1
|
Zhang L, Bai J, Shen A, Zhao J, Su Z, Wang M, Dong M, Xu ZP. Artificially tagging tumors with nano-aluminum adjuvant-tethered antigen mRNA recruits and activates antigen-specific cytotoxic T cells for enhanced cancer immunotherapy. Biomaterials 2025; 317:123085. [PMID: 39778272 DOI: 10.1016/j.biomaterials.2025.123085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/17/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors. Particularly, once internalization by tumor cells, MO@NAL efficiently tags the tumor cell surface with OVA through the carried mOVA, providing targets for recruiting and directing the antigen-specific cytotoxic T cells to destroy tumor cells. In mice pre-vaccinated with the OVA vaccine, intratumoral administration of MO@NAL rapidly awakens OVA-specific immune memory, rapidly and effectively inhibiting the progression of colon tumors and melanoma at both early and advanced stages. In non-pre-vaccinated mice, combining MO@NAL with the OVA therapeutic vaccine or OVA-specific adoptive T cell transfusion similarly achieves robust solid tumor suppression. These findings thus underscore the potential of MO@NAL as an effective and safe immunomodulator for enhancing cytotoxic T cell responses and providing timely intervention in solid tumor progression.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Jie Bai
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Aining Shen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Jing Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Zhenwei Su
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Maoze Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Zhi Ping Xu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Medicine, Hangzhou City University, Hangzhou, 310015, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
| |
Collapse
|
2
|
Wang W, Wu H, Zhang X, Hong Y, Tao S, Cao X, Wang S, Zha L, Zha Z. Whole-Component Antigen Nanovaccines Combined With aTIGIT for Enhanced Innate and Adaptive Anti-tumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412800. [PMID: 39967373 DOI: 10.1002/smll.202412800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Using entire tumor cells or tissues that display both common and patient-specific antigens can potentially trigger a comprehensive and long-lasting anti-tumor immune response. However, the limited immunogenicity, low uptake efficiency, and susceptibility to degradation of whole-component antigens present significant challenges. In this study, we employed tumor lysates (TLs) as whole-component antigens, in conjunction with MgAl-layered double hydroxide (MA) as nanoadjuvants and Mn2+ as immunostimulants, to create personalized MMAT (Mn2+-MA-TLs) nanovaccines. After subcutaneous injection of MMAT nanovaccines, the high local concentrations of TLs and Mn2+ facilitated the recruitment and activation of antigen-presenting cells (APCs), thereby inducing a robust adaptive immune response. Remarkably, MMAT nanovaccines enabled lysosomal escape, enhanced antigen cross-presentation, and activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in APCs. Furthermore, MMAT nanovaccines, when combined with the anti-TIGIT monoclonal antibody (aTIGIT), an immune checkpoint inhibitor, not only stimulated T-cell-based adaptive anti-tumor immune responses but also activated the NK-cell-based innate anti-tumor immunity, effectively suppressing tumor growth, recurrence, and metastasis. Thus, the ternary MMAT nanovaccines developed here introduced a pioneered paradigm for the rapid preparation of whole-component tumor antigens with nanoadjuvants and immunostimulants into nanovaccines, offering new prospects for clinical immunotherapies.
Collapse
Affiliation(s)
- Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haitao Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yang Hong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shi Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangjing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shipeng Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lisha Zha
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
3
|
Delgado-Corrales BJ, Chopra V, Chauhan G. Gold nanostars and nanourchins for enhanced photothermal therapy, bioimaging, and theranostics. J Mater Chem B 2025; 13:399-428. [PMID: 39575861 DOI: 10.1039/d4tb01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Photothermal therapy (PTT), a recently emerging method for eradicating tumors, utilizes hyperthermia induced by photo-absorbing materials to generate heat within cancer cells. Gold nanoparticles (AuNPs) have gained reliability for in vitro and in vivo applications in PTT due to their strong light absorbance, stability, and biocompatibility. Yet, their potential is limited by their spherical shape, impacting their size capabilities, electromagnetic enhancement effects, and localized surface plasmon resonance (LSPR). Anisotropic shapes have been tested and implemented in this treatment to overcome the limitations of spherical AuNPs. Nanostars (AuNSs) and nanourchins (AuNUs) offer unique properties, such as increased local electron density, improved catalytic activity, and an enhanced electromagnetic field, which have proven to be effective in PTT. Additionally, these shapes can easily reach the NIR-I and NIR-II window while exhibiting improved biological properties, including low cytotoxicity and high cellular uptake. This work covers the critical characteristics of AuNS and AuNUs, highlighting rough surface photothermal conversion enhancement, significantly impacting recent PTT and its synergy with other treatments. Additionally, the bioimaging and theranostic applications of these nanomaterials are discussed, highlighting their multifaceted utility in advanced cancer therapies.
Collapse
Affiliation(s)
- Beverly Jazmine Delgado-Corrales
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| | - Vianni Chopra
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| |
Collapse
|
4
|
Su Z, Boucetta H, Shao J, Huang J, Wang R, Shen A, He W, Xu ZP, Zhang L. Next-generation aluminum adjuvants: Immunomodulatory layered double hydroxide NanoAlum reengineered from first-line drugs. Acta Pharm Sin B 2024; 14:4665-4682. [PMID: 39664431 PMCID: PMC11628803 DOI: 10.1016/j.apsb.2024.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/13/2024] Open
Abstract
Aluminum adjuvants (Alum), approved by the US Food and Drug Administration, have been extensively used in vaccines containing recombinant antigens, subunits of pathogens, or toxins for almost a century. While Alums typically elicit strong humoral immune responses, their ability to induce cellular and mucosal immunity is limited. As an alternative, layered double hydroxide (LDH), a widely used antacid, has emerged as a novel class of potent nano-aluminum adjuvants (NanoAlum), demonstrating advantageous physicochemical properties, biocompatibility and adjuvanticity in both humoral and cellular immune responses. In this review, we summarize and compare the advantages and disadvantages of Alum and NanoAlum in these properties and their performance as adjuvants. Moreover, we propose the key features for ideal adjuvants and demonstrate that LDH NanoAlum is a promising candidate by summarizing its current progress in immunotherapeutic cancer treatments. Finally, we conclude the review by offering our integrated perspectives about the remaining challenges and future directions for NanoAlum's application in preclinical/clinical settings.
Collapse
Affiliation(s)
- Zhenwei Su
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Hamza Boucetta
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Shao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Jinling Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ran Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Aining Shen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhi Ping Xu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Lingxiao Zhang
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Miao L, Kang Y, Zhang XF. Nanotechnology for the theranostic opportunity of breast cancer lung metastasis: recent advancements and future challenges. Front Bioeng Biotechnol 2024; 12:1410017. [PMID: 38882636 PMCID: PMC11176448 DOI: 10.3389/fbioe.2024.1410017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Lung metastasis of breast cancer is rapidly becoming a thorny problem in the treatment of patients with breast cancer and an obstacle to long-term survival. The main challenges of treatment are the absence of therapeutic targets and drug resistance, which promotes the development of nanotechnology in the diagnosis and treatment process. Taking advantage of the controllability and targeting of nanotechnology, drug-targeted delivery, controlled sustained release, multi-drug combination, improved drug efficacy, and reduced side effects can be realized in the process of the diagnosis and treatment of metastatic breast cancer (MBC). Several nanotechnology-based theranostic strategies have been investigated in breast cancer lung metastases (BCLM): targeted drug delivery, imaging analysis, immunotherapy, gene therapy, and multi-modality combined therapy, and some clinical applications are in the research phase. In this review, we present current nanotechnology-based diagnosis and treatment approaches for patients of incurable breast cancer with lung metastases, and we hope to be able to summarize more effective and promising nano-drug diagnosis and treatment systems that aim to improve the survival of patients with advanced MBC. We describe nanoplatform-based experimental studies and clinical trials targeting the tumor and the tumor microenvironment (TME) for BCLM to obtain more targeted treatment and in the future treatment steps for patients to provide a pioneering strategy.
Collapse
Affiliation(s)
- Lin Miao
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yue Kang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xin Feng Zhang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
6
|
Ma K, Chen KZ, Qiao SL. Advances of Layered Double Hydroxide-Based Materials for Tumor Imaging and Therapy. CHEM REC 2024; 24:e202400010. [PMID: 38501833 DOI: 10.1002/tcr.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| |
Collapse
|
7
|
Wang J, Li L, Xu ZP. Enhancing Cancer Chemo-Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials. SMALL METHODS 2024; 8:e2301005. [PMID: 37743260 DOI: 10.1002/smtd.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Chemotherapy is a critical modality in cancer therapy to combat malignant cell proliferation by directly attacking cancer cells and inducing immunogenic cell death, serving as a vital component of multi-modal treatment strategies for enhanced therapeutic outcomes. However, chemotherapy may inadvertently contribute to the immunosuppression of the tumor microenvironment (TME), inducing the suppression of antitumor immune responses, which can ultimately affect therapeutic efficacy. Chemo-immunotherapy, combining chemotherapy and immunotherapy in cancer treatment, has emerged as a ground-breaking approach to target and eliminate malignant tumors and revolutionize the treatment landscape, offering promising, durable responses for various malignancies. Notably, functional nanomaterials have substantially contributed to chemo-immunotherapy by co-delivering chemo-immunotherapeutic agents and modulating TME. In this review, recent advancements in chemo-immunotherapy are thus summarized to enhance treatment effectiveness, achieved by reversing the immunosuppressive TME (ITME) through the exploitation of immunotherapeutic drugs, or immunoregulatory nanomaterials. The effects of two-way immunomodulation and the causes of immunoaugmentation and suppression during chemotherapy are illustrated. The current strategies of chemo-immunotherapy to surmount the ITME and the functional materials to target and regulate the ITME are discussed and compared. The perspective on tumor immunosuppression reversal strategy is finally proposed.
Collapse
Affiliation(s)
- Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
8
|
Tian Z, Hu Q, Sun Z, Wang N, He H, Tang Z, Chen W. A Booster for Radiofrequency Ablation: Advanced Adjuvant Therapy via In Situ Nanovaccine Synergized with Anti-programmed Death Ligand 1 Immunotherapy for Systemically Constraining Hepatocellular Carcinoma. ACS NANO 2023; 17:19441-19458. [PMID: 37733578 DOI: 10.1021/acsnano.3c08064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Radiofrequency ablation (RFA) is one of the most common minimally invasive techniques for treating hepatocellular carcinoma (HCC), which could destroy tumors through hyperthermia and generate massive tumor-associated antigens (TAAs). However, residual malignant tissues or small satellite lesions are hard to eliminate, generally resulting in metastases and recurrence. Herein, an advanced in situ nanovaccine formed by layered double hydroxides carrying cGAMP (STING agonist) (LDHs-cGAMP) and adsorbed TAAs was designed to potentiate the RFA-induced antitumor immune response. As-prepared LDHs-cGAMP could effectively enter cancerous or immune cells, inducing a stronger type I interferon (IFN-I) response. After further adsorption of TAAs, nanovaccine generated sustained immune stimulation and efficiently promoted activation of dendritic cells (DCs). Notably, infiltrations of cytotoxic lymphocytes (CTLs) and activated DCs in tumor and lymph nodes were significantly enhanced after nanovaccine treatment, which distinctly inhibited primary, distant, and metastasis of liver cancer. Furthermore, such a nanovaccine strategy greatly changed the tumor immune microenvironment and promoted the response efficiency of anti-programmed death ligand 1 (αPD-L1) immunotherapy, significantly arresting the poorly immunogenic hepa1-6 liver cancer progression. These findings demonstrate the potential of nanovaccine as a booster for RFA in liver cancer therapy and provide a promising in situ cancer vaccination strategy.
Collapse
Affiliation(s)
- Zhou Tian
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Qitao Hu
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhouyi Sun
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Ning Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Huiling He
- Department of Ultrasonography, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhe Tang
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, Zhejiang 310000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| |
Collapse
|
9
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|
10
|
Jiang Z, Jiang Z, Jiang Y, Cheng Y, Yao Q, Chen R, Kou L. Fe-involved nanostructures act as photothermal transduction agents in cancer photothermal therapy. Colloids Surf B Biointerfaces 2023; 228:113438. [PMID: 37421763 DOI: 10.1016/j.colsurfb.2023.113438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Cancer, a disease notorious for its difficult therapy regimen, has long puzzled researchers. Despite attempts to cure cancer using surgery, chemotherapy, radiotherapy, and immunotherapy, their effectiveness is limited. Recently, photothermal therapy (PTT), a rising strategy, has gained attention. PTT can increase the surrounding temperature of cancer tissues and cause damage to them. Fe is widely used in PTT nanostructures due to its strong chelating ability, good biocompatibility, and the potential to induce ferroptosis. In recent years, many nanostructures incorporating Fe3+ have been developed. In this article, we summarize PTT nanostructures containing Fe and introduce their synthesis and therapy strategy. However, PTT nanostructures containing Fe are still in their infancy, and more effort must be devoted to improving their effectiveness so that they can eventually be used in clinics.
Collapse
Affiliation(s)
- Zewei Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Zhikai Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yiling Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yingfeng Cheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China.
| |
Collapse
|
11
|
Sun L, Gao W, Wang J, Niu X, Kurniawan N, Li L, Xu ZP. A New Sono-Chemo Sensitizer Overcoming Tumor Hypoxia for Augmented Sono/Chemo-Dynamic Therapy and Robust Immune-Activating Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206078. [PMID: 36549674 DOI: 10.1002/smll.202206078] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Novel sonosensitizers with intrinsic characteristics for tumor diagnosis, efficient therapy, and tumor microenvironment regulation are appealing in current sonodynamic therapy. Herein, a manganese (Mn)-layered double hydroxide-based defect-rich nanoplatform is presented as a new type of sono-chemo sensitizer, which allows ultrasound to efficiently trigger reactive oxygen species generation for enhanced sono/chemo-dynamic therapy. Moreover, such a nanoplatform is able to relieve tumor hypoxia and achieve augmented singlet oxygen production via catalyzing endogenous H2 O2 into O2 . On top of these actions, the released Mn2+ ions and immune-modulating agent significantly intensify immune activation and reverse the immunosuppressive tumor microenvironment to the immunocompetent one. Consequently, this nanoplatform exhibits excellent anti-tumor efficacy and effectively suppresses both primary and distant tumor growth, demonstrating a new strategy to functionalize nanoparticles as sono-chemo sensitizers for synergistic combination cancer therapy.
Collapse
Affiliation(s)
- Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Wendong Gao
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xueming Niu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Nyoman Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Institute of Biomedical Health Technology and Engineering, and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
12
|
Jia Y, Hu J, Zhu C, Li Z, Yang X, Liu R, Zeng L, Zhang L. Engineered NanoAlum from aluminum turns cold tumor hot for potentiating cancer metalloimmunotherapy. J Control Release 2023; 354:770-783. [PMID: 36702259 DOI: 10.1016/j.jconrel.2023.01.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
The poor cancer immunotherapy outcome has been closely related to immunosuppressive tumor microenvironment (TME), which usually inactivates the antitumor immune cells and leads to immune tolerance. Metalloimmunotherapy by supplementing nutritional metal ions into TME has emerged as a potential strategy to activate the tumor-resident immune cells. Herein, we engineered a magnesium-contained nano-aluminum adjuvant (NanoAlum) through hydrolyzing a mixture of Mg(OH)2 and Al(OH)3, which has highly similar components to commercial Imject Alum. Peritumoral injection of NanoAlum effectively neutralized the acidic TME while releasing Mg2+ to activate the tumor-resident T cells. Meanwhile, NanoAlum also blocked the autophagy pathway in tumor cells and subsequently induced cell apoptosis. The in vivo studies showed that merely peritumoral injection of NanoAlum successfully inhibited the growth of solid tumors in mice. On this basis, NanoAlum combined with chemical drug methotrexate or immunomodulatory adjuvant CpG further induced potent antigen-specific antitumor immunity. Overall, our study first provides a rational design for engineering tumor-targeted nanomodulator from clinical adjuvants to achieve effective cancer metalloimmunotherapy against solid tumors.
Collapse
Affiliation(s)
- Yingbo Jia
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 211200, China
| | - Chaojie Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Zijing Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Xinyu Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Ruitian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Lingxiao Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China.
| |
Collapse
|
13
|
Hao-Yu D, Ding-Yi Y, Bao-Hong X, Aihua S, Xiao-Qian D, Cun-Zhi L. Two Molecular Weights Holothurian Glycosaminoglycan and Hematoporphyrin Derivative-Photodynamic Therapy Inhibit Proliferation and Promote Apoptosis of Human Lung Adenocarcinoma Cells. Integr Cancer Ther 2023; 22:15347354221144310. [PMID: 36624619 PMCID: PMC9834781 DOI: 10.1177/15347354221144310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber, and previous studies have shown many unique bioactivities of hGAG, including antitumor, anti-angiogenesis, anti coagulation, anti thrombosis, anti-inflammation, antidiabetic effect, antivirus, and immune regulation. The effects of 3W and 5W molecular weights hGAG with hematoporphyrin derivative-photodynamic therapy (HPD-PDT) on lung cancer were investigated. Human lung adenocarcinoma A549 cells were divided into 6 groups: control group, 3W molecular weight hGAG group, 5W molecular weight hGAG group, HPD-PDT group, 3W molecular weight hGAG + HPD-PDT group, and 5W molecular weight hGAG + HPD-PDT group. Cell morphology was observed under inverted phase contrast microscope. Cell proliferative activity was detected by CCK8 and cell apoptosis was assayed by Hoechst33258 staining and flow cytometry. The results showed that two different molecular weights hGAG could inhibit proliferation, promote apoptosis rates of A549 cells, and enhance the sensitivity of A549 cells to HPD-PDT. The combined use of hGAG and HPD-PDT has synergistic inhibitory effects on A549 cells, and the effects of 3W molecular weight hGAG are better than that of 5W molecular weight hGAG.
Collapse
Affiliation(s)
- Dai Hao-Yu
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Yu Ding-Yi
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Xiao Bao-Hong
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Sui Aihua
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Ding Xiao-Qian
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Lin Cun-Zhi
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China,Lin Cun-Zhi, Department of Respiratory and
Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao
266003, Shandong, China.
| |
Collapse
|
14
|
Sun L, Gao W, Liu J, Wang J, Li L, Yu H, Xu ZP. O 2-Supplying Nanozymes Alleviate Hypoxia and Deplete Lactate to Eliminate Tumors and Activate Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56644-56657. [PMID: 36515637 DOI: 10.1021/acsami.2c18960] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Direct hypoxia alleviation and lactate depletion in the tumor microenvironment (TME) are promising for effective cancer therapy but still very challenging. To address this challenge, the current research directly reshapes the TME for inhibiting tumor growth and activating the antitumor immunity using a drug-free nanozyme. Herein, the acid-sensitive nanozymes were constructed based on peroxidized layered double hydroxide nanoparticles for O2 self-supply and self-boosted lactate depletion. The coloading of partially cross-linked catalase and lactate oxidase enabled the acid-sensitive nanozymes to promote three reactions, that is, (1) H2O2 generation from MgO2 hydrolysis (30% at pH 7.4 vs 63% at pH 6.0 in 8 h); (2) O2 generation from H2O2 (12% at pH 7.4 vs 21% at pH 6.0 in 2 h); and (3) lactate depletion by in situ generated O2 (50% under hypoxia vs 75% under normoxia in 24 h in vitro) in parallel or tandem. These promoted reactions together efficiently induced colon cancer cell apoptosis under the hypoxic conditions, significantly inhibited tumor growth (>95%), and suppressed distant tumor growth upon seven administrations in every 3 days and moreover transformed the immunosuppressive tumor into "hot" one in the colon tumor-bearing mouse model. This is the first example for a nanozyme that supplies sufficient O2 for hypoxia relief and lactate depletion, thus providing a new insight into drug-free nanomaterial-mediated TME-targeted cancer therapy.
Collapse
Affiliation(s)
- Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Wendong Gao
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD4059, Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai201203, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| |
Collapse
|
15
|
Surface modification of two-dimensional layered double hydroxide nanoparticles with biopolymers for biomedical applications. Adv Drug Deliv Rev 2022; 191:114590. [PMID: 36341860 DOI: 10.1016/j.addr.2022.114590] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/24/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023]
Abstract
Layered double hydroxides (LDHs) are appealing nanomaterials for (bio)medical applications and their potential is threefold. One can gain advantage of the structure of LDH frame (i.e., layered morphology), anion exchanging property towards drugs with acidic character and tendency for facile surface modification with biopolymers. This review focuses on the third aspect, as it is necessary to evaluate the advantages of polymer adsorption on LDH surfaces. Beside the short discussion on fundamental and structural features of LDHs, LDH-biopolymer interactions will be classified in terms of the effect on the colloidal stability of the dispersions. Thereafter, an overview on the biocompatibility and biomedical applications of LDH-biopolymer composite materials will be given. Finally, the advances made in the field will be summarized and future research directions will be suggested.
Collapse
|
16
|
Zhang L, Zhao J, Hu X, Wang C, Jia Y, Zhu C, Xie S, Lee J, Li F, Ling D. A Peritumorally Injected Immunomodulating Adjuvant Elicits Robust and Safe Metalloimmunotherapy against Solid Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206915. [PMID: 35986645 DOI: 10.1002/adma.202206915] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Clinical immunotherapy of solid tumors elicits durable responses only in a minority of patients, largely due to the highly immunosuppressive tumor microenvironment (TME). Although rational combinations of vaccine adjuvants with inflammatory cytokines or immune agonists that relieve immunosuppression represent an appealing therapeutic strategy against solid tumors, there are unavoidable nonspecific toxicities due to the pleiotropy of cytokines and undesired activation of off-target cells. Herein, a Zn2+ doped layered double hydroxide (Zn-LDH) based immunomodulating adjuvant, which not only relieves immunosuppression but also elicits robust antitumor immunity, is reported. Peritumorally injected Zn-LDH sustainably neutralizes acidic TME and releases abundant Zn2+ , promoting a pro-inflammatory network composed of M1-tumor-associated macrophages, cytotoxic T cells, and natural-killer cells. Moreover, the Zn-LDH internalized by tumor cells effectively disrupts endo-/lysosomes to block autophagy and induces mitochondrial damage, and the released Zn2+ activates the cGas-STING signaling pathway to induce immunogenic cell death, which further promotes the release of tumor-associated antigens to induce antigen-specific cytotoxic T lymphocytes. Unprecedentedly, merely injection of Zn-LDH adjuvant, without using any cytotoxic inflammatory cytokines or immune agonists, significantly inhibits the growth, recurrence, and metastasis of solid tumors in mice. This study provides a rational bottom-up design of potent adjuvant for cancer metalloimmunotherapy against solid tumors.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jing Zhao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xi Hu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Oncogenes and Related Genes, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Chenhan Wang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yingbo Jia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chaojie Zhu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Oncogenes and Related Genes, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| |
Collapse
|
17
|
Yu X, Han N, Dong Z, Dang Y, Zhang Q, Hu W, Wang C, Du S, Lu Y. Combined Chemo-Immuno-Photothermal Therapy for Effective Cancer Treatment via an All-in-One and One-for-All Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42988-43009. [PMID: 36109853 DOI: 10.1021/acsami.2c12969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor metastasis and recurrence are recognized to be the main causes of failure in cancer treatment. To address these issues, an "all in one" and "one for all" nanoplatform was established for combined "chemo-immuno-photothermal" therapy with the expectation to improve the antitumor efficacy. Herein, Docetaxel (DTX, a chemo-agent) and cynomorium songaricum polysaccharide (CSP, an immunomodulator) were loaded into zein nanoparticles coated by a green tea polyphenols/iron coordination complex (GTP/FeIII, a photothermal agent). From the result, the obtained nanoplatform denoted as DTX-loaded Zein/CSP-GTP/FeIII NPs was spherical in morphology with an average particle size of 274 nm, and achieved pH-responsive drug release. Moreover, the nanoplatform exhibited excellent photothermal effect both in vitro and in vivo. It was also observed that the nanoparticles could be effectively up take by tumor cells and inhibited their migration. From the results of the in vivo experiment, this nanoplatform could completely eliminate the primary tumors, prevent tumor relapses on LLC (Lewis lung cancer) tumor models, and significantly inhibit metastasis on 4T1 (murine breast cancer) tumor models. The underlying mechanism was also explored. It was discovered that this nanoplatform could induce a strong ICD effect and promote the release of damage-associated molecular patterns (DAMPs) including CRT, ATP, and HMGB1 by the dying tumor cells. And the CSP could assist the DAMPs in inducing the maturation of dendritic cells (DCs) and facilitate the intratumoral infiltration of T lymphocytes to clear up the residual or disseminated tumor cells. In summary, this study demonstrated that the DTX-loaded Zein/CSP-GTP/FeIII is a promising nanoplatform to completely inhibit tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Xianglong Yu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ning Han
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ziyi Dong
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yunni Dang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Qing Zhang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Wenjun Hu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Changhai Wang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Shouying Du
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yang Lu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| |
Collapse
|
18
|
Govea-Alonso DO, García-Soto MJ, Betancourt-Mendiola L, Padilla-Ortega E, Rosales-Mendoza S, González-Ortega O. Nanoclays: Promising Materials for Vaccinology. Vaccines (Basel) 2022; 10:vaccines10091549. [PMID: 36146630 PMCID: PMC9505858 DOI: 10.3390/vaccines10091549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Clay materials and nanoclays have gained recent popularity in the vaccinology field, with biocompatibility, simple functionalization, low toxicity, and low-cost as their main attributes. As elements of nanovaccines, halloysite nanotubes (natural), layered double hydroxides and hectorite (synthetic) are the nanoclays that have advanced into the vaccinology field. Until now, only physisorption has been used to modify the surface of nanoclays with antigens, adjuvants, and/or ligands to create nanovaccines. Protocols to covalently attach these molecules have not been developed with nanoclays, only procedures to develop adsorbents based on nanoclays that could be extended to develop nanovaccine conjugates. In this review, we describe the approaches evaluated on different nanovaccine candidates reported in articles, the immunological results obtained with them and the most advanced approaches in the preclinical field, while describing the nanomaterial itself. In addition, complex systems that use nanoclays were included and described. The safety of nanoclays as carriers is an important key fact to determine their true potential as nanovaccine candidates in humans. Here, we present the evaluations reported in this field. Finally, we point out the perspectives in the development of vaccine prototypes using nanoclays as antigen carriers.
Collapse
Affiliation(s)
- Dania O. Govea-Alonso
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
| | - Mariano J. García-Soto
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - Lourdes Betancourt-Mendiola
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
| | - Erika Padilla-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
- Correspondence: (S.R.-M.); (O.G.-O.); Tel.: +52-4448262300 (S.R.-M. & O.G.-O.)
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
- Correspondence: (S.R.-M.); (O.G.-O.); Tel.: +52-4448262300 (S.R.-M. & O.G.-O.)
| |
Collapse
|
19
|
Zhang L, Jia Y, Yang J, Zhang L, Hou S, Niu X, Zhu J, Huang Y, Sun X, Xu ZP, Liu R. Efficient Immunotherapy of Drug-Free Layered Double Hydroxide Nanoparticles via Neutralizing Excess Acid and Blocking Tumor Cell Autophagy. ACS NANO 2022; 16:12036-12048. [PMID: 35881002 DOI: 10.1021/acsnano.2c02183] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cancer immunotherapy efficacy is largely limited by the suppressive tumor immune microenvironment (TIME) where antitumor immune cells are inhibited and tumor antigens continue to mutate or be lost. To remodel the TIME, we here applied weakly alkaline layered double hydroxide nanoparticles (LDH NPs) to neutralize the excess acid and block autophagy of tumor cells for neoadjuvant cancer immunotherapy. Peritumoral injection of LDH NPs provided a long-term and efficient acid-neutralization in the TIME, blocked the lysosome-mediated autophagy pathway in tumor cells, and increased the levels of antitumor tumor-associated macrophages and T cells. These LDH NPs captured tumor antigens released in the tumor tissues and effectively inhibited the growth of both melanoma and colon tumors in vivo. These findings indicate that LDH NPs, as an immunomodulator and adjuvant, successfully "awaken" and promote the host innate and adaptive immune systems, showing promising potential for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Lingxiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Ningbo Clinical Research Center for Digestive System Tumors, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Yingbo Jia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinju Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lun Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengjie Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyun Niu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaru Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoying Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ruitian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
20
|
Cui F, Liu J, Pang S, Li B. Recent Advance in Tumor Microenvironment-Based Stimuli-Responsive Nanoscale Drug Delivery and Imaging Platform. Front Pharmacol 2022; 13:929854. [PMID: 35935835 PMCID: PMC9354407 DOI: 10.3389/fphar.2022.929854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development, progression, and metastasis of cancer, and the extremely crucial feature is hypoxic and acidic. Cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), mesenchymal cells, blood vessels, and interstitial fluid are widely recognized as fundamentally crucial hallmarks for TME. As nanotechnology briskly boomed, the nanoscale drug delivery and imaging platform (NDDIP) emerged and has attracted intensive attention. Based on main characteristics of TME, NDDIP can be classified into pH-sensitive delivery and imaging platforms, enzyme-sensitive delivery and imaging platforms, thermo-sensitive delivery and imaging platforms, redox-sensitive delivery and imaging platforms, and light-sensitive delivery and imaging platforms. Furthermore, imageology is one of the significant procedures for disease detection, image-guided drug delivery, and efficacy assessment, including magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US), and fluorescence imaging. Therefore, the stimuli-responsive NDDIP will be a versatile and practicable tumor disease diagnostic procedure and efficacy evaluation tool. In this review article, we mainly introduce the characteristics of TME and summarize the progress of multitudinous NDDIP as well as their applications.
Collapse
Affiliation(s)
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | | | - Bo Li
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Ahmad MZ, Alasiri AS, Alasmary MY, Abdullah MM, Ahmad J, Abdel Wahab BA, M Alqahtani SA, Pathak K, Mustafa G, Khan MA, Saikia R, Gogoi U. Emerging advances in nanomedicine for breast cancer immunotherapy: opportunities and challenges. Immunotherapy 2022; 14:957-983. [PMID: 35852105 DOI: 10.2217/imt-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is one of the most common causes of cancer-related morbidity and mortality in women worldwide. Early diagnosis and an appropriate therapeutic approach for all cancers are climacterics for a favorable prognosis. Targeting the immune system in breast cancer is already a clinical reality with notable successes, specifically with checkpoint blockade antibodies and chimeric antigen receptor T-cell therapy. However, there have been inevitable setbacks in the clinical application of cancer immunotherapy, including inadequate immune responses due to insufficient delivery of immunostimulants to immune cells and uncontrolled immune system modulation. Rapid advancements and new evidence have suggested that nanomedicine-based immunotherapy may be a viable option for treating breast cancer.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Ali S Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Medical Department, College of Medicine, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - M M Abdullah
- Advanced Materials & Nano-Research Centre, Department of Physics, Faculty of Science & Arts, Najran University, Najran, 11001, Kingdom Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Basel A Abdel Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Saif Aboud M Alqahtani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Gulam Mustafa
- College of Pharmacy, Shaqra University, Ad-Dawadmi Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Ahmad Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
22
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
23
|
Heptamethine Cyanine-Loaded Nanomaterials for Cancer Immuno-Photothermal/Photodynamic Therapy: A Review. Pharmaceutics 2022; 14:pharmaceutics14051015. [PMID: 35631600 PMCID: PMC9144181 DOI: 10.3390/pharmaceutics14051015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
The development of strategies capable of eliminating metastasized cancer cells and preventing tumor recurrence is an exciting and extremely important area of research. In this regard, therapeutic approaches that explore the synergies between nanomaterial-mediated phototherapies and immunostimulants/immune checkpoint inhibitors have been yielding remarkable results in pre-clinical cancer models. These nanomaterials can accumulate in tumors and trigger, after irradiation of the primary tumor with near infrared light, a localized temperature increase and/or reactive oxygen species. These effects caused damage in cancer cells at the primary site and can also (i) relieve tumor hypoxia, (ii) release tumor-associated antigens and danger-associated molecular patterns, and (iii) induced a pro-inflammatory response. Such events will then synergize with the activity of immunostimulants and immune checkpoint inhibitors, paving the way for strong T cell responses against metastasized cancer cells and the creation of immune memory. Among the different nanomaterials aimed for cancer immuno-phototherapy, those incorporating near infrared-absorbing heptamethine cyanines (Indocyanine Green, IR775, IR780, IR797, IR820) have been showing promising results due to their multifunctionality, safety, and straightforward formulation. In this review, combined approaches based on phototherapies mediated by heptamethine cyanine-loaded nanomaterials and immunostimulants/immune checkpoint inhibitor actions are analyzed, focusing on their ability to modulate the action of the different immune system cells, eliminate metastasized cancer cells, and prevent tumor recurrence.
Collapse
|
24
|
Zhang Q, Li D, Guan S, Liu D, Wang J, Xing G, Yue L, Cai D. Tumor-targeted delivery of honokiol via polysialic acid modified zein nanoparticles prevents breast cancer progression and metastasis. Int J Biol Macromol 2022; 203:280-291. [PMID: 35093442 DOI: 10.1016/j.ijbiomac.2022.01.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
In this work, we developed polysialic acid (PSA) modified zein nanoparticles for targeted delivery of honokiol (HNK) to enhance drug delivery efficiency and specific biodistribution at tumor sites. The antisolvent precipitation and electrostatic interaction methods were employed to fabricate the PSA-Zein-HNK nanoparticles, which exhibited mean size of 107.2 ± 10.1 nm and HNK encapsulation efficiency of 79.2 ± 2.3%. The PSA-Zein-HNK maintained a uniform dispersion in serum for 48 h, implying the improved colloid stability of zein nanoparticles via PSA coating. The cellular uptake of PSA-Zein-Cou6 nanoparticles in 4 T1 cells was 2.58-fold higher than non-targeting Zein-Cou6. In addition, the IC50 value at 48 h for PSA-Zein-HNK (4.37 μg/mL) was significantly higher than the Zein-HNK (7.74 μg/mL). Enhanced tumor accumulation of the PSA-Zein-HNK was confirmed in 4 T1 breast cancer-bearing mice by near-infrared fluorescence imaging, resulting in desirable antitumor efficacy and favorable biosafety. Besides, compared with non-targeting zein nanoparticles, the PSA-Zein-HNK achieved a higher tumor growth inhibition rate of 52.3%. In particular, the metastasis of breast cancer to the lung or liver was remarkably suppressed by PSA-Zein-HNK. Together, our results demonstrated that the PSA-Zein-HNK could be a potential tumor-targeted drug delivery strategy for efficient treatment of breast cancer.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Dong Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Shuang Guan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Dan Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Jing Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Guihua Xing
- College of Pathology, Qiqihar Medical University, Qiqihar, PR China.
| | - Liling Yue
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| |
Collapse
|
25
|
Cai T, Liu H, Zhang S, Hu J, Zhang L. Delivery of nanovaccine towards lymphoid organs: recent strategies in enhancing cancer immunotherapy. J Nanobiotechnology 2021; 19:389. [PMID: 34823541 PMCID: PMC8620195 DOI: 10.1186/s12951-021-01146-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/14/2021] [Indexed: 01/15/2023] Open
Abstract
With the in-depth exploration on cancer therapeutic nanovaccines, increasing evidence shows that the poor delivery of nanovaccines to lymphoid organs has become the culprit limiting the rapid induction of anti-tumor immune response. Unlike the conventional prophylactic vaccines that mainly form a depot at the injection site to gradually trigger durable immune response, the rapid proliferation of tumors requires an efficient delivery of nanovaccines to lymphoid organs for rapid induction of anti-tumor immunity. Optimization of the physicochemical properties of nanovaccine (e.g., size, shape, charge, colloidal stability and surface ligands) is an effective strategy to enhance their accumulation in lymphoid organs, and nanovaccines with dynamic structures are also designed for precise targeted delivery of lymphoid organs or their subregions. The recent progress of these nanovaccine delivery strategies is highlighted in this review, and the challenges and future direction are also discussed. ![]()
Collapse
Affiliation(s)
- Ting Cai
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Huina Liu
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Shun Zhang
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Jing Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 211200, China.
| | - Lingxiao Zhang
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China. .,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China. .,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China. .,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Harnessing the combined potential of cancer immunotherapy and nanomedicine: A new paradigm in cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102492. [PMID: 34775062 DOI: 10.1016/j.nano.2021.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022]
Abstract
Cancer immunotherapy has recently emerged as a rising star due to its ability to activate patients' immune systems to fight tumors and prevent relapse. Conversely, the interest in cancer nanomedicine has seemingly waned due to its lackluster clinical translation. Despite being hailed as a game-changer in oncology, cancer immunotherapy still faces numerous challenges. Combining both entities together has thus been one among several solutions proposed to circumvent these challenges. This solution has since gained traction and has also led to a renaissance of cancer nanomedicine. While most combinations are currently experimental at best, some have progressed on to clinical trials. This review thus seeks to examine the advantages and disadvantages of integrating both modalities as a cancer treatment. The opportunities, challenges and future directions of this emerging field will also be explored with the hope that such a combination will lead to a paradigm shift in cancer treatments.
Collapse
|
27
|
Wang J, Sun L, Liu J, Sun B, Li L, Xu ZP. Biomimetic 2D layered double hydroxide nanocomposites for hyperthermia-facilitated homologous targeting cancer photo-chemotherapy. J Nanobiotechnology 2021; 19:351. [PMID: 34717639 PMCID: PMC8557519 DOI: 10.1186/s12951-021-01096-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multi-modal therapy has attracted increasing attention as it provides enhanced effectiveness and potential stimulation of the immune community. However, low accumulation at the tumor sites and quick immune clearance of the anti-tumor agents are still insurmountable challenges. Hypothetically, cancer cell membrane (CCM) can homologously target the tumor whereas multi-modal therapy can complement the disadvantages of singular therapies. Meanwhile, moderate hyperthermia induced by photothermal therapy can boost the cellular uptake of therapeutic agents by cancer cells. RESULTS CCM-cloaked indocyanine green (ICG)-incorporated and abraxane (PTX-BSA)-loaded layered double hydroxide (LDH) nanosheets (LIPC NSs) were fabricated for target efficient photo-chemotherapy of colorectal carcinoma (CRC). The CCM-cloaked LDH delivery system showed efficient homologous targeting and cytotoxicity, which was further enhanced under laser irradiation to synergize CRC apoptosis. On the other hand, CCM-cloaking remarkably reduced the uptake of LDH NSs by HEK 293T cells and macrophages, implying mitigation of the side effects and the immune clearance, respectively. In vivo data further exhibited that LIPC NSs enhanced the drug accumulation in tumor tissues and significantly retarded tumor progression under laser irradiation at very low therapeutic doses (1.2 and 0.6 mg/kg of ICG and PTX-BSA), without observed side effects on other organs. CONCLUSIONS This research has demonstrated that targeting delivery efficiency and immune-escaping ability of LIPC NSs are tremendously enhanced by CCM cloaking for efficient tumor accumulation and in situ generated hyperthermia boosts the uptake of LIPC NSs by cancer cells, a potential effective way to improve the multi-modal cancer therapy.
Collapse
Affiliation(s)
- Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
28
|
Wu B, Li K, Sun F, Niu J, Zhu R, Qian Y, Wang S. Trifunctional Graphene Quantum Dot@LDH Integrated Nanoprobes for Visualization Therapy of Gastric Cancer. Adv Healthc Mater 2021; 10:e2100512. [PMID: 34110710 PMCID: PMC11469055 DOI: 10.1002/adhm.202100512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Indexed: 02/02/2023]
Abstract
Visualization technology has become a trend in tumor therapy in recent years. The superior optical properties of graphene quantum dots (GQDs) make them suitable candidates for tumor diagnosis, but their tumor targeting and drug-carrying capacities are still not ideal for treatment. Sulfur-doped graphene quantum dots (SGQDs) with stable fluorescence are prepared in a previous study. A reliable strategy by associating layered double hydroxides (LDHs) and etoposide (VP16) is designed for precise visualization therapy. Trifunctional LDH@SGQD-VP16 integrated nanoprobes can simultaneously achieve targeted aggregation, fluorescence visualization, and chemotherapy. LDH@SGQD-VP16 can accumulate in the tumor microenvironment, owing to pH-sensitive properties and long-term photostability in vivo, which can provide a basis for cancer targeting, real-time imaging, and effect tracking. The enhanced therapeutic and attenuated side effects of VP16 are demonstrated, and the apoptosis caused by LDH@SGQD-VP16 is ≈2.7 times higher than that of VP16 alone, in HGC-27 cells. This work provides a theoretical and experimental basis for LDH@SGQD-VP16 as a potential multifunctional agent for visualization therapy of gastric cancer.
Collapse
Affiliation(s)
- Bin Wu
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Kun Li
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Feiyue Sun
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Jintong Niu
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Rongrong Zhu
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Yechang Qian
- Department of Respiratory DiseaseBaoshan District Hospital of Integrated Traditional Chinese and Western MedicineShanghai201900China
| | - Shilong Wang
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| |
Collapse
|
29
|
Gowsalya K, Yasothamani V, Vivek R. Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review. NANOSCALE ADVANCES 2021; 3:3332-3352. [PMID: 36133722 PMCID: PMC9418715 DOI: 10.1039/d1na00059d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/03/2021] [Indexed: 05/17/2023]
Abstract
Nanotechnology is a branch of science dealing with the development of new types of nanomaterials by several methods. In the biomedical field, nanotechnology is widely used in the form of nanotherapeutics. Therefore, the current biomedical research pays much attention to nanotechnology for the development of efficient cancer treatment. Indocyanine green (ICG) is a near-infrared tricarbocyanine dye approved by the Food and Drug Administration (FDA) for human clinical use. ICG is a biologically safe photosensitizer and it can kill tumor cells by producing singlet oxygen species and photothermal heat upon NIR irradiation. ICG has some limitations such as easy aggregation, rapid aqueous degradation, and a short half-life. To address these limitations, ICG is further formulated with nanoparticles. Therefore, ICG is integrated with organic nanomaterials (polymers, micelles, liposomes, dendrimers and protein), inorganic nanomaterials (magnetic, gold, mesoporous, calcium, and LDH based), and hybrid nanomaterials. The combination of ICG with nanomaterials provides highly efficient therapeutic effects. Nowadays, ICG is used for various biomedical applications, especially in cancer therapeutics. In this review, we mainly focus on ICG-based combined cancer nanotherapeutics for advanced cancer treatment.
Collapse
Affiliation(s)
- Karunanidhi Gowsalya
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore-641 046 India
| | - Vellingiri Yasothamani
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore-641 046 India
| | - Raju Vivek
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore-641 046 India
| |
Collapse
|
30
|
Heat/pH-boosted release of 5-fluorouracil and albumin-bound paclitaxel from Cu-doped layered double hydroxide nanomedicine for synergistical chemo-photo-therapy of breast cancer. J Control Release 2021; 335:49-58. [PMID: 33989692 DOI: 10.1016/j.jconrel.2021.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/24/2022]
Abstract
Considerable attention has been devoted to nanomedicine development for breast cancer therapy, while the therapeutic efficiency is far from satisfactory owing to non-specific biodistribution-caused side effects and limitation of single modal treatment. In this study, we have developed a novel nanomedicine for efficient combination breast cancer therapy. This nanomedicine was based on copper-doped layered double hydroxide (Cu-LDH) nanoparticles loaded with two FDA-approved anticancer drugs, i.e. 5-fluorouracil (5-FU) and albumin-bound paclitaxel (nAb-PTX) with complementary chemotherapeutic actions. The 5-FU/Cu-LDH@nAb-PTX nanomedicine showed pH-sensitive heat-facilitated therapeutic on-demand release and demonstrated the moderate-to-strong synergy of photothermal therapy and chemotherapy in inducing apoptosis of breast cancer cells (4 T1). This nanomedicine had a high colloidal stability in saline and serum, and efficiently accumulated in the tumor tissue. Remarkably, this nanomedicine nearly eliminated 4 T1 tumors in vivo after a two-course treatment under mild 808 nm laser irradiation (0.75 W/cm2, 3 min) at very low doses of 5-FU and nAb-PTX (0.25 and 0.50 mg/kg, 8-50 times less than that used in other nanoformulations), without observable side effects. Therefore, this research provides a novel approach to designing multifunctional nanomedicines for on-demand release of chemotherapeutics to cost-effectively treat breast cancer with minimal side effects in future clinic applications.
Collapse
|
31
|
Zhang LX, Hu J, Jia YB, Liu RT, Cai T, Xu ZP. Two-dimensional layered double hydroxide nanoadjuvant: recent progress and future direction. NANOSCALE 2021; 13:7533-7549. [PMID: 33876812 DOI: 10.1039/d1nr00881a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layered double hydroxide (LDH) is a 'sandwich'-like two-dimensional clay material that has been systematically investigated for biomedical application in the past two decades. LDH is an alum-similar adjuvant, which has a well-defined layered crystal structure and exhibits high adjuvanticity. The unique structure of LDH includes positively charged layers composed of divalent and trivalent cations and anion-exchangeable interlayer galleries. Among the many variants of LDH, MgAl-LDH (the cationic ions are Mg2+ and Al3+) has the highest affinity to antigens, bioadjuvants and drug molecules, and exhibits superior biosafety. Past research studies indicate that MgAl-LDH can simultaneously load antigens, bioadjuvants and molecular drugs to amplify the strength of immune responses, and induce broad-spectrum immune responses. Moreover, the size and dispersity of MgAl-LDH in biological environments can be well controlled to actively deliver antigens to the immune system, realizing the rapid induction and maintenance of durable immune responses. Furthermore, the functionalization of MgAl-LDH nanoadjuvants enables it to capture antigens in situ and induce personalized immune responses, thereby more effectively overcoming complex diseases. In this review, we comprehensively summarize the development and application of MgAl-LDH nanoparticles as a vaccine adjuvant, demonstrating that MgAl-LDH is the most potential adjuvant for clinical application.
Collapse
Affiliation(s)
- Ling-Xiao Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo 315010, China. and Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. and Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Univeristy, Hangzhou 310058, China
| | - Jing Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Bo Jia
- University of Chinese Academy of Sciences, Beijing 100049, China and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo 315010, China. and Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
32
|
Choi G, Rejinold NS, Piao H, Choy JH. Inorganic-inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chem Sci 2021; 12:5044-5063. [PMID: 34168768 PMCID: PMC8179608 DOI: 10.1039/d0sc06724e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced nanotechnology has been emerging rapidly in terms of novel hybrid nanomaterials that have found various applications in day-to-day life for the betterment of the public. Specifically, gold, iron, silica, hydroxy apatite, and layered double hydroxide based nanohybrids have shown tremendous progress in biomedical applications, including bio-imaging, therapeutic delivery and photothermal/dynamic therapy. Moreover, recent progress in up-conversion nanohybrid materials is also notable because they have excellent NIR imaging capability along with therapeutic benefits which would be useful for treating deep-rooted tumor tissues. Our present review highlights recent developments in inorganic-inorganic nanohybrids, and their applications in bio-imaging, drug delivery, and photo-therapy. In addition, their future scope is also discussed in detail.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- College of Science and Technology, Dankook University Cheonan 31116 Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- Department of Pre-medical Course, College of Medicine, Dankook University Cheonan 31116 Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| |
Collapse
|
33
|
Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. NANO TODAY 2021; 36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Li J, Li B, Wang J, He L, Zhao Y. Recent Advances in Layered Double Hydroxides and Their Derivatives for Biomedical Applications. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20090441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology 2020; 18:180. [PMID: 33298099 PMCID: PMC7727246 DOI: 10.1186/s12951-020-00741-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer continues to be the most frequently diagnosed malignancy among women, putting their life in jeopardy. Cancer immunotherapy is a novel approach with the ability to boost the host immune system to recognize and eradicate cancer cells with high selectivity. As a promising treatment, immunotherapy can not only eliminate the primary tumors, but also be proven to be effective in impeding metastasis and recurrence. However, the clinical application of cancer immunotherapy has faced some limitations including generating weak immune responses due to inadequate delivery of immunostimulants to the immune cells as well as uncontrolled modulation of immune system, which can give rise to autoimmunity and nonspecific inflammation. Growing evidence has suggested that nanotechnology may meet the needs of current cancer immunotherapy. Advanced biomaterials such as nanoparticles afford a unique opportunity to maximize the efficiency of immunotherapy and significantly diminish their toxic side-effects. Here we discuss recent advancements that have been made in nanoparticle-involving breast cancer immunotherapy, varying from direct activation of immune systems through the delivery of tumor antigens and adjuvants to immune cells to altering immunosuppression of tumor environment and combination with other conventional therapies.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Choi G, Choy JH. Recent progress in layered double hydroxides as a cancer theranostic nanoplatform. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1679. [PMID: 33140557 DOI: 10.1002/wnan.1679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Layered double hydroxide (LDH) has been a big challenge in exploring new hybrid materials by intercalating inorganic, organic, or bio molecules into their lamellar lattice, those which often showed dual functions from each other or new mutative properties. Recently, nano-bio convergence technology becomes one of the most extensively studied research fields in the view point of developing advanced drugs and diagnostic agents to fight against disease and eventually to improve the lives of human beings. Therefore, LDH as one of the nanomaterials have been intensively investigated not only as biocompatible drug delivery vehicle for cancer chemotherapy but also as diagnostic and imaging agents. In the present review, we have attempted to summarize theranostic functions of drug-LDH hybrid nanoparticles including their synthetic methods, physico-chemical and biological properties, and their unique mechanism overcoming drug resistance, and targeting properties based on in vitro and finally in vivo results. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
37
|
Hou YJ, Yang XX, Liu RQ, Zhao D, Guo CX, Zhu AC, Wen MN, Liu Z, Qu GF, Meng HX. Pathological Mechanism of Photodynamic Therapy and Photothermal Therapy Based on Nanoparticles. Int J Nanomedicine 2020; 15:6827-6838. [PMID: 32982235 PMCID: PMC7501968 DOI: 10.2147/ijn.s269321] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
The ultimate goal of phototherapy based on nanoparticles, such as photothermal therapy (PTT) which generates heat and photodynamic therapy (PDT) which not only generates reactive oxygen species (ROS) but also induces a variety of anti-tumor immunity, is to kill tumors. In addition, due to strong efficacy in clinical treatment with minimal invasion and negligible side effects, it has received extensive attention and research in recent years. In this paper, the generations of nanomaterials in PTT and PDT are described separately. In clinical application, according to the different combination pathway of nanoparticles, it can be used to treat different diseases such as tumors, melanoma, rheumatoid and so on. In this paper, the mechanism of pathological treatment is described in detail in terms of inducing apoptosis of cancer cells by ROS produced by PDT, immunogenic cell death to provoke the maturation of dendritic cells, which in turn activate production of CD4+ T cells, CD8+T cells and memory T cells, as well as inhibiting heat shock protein (HSPs), STAT3 signal pathway and so on.
Collapse
Affiliation(s)
- Yun-Jing Hou
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Xin-Xin Yang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Rui-Qi Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Hospital, Guangzhou, People's Republic of China
| | - Di Zhao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Chen-Xu Guo
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - An-Chao Zhu
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Mei-Na Wen
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University, Harbin, People's Republic of China
| | - Guo-Fan Qu
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Hong-Xue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| |
Collapse
|
38
|
Liu J, Wu Y, Fu C, Li B, Li L, Zhang R, Xu T, Xu ZP. Charge Reversion Simultaneously Enhances Tumor Accumulation and Cell Uptake of Layered Double Hydroxide Nanohybrids for Effective Imaging and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002115. [PMID: 32608187 DOI: 10.1002/smll.202002115] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2020] [Indexed: 05/19/2023]
Abstract
Nanotheranostics have been actively sought in precision nanomedicine in recent years. However, insufficient tumor accumulation and limited cell uptake often impede the nanotheranostic efficacy. Herein, pH-sensitive charge-reversible polymer-coated layered double hydroxide (LDH) nanohybrids are devised to possess long circulation in blood but reserve surface charges in the weakly acidic tumor tissue to re-expose therapeutic LDH nanoparticles for enhanced tumor accumulation and cell uptake. In vitro experimental data demonstrate that charge-reversible nanohybrids mitigate the cell uptake in physiological conditions (pH 7.4), but remarkably facilitate internalization by tumor cells after charge reversion in the weakly acidic environment (pH 6.8). More significantly, about 6.0% of injected charge-reversible nanohybrids accumulate in the tumor tissue at 24 h post injection, far higher than the average accumulation (0.7%) reported elsewhere for nanoparticles. This high tumor accumulation clearly shows the tumor tissues in T1 -weighted magnetic resonance imaging. As a consequence, >95% inhibition of tumor growth in the B16F0-bearing mouse model is achieved via only one treatment combining RNAi and photothermal therapy under very mild irradiation (808 nm laser, 0.3 W cm-2 for 180 s). The current research thus demonstrates a new strategy to functionalize nanoparticles and simultaneously enhance their tumor accumulation and cell internalization for effective cancer theranostics.
Collapse
Affiliation(s)
- Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yilun Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bei Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tiefeng Xu
- The First Affiliated Hospital of Hainan Medical University, Cancer Institute of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
39
|
Sui J, Zhao M, Yang Y, Guo Z, Ma M, Xu Z, Liang J, Sun Y, Fan Y, Zhang X. Acid-labile polysaccharide prodrug via lapatinib-sensitizing effect substantially prevented metastasis and postoperative recurrence of triple-negative breast cancer. NANOSCALE 2020; 12:13567-13581. [PMID: 32555923 DOI: 10.1039/d0nr03395b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surgical resection and chemotherapy are routinely performed for triple-negative breast cancer (TNBC) because it is insensitive to endocrine therapy and molecular targeted therapy. Here, the optimal surface charge (-28 mV) and particle size (51 nm) enabled the acid-labile hyaluronic acid pullulan prodrug (HPP)-doxorubicin (Dox)/lapatinib (Lap) conjugate to circulate in the blood for a lengthy period of time and enhance the electron paramagnetic resonance effect, while the targeted molecule hyaluronic acid accelerated CD44 receptor-mediated 4T1 cell internalization. The inefficient anti-proliferation capability of Lap increased more than 10-fold after sensitization of Dox to metastatic 4T1 cells, while cellular uptake significantly increased, and cell viability dramatically decreased to nearly 20% of the free Dox group. Furthermore, HPP-Dox/Lap more effectively inhibited lateral mobility, vertical migration, and invasion ability of 4T1 cells. The ex vivo biodistribution of representative Dox indicated that Lap obviously facilitated the intratumoral infiltration and accumulation. The in vivo research revealed that there were overwhelming advantages in using HPP-Dox/Lap to inhibit tumor growth, progression, and lung metastasis even at a low dosage (1 mg kg-1), and it decreased postoperative recurrence and pulmonary metastatic nodules. Because of the excellent biosafety and visible therapeutic effect on the 4T1 metastasis and recurrence model, there is great potential value for HPP-Dox/Lap to be used to treat metastatic TNBC.
Collapse
Affiliation(s)
- Junhui Sui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Desai P, Thumma NJ, Wagh PR, Zhan S, Ann D, Wang J, Prabhu S. Cancer Chemoprevention Using Nanotechnology-Based Approaches. Front Pharmacol 2020; 11:323. [PMID: 32317961 PMCID: PMC7146461 DOI: 10.3389/fphar.2020.00323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer research in pursuit of better diagnostic and treatment modalities has seen great advances in recent years. However, the incidence rate of cancer is still very high. Almost 40% of women and men are diagnosed with cancer during their lifetime. Such high incidence has not only resulted in high mortality but also severely compromised patient lifestyles, and added a great socioeconomic burden. In view of this, chemoprevention has gained wide attention as a method to reduce cancer incidence and its relapse after treatment. Among various stems of chemoprevention research, nanotechnology-based chemoprevention approaches have established their potential to offer better efficacy and safety. This review summarizes recent advances in nanotechnology-based chemoprevention strategies for various cancers with emphasis on lung and bronchial cancer, colorectal, pancreatic, and breast cancer and highlights the unmet needs in this developing field towards successful clinical translation.
Collapse
Affiliation(s)
- Preshita Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Naga Jyothi Thumma
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Pushkaraj Rajendra Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Shuyu Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - David Ann
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|