2024.136333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Electrically conductive hydrogels have attracted enormous attention due to the rapid development of flexible electronics. In this paper, the application of layered double hydroxides (LDHs) in the field of conductive hydrogel for strain sensing is firstly explored. LDHs are introduced to the polyacrylamide (PAM)/starch (St) semi-interpenetrating network (SIPN) to fabricate conductive PAM/St/LDHs (PSL) hydrogels for strain sensing applications. The results show that LDHs incorporated into PAM/St SIPN as inorganic nano fillers not only improve the mechanical strength, but also innovatively endow the hydrogel with electrical conductivity properties. The PSL hydrogels exhibit excellent mechanical properties (with an elongation strain of 1750 % and a fracture strength of 0.22 MPa) and decent sensing properties (with a gauge factor of 2.73). As a proof of concept, an 8*8 sensing array based on PSL hydrogels is designed to realize the visualization of pressure sensing, demonstrating the broad prospect of PSL hydrogels in applications of human-computer interaction, flexible wearable and soft robotics.
Collapse
Affiliation(s)
- Yanxiu Ji
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tuo Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khamael M Abualnaja
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mojieming Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jing Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuanye Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jing Zhang
- School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030021, China
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Huige Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Zhu Z, Su Y, Chen J, Zhang J, Liang L, Nie Z, Tang W, Liang Y, Li H. PEDOT:PSS-Based Wearable Flexible Temperature Sensor and Integrated Sensing Matrix for Human Body Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359155 DOI: 10.1021/acsami.4c11251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible temperature sensors have been widely used in electronic skins and health monitoring. Body temperature as one of the key physiological signals is crucial for detecting human body's abnormalities, which necessitates high sensitivity, quick responsiveness, and stable monitoring. In this paper, we reported a resistive temperature sensor designed as an ultrathin laminated structure with a serpentine pattern and a bioinspired adhesive layer, which was fabricated with a composite of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/single-wall carbon nanotubes/reduced graphene oxide (PEDOT:PSS/SWCNTs/rGO) and polydimethylsiloxane (PDMS). The temperature sensor exhibited a high temperature sensitivity of 0.63% °C-1, coupled with outstanding linearity of 0.98 within 25-45 °C. Furthermore, it showed fast response and recovery speeds of 4.8 and 5.8 s, respectively, between 25 and 36 °C. It also demonstrated exceptional stability when subjected to stress and bending disturbances with the maximum bending interference deviation of 0.03%. Additionally, it displayed good cyclic stability over a broad temperature range from 25 to 85 °C, and the standard deviation at 25 °C is 0.14%. A series of experiments including blowing detection, respiratory monitoring with or without a mask, and during rest or sleep were conducted to show the potential of the flexible temperature sensors in human body monitoring. Furthermore, a 4 × 4 flexible temperature sensor matrix was integrated to detect and map objects such as wrenches and blood vessels through human hand skin. The results were consistent with those of infrared measurements. The flexible temperature sensor is capable of real-time temperature monitoring and has the potential in tracking human respiration, assessing sleep quality, and mapping the temperature of various objects.
Collapse
Affiliation(s)
- Zhengfang Zhu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yi Su
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jing Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jinyong Zhang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Lixin Liang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Zedong Nie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wei Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yongsheng Liang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Hui Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| |
Collapse
|
6
|
Mo F, Zhou P, Lin S, Zhong J, Wang Y. A Review of Conductive Hydrogel-Based Wearable Temperature Sensors. Adv Healthc Mater 2024; 13:e2401503. [PMID: 38857480 DOI: 10.1002/adhm.202401503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Conductive hydrogel has garnered significant attention as an emergent candidate for diverse wearable sensors, owing to its remarkable and tailorable properties such as flexibility, biocompatibility, and strong electrical conductivity. These attributes make it highly suitable for various wearable sensor applications (e.g., biophysical, bioelectrical, and biochemical sensors) that can monitor human health conditions and provide timely interventions. Among these applications, conductive hydrogel-based wearable temperature sensors are especially important for healthcare and disease surveillance. This review aims to provide a comprehensive overview of conductive hydrogel-based wearable temperature sensors. First, this work summarizes different types of conductive fillers-based hydrogel, highlighting their recent developments and advantages as wearable temperature sensors. Next, this work discusses the sensing characteristics of conductive hydrogel-based wearable temperature sensors, focusing on sensitivity, dynamic stability, stretchability, and signal output. Then, state-of-the-art applications are introduced, ranging from body temperature detection and wound temperature detection to disease monitoring. Finally, this work identifies the remaining challenges and prospects facing this field. By addressing these challenges with potential solutions, this review hopes to shed some light on future research and innovations in this promising field.
Collapse
Affiliation(s)
- Fan Mo
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shihong Lin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Junwen Zhong
- Department of Electromechanical Engineering, University of Macau, Macau, 999078, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
7
|
Jiang Z, Ji Z, Zhu M, Ma W, Gao S, Xu M. Notch-insensitive, tough and self-healing conductive bacterial cellulose nanocomposite hydrogel for flexible wearable strain sensor. Int J Biol Macromol 2024; 280:135947. [PMID: 39322153 DOI: 10.1016/j.ijbiomac.2024.135947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
To date, conductive hydrogels as an alternative to traditional rigid metallic conductors have attracted much attention in the field of flexible wearable electronic devices due to their inherent characteristics. Herein, a conductive bacterial cellulose (BC) nanocomposite hydrophobic-association (HA) hydrogel with highly stretchable, strong, self-healing, and notch-insensitive was fabricated by introducing the hydrophobic association. The obtained BCNC HA hydrogel shows excellent mechanical properties (∼ 2400 % of stress and ∼ 0.35 MPa of mechanical strength), superior notch-insensitive property with a fracture energy of ∼38 KJ.m-2, and good self-healing property (healing efficiency of ∼97 %). In addition, the hydrogel exhibits excellent ionic conductivity of ∼1.90 S.m-1 and high sensing sensitivity toward tensile deformation. The wearable strain sensor based on this material is assembled can detect both large-scale motions and subtle body motions in real time, which show excellent durability (1000 cycles with the strain of 30 %). Thus, the BCNC HA hydrogels have promising potential in various wearable flexible electronic devices for artificial intelligence and human-machine interface applications in the future.
Collapse
Affiliation(s)
- Zhicheng Jiang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China
| | - Zhengxiao Ji
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China
| | - Mengni Zhu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuting Gao
- Joint Laboratory of Advanced Biomedical Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Min Xu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
8
|
Li Y, Ren P, Sun Z, Xue R, Ding D, Tian W, Ren F, Jin Y, Chen Z, Zhu G. High-strength, anti-fatigue, cellulose nanofiber reinforced polyvinyl alcohol based ionic conductive hydrogels for flexible strain/pressure sensors and triboelectric nanogenerators. J Colloid Interface Sci 2024; 669:248-257. [PMID: 38718578 DOI: 10.1016/j.jcis.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
Ionic conductive hydrogels (ICHs) have attracted great attention because of their excellent biocompatibility and structural similarity with biological tissues. However, it is still a huge challenge to prepare a high strength, conductivity and durability hydrogel-based flexible sensor with dual network structure through a simple and environmentally friendly method. In this work, a simple one-pot cycle freezing thawing method was proposed to prepare ICHs by dissolving polyvinyl alcohol (PVA) and ferric chloride (FeCl3) in cellulose nanofiber (CNF) aqueous dispersion. A dual cross-linked network was established in hydrogel through the hydrogen bonds and coordination bonds among PVA, CNF, and FeCl3. This structure endows the as-prepared hydrogel with high sensitivity (pressure sensitivity coefficient (S) = 5.326 in the pressure range of 0-5 kPa), wide response range (4511 kPa), excellent durability (over 3000 cycles), short response time (83 ms) and recovery time (117 ms), which can accurately detect various human activities in real time. Furthermore, the triboelectric nano-generator (TENG) made from PVA@CNF-FeCl3 hydrogel can not only supply power for commercial capacitors and LED lamps, but also be used as a self-powered sensor to detect human motion. This work provides a new approach for the development of the next generation of flexible wearable electronic devices.
Collapse
Affiliation(s)
- Yanhao Li
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Penggang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - ZhenFeng Sun
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China.
| | - Runzhuo Xue
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Du Ding
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Wenhui Tian
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Fang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Yanling Jin
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Zhengyan Chen
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Sichuan 610065, China
| | - Guanjun Zhu
- College of Engineering, Xi'an International University, Xi'an 710077, China
| |
Collapse
|
9
|
Guan X, Zheng S, Zhang B, Sun X, Meng K, Elafify MS, Zhu Y, El-Gowily AH, An M, Li D, Han Q. Masking Strategy Constructed Metal Coordination Hydrogels with Improved Mechanical Properties for Flexible Electronic Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5168-5182. [PMID: 38234121 DOI: 10.1021/acsami.3c18077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metal coordination hydrogels (MC-HGs) that introduce dynamically coordinate bonds together with metal ionic conduction have attracted considerable attention in flexible electronics. However, the traditional soaking method alleged to have technical scalability faces the challenge of forming MC-HGs with a "core-shell" structure, which undoubtedly reduces the whole mechanical properties and ionic stimulation responsiveness required for flexible electronics materials. Herein, a novel strategy referred to as "masking" has been proposed based on the theory of the valence bond and coordination chemistry. By regulating the masking agents and their concentrations as well as pairing mode with the metal ions, the whole mechanical properties of the resulting composites (MC-HGsMasking) show nearly double the values of their traditional soaking samples (MC-HGsSoaking). For example, the fracture stress and toughness of Fe-HGsMasking(SA, 5.0 g/L) are 1.55 MPa and 2.14 MJ/m3, almost twice those of Fe-HGsSoaking (0.83 MPa and 0.93 MJ/m3, respectively). Microstructure characterization combined with finite element analysis, molecular dynamics, and first-principles simulations demonstrates that the masking strategy first facilitating interfacial permeation of metal complexes and then effective coordination with functional ligands (carboxylates) of the hydrogels is the mechanism to strengthen the mechanical properties of composites MC-HGsMasking, which has the potential to break through the limitations of current MC-HGs in flexible electronic sensor applications.
Collapse
Affiliation(s)
- Xiaoyu Guan
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Sai Zheng
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Bingyuan Zhang
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xuhui Sun
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kai Meng
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Mohamed S Elafify
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Gamal Abdel El-Nasr Street, Shebin El-Kom, Menoufia 32511, Egypt
| | - Yanxia Zhu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Afnan H El-Gowily
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Meng An
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Dongping Li
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
10
|
Wang Q, Liang X, Shen L, Xu H, Wang Z, Redshaw C, Zhang Q. Double Cross-Linked Hydrogel Dressings Based on Triblock Copolymers Bearing Antifreezing, Antidrying, and Inherent Antibacterial Properties. Biomacromolecules 2024; 25:388-399. [PMID: 38149581 DOI: 10.1021/acs.biomac.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Bacterial infections typically invade the living tissue of wounds, thereby aggravating the inflammatory response, delaying wound healing, or causing further complications. In this paper, the antibacterial hydrogel (PNVBA) with antifreezing and antidrying properties was prepared by a two-step method using N-isopropylacrylamide (NIPAM), 1-butyl-3-vinylimidazolium bromide (VBIMBr), and 3-acrylamidophenylboronic acid (AAPBA). PNVBA hydrogels exhibited a high adsorption capacity of 280 mg·g-1 for bovine serum albumin (BSA) and can adhere to the surface of different materials through ion-dipole or hydrogen-bonding interactions. Meanwhile, the PNVBA hydrogels exhibited high viscoelasticity and good adhesion after freezing at -20 °C or heating at 70 °C for 24 h with a sterilizing rate of up to 98% against multidrug-resistant (MDR) Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Moreover, a survival rate of up to 90% after incubation with L929 cells over 24 h was observed. Therefore, this inherent antibacterial hydrogel can be used as an excellent alternative material for wound dressings.
Collapse
Affiliation(s)
- Qian Wang
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Xi Liang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Lingyi Shen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Hong Xu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Zhiyong Wang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Carl Redshaw
- Department of Chemistry, School of Natural Sciences, University of Hull, Hull Hu6 7RX, U.K
| | - Qilong Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| |
Collapse
|
11
|
Gao N, Huang J, Chen Z, Liang Y, Zhang L, Peng Z, Pan C. Biomimetic Ion Channel Regulation for Temperature-Pressure Decoupled Tactile Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302440. [PMID: 37668280 DOI: 10.1002/smll.202302440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/15/2023] [Indexed: 09/06/2023]
Abstract
The perception of temperature and pressure of skin plays a vital role in joint movement, hand grasp, emotional expression, and self-protection of human. Among many biomimetic materials, ionic gels are uniquely suited to simulate the function of skin due to its ionic transport mechanism. However, both the temperature and pressure sensing are heavily dependent on the changes in ionic conductivity, making it impossible to decouple the temperature and pressure signals. Here, a pressure-insensitive and temperature-modulated ion channel is designed by synergistic strategies for gel skeleton's compact packing and ultra-thin structure, mimicking the function of the temperature ion channel in human skin. This ion-confined gel can completely suppress the pressure response of the temperature sensing layer. Furthermore, a temperature-pressure decoupled ionic sensor is fabricated and it is demonstrated that the ionic sensor can sense complex signals of temperature and pressure. This novel and effective approach has great potential to overcome one of the current barriers in developing ionic skin and extending its applications.
Collapse
Affiliation(s)
- Naiwei Gao
- Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiaoya Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwu Chen
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Yegang Liang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Li Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Zhao R, Zhao Z, Song S, Wang Y. Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59854-59865. [PMID: 38095585 DOI: 10.1021/acsami.3c15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
As typical soft materials, hydrogels have demonstrated great potential for the fabrication of flexible sensors due to their highly compatible elastic modulus with human skin, prominent flexibility, and biocompatible three-dimensional network structure. However, the practical application of wearable hydrogel sensors is significantly constrained because of weak adhesion, limited stretchability, and poor self-healing properties of traditional hydrogels. Herein, a multifunctional sodium hyaluronate (SH)/borax (B)/gelatin (G) double-cross-linked conductive hydrogel (SBG) was designed and constructed through a simple one-pot blending strategy with SH and gelatin as the gel matrix and borax as the dynamic cross-linker. The obtained SBG hydrogels exhibited a moderate tensile strength of 25.3 kPa at a large elongation of 760%, high interfacial toughness (106.5 kJ m-3), strong adhesion (28 kPa to paper), and satisfactory conductivity (224.5 mS/m). In particular, the dynamic cross-linking between SH, gelatin, and borax via borate ester bonds and hydrogen bonds between SH and gelatin chain endowed the SBG hydrogels with good fatigue resistance (>300 cycles), rapid self-healing performance (HE (healing efficiency) ∼97.03%), and excellent repeatable adhesion. The flexible wearable sensor assembled with SBG hydrogels demonstrated desirable strain sensing performance with a competitive gauge factor and exceptional stability, which enabled it to detect and distinguish various multiscale human motions and physiological signals. Furthermore, the flexible sensor is capable of precisely perceiving temperature variation with a high thermal sensitivity (1.685% °C-1). As a result, the wearable sensor displayed dual sensory performance for temperature and strain deformation. It is envisioned that the integration of strain sensors and thermal sensors provide a novel and convenient strategy for the next generation of multisensory wearable electronics and lay a solid foundation for their application in electronic skin and soft actuators.
Collapse
Affiliation(s)
- Rongrong Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| |
Collapse
|
13
|
Alipour S, Pourjavadi A, Hosseini SH. Magnetite embedded κ-carrageenan-based double network nanocomposite hydrogel with two-way shape memory properties for flexible electronics and magnetic actuators. Carbohydr Polym 2023; 310:120610. [PMID: 36925232 DOI: 10.1016/j.carbpol.2023.120610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Shape memory hydrogels attract increasing attention as flexible strain sensors due to their shape recovery property that can improve the lifetime of the sensor. Herein, we have designed a magnetic shape memory hydrogel based on Fe3O4 nanoparticles, carrageenan, and poly (acrylamide-co-acrylic acid) with self-adhesive and conductive properties. The resulting double network hydrogel showed promising actuator and strain sensor applications. Electrical conductivity was observed in this hydrogel without using additional ions. The presence of magnetite nanoparticles increased the tensile strength and temporary shape fixity ratio to around 6.5 MPa and 94.3 %, respectively. The excellent cantilever and catheter-like behavior of the hydrogels were illustrated through magnetic routing by an external magnet. Also, these hydrogels demonstrated suitable performance in the 500 cycles strain sensing tests before and after their initial shape recovery.
Collapse
Affiliation(s)
- Sakineh Alipour
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
14
|
Jiang L, Tian S, Xie Y, Lv X, Sun S. High Strength, Conductivity, and Bacteriostasis of the P(AM- co-AA)/Chitosan Quaternary Ammonium Salt Composite Hydrogel through Ionic Crosslinking and Hydrogen Bonding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37314954 DOI: 10.1021/acs.langmuir.3c00646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Traditional hydrogels with a single-crosslinked network structure suffer from poor stretchability, low sensitivity, and easy contamination, which seriously affect their practical application in the strain sensor field. To overcome these shortcomings, herein, a multiphysical crosslinking strategy (ionic crosslinking and hydrogen bonding) was designed to prepare a hydrogel strain sensor based on chitosan quaternary ammonium salt (HACC)-modified P(AM-co-AA) (acrylamide-co-acrylic acid copolymer) hydrogels. The ionic crosslinking for the double-network P(AM-co-AA)/HACC hydrogels was achieved by an immersion method with Fe3+ as crosslinking sites, which crosslinked with the amino group (-NH2) on HACC and the carboxyl group (-COOH) on P(AM-co-AA) and enabled the hydrogels to recover and reorganize rapidly, resulting in a hydrogel-based strain sensor with excellent tensile stress (3 MPa), elongation (1390%), elastic modulus (0.42 MPa), and toughness (25 MJ/m3). In addition, the prepared hydrogel exhibited high electrical conductivity (21.6 mS/cm) and sensitivity (GF = 5.02 at 0-20% strain, GF = 6.84 at 20-100% strain, and GF = 10.27 at 100-480% strain). Furthermore, the introduction of HACC endowed the hydrogel with excellent antibacterial properties (up to 99.5%) and excellent antibacterial activity against bacteria of three forms, bacilli, cocci, and spores. The flexible, conductive, and antibacterial hydrogel can be applied as a strain sensor for real-time detection of human motions such as joint movement, speech, and respiration, which exhibits a promising application prospect in wearable devices, soft robotic systems, and other fields.
Collapse
Affiliation(s)
- Li'an Jiang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Song Tian
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuhui Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Xue Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
15
|
Song Z, Zhou S, Qin Y, Xia X, Sun Y, Han G, Shu T, Hu L, Zhang Q. Flexible and Wearable Biosensors for Monitoring Health Conditions. BIOSENSORS 2023; 13:630. [PMID: 37366995 DOI: 10.3390/bios13060630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Flexible and wearable biosensors have received tremendous attention over the past decade owing to their great potential applications in the field of health and medicine. Wearable biosensors serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and great conformability. This review introduces the recent research progress in wearable biosensors. First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are summarized. Then, their application manners and information processing are also highlighted in the paper. Massive cutting-edge research examples are introduced such as wearable physiological pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant content, the detection mechanism of these sensors was detailed with examples to help readers understand this area. Finally, the current challenges and future perspectives are proposed to push this research area forward and expand practical applications in the future.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun 130021, China
| | - Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanping Sun
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tong Shu
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
16
|
He W, Guo X, Xia P, Lu S, Zhang Y, Fan H. Temperature and pressure sensitive ionic conductive triple-network hydrogel for high-durability dual signal sensors. J Colloid Interface Sci 2023; 647:456-466. [PMID: 37271090 DOI: 10.1016/j.jcis.2023.05.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
In this work, the fabrication of strengthened triple network hydrogels was successfully achieved based on in-situ polymerization of polyacrylamide by combining both chemical and physical cross-linking methods. The ion conductive phase of lithium chloride (LiCl) and solvent in the hydrogel were regulated through soaking solution. The pressure and temperature sensing behavior and durability of the hydrogel were investigated. The hydrogel containing 1 mol/L LiCl and 30 %v/v glycerol displayed a pressure sensitivity of 4.16 kPa-1 and a temperature sensitivity of 2.04 %/oC ranging from 20 to 50 °C. The durability results reveal that the hydrogel could maintain water retention rate of 69 % after 20 days of ageing. The presence of LiCl disrupted the interactions among water molecules and made it possible for the hydrogel to respond to changes in environment humidity. The dual signal testing revealed that the delay of temperature response over time (about 100 s) is much different from the rapidity of pressure response (in 0.5 s). This leads to the obvious separation of the temperature-pressure dual signal output. The assembled hydrogel sensor was further applied to monitor human motion and skin temperature. The signals can be distinguished by different resistance variation values and curve shapes in the typical temperature-pressure dual signal performance of human breathing. This demonstrates that this ion conductive hydrogel has the potential for application in flexible sensors and human-machine interfaces.
Collapse
Affiliation(s)
- Weidi He
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China; National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang Guizhou 550014, China
| | - Xincheng Guo
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China
| | - Peng Xia
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China
| | - Shengjun Lu
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China; National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang Guizhou 550014, China.
| | - Yufei Zhang
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China.
| | - Haosen Fan
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China.
| |
Collapse
|
17
|
Zhang Z, Zhang H, Zhang Q, Zhao X, Li B, Zang J, Zhao X, Zhang T. A Pressure and Temperature Dual-Parameter Sensor Based on a Composite Material for Electronic Wearable Devices. MICROMACHINES 2023; 14:690. [PMID: 36985097 PMCID: PMC10058327 DOI: 10.3390/mi14030690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Wearable sensors integrating multiple functionalities are highly desirable in artificial wearable devices, which are of great significance in the field of biomedical research and for human-computer interactions. However, it is still a great challenge to simultaneously perceive multiple external stimuli such as pressure and temperature with one single sensor. Combining the piezoresistive effect with the negative temperature coefficient of resistance, in this paper, we report on a pressure-temperature dual-parameter sensor composed of a polydimethylsiloxane film, carbon nanotube sponge, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The proposed multifunctional sensor can stably monitor pressure signals with a high sensitivity of 16 kPa-1, has a range of up to 2.5 kPa, and also has a fast response time. Meanwhile, the sensor can also respond to temperature changes with an ultrahigh sensitivity rate of 0.84% °C-1 in the range of 20 °C to 80 °C. To validate the applicability of our sensor in practical environments, we conducted real-scene tests, which revealed its capability for monitoring = human motion signals while simultaneously sensing external temperature stimuli, reflecting its great application prospects for electronic wearable devices.
Collapse
Affiliation(s)
- Zhidong Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China; (Z.Z.)
| | - Huinan Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China; (Z.Z.)
| | - Qingchao Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China; (Z.Z.)
| | - Xiaolong Zhao
- Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China; (Z.Z.)
| | - Bo Li
- School of Software, North University of China, Taiyuan 030051, China
| | - Junbin Zang
- Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China; (Z.Z.)
| | - Xuefeng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Tiansheng Zhang
- Shanxi Hospital of Acupuncture and Moxibustion, Taiyuan 030006, China;
| |
Collapse
|
18
|
Xin F, Lyu Q. A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels 2022; 9:gels9010007. [PMID: 36661775 PMCID: PMC9858193 DOI: 10.3390/gels9010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels, as a series of three-dimensional, crosslinked, hydrophilic network polymers, exhibit extraordinary properties in softness, mechanical robustness and biocompatibility, which have been extensively utilized in various fields, especially for electronic devices. However, since hydrogels contain plenty of water, the mechanical and electrochemical properties are susceptible to temperature. The thermal characteristics of hydrogels can significantly affect the performance of flexible electronic devices. In this review, recent research on the thermal characteristics of hydrogels and their applications in electronic devices is summarized. The focus of future work is also proposed. The thermal stability, thermoresponsiveness and thermal conductivity of hydrogels are discussed in detail. Anti-freezing and anti-drying properties are the critical points for the thermal stability of hydrogels. Methods such as introducing soluble ions and organic solvents into hydrogels, forming ionogels, modifying polymer chains and incorporating nanomaterials can improve the thermal stability of hydrogels under extreme environments. In addition, the critical solution temperature is crucial for thermoresponsive hydrogels. The thermoresponsive capacity of hydrogels is usually affected by the composition, concentration, crosslinking degree and hydrophilic/hydrophobic characteristics of copolymers. In addition, the thermal conductivity of hydrogels plays a vital role in the electronics applications. Adding nanocomposites into hydrogels is an effective way to enhance the thermal conductivity of hydrogels.
Collapse
Affiliation(s)
- Fei Xin
- Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi’an 710071, China
- Correspondence:
| | - Qiang Lyu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
19
|
Zhang H, Shen H, Lan J, Wu H, Wang L, Zhou J. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors. Carbohydr Polym 2022; 295:119848. [DOI: 10.1016/j.carbpol.2022.119848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
|
20
|
Liu Z, Li J, Zhang Z, Liu J, Wu C, Yu Y. Incorporating Self-Healing Capability in Temperature-Sensitive Hydrogels by Non-Covalent Chitosan Crosslinkers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
|
22
|
Yang R, Zhang W, Tiwari N, Yan H, Li T, Cheng H. Multimodal Sensors with Decoupled Sensing Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202470. [PMID: 35835946 PMCID: PMC9475538 DOI: 10.1002/advs.202202470] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Indexed: 05/25/2023]
Abstract
Highly sensitive and multimodal sensors have recently emerged for a wide range of applications, including epidermal electronics, robotics, health-monitoring devices and human-machine interfaces. However, cross-sensitivity prevents accurate measurements of the target input signals when a multiple of them are simultaneously present. Therefore, the selection of the multifunctional materials and the design of the sensor structures play a significant role in multimodal sensors with decoupled sensing mechanisms. Hence, this review article introduces varying methods to decouple different input signals for realizing truly multimodal sensors. Early efforts explore different outputs to distinguish the corresponding input signals applied to the sensor in sequence. Next, this study discusses the methods for the suppression of the interference, signal correction, and various decoupling strategies based on different outputs to simultaneously detect multiple inputs. The recent insights into the materials' properties, structure effects, and sensing mechanisms in recognition of different input signals are highlighted. The presence of the various decoupling methods also helps avoid the use of complicated signal processing steps and allows multimodal sensors with high accuracy for applications in bioelectronics, robotics, and human-machine interfaces. Finally, current challenges and potential opportunities are discussed in order to motivate future technological breakthroughs.
Collapse
Affiliation(s)
- Ruoxi Yang
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401P. R. China
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Wanqing Zhang
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Naveen Tiwari
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Han Yan
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401P. R. China
| | - Tiejun Li
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401P. R. China
| | - Huanyu Cheng
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
23
|
Pang Q, Hu H, Zhang H, Qiao B, Ma L. Temperature-Responsive Ionic Conductive Hydrogel for Strain and Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26536-26547. [PMID: 35657037 DOI: 10.1021/acsami.2c06952] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible wearable devices have achieved remarkable applications in health monitoring because of the advantages of multisignal collecting and real-time wireless transmission of information. However, the integration of bulky sensing elements and rigid metal circuit components in traditional wearable devices may lead to a mechanical and signal-conducting mismatch between wearable devices and biological tissues, thus restricting their wide applications in the human body. The excellent mechanical properties, conductivity, and high tissue resemblance of conductive hydrogel contribute to its application in flexible electronic sensors to monitor human health. In this work, a dual-network, temperature-responsive ionic conductive hydrogel with excellent stretchability, fast temperature responsiveness, and good conductivity was developed by introducing a polyvinylpyrrolidone (PVP)/ tannic acid (TA)/ Fe3+ cross-linked network into the N,N-methylene diacrylamide (MBAA) cross-linked poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AM)) network. Furthermore, the introduction of the PVP/TA/Fe3+ cross-linked network endowed the hydrogel with excellent stretchability and conductivity. By adjusting the molar ratio of TA and Fe3+ to 3:5, a hydrogel with a maximal stretching ratio of 720% and sensitive strain response (GF = 3.61) was achieved, showing a promising application in wearable strain sensors to monitor both large and fine human motions. Moreover, by introducing PNIPAAm with a lower critical solution temperature (LCST), the hydrogel may be used to monitor the environmental temperature through the temperature-conductivity responsiveness, which can be applied as a wearable temperature sensor to detect fever or tissue hyperthermia in the human body.
Collapse
Affiliation(s)
- Qian Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200437, China
| | - Hongtao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haiqi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bianbian Qiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
24
|
Kim T, Choi H, Choi H, Kim JS, Kim DH, Jeong U. Skin-inspired electrochemical tactility and luminescence. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Thermoresponsive, magnetic, adhesive and conductive nanocomposite hydrogels for wireless and non-contact flexible sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Wu H, Chen J, Kim J, Zhu P, Zhu J, Gao Q, Gao C. Facile preparation of transparent poly (γ‐glutamic acid) modified poly (vinyl alcohol) hydrogels with high tensile strength and toughness. J Appl Polym Sci 2022. [DOI: 10.1002/app.52204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hailin Wu
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | - Jing Chen
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | | | - Peizhi Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | - Jiadeng Zhu
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Qiang Gao
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| |
Collapse
|
27
|
Li WD, Ke K, Jia J, Pu JH, Zhao X, Bao RY, Liu ZY, Bai L, Zhang K, Yang MB, Yang W. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103734. [PMID: 34825473 DOI: 10.1002/smll.202103734] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Indexed: 05/07/2023]
Abstract
Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.
Collapse
Affiliation(s)
- Wu-Di Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jun-Hong Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xing Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lu Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kai Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
28
|
Liang Y, Wu Z, Wei Y, Ding Q, Zilberman M, Tao K, Xie X, Wu J. Self-Healing, Self-Adhesive and Stable Organohydrogel-Based Stretchable Oxygen Sensor with High Performance at Room Temperature. NANO-MICRO LETTERS 2022; 14:52. [PMID: 35092489 PMCID: PMC8800976 DOI: 10.1007/s40820-021-00787-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 05/12/2023]
Abstract
With the advent of the 5G era and the rise of the Internet of Things, various sensors have received unprecedented attention, especially wearable and stretchable sensors in the healthcare field. Here, a stretchable, self-healable, self-adhesive, and room-temperature oxygen sensor with excellent repeatability, a full concentration detection range (0-100%), low theoretical limit of detection (5.7 ppm), high sensitivity (0.2%/ppm), good linearity, excellent temperature, and humidity tolerances is fabricated by using polyacrylamide-chitosan (PAM-CS) double network (DN) organohydrogel as a novel transducing material. The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy. Compared with the pristine hydrogel, the DN organohydrogel displays greatly enhanced mechanical strength, moisture retention, freezing resistance, and sensitivity to oxygen. Notably, applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor. Furthermore, the response to the same concentration of oxygen before and after self-healing is basically the same. Importantly, we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments. The organohydrogel oxygen sensor is used to monitor human respiration in real-time, verifying the feasibility of its practical application. This work provides ideas for fabricating more stretchable, self-healable, self-adhesive, and high-performance gas sensors using ion-conducting organohydrogels.
Collapse
Affiliation(s)
- Yuning Liang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Meital Zilberman
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
29
|
Yi H, Lee SH, Kim D, Jeong HE, Jeong C. Colorimetric Sensor Based on Hydroxypropyl Cellulose for Wide Temperature Sensing Range. SENSORS 2022; 22:s22030886. [PMID: 35161632 PMCID: PMC8839604 DOI: 10.3390/s22030886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023]
Abstract
Recently, temperature monitoring with practical colorimetric sensors has been highlighted because they can directly visualize the temperature of surfaces without any power sources or electrical transducing systems. Accordingly, several colorimetric sensors that convert the temperature change into visible color alteration through various physical and chemical mechanisms have been proposed. However, the colorimetric temperature sensors that can be used at subzero temperatures and detect a wide range of temperatures have not been sufficiently explored. Here, we present a colorimetric sensory system that can detect and visualize a wide range of temperatures, even at a temperature below 0 °C. This system was developed with easily affordable materials via a simple fabrication method. The sensory system is mainly fabricated using hydroxypropyl cellulose (HPC) and ethylene glycol as the coolant. In this system, HPC can self-assemble into a temperature-responsive cholesteric liquid crystalline mesophase, and ethylene glycol can prevent the mesophase from freezing at low temperatures. The colorimetric sensory system can quantitatively visualize the temperature and show repeatability in the temperature change from −20 to 25 °C. This simple and reliable sensory system has great potential as a temperature-monitoring system for structures exposed to real environments.
Collapse
Affiliation(s)
- Hoon Yi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.); (S.-H.L.)
| | - Sang-Hyeon Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.); (S.-H.L.)
| | - Dana Kim
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan-si 38541, Korea;
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.); (S.-H.L.)
- Correspondence: (H.E.J.); (C.J.)
| | - Changyoon Jeong
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan-si 38541, Korea;
- Correspondence: (H.E.J.); (C.J.)
| |
Collapse
|
30
|
Tang S, Liu Z, Xiang X. Graphene oxide composite hydrogels for wearable devices. CARBON LETTERS 2022; 32:1395-1410. [PMCID: PMC9467431 DOI: 10.1007/s42823-022-00402-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/01/2023]
Abstract
For graphene oxide (GO) composite hydrogels, a two-dimensional GO material is introduced into them, whose special structure is used to improve their properties. GO contains abundant oxygen-containing functional groups, which can improve the mechanical properties of hydrogels and support the application needs. Especially, the unique-conjugated structure of GO can endow or enhance the stimulation response of hydrogels. Therefore, GO composite hydrogels have a great potential in the field of wearable devices. We referred to the works published in recent years, and reviewed from these aspects: (a) structure of GO; (b) factors affecting the mechanical properties of the composite hydrogel, including hydrogen bond, ionic bond, coordination bond and physical crosslinking; (c) stimuli and signals; (d) challenges. Finally, we summarized the research progress of GO composite hydrogels in the field of wearable devices, and put forward some prospects.
Collapse
Affiliation(s)
- Senxuan Tang
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074 People’s Republic of China
| | - Zhihan Liu
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074 People’s Republic of China
| | - Xu Xiang
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074 People’s Republic of China
| |
Collapse
|
31
|
Mirjalali S, Peng S, Fang Z, Wang C, Wu S. Wearable Sensors for Remote Health Monitoring: Potential Applications for Early Diagnosis of Covid-19. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100545. [PMID: 34901382 PMCID: PMC8646515 DOI: 10.1002/admt.202100545] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/22/2021] [Indexed: 05/11/2023]
Abstract
Wearable sensors are emerging as a new technology to detect physiological and biochemical markers for remote health monitoring. By measuring vital signs such as respiratory rate, body temperature, and blood oxygen level, wearable sensors offer tremendous potential for the noninvasive and early diagnosis of numerous diseases such as Covid-19. Over the past decade, significant progress has been made to develop wearable sensors with high sensitivity, accuracy, flexibility, and stretchability, bringing to reality a new paradigm of remote health monitoring. In this review paper, the latest advances in wearable sensor systems that can measure vital signs at an accuracy level matching those of point-of-care tests are presented. In particular, the focus of this review is placed on wearable sensors for measuring respiratory behavior, body temperature, and blood oxygen level, which are identified as the critical signals for diagnosing and monitoring Covid-19. Various designs based on different materials and working mechanisms are summarized. This review is concluded by identifying the remaining challenges and future opportunities for this emerging field.
Collapse
Affiliation(s)
- Sheyda Mirjalali
- School of EngineeringMacquarie University SydneySydneyNSW2109Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Chun‐Hui Wang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Shuying Wu
- School of EngineeringMacquarie University SydneySydneyNSW2109Australia
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
32
|
Cai M, Jiao Z, Nie S, Wang C, Zou J, Song J. A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response range. SCIENCE ADVANCES 2021; 7:eabl8313. [PMID: 34936460 PMCID: PMC8694613 DOI: 10.1126/sciadv.abl8313] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Electronic skins (e-skins) with multifunctional sensing functions have attracted a lot of attention due to their promising applications in intelligent robotics, human-machine interfaces, and wearable healthcare systems. Here, we report a multifunctional e-skin based on patterned metal films for tactile sensing of pressure and temperature with a broad linear response range by implementing the single sensing mechanism of piezoresistivity, which allows for the easy signal processing and simple device configuration. The sensing pixel features serpentine metal traces and spatially distributed microprotrusions. Experimental and numerical studies reveal the fundamental aspects of the multifunctional tactile sensing mechanism of the e-skin, which exhibits excellent flexibility and wearable conformability. The fabrication approach being compatible with the well-established microfabrication processes has enabled the scalable manufacturing of a large-scale e-skin for spatial tactile sensing in various application scenarios.
Collapse
Affiliation(s)
- Min Cai
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 310027 Hangzhou, China
| | - Zhongdong Jiao
- School of Mechanical Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Shuang Nie
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 310027 Hangzhou, China
| | - Chengjun Wang
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 310027 Hangzhou, China
| | - Jun Zou
- School of Mechanical Engineering, Zhejiang University, 310027 Hangzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 310027 Hangzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China
- Corresponding author.
| |
Collapse
|
33
|
Rahmani P, Shojaei A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv Colloid Interface Sci 2021; 298:102553. [PMID: 34768136 DOI: 10.1016/j.cis.2021.102553] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 01/11/2023]
Abstract
Over the past few years, development of wearable devices has gained increasing momentum. Notably, the demand for stretchable strain sensors has significantly increased due to many potential and emerging applications such as human motion monitoring, prosthetics, robotic systems, and touch panels. Recently, hydrogels have been developed to overcome the drawbacks of the elastomer-based wearable strain sensors, caused by insufficient biocompatibility, brittle mechanical properties, complicated fabrication process, as the hydrogels can provide a combination of various exciting properties such as intrinsic electrical conductivity, suitable mechanical properties, and biocompatibility. There are numerous research works reported in the literature which consider various aspects as preparation approaches, design strategies, properties control, and applications of hydrogel-based strain sensors. This article aims to present a review on this exciting topic with a new insight on the hydrogel-based wearable strain sensors in terms of their features, strain sensory performance, and prospective applications. In this respect, we first briefly review recent advances related to designing the materials and the methods for promoting hydrogels' intrinsic features. Then, strain (both tensile and pressure) sensing performance of prepared hydrogels is critically studied, and alternative approaches for their high-performance sensing are proposed. Subsequently, this review provides several promising applications of hydrogel-based strain sensors, including bioapplications and human-machine interface devices. Finally, challenges and future outlooks of conductive and stretchable hydrogels employed in the wearable strain sensors are discussed.
Collapse
|
34
|
He Z, Yuan W. Highly Stretchable, Adhesive Ionic Liquid-Containing Nanocomposite Hydrogel for Self-Powered Multifunctional Strain Sensors with Temperature Tolerance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53055-53066. [PMID: 34699172 DOI: 10.1021/acsami.1c14139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The demand for wearable sensors consisting of multifunctional conductive hydrogels with fatigue resistance and adhesion properties is rising. More importantly, it is necessary to improve the freezing tolerance and dehydration resistance of hydrogels to avoid performance degradation in harsh environments. Herein, a robust nanocomposite ionogel was fabricated in [EMIM][Cl] ionic liquid and clay nanosheets were used as physical cross-linkers through rapid UV polymerization. The excellent mechanical properties, repeated self-adhesion to various substrates, freezing tolerance, and anti-drying properties were integrated into the nanocomposite ionic liquid hydrogel. The addition of clay nanosheets Laponite XLG endowed the ionogel with a high stretchability of up to 1200% and a tensile strength of up to 0.14 MPa, and the ionogel could be recovered when the external force was released. Ascribing to ionic liquids, the nanocomposite ionogel displayed ionic conductivity and temperature tolerance. An ionogel battery with a 0.72 V output voltage was formed by assembling the ionogel with a layer of zinc and copper sheet on each side to realize the conversion from chemical energy to electrical energy. The maximum voltage could reach 2.8 V when the four units are combined, which could provide energy for an LED bulb and could be used as a self-powered strain sensor under harsh conditions. In this work, a multifunctional ionogel self-powered sensor is proposed, which has potential applications in the fields of electronic skin, human-machine interaction, and biosensors over a wide temperature range.
Collapse
Affiliation(s)
- Zhirui He
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, People's Republic of China
| |
Collapse
|
35
|
Li Y, Yang Y, Liu X, Chen C, Qian C, Han L, Han Q. Highly sensitive and wearable self-powered sensors based on a stretchable hydrogel comprising dynamic hydrogen bond and dual coordination bonds. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Huang L, Zeng Y, Liu X, Tang D. Pressure-Based Immunoassays with Versatile Electronic Sensors for Carcinoembryonic Antigen Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46440-46450. [PMID: 34547887 DOI: 10.1021/acsami.1c16514] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pressure-based immunoassays have been studied for point-of-care testing for which increasing the sensitivity is still a challenge. In this study, we described an enhanced pressure-based immunoassay with a versatile electronic sensor for the sensitive biological analysis. The versatile electronic sensor had multifunctional sensing capabilities with temperature and pressure recording. Magnetic bead-modified capture antibody and platinum nanoparticle-labeled detection antibody were used as the biorecognition element of the target carcinoembryonic antigen (CEA) (as a model analyte) and would form a sandwich-type immune complex with CEA. After simple magnetic separation, this complex was transferred into the detection chamber, which contained both hydrogen peroxide (H2O2) and 3,3',5,5'-tetramethylbenzidine (TMB). With the catalytic ability of PtNPs, the "H2O2-TMB-PtNPs" system was catalyzed to generate a large amount of oxygen (O2) and photothermal agent of oxidizer TMB (ox-TMB). Meanwhile, in a sealed chamber, further irradiation with an 808 nm near-infrared laser led to a triple-step signal amplification strategy of pressure increase, temperature increase, and gas thermal expansion to receive a strong electrical signal through the electronic sensor in real time. Thus, the amplified electrical signal from the electronic sensor could reveal the target concentration. In addition, we also verified that the synergistic system with two physical quantities had a lower limit of detection and a wider detection range compared to the detection system with a single physical quantity. In general, this immunoassay not only helped in exploring an effective signal amplification pathway but also offered an opportunity for the development of versatile electronic sensors in point-of-care settings.
Collapse
Affiliation(s)
- Lingting Huang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- Chongqing Vocational Institute of Engineering, Chongqing 402260, P. R. China
| |
Collapse
|
37
|
Wang Q, Shao J, Xu J, Dong F, Xiong Y, Chen Q. In-situ formed Cyclodextrin-functionalized graphene oxide / poly (N-isopropylacrylamide) nanocomposite hydrogel as an recovery adsorbent for phenol and microfluidic valve. J Colloid Interface Sci 2021; 607:253-268. [PMID: 34500424 DOI: 10.1016/j.jcis.2021.08.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Phenolic compounds are important industrial raw materials for various industrial applications, but phenol-containing wastewater creates significant environmental and biological hazards. To address these issues, a three-dimensional network graphene oxide-cyanoethyltriethoxysilane-β-cyclodextrin/poly (N-isopropylacrylamide) (GO-CTES-β-CD/PNIPAM) nanocomposite hydrogel as a phenol recovery adsorbent is prepared herein by in-situ polymerization. Double graft modification on the graphene oxide (GO) via the silane coupling agent 2-cyanoethyltriethoxysilane (CTES) and single (6-tetraethylenepentamine-6-deoxy)-β-cyclodextrin (NH-β-CD) compensated the loss of the active sites on both GO and N-isopropylacrylamide (NIPAM), and the hydrogel shows excellent mechanical properties as the chemical crosslinking and physical entanglement of the two components. Consequently, the composite hydrogel achieved an adsorption capacity of 131.64 mg·g-1 for the common environmental toxin 4-NP. After five repeated adsorption-desorption cycles, the hydrogel retained 74% of the initial 4-NP removal ratio. The adsorption results followed pseudo-first-order kinetics, corresponding to heterogeneous multilayer adsorption, which was regulated by a combination of surface adsorption and intra-particle diffusion mechanisms. In general, the nanocomposite hydrogel shows promising application in the field of recycling phenols from wastewater. Also, high photothermal conversion and temperature-sensitive properties are also demonstrated, which makes the hydrogel possessing great potential to be applied in smart microvalves.
Collapse
Affiliation(s)
- Qian Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jiaojing Shao
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jing Xu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Qianlin Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
38
|
Park TH, Park S, Yu S, Park S, Lee J, Kim S, Jung Y, Yi H. Highly Sensitive On-Skin Temperature Sensors Based on Biocompatible Hydrogels with Thermoresponsive Transparency and Resistivity. Adv Healthc Mater 2021; 10:e2100469. [PMID: 34028997 DOI: 10.1002/adhm.202100469] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Indexed: 01/17/2023]
Abstract
The development of electrically responsive sensors that interact directly with human skin and at the same time produce a visual indication of the temperature is in great demand. Here, we report a highly sensitive electronic skin (E-skin) sensor that measures and visualizes skin temperature simultaneously using a biocompatible hydrogel displaying thermoresponsive transparency and resistivity resulting from a temperature dependence of the strength of the hydrogen bonding between its components. This thermoresponsive hydrogel (TRH) showed a temperature dependence of not only the proton conductivity but also of its transmittance of light through a change in polymer conformation. We were able to use our TRH temperature sensor (TRH-TS) to measure temperature in a wide range of temperatures based on a change in its intrinsic resistivity (-0.0289 °C-1 ) and to visualize the temperature due to its thermoresponsive transmittance (from 7% to 96%). The TRH-TS exhibited high reliability upon multiple cycles of heating and cooling. The on-skin TRH-TS patch is also shown to successfully produce changes in its impedance and optical transparency as a result of changes in skin temperature during cardiovascular exercise. This work has shown that our biocompatible TRH-TS is potentially suitable as wearable E-skin for various emerging flexible healthcare monitoring applications.
Collapse
Affiliation(s)
- Tae Hyun Park
- Post‐Silicon Semiconductor Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| | - Seongjin Park
- Post‐Silicon Semiconductor Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Seunggun Yu
- Insulation Materials Research Center Korea Electrotechnology Research Institute Changwon 51543 Republic of Korea
| | - Sangun Park
- Biomaterials Research Center Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Junseok Lee
- Post‐Silicon Semiconductor Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
- Department of Materials Science and Engineering YU‐KIST Institute Yonsei University Seoul 03722 Republic of Korea
| | - Sunho Kim
- Post‐Silicon Semiconductor Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center Korea Institute of Science and Technology Seoul 02792 Republic of Korea
- School of Electrical and Electronic Engineering YU‐KIST Institute Yonsei University Seoul 03722 Republic of Korea
| | - Hyunjung Yi
- Post‐Silicon Semiconductor Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
- Department of Materials Science and Engineering YU‐KIST Institute Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
39
|
Jin R, Xu J, Duan L, Gao G. Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring. Carbohydr Polym 2021; 268:118240. [PMID: 34127222 DOI: 10.1016/j.carbpol.2021.118240] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Recently, flexible and wearable sensors assembled from conductive hydrogels have attracted widespread attention. However, it is still a great challenge to make hydrogels with sufficient mechanical properties, self-adhesiveness and strain sensitivity. Here, a strong, tough, and self-adhesive hydrogel is successfully fabricated by a one-pot method, which introducing chitosan and 2-acrylamido-2-methylpropane sulfonic acid into the polyacrylamide network. The hydrogels exhibited adhesion (the peel strength reaches 798 N/m), mechanical property (The breaking strength and strain can reach 111 kPa and 2839%) and electrical conductivity (conductivity up to 0.0848 S/cm), which are suitable for wearable epidermal sensors. Besides, the hydrogels also possessed transparency. Therefore, this work would provide a novel insight on the fabrication of multi-functional self-adhesive hydrogel sensors.
Collapse
Affiliation(s)
- Rining Jin
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jiajun Xu
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Lijie Duan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
40
|
Zeng S, Zhang J, Zu G, Huang J. Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydr Polym 2021; 267:118198. [PMID: 34119165 DOI: 10.1016/j.carbpol.2021.118198] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022]
Abstract
To meet the increasing demands of sustainability and eco-friendliness, biopolymer-based hydrogels combining flexibility and ionic conductivity have drawn great attention for green and wearable sensors. However, the preparation of transparent, flexible, durable, and highly sensitive biopolymer hydrogel-based sensors for strain/pressure and humidity sensing remains a challenge. Herein, a facile one-step strategy is proposed to fabricate transparent, highly flexible, and multifunctional starch/polyacrylamide double-network hydrogels based on natural renewable starch. The resultant hydrogels exhibit fast self-adhesive ability and present high flexibility attributing to the double network consisting of cross-linked starch and polyacrylamide. Then the hydrogels can be assembled as transparent, self-adhesive, flexible, highly sensitive, and multifunctional strain/pressure and humidity sensors for accurate healthcare monitoring. The hydrogel-based sensor shows ultrahigh sensitivity to humidity (35-97% relative humidity). The multifunctionality and biological advantages of starch-based hydrogels offer potential applications in next-generation green and wearable electronics.
Collapse
Affiliation(s)
- Sheng Zeng
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, PR China
| | - Junyao Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, PR China
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, PR China.
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, PR China.
| |
Collapse
|
41
|
Chen Y, Liu T, Wang G, Liu J, Zhao L, Zhang R, Yu Y. Intelligent response bilayer hydrogel with controllable deformation-recovery and shape memory. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Zhao L, Zhao J, Zhang F, Xu Z, Chen F, Shi Y, Hou C, Huang Y, Lin C, Yu R, Guo W. Highly Stretchable, Adhesive, and Self-Healing Silk Fibroin-Dopted Hydrogels for Wearable Sensors. Adv Healthc Mater 2021; 10:e2002083. [PMID: 33763942 DOI: 10.1002/adhm.202002083] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/21/2021] [Indexed: 01/20/2023]
Abstract
In recent years, the preparations of flexible electronic devices have attracted great attention. Here, a simple one-pot method of thermal polymerization is introduced to fabricate silk fibroin-dopted hydrogels (SFHs), which are both chemically and physically cross-linked by acrylamide (AM), acrylic acid (AA), and silk fibroin (SF). The addition of SF can effectively enhance the mechanical property of the SFH12% by 59% compared with SFH0% . Taking the advantage of its wide working range of stress (about 0.455-568.9 kPa), the SFH can work as a resistance-type pressure sensor to monitor different human motions. What is more, the excellent adhesion, about 75.17 N m-1 of SFH46% enables it to fit tightly to other objects during the testing, which significantly reduces the loss of small signals due to poor fit. In addition, the SFH demonstrates excellent self-healing property without requiring external excitation and a sensitive temperature response in the range of -10 to 60 °C. The SFH is expected to be applied in the field of electronic skin, soft robots, and other flexible electronic products as well as speech recognition.
Collapse
Affiliation(s)
- Li Zhao
- Research Institute for Biomimetics and Soft Matter College of Physical Science and Technology Xiamen University Xiamen 361005 P. R. China
| | - Jizhong Zhao
- Research Institute for Biomimetics and Soft Matter College of Physical Science and Technology Xiamen University Xiamen 361005 P. R. China
| | - Fan Zhang
- Research Institute for Biomimetics and Soft Matter College of Physical Science and Technology Xiamen University Xiamen 361005 P. R. China
- Key Laboratory of Estuarine Ecological Security and Environmental Health of Fujian Province University School of Environmental Science and Engineering Xiamen University Tan Kah Kee College Zhangzhou 363105 P. R. China
| | - Zijie Xu
- Research Institute for Biomimetics and Soft Matter College of Physical Science and Technology Xiamen University Xiamen 361005 P. R. China
| | - Fan Chen
- Research Institute for Biomimetics and Soft Matter College of Physical Science and Technology Xiamen University Xiamen 361005 P. R. China
| | - Yating Shi
- Research Institute for Biomimetics and Soft Matter College of Physical Science and Technology Xiamen University Xiamen 361005 P. R. China
| | - Chen Hou
- Research Institute for Biomimetics and Soft Matter College of Physical Science and Technology Xiamen University Xiamen 361005 P. R. China
| | - Yicheng Huang
- Key Laboratory of Estuarine Ecological Security and Environmental Health of Fujian Province University School of Environmental Science and Engineering Xiamen University Tan Kah Kee College Zhangzhou 363105 P. R. China
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces Xiamen University Xiamen 361005 P. R. China
| | - Rui Yu
- Research Institute for Biomimetics and Soft Matter College of Physical Science and Technology Xiamen University Xiamen 361005 P. R. China
| | - Wenxi Guo
- Research Institute for Biomimetics and Soft Matter College of Physical Science and Technology Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
43
|
Wang H, Li J, Yu X, Yan G, Tang X, Sun Y, Zeng X, Lin L. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydr Polym 2021; 255:117443. [DOI: 10.1016/j.carbpol.2020.117443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023]
|
44
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
45
|
He Z, Yuan W. Adhesive, Stretchable, and Transparent Organohydrogels for Antifreezing, Antidrying, and Sensitive Ionic Skins. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1474-1485. [PMID: 33393770 DOI: 10.1021/acsami.0c18405] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a flexible wearable device, hydrogel-based sensors have attracted widespread attention in soft electronics. However, the application of traditional hydrogels at extreme temperatures or for a long-term stability still remain a challenge because of the existence of water. Herein, we reported an antifreezing and antidrying organohydrogel with high transparency (over 85% transmittance), high stretchability (up to 1200%), and robust adhesiveness to various substrates, which consist of polyacrylic acid, gelatin, AlCl3+, and tannic acid in a water/glycerin binary solvent as the dispersion medium. As the binary solvent easily forms strong hydrogen bonds with water molecules, organohydrogels exhibited excellent tolerance for drying and freezing. The organohydrogels maintained conductivity, adhesion, and stable sensitivity after a long-term storage or at subzero temperature (-14 °C). Moreover, the organohydrogel-based wearable sensors with a gauge factor of 2.5 (strain, 0-100%) could detect both large-scale movements and subtle motions. Therefore, the multifunctional organohydrogel-wearable sensors with antifreezing and antidrying properties have promising potential for human-machine interfaces and healthcare monitoring under a broad range of environmental conditions.
Collapse
Affiliation(s)
- Zhirui He
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
46
|
Zhou H, Wang M, Jin X, Liu H, Lai J, Du H, Chen W, Ma A. Capacitive Pressure Sensors Containing Reliefs on Solution-Processable Hydrogel Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1441-1451. [PMID: 33397087 DOI: 10.1021/acsami.0c18355] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly sensitive capacitive-type pressure sensor has been achieved by fabricating reliefs on solution-processable hydrogel electrodes. Hybrid PVA/PANI hydrogels (PVA, poly(vinyl alcohol); PANI, polyaniline) with a fully physically cross-linked binary network are selected as the electrodes of the pressure sensors. On the basis of the solution processability, reliefs are fabricated on the surface of PVA/PANI hydrogel electrodes by a template method. The gauge factor (GF) is enhanced by introducing reliefs and regulated by controlling the composition and relief dimension of hydrogel electrodes. The optimized pressure sensor containing reliefs achieves the highest GF of 7.70 kPa-1 and a sensing range of 0-7.4 kPa. Furthermore, the freezing and drying problems of the hydrogel sensors are overcome by introducing a binary solvent of water/glycerol and the pressure sensing ability at -18 °C has been achieved. Finally, monitoring of various pressures in daily life, such as joint bending, blowing, and brush writing, is demonstrated using such pressure sensors.
Collapse
Affiliation(s)
- Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Mingcheng Wang
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Xilang Jin
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Hanbin Liu
- Shaanxi Provincal Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jialiang Lai
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Haotian Du
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Weixing Chen
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Aijie Ma
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| |
Collapse
|
47
|
Veeralingam S, Badhulika S. Bi2S3/PVDF/Ppy-Based Freestanding, Wearable, Transient Nanomembrane for Ultrasensitive Pressure, Strain, and Temperature Sensing. ACS APPLIED BIO MATERIALS 2020; 4:14-23. [DOI: 10.1021/acsabm.0c01399] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sushmitha Veeralingam
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad Hyderabad, 502285, India
| |
Collapse
|
48
|
Zhu Y, Lin L, Chen Y, Song Y, Lu W, Guo Y. Extreme Temperature-Tolerant Conductive Gel with Antibacterial Activity for Flexible Dual-Response Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56470-56479. [PMID: 33270426 DOI: 10.1021/acsami.0c17242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flexible sensors based on conductive hydrogel show great potential in electronic skin and human-machine interface. However, pure water in hydrogel inevitably freezes or rapidly evaporates under extreme temperatures, leading to inadequate fulfillment of sensor performances. Herein, a well-designed strategy is reported for fabricating extreme temperature-tolerant gel-based sensors. By immersing a gelatin/polyacrylamide (PAAm)-clay composite (GC) hydrogel into a ZnCl2/water/glycerol system, a phase-transition-tunable gel (PTTGC gel) is obtained with outstanding antifreezing (-82 °C) and long-lasting moisture (70 °C, more than 40 days) properties. Meanwhile, the gel also presents good antibacterial activity and biocompatibility attributing to Zn2+ and gelatin, respectively. Then, a dual-response sensor with a wide operating temperature (-60 to 60 °C) is proposed, presenting high stress and temperature sensitivities and long-term stability. The sensor will meet the needs of the human-machine interface for scientific investigation and data monitoring in polar, desert, etc.
Collapse
Affiliation(s)
- Yi Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Lin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yu Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeping Song
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Li M, Tu Q, Long X, Zhang Q, Jiang H, Chen C, Wang S, Min D. Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor. Int J Biol Macromol 2020; 166:1526-1534. [PMID: 33181212 DOI: 10.1016/j.ijbiomac.2020.11.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 11/30/2022]
Abstract
Employing renewable, environmentally friendly, low-cost lignocellulose to design flexible pressure sensitive hydrogel (PSH) as strain and pressure sensors in wearable electronics represents the global perspective to build sustainable and green society. Lignin-based carbon (LC), as the conductive filler, were uniform distributed in the hydrogel system composing by polyvinyl alcohol (PVA), carboxymethyl chitosan (CMC), and cellulose nanofibrils (CNF) to assemble PSH. The analysis revealed that the cross-linking of components through hydrogen bonds formed among hydroxyl group, amino group and carboxyl group exerts the hydrogel with stretching ability and fatigue resistance. The results indicated that the fracture tensile strength and compression stress of the PC/CNF/LC hydrogel were 133 kPa and 37.7 kPa, respectively. Because of the existence of LC, PSH hydrogel exhibits the sensitive deformation-dependent conductivity and can be applied as a flexible strain and pressure sensor monitoring body motions such as elbow flexion, finger bend and palm grip. Therefore, the assembled PSH hydrogel is a prominent candidate applying as the strain and pressure sensor devices.
Collapse
Affiliation(s)
- Mingfu Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Qiyuan Tu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, PR China
| | - Xing Long
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, PR China
| | - Qingtong Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, PR China
| | - Hongrui Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, PR China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, PR China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
50
|
|