1
|
Herrmann T, Angrisani N, Reifenrath J, Meißner J, Hannebauer A, Mönkeberg L, Hagemann V, Morales I, Behrens P, Ehlert N, Polarz S. Stimuli-responsive core-shell-shell nanocarriers for implant-directed magnetic drug targeting. J Mater Chem B 2025. [PMID: 40392024 DOI: 10.1039/d5tb00013k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The treatment of implant-associated infections is still a major topic in medical-related research. As an evolution of classical systemic therapy, many approaches target local treatment at the infection site. Here, we present an innovative material approach to overcome the challenges of this local drug delivery. As an effective nanocarrier, we chose nanoporous silica, which fulfills the need for a high capacity to load antibacterial drugs. Combined with a magnetic iron oxide core, these core-shell particles provide a sophisticated drug-delivery system that allows targeted drug delivery to the desired tissue via a magnetic field. However, the release profile often reveals the problem of an uncontrolled burst release of the incorporated drug in physiological media, leading to the loss of the cargo en route to the site of infection and resulting in an ineffective treatment of implant-associated infection. A pH-responsive polymer shell can provide an elegant solution, as the acidic pH occurring during an infection (pH 5-6) can trigger the release precisely, preventing an early release of the drug. In this study, we selected poly(2-(diethylamino)ethyl methacrylate) (PDEMA) with a perfect fitting isoelectric point of 6.7 for the establishment of a pH-responsive polymer shell. Furthermore, we addressed the issue of a poorly stable dispersion of particles functionalized with hydrophobic polymers in physiological media by adding a sulfonic acid modification to the inner pore surface of the nanoparticles. This modification influenced the amount of attached polymer and the drug release profiles. It was also useful to increase the incorporated amount of enrofloxacin. In summary, we present innovative and effective core-shell-shell nanocarriers based on magnetic nanoporous silica nanoparticles functionalized with a pH-responsive polymer for the pH-triggered delivery of the antibiotic enrofloxacin and suitable for targeting using a magnetic field.
Collapse
Affiliation(s)
- Timo Herrmann
- Institute of Inorganic Chemistry, Hannover, Germany.
- NIFE - Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Nina Angrisani
- Clinic for Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-9, 30625 Hannover, Germany
- NIFE - Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Janin Reifenrath
- Clinic for Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-9, 30625 Hannover, Germany
- NIFE - Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Jessica Meißner
- Dept. of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, 30559, Germany
| | | | | | - Valentin Hagemann
- Institute of Inorganic Chemistry, Hannover, Germany.
- NIFE - Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Irene Morales
- Institute of Inorganic Chemistry, Hannover, Germany.
| | - Peter Behrens
- Institute of Inorganic Chemistry, Hannover, Germany.
| | - Nina Ehlert
- Institute of Inorganic Chemistry, Hannover, Germany.
- NIFE - Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | | |
Collapse
|
2
|
Gehin G, Carraro N, van der Meer JR, Peña J. Population-level control of two manganese oxidases expands the niche for bacterial manganese biomineralization. NPJ Biofilms Microbiomes 2025; 11:50. [PMID: 40122939 PMCID: PMC11930936 DOI: 10.1038/s41522-025-00670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
The enzymatic oxidation of aqueous divalent manganese (Mn) is a widespread microbial trait that produces reactive Mn(III, IV) oxide minerals. These biominerals drive carbon, nutrient, and trace metal cycles, thus playing important environmental and ecological roles. However, the regulatory mechanisms and physiological functions of Mn biomineralization are unknown. This challenge arises from the common occurrence of multiple Mn oxidases within the same organism and the use of Mn oxides as indicators of combined gene activity. Through the detection of gene activation in individual cells, we discover that expression of mnxG and mcoA, two Mn oxidase-encoding genes in Pseudomonas putida GB-1, is confined to subsets of cells within the population, with each gene showing distinct spatiotemporal patterns that reflect local microenvironments. These coordinated intra-population dynamics control Mn biomineralization and illuminate the strategies used by microbial communities to dictate the extent, location, and timing of biogeochemical transformations.
Collapse
Affiliation(s)
- Gaitan Gehin
- Department of Civil and Environmental Engineering, University of California, Davis, CA, USA
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Vaud, CH, Switzerland
| | | | - Jasquelin Peña
- Department of Civil and Environmental Engineering, University of California, Davis, CA, USA.
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
3
|
Wang S, Wang P, Wang Z, Chen S, Fan G, Zhang J, Liu L, Yang Y. Essential oil-encapsulated SiO 2 nanocapsules for the treatment of bacterial biofilms formed on food-contact surfaces. J Food Sci 2025; 90:e70115. [PMID: 40091691 DOI: 10.1111/1750-3841.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Litsea cubeba essential oil (EO)-encapsulated SiO2 (SiO2-EO) nanocapsules were fabricated by in situ biosilicification for the treatment of biofilms on food-contact surfaces. By optimizing the synthesis conditions (0.5 mg/mL EO and 50 mM silicic acid), SiO2-EO nanocapsules exhibited a uniform size distribution (150-200 nm) with a distinct core-shell structure. The characterization of nanocapsules was elucidated using a scanning electron microscope (SEM), transmission electron microscope, Fourier transform infrared, and x-ray diffraction analyses. The minimal inhibitory concentrations of SiO2-EO nanocapsules were 5 and 1.25 mg/mL for Escherichia coli and Staphylococcus aureus, respectively. Compared to free EO, the SiO2-EO nanocapsules showed more significant inhibition activity against both Gram-negative and Gram-positive bacterial biofilms. Confocal experiments and SEM demonstrated that the nanocapsules efficiently penetrate biofilms within 30 min and deliver EO to destroy the membrane structure of bacteria. Eventually, SiO2-EO nanocapsules were also applied to four kinds of food-contact surfaces. The populations in biofilms exposed to 2.5 mg/mL of nanocapsules decreased 1.51-1.56 log CFU/cm2 and 2.15-2.22 log CFU/cm2 for E. coli and S. aureus, respectively. This study provides an innovative strategy to treat bacterial biofilms with EO-based nanocomposites.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Peiling Wang
- Shaanxi Forestry Survey and Planning Institute (Shaanxi Forest Resources Monitoring Center), Xi'an, Shaanxi Province, China
| | - Zongde Wang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Shangxing Chen
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Guorong Fan
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Ji Zhang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Liheng Liu
- Xinyu University, Xinyu, Jiangxi Province, China
| | - Yuling Yang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| |
Collapse
|
4
|
Almatroudi A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. BIOLOGY 2025; 14:165. [PMID: 40001933 PMCID: PMC11852148 DOI: 10.3390/biology14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Healthcare-associated infections pose a significant global health challenge, negatively impacting patient outcomes and burdening healthcare systems. A major contributing factor to healthcare-associated infections is the formation of biofilms, structured microbial communities encased in a self-produced extracellular polymeric substance matrix. Biofilms are critical in disease etiology and antibiotic resistance, complicating treatment and infection control efforts. Their inherent resistance mechanisms enable them to withstand antibiotic therapies, leading to recurrent infections and increased morbidity. This review explores the development of biofilms and their dual roles in health and disease. It highlights the structural and protective functions of the EPS matrix, which shields microbial populations from immune responses and antimicrobial agents. Key molecular mechanisms of biofilm resistance, including restricted antibiotic penetration, persister cell dormancy, and genetic adaptations, are identified as significant barriers to effective management. Biofilms are implicated in various clinical contexts, including chronic wounds, medical device-associated infections, oral health complications, and surgical site infections. Their prevalence in hospital environments exacerbates infection control challenges and underscores the urgent need for innovative preventive and therapeutic strategies. This review evaluates cutting-edge approaches such as DNase-mediated biofilm disruption, RNAIII-inhibiting peptides, DNABII proteins, bacteriophage therapies, antimicrobial peptides, nanoparticle-based solutions, antimicrobial coatings, and antimicrobial lock therapies. It also examines critical challenges associated with biofilm-related healthcare-associated infections, including diagnostic difficulties, disinfectant resistance, and economic implications. This review emphasizes the need for a multidisciplinary approach and underscores the importance of understanding biofilm dynamics, their role in disease pathogenesis, and the advancements in therapeutic strategies to combat biofilm-associated infections effectively in clinical settings. These insights aim to enhance treatment outcomes and reduce the burden of biofilm-related diseases.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Zorzetto L, Hammer S, Paris S, Bidan CM. In vitro model of bacterial biofilm mineralization in complex humid environments: a proof of concept study. Front Bioeng Biotechnol 2025; 12:1496117. [PMID: 39867469 PMCID: PMC11757236 DOI: 10.3389/fbioe.2024.1496117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025] Open
Abstract
Background Bacteria in physiological environments can generate mineralizing biofilms, which are associated with diseases like periodontitis or kidney stones. Modelling complex environments presents a challenge for the study of mineralization in biofilms. Here, we developed an experimental setup which could be applied to study the fundamental principles behind biofilm mineralization on rigid substrates, using a model organism and in a tailored bioreactor that mimics a humid environment. We developed a simple yet effective method to produce rigid specimens with the desired shape. Materials and Methods To simulate humid growth conditions, rigid specimens were conditioned with human saliva, inoculated with the chosen model bacterial strain and placed in a chamber with continuous drop-wise supply of nutritious media. The preconditioning stage did not affect significantly the bacteria proliferation, but considering this option was instrumental to future evolutions of the model, where saliva could be substituted with other substances (e.g., urine, plasma or antimicrobial solutions). Two different growth media were used: a control medium with nutritious substances and a mineralizing medium consisting in control medium supplemented with mineral precursors. Both the specimen shape and the bioreactor designs resulted from an optimization process thoroughly documented in this work. As a proof of concept, we showed that it is possible to locate the bacteria and minerals using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results We achieved an in vitro model representative of the conditions of growth and mineralization of biofilms in humid environments on a rigid substrate: something between the traditional solid-air and solid-liquid interface models. Conclusion Such model will be useful to understand fundamental mechanisms happening in complex environments.
Collapse
Affiliation(s)
- L. Zorzetto
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - S. Hammer
- Department of Operative, Preventive and Paediatric Dentistry, Center of Oral Health Sciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - S. Paris
- Department of Operative, Preventive and Paediatric Dentistry, Center of Oral Health Sciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - C. M. Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
6
|
Charlton SG, Jana S, Chen J. Yielding behaviour of chemically treated Pseudomonas fluorescens biofilms. Biofilm 2024; 8:100209. [PMID: 39071175 PMCID: PMC11279707 DOI: 10.1016/j.bioflm.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The mechanics of biofilms are intrinsically shaped by their physicochemical environment. By understanding the influence of the extracellular matrix composition, pH and elevated levels of cationic species on the biofilm rheology, novel living materials with tuned properties can be formulated. In this study, we examine the role of a chaotropic agent (urea), two divalent cations and distilled deionized water on the nonlinear viscoelasticity of a model biofilm Pseudomonas fluorescens. The structural breakdown of each biofilm is quantified using tools of non-linear rheology. Our findings reveal that urea induced a softening response, and displayed strain overshoots comparable to distilled deionized water, without altering the microstructural packing fraction and macroscale morphology. The absorption of divalent ferrous and calcium cations into the biofilm matrix resulted in stiffening and a reduction in normalized elastic energy dissipation, accompanied by macroscale morphological wrinkling and moderate increases in the packing fraction. Notably, ferrous ions induced a predominance of rate dependent yielding, whereas the calcium ions resulted in equal contribution from both rate and strain dependent yielding and structural breakdown of the biofilms. Together, these results indicate that strain rate increasingly becomes an important factor controlling biofilm fluidity with cation-induced biofilm stiffening. The finding can help inform effective biofilm removal protocols and in development of bio-inks for additive manufacturing of biofilm derived materials.
Collapse
Affiliation(s)
- Samuel G.V. Charlton
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Saikat Jana
- Ulster University, School of Engineering, 2-24 York Street, Belfast, BT15 1AP, United Kingdom
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Jinju Chen
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- Loughborough University, Department of Materials, Loughborough, LE11 3TU, United Kingdom
| |
Collapse
|
7
|
Dorner M, Behrens S. Biochar as ammonia exchange biofilm carrier for enhanced aerobic nitrification in activated sludge. BIORESOURCE TECHNOLOGY 2024; 413:131374. [PMID: 39209232 DOI: 10.1016/j.biortech.2024.131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The effects of biochar on aerobic nitrification in activated sludge were investigated in sequencing batch reactors. Biochar amended reactors exhibited 87-94 % lower ammonia in effluent and 16-71 % greater removal of total Kjeldahl nitrogen compared to control reactors. Quantitative qPCR analyses revealed that the relative abundance of ammonia oxidizing bacteria (AOB, amoA/16S rRNA genes) was greater in biochar than in control reactors. AOB were enriched on biochar surfaces, with biochar particles having up to 12.1 times greater relative abundance of AOB compared to suspended biomass. Biochar's maximum ammonia sorption capacity of 4.4 mg N/g at pH 7 decreased with decreasing pH, however a pH-sensitive fluorescent probe was used to show that biofilms growing on biochar surfaces maintain a median pH of > 6.7 despite reactor acidification by nitrification. Microbial colonization of biochar in activated sludge creates a pH-sheltered environment that sustains biochar's ammonia sorption capacity, resulting in enrichment of AOB on biochar particles and improved nitrification.
Collapse
Affiliation(s)
- Mariah Dorner
- University of Minnesota, Department of Civil, Environmental, and Geo-Engineering, 500 Pillsbury Drive, S.E., Minneapolis, MN 55455-0116, USA; University of Minnesota, BioTechnology Institute, 1479 Gortner Avenue, St. Paul, MN 55108-6106, USA.
| | - Sebastian Behrens
- University of Minnesota, Department of Civil, Environmental, and Geo-Engineering, 500 Pillsbury Drive, S.E., Minneapolis, MN 55455-0116, USA; University of Minnesota, BioTechnology Institute, 1479 Gortner Avenue, St. Paul, MN 55108-6106, USA.
| |
Collapse
|
8
|
Chen H, Xia A, Yan H, Huang Y, Zhu X, Zhu X, Liao Q. Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100480. [PMID: 39309319 PMCID: PMC11416670 DOI: 10.1016/j.ese.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties. In this review, we explore six biofilm reactor configurations and their potential combinations, emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance. Furthermore, we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance. This review highlights the role of biofilm reactors in environmental and energy sectors, paving the way for future innovations in biofilm-based technologies and their broader applications.
Collapse
Affiliation(s)
- Huize Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Huchao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
9
|
Shen Y, Wang Y, Wang J, Xie P, Xie C, Chen Y, Banaei N, Ren K, Cai Z. High-resolution 3D spatial distribution of complex microbial colonies revealed by mass spectrometry imaging. J Adv Res 2024:S2090-1232(24)00375-8. [PMID: 39214416 DOI: 10.1016/j.jare.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Bacterial living states and the distribution of microbial colony signaling molecules are widely studied using mass spectrometry imaging (MSI). However, current approaches often treat 3D colonies as flat 2D disks, inadvertently omitting valuable details. The challenge of achieving 3D MSI in biofilms persists due to the unique properties of microbial samples. OBJECTIVES The study aimed to develop a new biofilm sample preparation method that can realize high-resolution 3D MSI of bacterial colonies to reveal the spatial organization of bacterial colonies. METHODS This article introduces the moisture-assisted cryo-section (MACS) method, enabling embedding-free sectioning parallel to the growth plane. The MACS method secures intact sections by controlling ambient humidity and slice thickness, preventing molecular delocalization. RESULTS Combined with matrix-assisted laser desorption ionization mass spectrometry (MALDI)-MSI, the MACS method provides high-resolution insights into endogenic and exogenous molecule distributions in Pseudomonas aeruginosa (P. aeruginosa) biofilms, including isomeric pairs. Moreover, analyzed colonies are revived into 3D models, vividly depicting molecular distribution from inner to outer layers. Additionally, we investigated metabolite spatiotemporal dynamics in multiple colonies, observing changes over time and distinct patterns in single versus merged colonies. These findings shed light on the repel-merge process for multi-colony formation. Furthermore, our study monitored chemical responses inside biofilms after antibiotic treatment, showing increased antibiotic levels in the outer biofilm layer over time while maintaining low levels in the inner region. Moreover, the MACS method demonstrated its universality and applicability to other bacterial strains. CONCLUSION These results unveil complex cell activities within biofilm colonies, offering insights into microbe communities. The MACS method is universally applicable to loosely packed microorganism colonies, overcoming the limitations of previously reported MSI methods. It has great potential for studying bacterial-infected cancer tissues and artificial organs, making it a valuable tool in microbiological research.
Collapse
Affiliation(s)
- Yuting Shen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Chengyi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; Clinical Microbiology Laboratory, Stanford Health Care, Stanford, CA 94304, USA
| | - Kangning Ren
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China; Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China.
| |
Collapse
|
10
|
Li X, Lin S, Wang Y, Chen Y, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Fu H. Application of biofilm dispersion-based nanoparticles in cutting off reinfection. Appl Microbiol Biotechnol 2024; 108:386. [PMID: 38896257 PMCID: PMC11186951 DOI: 10.1007/s00253-024-13120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 06/21/2024]
Abstract
Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.
Collapse
Affiliation(s)
- Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueli Wang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Ferreira AM, Vikulina AS, Bowker L, Hunt JA, Loughlin M, Puddu V, Volodkin D. Nanoarchitectonics of Bactericidal Coatings Based on CaCO 3-Nanosilver Hybrids. ACS APPLIED BIO MATERIALS 2024; 7:2872-2886. [PMID: 38721671 PMCID: PMC11110054 DOI: 10.1021/acsabm.3c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 05/21/2024]
Abstract
Antimicrobial coatings provide protection against microbes colonization on surfaces. This can prevent the stabilization and proliferation of microorganisms. The ever-increasing levels of microbial resistance to antimicrobials are urging the development of alternative types of compounds that are potent across broad spectra of microorganisms and target different pathways. This will help to slow down the development of resistance and ideally halt it. The development of composite antimicrobial coatings (CACs) that can host and protect various antimicrobial agents and release them on demand is an approach to address this urgent need. In this work, new CACs based on microsized hybrids of calcium carbonate (CaCO3) and silver nanoparticles (AgNPs) were designed using a drop-casting technique. Polyvinylpyrrolidone and mucin were used as additives. The CaCO3/AgNPs hybrids contributed to endowing colloidal stability to the AgNPs and controlling their release, thereby ensuring the antibacterial activity of the coatings. Moreover, the additives PVP and mucin served as a matrix to (i) control the distribution of the hybrids, (ii) ensure mechanical integrity, and (iii) prevent the undesired release of AgNPs. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques were used to characterize the 15 μm thick CAC. The antibacterial activity was determined against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa, three bacteria responsible for many healthcare infections. Antibacterial performance of the hybrids was demonstrated at concentrations between 15 and 30 μg/cm2. Unloaded CaCO3 also presented bactericidal properties against MRSA. In vitro cytotoxicity tests demonstrated that the hybrids at bactericidal concentrations did not affect human dermal fibroblasts and human mesenchymal stem cell viability. In conclusion, this work presents a simple approach for the design and testing of advanced multicomponent and functional antimicrobial coatings that can protect active agents and release them on demand.
Collapse
Affiliation(s)
- Ana M. Ferreira
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Anna S. Vikulina
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
- Bavarian
Polymer Institute, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Laura Bowker
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - John A. Hunt
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Michael Loughlin
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Valeria Puddu
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Dmitry Volodkin
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| |
Collapse
|
12
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
14
|
Kadakia P, Valentin JDP, Hong L, Watts S, Hameed OA, Walch M, Salentinig S. Biocompatible Rhamnolipid Self-Assemblies with pH-Responsive Antimicrobial Activity. Adv Healthc Mater 2024; 13:e2302596. [PMID: 37935580 DOI: 10.1002/adhm.202302596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Indexed: 11/09/2023]
Abstract
There is an urgent need for alternative antimicrobial materials due to the growing challenge of bacteria becoming resistant to conventional antibiotics. This study demonstrates the creation of a biocompatible pH-switchable antimicrobial material by combining bacteria-derived rhamnolipids (RL) and food-grade glycerol monooleate (GMO). The integration of RL into dispersed GMO particles, with an inverse-type liquid crystalline cubic structure in the core, leads to colloidally stable supramolecular materials. The composition and pH-triggered structural transformations are studied with small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering. The composition-structure-activity relationship is analyzed and optimized to target bacteria at acidic pH values of acute wounds. The new RL/GMO dispersions reduce Staphylococcus aureus (S. aureus) populations by 7-log after 24 h of treatment with 64 µg mL-1 of RL and prevent biofilm formation at pH = 5.0, but have no activity at pH = 7.0. Additionally, the system is active against methicillin-resistant S. aureus (MRSA) with minimum inhibitory concentration of 128 µg mL-1 at pH 5.0. No activity is found against several Gram-negative bacteria at pH 5.0 and 7.0. The results provide a fundamental understanding of lipid self-assembly and the design of lipid-based biomaterials, which can further guide the development of alternative bio-based solutions to combat bacteria.
Collapse
Affiliation(s)
- Parth Kadakia
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Jules D P Valentin
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Linda Hong
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Samuel Watts
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Owais Abdul Hameed
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| |
Collapse
|
15
|
Cao X, Scoffield J, Xie B, Morton DB, Wu H. Drosophila melanogaster as a model to study polymicrobial synergy and dysbiosis. Front Cell Infect Microbiol 2023; 13:1279380. [PMID: 38192401 PMCID: PMC10773677 DOI: 10.3389/fcimb.2023.1279380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
The fruit fly Drosophila melanogaster has emerged as a valuable model for investigating human biology, including the role of the microbiome in health and disease. Historically, studies involving the infection of D. melanogaster with single microbial species have yielded critical insights into bacterial colonization and host innate immunity. However, recent evidence has underscored that multiple microbial species can interact in complex ways through physical connections, metabolic cross-feeding, or signaling exchanges, with significant implications for healthy homeostasis and the initiation, progression, and outcomes of disease. As a result, researchers have shifted their focus toward developing more robust and representative in vivo models of co-infection to probe the intricacies of polymicrobial synergy and dysbiosis. This review provides a comprehensive overview of the pioneering work and recent advances in the field, highlighting the utility of Drosophila as an alternative model for studying the multifaceted microbial interactions that occur within the oral cavity and other body sites. We will discuss the factors and mechanisms that drive microbial community dynamics, as well as their impacts on host physiology and immune responses. Furthermore, this review will delve into the emerging evidence that connects oral microbes to systemic conditions in both health and disease. As our understanding of the microbiome continues to evolve, Drosophila offers a powerful and tractable model for unraveling the complex interplay between host and microbes including oral microbes, which has far-reaching implications for human health and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Cao
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Jessica Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Baotong Xie
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - David B. Morton
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
16
|
Deiss-Yehiely E, Cárcamo-Oyarce G, Berger AG, Ribbeck K, Hammond PT. pH-Responsive, Charge-Reversing Layer-by-Layer Nanoparticle Surfaces Enhance Biofilm Penetration and Eradication. ACS Biomater Sci Eng 2023; 9:4794-4804. [PMID: 37390118 PMCID: PMC11117027 DOI: 10.1021/acsbiomaterials.3c00481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Microbes entrenched within biofilms can withstand 1000-fold higher concentrations of antibiotics, in part due to the viscous extracellular matrix that sequesters and attenuates antimicrobial activity. Nanoparticle (NP)-based therapeutics can aid in delivering higher local concentrations throughout biofilms as compared to free drugs alone, thereby enhancing the efficacy. Canonical design criteria dictate that positively charged nanoparticles can multivalently bind to anionic biofilm components and increase biofilm penetration. However, cationic particles are toxic and are rapidly cleared from circulation in vivo, limiting their use. Therefore, we sought to design pH-responsive NPs that change their surface charge from negative to positive in response to the reduced biofilm pH microenvironment. We synthesized a family of pH-dependent, hydrolyzable polymers and employed the layer-by-layer (LbL) electrostatic assembly method to fabricate biocompatible NPs with these polymers as the outermost surface. The NP charge conversion rate, dictated by polymer hydrophilicity and the side-chain structure, ranged from hours to undetectable within the experimental timeframe. LbL NPs with an increasingly fast charge conversion rate more effectively penetrated through, and accumulated throughout, wildtype (PAO1) and mutant overexpressing biomass (ΔwspF) Pseudomonas aeruginosa biofilms. Finally, tobramycin, an antibiotic known to be trapped by anionic biofilm components, was loaded into the final layer of the LbL NP. There was a 3.2-fold reduction in ΔwspF colony forming units for the fastest charge-converting NP as compared to both the slowest charge converter and free tobramycin. These studies provide a framework for the design of biofilm-penetrating NPs that respond to matrix interactions, ultimately increasing the efficacious delivery of antimicrobials.
Collapse
Affiliation(s)
- Elad Deiss-Yehiely
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 182 Memorial Drive, Cambridge, MA, 02142, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street Bld. 76, Cambridge, MA, 02139, United States
| | - Gerardo Cárcamo-Oyarce
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St. #56-651, Cambridge, MA, 02139, United States
| | - Adam G. Berger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street Bld. 76, Cambridge, MA, 02139, United States
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47-4F, Cambridge, MA, 02139, United States
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, United States
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St. #56-651, Cambridge, MA, 02139, United States
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street Bld. 76, Cambridge, MA, 02139, United States
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47-4F, Cambridge, MA, 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, MA, 02139, United States
| |
Collapse
|
17
|
Zhou J, Ren Y, Nie Y, Jin C, Park J, Zhang JXJ. Dual fluorescent hollow silica nanofibers for in situ pH monitoring using an optical fiber. NANOSCALE ADVANCES 2023; 5:2180-2189. [PMID: 37056611 PMCID: PMC10089112 DOI: 10.1039/d2na00943a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/15/2023] [Indexed: 06/19/2023]
Abstract
This study reports a sensitive and robust pH sensor based on dual fluorescent doped hollow silica nanofibers (hSNFs) for in situ and real-time pH monitoring. Fluorescein isothiocyanate (FITC) and tris(2,2'-bipyridyl)dichlororuthenium(ii) hexahydrate (Ru(BPY)3) were chosen as a pH sensitive dye and reference dye, respectively. hSNFs were synthesized using a two-step method in a reverse micelle system and were shown to have an average length of 6.20 μm and average diameter of 410 nm. The peak intensity ratio of FITC/Ru(BPY)3 was used to calibrate to solution pH changes. An optical-fiber-based fluorescence detection system was developed that enabled feasible and highly efficient near-field fluorescence detection. The developed system enables fully automated fluorescence detection, where components including the light source, detector, and data acquisition unit are all controlled by a computer. The results show that the developed pH sensor works in a linear range of pH 4.0-9.0 with a fast response time of less than 10 s and minimal sample volume of 50 μL, and can be stored under dark conditions for one month without failure. In addition, the as-prepared hSNF-based pH sensors also have excellent long-term durability. Experimental results from ratiometric sensing confirm the high feasibility, accuracy, stability and simplicity of the dual fluorescent hSNF sensors for the detection of pH in real samples.
Collapse
Affiliation(s)
- Junhu Zhou
- Thayer School of Engineering, Dartmouth College Hanover 03755 NH USA +1 603 646 9024 +1 603 646 8787
| | - Yundong Ren
- Thayer School of Engineering, Dartmouth College Hanover 03755 NH USA +1 603 646 9024 +1 603 646 8787
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College Hanover 03755 NH USA +1 603 646 9024 +1 603 646 8787
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College Hanover 03755 NH USA +1 603 646 9024 +1 603 646 8787
| | - Jiyoon Park
- Thayer School of Engineering, Dartmouth College Hanover 03755 NH USA +1 603 646 9024 +1 603 646 8787
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College Hanover 03755 NH USA +1 603 646 9024 +1 603 646 8787
| |
Collapse
|
18
|
Yang S, Wang Y, Ren F, Li Z, Dong Q. Applying enzyme treatments in Bacillus cereus biofilm removal. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
19
|
Djayanti K, Maharjan P, Cho KH, Jeong S, Kim MS, Shin MC, Min KA. Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations. Int J Mol Sci 2023; 24:ijms24076349. [PMID: 37047329 PMCID: PMC10094416 DOI: 10.3390/ijms24076349] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
With advances in nanotechnology, nanoparticles have come to be regarded as carriers of therapeutic agents and have been widely studied to overcome various diseases in the biomedical field. Among these particles, mesoporous silica nanoparticles (MSNs) have been investigated as potential nanocarriers to deliver drug molecules to various target sites in the body. This review introduces the physicochemical properties of MSNs and synthesis procedures of MSN-based nanoplatforms. Moreover, we focus on updating biomedical applications of MSNs as a carrier of therapeutic or diagnostic cargo and review clinical trials using silica-nanoparticle-based systems. Herein, on the one hand, we pay attention to the pharmaceutical advantages of MSNs, including nanometer particle size, high surface area, and porous structures, thus enabling efficient delivery of high drug-loading content. On the other hand, we look through biosafety and toxicity issues associated with MSN-based platforms. Based on many reports so far, MSNs have been widely applied to construct tissue engineering platforms as well as treat various diseases, including cancer, by surface functionalization or incorporation of stimuli-responsive components. However, even with the advantageous aspects that MSNs possess, there are still considerations, such as optimizing physicochemical properties or dosage regimens, regarding use of MSNs in clinics. Progress in synthesis procedures and scale-up production as well as a thorough investigation into the biosafety of MSNs would enable design of innovative and safe MSN-based platforms in biomedical fields.
Collapse
|
20
|
Wang Y, Zhang D, Sun Y, Zeng Y, Qi P. Precise Localization and Simultaneous Bacterial Eradication of Biofilms Based on Nanocontainers with Successive Responsive Property toward pH and ATP. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8424-8435. [PMID: 36744696 DOI: 10.1021/acsami.2c22682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The bacterial colonization of surfaces and subsequent biofilm formation are a great threat in medical therapy and clinical diagnosis. The complex internal structure and composition sets an enormous obstacle for the localization and removal of biofilms. In this study, we proposed a novel biofilm-targeted nanocontainer with successive responsive property toward pH and ATP for precise localization and simultaneous bacterial eradication, with an acidic and adenosine triphosphate (ATP)-rich microenvironment within biofilms, formed due to the accumulation of fatty acids and ATP in the three-dimensional enclosed structure, integrated as two successive indicators to improve the precision of biofilm identification and removal. The biofilm-targeted nanocontainer was composed of a ATP-responsive zeolitic imidazolate framework-90 (ZIF-90) core loaded with Rho 6G and doxorubicin hydrochloride (DOX) encapsulated in the pH-responsive amorphous calcium carbonate/poly(acrylic acid) (ACC/PAA) shell. In the presence of biofilms, the ACC/PAA shell and ZIF-90 core were successively degraded by the accumulated H+ and ATP within biofilms, resulting in the release of fluorescence indicators and antimicrobial agents. On the other hand, to meet the application requirements of different biofilm scenarios, the pH response ability of the nanocontainers could be adjusted by changing the metallic ions (Ni2+, Zn2+, and Cu2+) doped into the structure of the ACC/PAA shell. Owing to excellent water dispersion of the pH/ATP double-responsive ZIF-90@Zn-ACC/PAA nanocontainer, precise localization and simultaneous bacterial eradication was successfully realized via a simple spray process. The successive pH/ATP two-step unlocking processes endowed the nanocontainers high precision for localization and simultaneous eradication of biofilms, which made the proposed nanocontainers high promising in food safety and medical treatment.
Collapse
Affiliation(s)
- Yingwen Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Yan Sun
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Yan Zeng
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Peng Qi
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
21
|
Wu R, Yu T, Liu S, Shi R, Jiang G, Ren Y, van der Mei HC, Busscher HJ, Liu J. A Heterocatalytic Metal-Organic Framework to Stimulate Dispersal and Macrophage Combat with Infectious Biofilms. ACS NANO 2023; 17:2328-2340. [PMID: 36692081 PMCID: PMC9933606 DOI: 10.1021/acsnano.2c09008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Eradication of infectious biofilms is becoming increasingly difficult due to the growing number of antibiotic-resistant strains. This necessitates development of nonantibiotic-based, antimicrobial approaches. To this end, we designed a heterocatalytic metal-organic framework composed of zirconium 1,4-dicarboxybenzene (UiO-66) with immobilized Pt nanoparticles (Pt-NP/UiO-66). Pt-NP/UiO-66 enhanced singlet-oxygen generation compared with Pt nanoparticles or UiO-66, particularly in an acidic environment. Singlet-oxygen generation degraded phosphodiester bonds present in eDNA gluing biofilms together and therewith dispersed biofilms. Remaining biofilms possessed a more open structure. Concurrently, Pt-NP/UiO-66 stimulated macrophages to adapt a more M1-like, "fighting" phenotype, moving faster toward their target bacteria and showing increased bacterial killing. As a combined effect of biofilm dispersal and macrophage polarization, a subcutaneous Staphylococcus aureus biofilm in mice was more readily eradicated by Pt-NP/UiO-66 than by Pt nanoparticles or UiO-66. Therewith, heterocatalytic Pt-NP/UiO-66 metal-organic frameworks constitute a nonantibiotic-based strategy to weaken protective matrices and disperse infectious biofilms, while strengthening macrophages in bacterial killing.
Collapse
Affiliation(s)
- Renfei Wu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Tianrong Yu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Sidi Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Rui Shi
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Guimei Jiang
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Yijin Ren
- University
of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700
RBGroningen, The
Netherlands
| | - Henny C. van der Mei
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Henk J. Busscher
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Jian Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
| |
Collapse
|
22
|
Vaterite vectors for the protection, storage and release of silver nanoparticles. J Colloid Interface Sci 2023; 631:165-180. [DOI: 10.1016/j.jcis.2022.10.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
|
23
|
Dental plaque-inspired versatile nanosystem for caries prevention and tooth restoration. Bioact Mater 2023; 20:418-433. [PMID: 35784637 PMCID: PMC9233191 DOI: 10.1016/j.bioactmat.2022.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 12/16/2022] Open
Abstract
Dental caries is one of the most prevalent human diseases resulting from tooth demineralization caused by acid production of bacteria plaque. It remains challenges for current practice to specifically identify, intervene and interrupt the development of caries while restoring defects. In this study, inspired by natural dental plaque, a stimuli-responsive multidrug delivery system (PMs@NaF-SAP) has been developed to prevent tooth decay and promote enamel restoration. Classic spherical core-shell structures of micelles dual-loaded with antibacterial and restorative agents are self-assembled into bacteria-responsive multidrug delivery system based on the pH-cleavable boronate ester bond, followed by conjugation with salivary-acquired peptide (SAP) to endow the nanoparticle with strong adhesion to tooth enamel. The constructed PMs@NaF-SAP specifically adheres to tooth, identifies cariogenic conditions and intelligently releases drugs at acidic pH, thereby providing antibacterial adhesion and cariogenic biofilm resistance, and restoring the microarchitecture and mechanical properties of demineralized teeth. Topical treatment with PMs@NaF-SAP effectively diminishes the onset and severity of caries without impacting oral microbiota diversity or surrounding mucosal tissues. These findings demonstrate this novel nanotherapy has potential as a promising biomedical application for caries prevention and tooth defect restoration while resisting biofilm-associated diseases in a controlled manner activated by pathological bacteria. Nanomaterials can adhere to tooth and target acidic biofilms specifically. Application of caries prevention and tooth defect restoration. Guidance for the innovation of the existing post-defect restoration strategies. The multidrug delivery system exerts antibacterial and restorative abilities on demand. Bacteria-responsive system resists biofilm-associated diseases in a controlled manner.
Collapse
|
24
|
Garg A, Mejia E, Nam W, Vikesland P, Zhou W. Biomimetic Transparent Nanoplasmonic Meshes by Reverse-Nanoimprinting for Bio-Interfaced Spatiotemporal Multimodal SERS Bioanalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204517. [PMID: 36161480 DOI: 10.1002/smll.202204517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Multicellular systems, such as microbial biofilms and cancerous tumors, feature complex biological activities coordinated by cellular interactions mediated via different signaling and regulatory pathways, which are intrinsically heterogeneous, dynamic, and adaptive. However, due to their invasiveness or their inability to interface with native cellular networks, standard bioanalysis methods do not allow in situ spatiotemporal biochemical monitoring of multicellular systems to capture holistic spatiotemporal pictures of systems-level biology. Here, a high-throughput reverse nanoimprint lithography approach is reported to create biomimetic transparent nanoplasmonic microporous mesh (BTNMM) devices with ultrathin flexible microporous structures for spatiotemporal multimodal surface-enhanced Raman spectroscopy (SERS) measurements at the bio-interface. It is demonstrated that BTNMMs, supporting uniform and ultrasensitive SERS hotspots, can simultaneously enable spatiotemporal multimodal SERS measurements for targeted pH sensing and non-targeted molecular detection to resolve the diffusion dynamics for pH, adenine, and Rhodamine 6G molecules in agarose gel. Moreover, it is demonstrated that BTNMMs can act as multifunctional bio-interfaced SERS sensors to conduct in situ spatiotemporal pH mapping and molecular profiling of Escherichia coli biofilms. It is envisioned that the ultrasensitive multimodal SERS capability, transport permeability, and biomechanical compatibility of the BTNMMs can open exciting avenues for bio-interfaced multifunctional sensing applications both in vitro and in vivo.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
25
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
Affiliation(s)
| | | | | | - Cedric Taylor
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | |
Collapse
|
26
|
Zhou Y, Jiang Y, Cai J, Wang J, Li S, Wang M, Zhou X, Wang X, Zhao X, Ren L. A core/shell nanogenerator achieving pH-responsive nitric oxide release for treatment of infected diabetic wounds. NANOSCALE 2022; 14:14984-14996. [PMID: 36193714 DOI: 10.1039/d2nr03704a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitric oxide is critical for eliminating infection and promoting regeneration in diabetic wounds. However, clinical uses of nitric oxide are limited by its high activity and lack of specificity in targeting infections. Herein, we develop an intelligent nitric oxide nanogenerator comprising isosorbide dinitrate (ISDN)-coated copper sulfide (CuS)/calcium carbonate (CaCO3) core/shell nanoparticles (CuS@CaCO3-ISDN) to target the acidic microenvironment of the infected diabetic wounds. Meaningfully, triggered by acid decomposition of CaCO3, this nanogenerator can achieve a responsive and accelerated release of nitric oxide from ISDN through enzyme-mimicking redox processes that involve CuS nanoparticles and then inactivate biofilm bacteria through the pathways of oxidative stress and disruption of adenosine triphosphate (ATP)-related energy metabolism. Moreover, after eliminating the infection, the pH-responsive release of nitric oxide can promote the proliferation of blood vessels and tissue regeneration and accelerate diabetic wound closure. This study expands the use of nitric oxide donors in wound treatment by developing the enzyme-mimicking release strategy, and the pH-responsive core/shell nanogenerator is promising for a variety of anti-infection therapeutic applications.
Collapse
Affiliation(s)
- Yaming Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Yanjie Jiang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Jingfeng Cai
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Jiaping Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Shuo Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
27
|
Ding M, Zhao W, Zhang X, Song L, Luan S. Charge-switchable MOF nanocomplex for enhanced biofilm penetration and eradication. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129594. [PMID: 35850068 DOI: 10.1016/j.jhazmat.2022.129594] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacterial biofilm is notorious for causing chronic infections, whose antibiotic treatment is bringing about severe multidrug resistance and environmental contamination. Stimuli-responsive nanocarriers have become encouraging materials to combat biofilm infections with high efficiency and low side effect. Herein, a charge-switchable and pH-responsive nanocomplex is fabricated via a facile aqueous one-pot zeolitic imidazolate framework-8 (ZIF-8) encapsulation of proteinase K (PK) and photosensitizer Rose Bengal (RB), for enzymatic and photodynamic therapies (PDT) against biofilm infections. Once encountering in acidic microenvironment, the surface charge of nanocomplex can switch self-adaptively from negative to positive, hence remarkably facilitating the biofilm penetration of nanocomplex. After acid-induced decomposition of nanocomplex, the released PK degrades biofilm matrix and loosens its structure, promoting diffusion of RB inside the biofilm. Afterwards, upon visible light illumination, the RB generates highly reactive oxygen species (ROS), which can readily and efficiently kill the remained bacteria even in the biofilm core. The charge-assisted penetration makes PK and RB fully functional, resulting in a cooperative effect concerning high biofilm eradication capacity, as testified by biofilm models both in vitro and in vivo. The green synthesis and good therapeutic performance of the nanocomplex manifests its considerable potential as a nontoxic and effective platform for biofilm treatment.
Collapse
Affiliation(s)
- Meng Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
28
|
Zuo P, Metz J, Yu P, Alvarez PJJ. Biofilm-responsive encapsulated-phage coating for autonomous biofouling mitigation in water storage systems. WATER RESEARCH 2022; 224:119070. [PMID: 36096027 DOI: 10.1016/j.watres.2022.119070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biofilms in water storage systems may harbor pathogens that threaten public health. Chemical disinfectants are marginally effective in eradicating biofilms due to limited penetration, and often generate harmful disinfection byproducts. To enhance biofouling mitigation in household water storage tanks, we encapsulated bacteriophages (phages) in chitosan crosslinked with tri-polyphosphate and 3-glycidoxypropyltrimethoxysilane. Phages served as self-propagating green biocides that exclusively infect bacteria. This pH-responsive encapsulation (244 ± 11 nm) enabled autonomous release of phages in response to acidic pH associated with biofilms (corroborated by confocal microscopy with pH-indicator dye SNARF-4F), but otherwise remained stable in pH-neutral tap water for one month. Encapsulated phages instantly bind to plasma-treated plastic and fiberglass surfaces, providing a facile coating method that protects surfaces highly vulnerable to biofouling. Biofilm formation assays were conducted in tap water amended with 200 mg/L glucose to accelerate growth and attachment of Pseudomonas aeruginosa, an opportunistic pathogen commonly associated with biofilms in drinking water distribution and storage systems. Biofilms formation on plastic surfaces coated with encapsulated phages decreased to only 6.7 ± 0.2% (on a biomass basis) relative to the uncoated controls. Likewise, biofilm surface area coverage (4.8 ± 0.2 log CFU/mm2) and live/dead fluorescence ratio (1.80) were also lower than the controls (6.6 ± 0.2 log CFU/mm2 and live/dead ratio of 11.05). Overall, this study offers proof-of-concept of a chemical-free, easily implementable approach to control problematic biofilm-dwelling bacteria and highlights benefits of this bottom-up biofouling control approach that obviates the challenge of poor biofilm penetration by biocides.
Collapse
Affiliation(s)
- Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Jordin Metz
- Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA.
| |
Collapse
|
29
|
Tien T, Saccomano SC, Martin PA, Armstrong MS, Prud’homme RK, Cash KJ. Sensors in a Flash! Oxygen Nanosensors for Microbial Metabolic Monitoring Synthesized by Flash Nanoprecipitation. ACS Sens 2022; 7:2606-2614. [PMID: 36053212 PMCID: PMC9513798 DOI: 10.1021/acssensors.2c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/25/2022] [Indexed: 01/31/2023]
Abstract
Flash nanoprecipitation (FNP) is an efficient and scalable nanoparticle synthesis method that has not previously been applied to nanosensor fabrication. Current nanosensor fabrication methods have traditionally exhibited poor replicability and consistency resulting in high batch-to-batch variability, highlighting the need for a more tunable and efficient method such as FNP. We used FNP to fabricate nanosensors to sense oxygen based on an oxygen-sensitive dye and a reference dye, as a tool for measuring microbial metabolism. We used fluorescence spectroscopy to optimize nanosensor formulations, calibrate the nanosensors for oxygen concentration determination, and measure oxygen concentrations through oxygen-sensitive dye luminescence. FNP provides an effective platform for making sensors capable of responding to oxygen concentration in gas-bubbled solutions as well as in microbial environments. The environments we tested the sensors in arePseudomonas aeruginosa biofilms andSaccharomyces cerevisiae liquid cultures─both settings where oxygen concentration is highly dependent on microbial activity. With FNP now applied to nanosensor fabrication, future nanosensor applications can take advantage of improved product quality through better replicability and consistency while maintaining the original function of the nanosensor.
Collapse
Affiliation(s)
- Tony Tien
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Samuel C. Saccomano
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Pilar A. Martin
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Madeleine S. Armstrong
- Chemical
and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K. Prud’homme
- Chemical
and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Kevin J. Cash
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
- Quantitative
Biosciences and Engineering, Colorado School
of Mines, Golden, Colorado 80401, United
States
| |
Collapse
|
30
|
Vitale S, Rampazzo E, Hiebner D, Devlin H, Quinn L, Prodi L, Casey E. Interaction between Engineered Pluronic Silica Nanoparticles and Bacterial Biofilms: Elucidating the Role of Nanoparticle Surface Chemistry and EPS Matrix. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34502-34512. [PMID: 35830504 DOI: 10.1021/acsami.2c10347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles (NPs) are considered a promising tool in the context of biofilm control. Many studies have shown that different types of NPs can interfere with the bacterial metabolism and cellular membranes, thus making them potential antibacterial agents; however, fundamental understanding is still lacking on the exact mechanisms involved in these actions. The development of NP-based approaches for effective biofilm control also requires a thorough understanding of how the chosen nanoparticles will interact with the biofilm itself, and in particular with the biofilm self-produced extracellular polymeric matrix (EPS). This work aims to provide advances in the understanding of the interaction between engineered fluorescent pluronic silica (PluS) nanoparticles and bacterial biofilms, with a main focus on the role of the EPS matrix in the accumulation and diffusion of the particles in the biofilm. It is demonstrated that particle surface chemistry has a key role in the different lateral distribution and specific affinity to the biofilm matrix components. The results presented in this study contribute to our understanding of biofilm-NP interactions and promote the principle of the rational design of smart nanoparticles as an important tool for antibiofilm technology.
Collapse
Affiliation(s)
- Stefania Vitale
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Enrico Rampazzo
- Dipartimento di Chimica "Giacomo Ciamician", Università degli Studi di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Dishon Hiebner
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Henry Devlin
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Laura Quinn
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Luca Prodi
- Dipartimento di Chimica "Giacomo Ciamician", Università degli Studi di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Eoin Casey
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
31
|
Mathematical modeling of intercellular interactions within the biofilm. Trends Microbiol 2022; 30:925-929. [DOI: 10.1016/j.tim.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
|
32
|
Srivastava P, Tavernaro I, Genger C, Welker P, Hübner O, Resch-Genger U. Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies. Anal Chem 2022; 94:9656-9664. [PMID: 35731967 DOI: 10.1021/acs.analchem.2c00944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0-9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Isabella Tavernaro
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Claudia Genger
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, Luisencarée, 10115 Berlin, Germany
| | - Pia Welker
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, Luisencarée, 10115 Berlin, Germany
| | - Oskar Hübner
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
33
|
Kromer C, Schwibbert K, Gadicherla AK, Thiele D, Nirmalananthan-Budau N, Laux P, Resch-Genger U, Luch A, Tschiche HR. Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor. Sci Rep 2022; 12:9823. [PMID: 35701457 PMCID: PMC9197968 DOI: 10.1038/s41598-022-13518-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/25/2022] [Indexed: 01/12/2023] Open
Abstract
Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods.
Collapse
Affiliation(s)
- Charlotte Kromer
- Division 75 "Product Materials and Nanotechnology", Department Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dorn-Str. 8-10, 10589, Berlin, Germany.,Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schwibbert
- Department Materials and the Environment, Federal Institute for Materials Research and Testing, 12205, Berlin, Germany
| | - Ashish K Gadicherla
- Department Biological Safety, German Federal Institute for Risk Assessment, 12277, Berlin, Germany
| | - Dorothea Thiele
- Department Materials and the Environment, Federal Institute for Materials Research and Testing, 12205, Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Division 1.2 "Biophotonics", Department Analytical Chemistry, Reference Materials, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Peter Laux
- Division 75 "Product Materials and Nanotechnology", Department Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dorn-Str. 8-10, 10589, Berlin, Germany
| | - Ute Resch-Genger
- Division 1.2 "Biophotonics", Department Analytical Chemistry, Reference Materials, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.
| | - Andreas Luch
- Division 75 "Product Materials and Nanotechnology", Department Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dorn-Str. 8-10, 10589, Berlin, Germany.,Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Harald R Tschiche
- Division 75 "Product Materials and Nanotechnology", Department Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dorn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
34
|
Zhang Y, Lin S, Fu J, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Nanocarriers for combating biofilms: advantages and challenges. J Appl Microbiol 2022; 133:1273-1287. [PMID: 35621701 DOI: 10.1111/jam.15640] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/08/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
Bacterial biofilms are highly resistant to antibiotics and pose a great threat to human and animal health. The control and removal of bacterial biofilms have become an important topic in the field of bacterial infectious diseases. Nanocarriers show great anti-biofilm potential because of their small particle size and strong permeability. In this review, the advantages of nanocarriers for combating biofilms are analyzed. Nanocarriers can act on all stages of bacterial biofilm formation and diffusion. They can improve the scavenging effect of biofilm by targeting biofilm, destroying extracellular polymeric substances, and enhancing the biofilm permeability of antimicrobial substances. Nanocarriers can also improve the antibacterial ability of antimicrobial drugs against bacteria in biofilm by protecting the loaded drugs and controlling the release of antimicrobial substances. Additionally, we emphasize the challenges faced in using nanocarrier formulations and translating them from a preclinical level to the clinical setting.
Collapse
Affiliation(s)
- Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
35
|
Cui S, Qiao J, Xiong MP. Antibacterial and Biofilm-Eradicating Activities of pH-Responsive Vesicles against Pseudomonas aeruginosa. Mol Pharm 2022; 19:2406-2417. [PMID: 35507414 DOI: 10.1021/acs.molpharmaceut.2c00165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The formation of biofilms by a microcolony of bacteria is a significant burden on the healthcare industry due to difficulty eradicating it. In this study, pH-responsive vesicles capable of releasing apramycin (APR), a model aminoglycoside antibiotic, in response to the low pH typical of establishedPseudomonas aeruginosa biofilms resulted in improved eradication of existing biofilms in comparison to the free drug. The amphiphilic polymeric vesicle (PV) comprised of block polymer poly (ethylene glycol)-block-poly 2-(dimethylamino) ethyl methacrylate (mPEG-b-pDEAEMA) averaged 128 nm. The drug encapsulation content of APR in PV/APR was confirmed to be 28.2%, and the drug encapsulation efficiency was confirmed to be 51.2%. At pH 5.5, PV/APR released >90% APR after 24 h compared to <20% at pH 7.4. At pH 5.5, protonation of the pDEAEMA block results in a zeta potential of +23 mV compared to a neutral zeta potential of +2.2 mV at pH 7.4. Confocal microscopy, flow cytometry, and scanning electron microscopy reveal that the positively charged vesicles can compromise the integrity of the planktonic bacterial membrane in a pH-dependent manner. In addition, PV/APR is able to diffuse into mature biofilms to release APR in the acidic milieu of biofilm bacteria, and PV/APR was more efficient at eliminating preexisting biofilms compared to free APR at 128 and 256 μg/mL. This study reveals that dynamic charge density in response to pH can lead to differential levels of interactions with the biofilm and bacterial membrane. This effectively results in enhanced antibacterial and antibiofilm properties against both planktonic and difficult-to-treat biofilm bacteria at concentrations significantly lower than those of the free drug. Overall, this pH-responsive vesicle could be especially promising for treating biofilm-associated infectious diseases.
Collapse
Affiliation(s)
- Shuolin Cui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, United States
| | - Jing Qiao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 211189, China
| | - May P Xiong
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, United States
| |
Collapse
|
36
|
A pH-Gated Functionalized Hollow Mesoporous Silica Delivery System for Photodynamic Sterilization in Staphylococcus aureus Biofilm. MATERIALS 2022; 15:ma15082815. [PMID: 35454508 PMCID: PMC9031160 DOI: 10.3390/ma15082815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
Abstract
Multidrug-resistant bacteria are increasing, particularly those embedded in microbial biofilm. These bacteria account for most microbial infections in humans. Traditional antibiotic treatment has low efficiency in sterilization of biofilm-associated pathogens, and thus the development of new approaches is highly desired. In this study, amino-modified hollow mesoporous silica nanoparticles (AHMSN) were synthesized and used as the carrier to load natural photosensitizer curcumin (Cur). Then glutaraldehyde (GA) and polyethyleneimine (PEI) were used to seal the porous structure of AHMSN by the Schiff base reaction, forming positively charged AHMSN@GA@PEI@Cur. The Cur delivery system can smoothly diffuse into the negatively charged biofilm of Staphylococcus aureus (S. aureus). Then Cur can be released to the biofilm after the pH-gated cleavage of the Schiff base bond in the slightly acidic environment of the biofilm. After the release of the photosensitizer, the biofilm was irradiated by the blue LED light at a wavelength of 450 nm and a power of 37.4 mV/cm2 for 5 min. Compared with the control group, the number of viable bacteria in the biofilm was reduced by 98.20%. Therefore, the constructed pH-gated photosensitizer delivery system can efficiently target biofilm-associated pathogens and be used for photodynamic sterilization, without the production of antibiotic resistance.
Collapse
|
37
|
Yin F, Yang X, Zheng L, Fang L, Wang S, Liu H. Acid‐base transport model depicting the dynamic
pH
response of interfacial reactions. AIChE J 2022. [DOI: 10.1002/aic.17669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Key Laboratory of Reservoir Aquatic Environment Chinese Academy of Sciences Chongqing China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Key Laboratory of Reservoir Aquatic Environment Chinese Academy of Sciences Chongqing China
| | - Lei Zheng
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Key Laboratory of Reservoir Aquatic Environment Chinese Academy of Sciences Chongqing China
| | - Ling Fang
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Key Laboratory of Reservoir Aquatic Environment Chinese Academy of Sciences Chongqing China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Key Laboratory of Reservoir Aquatic Environment Chinese Academy of Sciences Chongqing China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Key Laboratory of Reservoir Aquatic Environment Chinese Academy of Sciences Chongqing China
| |
Collapse
|
38
|
Dai X, Xu Q, Yang L, Ma J, Gao F. pH-Responsive Fluorescent Polymer-Drug System for Real-Time Detection and In Situ Eradication of Bacterial Biofilms. ACS Biomater Sci Eng 2022; 8:893-902. [PMID: 35012306 DOI: 10.1021/acsbiomaterials.1c01520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial biofilms encased in extracellular polymeric substances to create protected microenvironments are typically challenging to disperse by common antibiotics and cannot be in situ visualized under current modalities. Herein, a pH-responsive branched polymer [poly(MBA-AEPZ)-AEPZ-NA] capable of overcoming antibiotic resistance and real-time visualizing biofilms for fluorescence imaging-guided infection control is reported. The positively charged polymer can effectively penetrate bacterial biofilms, neutralize the anionic character, and then disrupt the structural integrity, thus significantly promoting the transport of antibiotics into biofilms. The polymer shows a weak fluorescence emission intensity under physiological conditions (pH 7.4) but emits intense green-light emission within the localized biofilm microenvironment (pH 5.5) to real-time visualize bacterial biofilms. A therapeutic system made of the polymer and a model antibiotic can significantly reduce the dosages of the drug, thereby minimizing biofilm-induced drug resistance. Notably, a green fluorescent polymer responding to localized pH conditions is demonstrated in living zebrafish. This work confirmed that combinations of the pH-responsive branched polymer and antibiotics could be administered to overcome drug resistance and realize fluorescence imaging-guided treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jifang Ma
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
39
|
Zhang C, Xie H, Zhang Z, Wen B, Cao H, Bai Y, Che Q, Guo J, Su Z. Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Front Pharmacol 2022; 13:829796. [PMID: 35153797 PMCID: PMC8832880 DOI: 10.3389/fphar.2022.829796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
Mesoporous silica nanocarrier (MSN) preparations have a wide range of medical applications. Studying the biocompatibility of MSN is an important part of clinical transformation. Scientists have developed different types of mesoporous silica nanocarriers (MSNs) for different applications to realize the great potential of MSNs in the field of biomedicine, especially in tumor treatment. MSNs have achieved good results in diagnostic bioimaging, tissue engineering, cancer treatment, vaccine development, biomaterial application and diagnostics. MSNs can improve the therapeutic efficiency of drugs, introduce new drug delivery strategies, and provide advantages that traditional drugs lack. It is necessary not only to innovate MSNs but also to comprehensively understand their biological distribution. In this review, we summarize the various medical uses of MSN preparations and explore the factors that affect their distribution and biocompatibility in the body based on metabolism. Designing more reasonable therapeutic nanomedicine is an important task for the further development of the potential clinical applications of MSNs.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou, China
| | - Jiao Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jiao Guo, ; Zhengquan Su,
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jiao Guo, ; Zhengquan Su,
| |
Collapse
|
40
|
Robin B, Nicol M, Le H, Tahrioui A, Schaumann A, Vuillemenot JB, Vergoz D, Lesouhaitier O, Jouenne T, Hardouin J, Potron A, Perrot V, Dé E. MacAB-TolC Contributes to the Development of Acinetobacter baumannii Biofilm at the Solid–Liquid Interface. Front Microbiol 2022; 12:785161. [PMID: 35095797 PMCID: PMC8792954 DOI: 10.3389/fmicb.2021.785161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Acinetobacter baumannii has emerged as one of the most problematic bacterial pathogens responsible for hospital-acquired and community infections worldwide. Besides its high capacity to acquire antibiotic resistance mechanisms, it also presents high adhesion abilities on inert and living surfaces leading to biofilm development. This lifestyle confers additional protection against various treatments and allows it to persist for long periods in various hospital niches. Due to their remarkable antimicrobial tolerance, A. baumannii biofilms are difficult to control and ultimately eradicate. Further insights into the mechanism of biofilm development will help to overcome this challenge and to develop novel antibiofilm strategies. To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains (ATTC17978 and SDF) grown in planktonic stationary phase or in mature solid–liquid (S-L) biofilm were compared using a semiquantitative proteomic study. Of interest, among the 69 common proteins determinants accumulated in the two strains at the S-L interface, we sorted out the MacAB-TolC system. This tripartite efflux pump played a role in A. baumannii biofilm formation as demonstrated by using ΔmacAB-tolC deletion mutant. Complementary approaches allowed us to get an overview of the impact of macAB-tolC deletion in A. baumannii physiology. Indeed, this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm. It contributes to maintain wild type (WT) membrane rigidity and provides tolerance to high osmolarity conditions. In addition, this system is probably involved in the maintenance of iron and sulfur homeostasis. MacAB-TolC might help this pathogen face and adapt to deleterious conditions occurring in mature biofilms. Increasing our knowledge of A. baumannii biofilm formation will undoubtedly help us develop new therapeutic strategies to tackle this emerging threat to human health.
Collapse
Affiliation(s)
- Brandon Robin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Marion Nicol
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Hung Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Ali Tahrioui
- Normandie Univ, UNIROUEN, LMSM EA4312, Evreux, France
| | - Annick Schaumann
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | | | - Delphine Vergoz
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | | | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Anaïs Potron
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
| | - Valérie Perrot
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- *Correspondence: Valérie Perrot,
| | - Emmanuelle Dé
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- Emmanuelle Dé,
| |
Collapse
|
41
|
Wang Y, Shukla A. Bacteria-Responsive Biopolymer-Coated Nanoparticles for Biofilm Penetration and Eradication. Biomater Sci 2022; 10:2831-2843. [DOI: 10.1039/d2bm00361a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biofilm infections are common and can be extremely difficult to treat. Bacteria-responsive nanoparticles that respond to multiple bacterial stimuli have the potential to successfully prevent and eradicate biofilms. Here, we...
Collapse
|
42
|
De Marchi S, García-Lojo D, Bodelón G, Pérez-Juste J, Pastoriza-Santos I. Plasmonic Au@Ag@mSiO 2 Nanorattles for In Situ Imaging of Bacterial Metabolism by Surface-Enhanced Raman Scattering Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61587-61597. [PMID: 34927427 PMCID: PMC8719315 DOI: 10.1021/acsami.1c21812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is well known that microbial populations and their interactions are largely influenced by their secreted metabolites. Noninvasive and spatiotemporal monitoring and imaging of such extracellular metabolic byproducts can be correlated with biological phenotypes of interest and provide new insights into the structure and development of microbial communities. Herein, we report a surface-enhanced Raman scattering (SERS) hybrid substrate consisting of plasmonic Au@Ag@mSiO2 nanorattles for optophysiological monitoring of extracellular metabolism in microbial populations. A key element of the SERS substrate is the mesoporous silica shell encapsulating single plasmonic nanoparticles, which furnishes colloidal stability and molecular sieving capabilities to the engineered nanostructures, thereby realizing robust, sensitive, and reliable measurements. The reported SERS-based approach may be used as a powerful tool for deciphering the role of extracellular metabolites and physicochemical factors in microbial community dynamics and interactions.
Collapse
Affiliation(s)
- Sarah De Marchi
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Daniel García-Lojo
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Gustavo Bodelón
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Jorge Pérez-Juste
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| |
Collapse
|
43
|
Electrografted anthraquinone to monitor pH at the biofilm-anode interface in a wastewater microbial fuel cell. Colloids Surf B Biointerfaces 2021; 210:112274. [PMID: 34894599 DOI: 10.1016/j.colsurfb.2021.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Electrografted anthraquinone on graphite was used as a probe to monitor the pH change at the biofilm-electrode interface at the anode of a microbial fuel cell inoculated with wastewater. The grafting procedure was optimized so that the pH-dependent electrochemical response of the grafted quinone did not overlay with that of the electroactive biofilm. The variation of the formal potential of the grafted quinone as a function of pH was linear over the pH range 1-10 with a slope of - 64 mV. This allowed to monitor the interfacial pH change over three weeks of biofilm colonization of the electrode. During that time the interfacial pH decreased from neutrality to 5.3 while the anolyte only acidified down to pH 6.2. This finding is relevant as local pH change usually leads to alterations of the bioenergetics process of microbial communities and hence on the performance of bioelectrochemical devices.
Collapse
|
44
|
Tan GR, Hsu CYS, Zhang Y. pH-Responsive Hybrid Nanoparticles for Imaging Spatiotemporal pH Changes in Biofilm-Dentin Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46247-46259. [PMID: 34570460 DOI: 10.1021/acsami.1c11162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineering highly sensitive nanomaterials to monitor spatiotemporal pH changes has rather broad applications in studying various biological systems. Intraoral/biofilm-tooth pH is the single parameter that has demonstrated accurate assessment of dental caries risk, reflecting the summative integrated outcome of the complicated interactions between three etiological factors, namely, microorganisms/biofilm, diet/carbohydrates, and tooth/saliva/host. However, there is little to no technology/system capable of accurately probing simultaneously both the micro-pH profiles in dentin tissues and acidogenic oral biofilms and examining the pathophysiologic acid attacks with high spatial/temporal resolution. Therefore, a highly sensitive pH-responsive hybrid nanoparticle (pH-NP) is developed and coupled with an ex vivo tooth-biofilm caries model to simulate and study the key cariogenic determinants/steps. The pH-NP emits two distinct fluorescences with mutually inversely proportional intensities that vary accordingly to the proximity pH and with a ratiometric output sensitivity of 13.4-fold across a broad clinically relevant pH range of 3.0-8.0. Using [H+], in addition to pH, to calculate the "area-under-curve" corroborates the "minimum-pH" in semiquantifying the demineralizing potential in each biofilm-dentin zones/depth. The data mechanistically elucidates a two-pronged cariogenic effect of a popular-acidic-sweet-drink, in inundating the biofilm/tooth-system with H+ ions from both the drink and the metabolic byproducts of the biofilm.
Collapse
Affiliation(s)
- Guang-Rong Tan
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore 119085, Singapore
| | - Chin-Ying Stephen Hsu
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore 119085, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
45
|
Ding M, Zhao W, Song LJ, Luan SF. Stimuli-responsive nanocarriers for bacterial biofilm treatment. RARE METALS 2021; 41:482-498. [PMID: 34366603 PMCID: PMC8333162 DOI: 10.1007/s12598-021-01802-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/01/2023]
Abstract
ABSTRACT Bacterial biofilm infections have been threatening the human's life and health globally for a long time because they typically cause chronic and persistent infections. Traditional antibiotic therapies can hardly eradicate biofilms in many cases, as biofilms always form a robust fortress for pathogens inside, inhibiting the penetration of drugs. To address the issues, many novel drug carriers emerged as promising strategies for biofilm treatment. Among them, stimuli-responsive nanocarriers have attracted much attentions for their intriguing physicochemical properties, such as tunable size, shape and surface chemistry, especially smart drug release characteristic. Based on the microenvironmental difference between biofilm infection sites and normal tissue, many stimuli, such as bacterial products accumulating in biofilms (enzymes, glutathione, etc.), lower pH and higher H2O2 levels, have been employed and proved in favor of "on-demand" drug release for biofilm elimination. Additionally, external stimuli including light, heat, microwave and magnetic fields are also able to control the drug releasing behavior artificially. In this review, we summarized recent advances in stimuli-responsive nanocarriers for combating biofilm infections, and mainly, focusing on the different stimuli that trigger the drug release. 摘要 , , 。 , , 。 , , 。 , -, , , , 。 , , (, ), pHH2O2, ""。 , , , , 。 , , 。.
Collapse
Affiliation(s)
- Meng Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese of Academy, Changchun, 130022 China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Wei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese of Academy, Changchun, 130022 China
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005 China
| | - Ling-Jie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese of Academy, Changchun, 130022 China
| | - Shi-Fang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese of Academy, Changchun, 130022 China
- National Engineering Laboratory of Medical Implantable Devices, Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210 China
| |
Collapse
|
46
|
Wang D, Yang G, van der Mei HC, Ren Y, Busscher HJ, Shi L. Liposomes with Water as a pH-Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angew Chem Int Ed Engl 2021; 60:17714-17719. [PMID: 34028150 PMCID: PMC8362074 DOI: 10.1002/anie.202106329] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/25/2022]
Abstract
A lipid named DCPA was synthesized under microwave-assisted heating. DCPA possesses a pyridine betaine, hydrophilic group that can be complexed with water through hydrogen bonding (DCPA-H2 O). DCPA-H2 O liposomes became protonated relatively fast already at pH<6.8, due to the high HOMO binding energy of DCPA-H2 O. In murine models, DCPA-H2 O liposomes had longer blood circulation times than natural DPPC or cationic DCPM liposomes, while after tail-vein injection DCPA-H2 O liposomes targeted faster to solid tumors and intra-abdominal infectious biofilms. Therapeutic efficacy in a murine, infected wound-healing model of tail-vein injected ciprofloxacin-loaded DCPA-H2 O liposomes exceeded the ones of clinically applied ciprofloxacin as well as of ciprofloxacin-loaded DPPC or DCPM liposomes.
Collapse
Affiliation(s)
- Da‐Yuan Wang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300350P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300350P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center GroningenDepartment of OrthodonticsHanzeplein 19700RBGroningenThe Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300350P. R. China
| |
Collapse
|
47
|
Wang D, Yang G, Mei HC, Ren Y, Busscher HJ, Shi L. Liposomes with Water as a pH‐Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Da‐Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300350 P. R. China
- University of Groningen and University Medical Center Groningen Department of Biomedical Engineering Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300350 P. R. China
- University of Groningen and University Medical Center Groningen Department of Biomedical Engineering Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Henny C. Mei
- University of Groningen and University Medical Center Groningen Department of Biomedical Engineering Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen Department of Orthodontics Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen Department of Biomedical Engineering Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300350 P. R. China
| |
Collapse
|
48
|
Hollmann B, Perkins M, Chauhan VM, Aylott JW, Hardie KR. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation. NPJ Biofilms Microbiomes 2021; 7:50. [PMID: 34140515 PMCID: PMC8211749 DOI: 10.1038/s41522-021-00221-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the dynamic environmental microniches of biofilms will permit us to detect, manage and exploit these communities. The components and architecture of biofilms have been interrogated in depth; however, little is known about the environmental microniches present. This is primarily because of the absence of tools with the required measurement sensitivity and resolution to detect these changes. We describe the application of ratiometric fluorescent pH-sensitive nanosensors, as a tool, to observe physiological pH changes in biofilms in real time. Nanosensors comprised two pH-sensitive fluorophores covalently encapsulated with a reference pH-insensitive fluorophore in an inert polyacrylamide nanoparticle matrix. The nanosensors were used to analyse the real-time three-dimensional pH variation for two model biofilm formers: (i) opportunistic pathogen Pseudomonas aeruginosa and (ii) oral pathogen Streptococcus mutans. The detection of sugar metabolism in real time by nanosensors provides a potential application to identify therapeutic solutions to improve oral health.
Collapse
Affiliation(s)
- Birte Hollmann
- Biodiscovery Institute, School of Life Sciences, University Park, University of Nottingham, Nottingham, UK
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Mark Perkins
- Biodiscovery Institute, School of Life Sciences, University Park, University of Nottingham, Nottingham, UK
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Veeren M Chauhan
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Jonathan W Aylott
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kim R Hardie
- Biodiscovery Institute, School of Life Sciences, University Park, University of Nottingham, Nottingham, UK.
| |
Collapse
|
49
|
Wickhorst PJ, Ihmels H. Selective, pH-Dependent Colorimetric and Fluorimetric Detection of Quadruplex DNA with 4-Dimethylamino(phenyl)-Substituted Berberine Derivatives. Chemistry 2021; 27:8580-8589. [PMID: 33855748 PMCID: PMC8252107 DOI: 10.1002/chem.202100297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/20/2022]
Abstract
The 9- and 12-dimethylaminophenyl-substituted berberine derivatives 3 a and 3 b were readily synthesized by Suzuki-Miyaura reactions and shown to be useful fluorescent probes for the optical detection of quadruplex DNA (G4-DNA). Their association with the nucleic acids was investigated by spectrometric titrations, CD and LD spectroscopy, and with DNA-melting analysis. Both ligands bind to duplex DNA by intercalation and to G4-DNA by terminal π stacking. At neutral conditions, they bind with higher affinity (Kb =105 -106 M-1 ) to representative quadruplex forming oligonucleotides 22AG, c-myc, c-kit, and a2, than to duplex calf thymus (ct) DNA (Kb =5-7×104 M-1 ). At pH 5, however, the affinity of 3 a towards G4-DNA 22AG is higher (Kb =1.2×106 M-1 ), whereas the binding constant towards ct DNA is lower (Kb =3.9×103 M-1 ) than under neutral conditions. Notably, the association of the ligand with DNA results in characteristic changes of the absorption and emission properties under specific conditions, which may be used for optical DNA detection. Other than the parent berberine, the ligands do not show a noticeable increase of their very low intrinsic emission intensity upon association with DNA at neutral conditions. In contrast, a fluorescence light-up effect was observed upon association to duplex (Φfl =0.01) and quadruplex DNA (Φfl =0.04) at pH 5. This fluorimetric response to G4-DNA association in combination with the distinct, red-shifted absorption under these conditions provides a simple and conclusive optical detection of G4-DNA at lower pH.
Collapse
Affiliation(s)
- Peter Jonas Wickhorst
- Department of Chemistry – BiologyUniversity of Siegen, andCenter of Micro- and Nanochemistry and Engineering (Cμ)Adolf-Reichwein-Str. 257068SiegenGermany
| | - Heiko Ihmels
- Department of Chemistry – BiologyUniversity of Siegen, andCenter of Micro- and Nanochemistry and Engineering (Cμ)Adolf-Reichwein-Str. 257068SiegenGermany
| |
Collapse
|
50
|
Methanogenesis at High Temperature, High Ionic Strength and Low pH in the Volcanic Area of Dallol, Ethiopia. Microorganisms 2021; 9:microorganisms9061231. [PMID: 34204110 PMCID: PMC8228321 DOI: 10.3390/microorganisms9061231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
The Dallol geothermal area originated as a result of seismic activity and the presence of a shallow underground volcano, both due to the divergence of two tectonic plates. In its ascent, hot water dissolves and drags away the subsurface salts. The temperature of the water that comes out of the chimneys is higher than 100 °C, with a pH close to zero and high mineral concentration. These factors make Dallol a polyextreme environment. So far, nanohaloarchaeas, present in the salts that form the walls of the chimneys, have been the only living beings reported in this extreme environment. Through the use of complementary techniques: culture in microcosms, methane stable isotope signature and hybridization with specific probes, the methanogenic activity in the Dallol area has been assessed. Methane production in microcosms, positive hybridization with the Methanosarcinales probe and the δ13CCH4-values measured, show the existence of extensive methanogenic activity in the hydrogeothermic Dallol system. A methylotrophic pathway, carried out by Methanohalobium and Methanosarcina-like genera, could be the dominant pathway for methane production in this environment.
Collapse
|