1
|
Saouaf OM, Ou BS, Song YE, Carter JJ, Yan J, Jons CK, Barnes CO, Appel EA. Sustained Vaccine Exposure Elicits More Rapid, Consistent, and Broad Humoral Immune Responses to Multivalent Influenza Vaccines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404498. [PMID: 40091614 PMCID: PMC12079443 DOI: 10.1002/advs.202404498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/17/2024] [Indexed: 03/19/2025]
Abstract
With the ever-present threat of pandemics, it is imperative vaccine technologies eliciting broad and durable immunity to high-risk pathogens are developed. Yet, current annual influenza vaccines, for example, fail to provide robust immunity against the 3-4 homologous strains they contain, let alone heterologous strains. Herein, this study demonstrates that sustained delivery of multivalent influenza vaccines from an injectable polymer-nanoparticle (PNP) hydrogel technology induces more rapid, consistent, and potent humoral immune responses against multiple homologous viruses, as well as potent responses against heterologous viruses and potential pandemic subtypes H5N1, H7N9 and H9N2. Further, admixing PNP hydrogels with commercial influenza vaccines results in stronger hemagglutination inhibition against both heterologous and homologous viruses. Additional investigation shows this enhanced potency and breadth arise from higher affinity antibodies targeting both the hemagglutinin stem and head. Overall, this simple and effective sustained delivery platform for multivalent annual influenza vaccines generates durable, potent, and remarkably broad immunity to influenza.
Collapse
Affiliation(s)
- Olivia M. Saouaf
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Ben S. Ou
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Ye Eun Song
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Joshua J. Carter
- Department of BiophysicsStanford University School of MedicineStanfordCA94305USA
| | - Jerry Yan
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Carolyn K. Jons
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Christopher O. Barnes
- Department of BiologyStanford University School of MedicineStanfordCA94305USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
- Sarafan ChEM‐H InstituteStanford UniversityStanfordCA94305USA
| | - Eric A. Appel
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- Sarafan ChEM‐H InstituteStanford UniversityStanfordCA94305USA
- Institute for ImmunityTransplantation & InfectionStanford University School of MedicineStanfordCA94305USA
- Department of Pediatrics – EndocrinologyStanford University School of MedicineStanfordCA94305USA
- Woods Institute for the EnvironmentStanford UniversityStanfordCA94305USA
| |
Collapse
|
2
|
Grosskopf AK, Ginart AA, Spinosa P, Shivva V. Pharmacokinetics-Based Design of Subcutaneous Controlled Release Systems for Biologics. CPT Pharmacometrics Syst Pharmacol 2025; 14:668-680. [PMID: 39856532 PMCID: PMC12001277 DOI: 10.1002/psp4.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Protein therapeutics have emerged as an exceedingly promising treatment modality in recent times but are predominantly given as intravenous administration. Transitioning to subcutaneous (SC) administration of these therapies could significantly enhance patient convenience by enabling at-home administration, thereby potentially reducing the overall cost of treatment. Approaches that enable sustained delivery of subcutaneously administered biologics offer further advantages in terms of less frequent dosing and better patient compliance. Controlled release technologies, such as hydrogels and subcutaneous implantable technologies, present exciting solutions by enabling the gradual release of biologics from the delivery system. Despite their substantial potential, significant hurdles remain in appropriately applying and integrating these technologies with the ongoing development of complex biologic-based therapies. We evaluate the potential impact of subcutaneously delivered controlled release systems on the downstream pharmacokinetics (PK) of several FDA-approved biologics by employing rigorous mathematical analysis and predictive PK simulations. By leveraging linear time-invariant (LTI) systems theory, we provide a robust framework for understanding and optimizing the release dynamics of these technologies. We demonstrate simple quantitative metrics and approaches that can inform the design and implementation of controlled release technologies. The findings highlight key opportunity areas to reduce dosing frequency, stabilize concentration profiles, and synergize the codelivery of biologics, calling for collaboration between drug delivery and PK scientists to create the most convenient, optimized, and effective precision therapies.
Collapse
Affiliation(s)
- Abigail K. Grosskopf
- Department of Translational Pharmacokinetics and PharmacodynamicsGenentech Inc.South San FranciscoCaliforniaUSA
| | - Antonio A. Ginart
- Department of Electrical EngineeringStanford UniversityStanfordCaliforniaUSA
| | - Phillip Spinosa
- Department of Translational Pharmacokinetics and PharmacodynamicsGenentech Inc.South San FranciscoCaliforniaUSA
| | - Vittal Shivva
- Department of Translational Pharmacokinetics and PharmacodynamicsGenentech Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
3
|
Adeoye A, de Alba E. A Simple Method to Determine Diffusion Coefficients in Soft Hydrogels for Drug Delivery and Biomedical Applications. ACS OMEGA 2025; 10:10852-10865. [PMID: 40160789 PMCID: PMC11947801 DOI: 10.1021/acsomega.4c06984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Biomedical applications of hydrogels are rapidly increasing due to their special properties including high water absorption capacity, viscoelasticity, swelling capability, and responsiveness to environmental physical or chemical stimuli. Two major biomedical applications of hydrogels include drug delivery and tissue engineering. Knowledge of the diffusion or degree of penetration of particles in hydrogels is key to designing specific functions such as controlled release in drug delivery systems and nutrient accessibility in tissue engineering platforms. Experimental determination of solute penetration and diffusivity can be challenging depending on several factors such as the hydrogelation process, the hydrogel characteristics, and the type of diffusing particle. We describe here a simple method that uses fluorescence intensity measurements obtained with a microplate reader to determine the concentration of diffusing particles at different penetration distances in soft hydrogels. We have analyzed the diffusion behavior of three fluorescent particles of different chemical natures and various molecular weights (fluorescein and the proteins mNeonGreen and fluorophore-labeled bovine serum albumin) in agarose hydrogels of low percentages (0.05-0.2%). The diffusion coefficients were obtained by fitting the experimental data to a one-dimensional diffusion model. A good agreement between our results and previously reported diffusion coefficients of the studied particles validates our method. We demonstrate the method's capability to adapt to hydrogels of different stiffnesses and solutes of various sizes and characteristics. In addition, the combination of hydrogel sectioning with multiple simultaneous measurements in a microplate reader shows the simplicity of the experimental procedure. Finally, our data indicate the method's sensitivity to variations in diffusion conditions, which is highly relevant to studying interactions between solutes and hydrogels designed for controlled release by determining differences in penetration distances.
Collapse
Affiliation(s)
- Ayomide
J. Adeoye
- Department of Bioengineering, University of California, Merced 5200 Lake Road, Merced, California 95343, United States
| | - Eva de Alba
- Department of Bioengineering, University of California, Merced 5200 Lake Road, Merced, California 95343, United States
| |
Collapse
|
4
|
Luo J, Jin G, Cui S, Wang H, Liu Q. Regulating macrophage phenotypes with IL4I1-mimetic nanoparticles in IDD treatment. J Nanobiotechnology 2025; 23:175. [PMID: 40050923 PMCID: PMC11884037 DOI: 10.1186/s12951-025-03241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/18/2025] [Indexed: 03/10/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a degenerative spinal condition characterized by disc structural damage, narrowing of joint spaces, and nerve root compression, significantly reducing patients' quality of life. To address this challenge, a novel therapeutic strategy was developed using cellulose supramolecular hydrogel as a carrier to deliver IL4I1-modified MΦ membrane biomimetic nanoparticles (CHG@IL4I1-MNPs) to target tissues. This hydrogel exhibits excellent biocompatibility and mechanical properties while enabling sustained drug release in the degenerative disc microenvironment, enhancing therapeutic outcomes. CHG@IL4I1-MNPs effectively regulate MΦ polarization by promoting M2 MΦ activation, thereby improving immune microenvironment balance. Animal studies demonstrated that CHG@IL4I1-MNPs alleviated symptoms of IDD, reduced inflammation, and supported tissue repair, highlighting its potential to reduce reliance on long-term medication and improve quality of life. The strategy uniquely combines nanoparticle technology with immunomodulation, achieving precise targeting of MΦs. Beyond IDD, this approach offers potential applications in other immune-related diseases, providing a versatile platform for nanomedicine. This study introduces an innovative method to treat IDD and advances the integration of immunotherapy and nanotechnology, offering both clinical benefits and new directions for future research. These findings hold strong potential for improving patient outcomes and expanding treatment options for related diseases.
Collapse
Affiliation(s)
- Jiaying Luo
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guoxin Jin
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110000, China
| | - Shaoqian Cui
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110000, China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110000, China
| | - Qi Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110000, China.
| |
Collapse
|
5
|
Ostróżka-Cieślik A, Strasser C, Dolińska B. Insulin-Loaded Chitosan-Cellulose-Derivative Hydrogels: In Vitro Permeation of Hormone through Strat-M ® Membrane and Rheological and Textural Analysis. Polymers (Basel) 2024; 16:2619. [PMID: 39339083 PMCID: PMC11435918 DOI: 10.3390/polym16182619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
This work is part of the current research trend to develop a hydrogel carrier of insulin to promote wound healing. Topically applied insulin promotes keratinocyte proliferation and migration, increases collagen synthesis, reduces inflammation and oxidative stress, and exhibits antimicrobial activity. The aim of this study was to design an insulin hydrogel matrix based on selected cellulose derivatives (methylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose) and chitosan. Rheological parameters of the formulations were evaluated using rotational rheometry and an oscillation test. Textural tests were performed. In vitro pharmaceutical insulin availability studies were carried out using the innovative Strat-M® membrane to imitate the skin barrier. It was found that the pharmaceutical formulation of insulin based on chitosan and methylcellulose showed an acceptable balance between rheological and textural parameters and ease of application. The API was released from the carrier in a prolonged manner, eliminating the need to apply the formulation several times per day. The developed hydrogel shows potential for use in clinical practice.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności Street 10, 41-200 Sosnowiec, Poland
| | - Claire Strasser
- NETZSCH-Geratebau GmbH, Wittelsbacherstraße 42, 95100 Selb, Germany
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności Street 10, 41-200 Sosnowiec, Poland
| |
Collapse
|
6
|
Bianco S, Hasan M, Ahmad A, Richards SJ, Dietrich B, Wallace M, Tang Q, Smith AJ, Gibson MI, Adams DJ. Mechanical release of homogenous proteins from supramolecular gels. Nature 2024; 631:544-548. [PMID: 39020036 PMCID: PMC11254749 DOI: 10.1038/s41586-024-07580-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/17/2024] [Indexed: 07/19/2024]
Abstract
A long-standing challenge is how to formulate proteins and vaccines to retain function during storage and transport and to remove the burdens of cold-chain management. Any solution must be practical to use, with the protein being released or applied using clinically relevant triggers. Advanced biologic therapies are distributed cold, using substantial energy, limiting equitable distribution in low-resource countries and placing responsibility on the user for correct storage and handling. Cold-chain management is the best solution at present for protein transport but requires substantial infrastructure and energy. For example, in research laboratories, a single freezer at -80 °C consumes as much energy per day as a small household1. Of biological (protein or cell) therapies and all vaccines, 75% require cold-chain management; the cost of cold-chain management in clinical trials has increased by about 20% since 2015, reflecting this complexity. Bespoke formulations and excipients are now required, with trehalose2, sucrose or polymers3 widely used, which stabilize proteins by replacing surface water molecules and thereby make denaturation thermodynamically less likely; this has enabled both freeze-dried proteins and frozen proteins. For example, the human papilloma virus vaccine requires aluminium salt adjuvants to function, but these render it unstable against freeze-thaw4, leading to a very complex and expensive supply chain. Other ideas involve ensilication5 and chemical modification of proteins6. In short, protein stabilization is a challenge with no universal solution7,8. Here we designed a stiff hydrogel that stabilizes proteins against thermal denaturation even at 50 °C, and that can, unlike present technologies, deliver pure, excipient-free protein by mechanically releasing it from a syringe. Macromolecules can be loaded at up to 10 wt% without affecting the mechanism of release. This unique stabilization and excipient-free release synergy offers a practical, scalable and versatile solution to enable the low-cost, cold-chain-free and equitable delivery of therapies worldwide.
Collapse
Affiliation(s)
- Simona Bianco
- Department of Chemistry, University of Glasgow, Glasgow, UK
| | - Muhammad Hasan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ashfaq Ahmad
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Coventry, UK
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Bart Dietrich
- Department of Chemistry, University of Glasgow, Glasgow, UK
| | - Matthew Wallace
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Qiao Tang
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Andrew J Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, UK
| | - Matthew I Gibson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Manchester, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Dave J Adams
- Department of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
7
|
Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug Coordination Nanoparticles and Hydrogels for Enhanced Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404053. [PMID: 38602715 DOI: 10.1002/adma.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Drug delivery is a key component of nanomedicine, and conventional delivery relies on the adsorption or encapsulation of drug molecules to a nanomaterial. Many delivery vehicles contain metal ions, such as metal-organic frameworks, metal oxides, transition metal dichalcogenides, MXene, and noble metal nanoparticles. These materials have a high metal content and pose potential long-term toxicity concerns leading to difficulties for clinical approval. In this review, recent developments are summarized in the use of drug molecules as ligands for metal coordination forming various nanomaterials and soft materials. In these cases, the drug-to-metal ratio is much higher than conventional adsorption-based strategies. The drug molecules are divided into small-molecule drugs, nucleic acids, and proteins. The formed hybrid materials mainly include nanoparticles and hydrogels, upon which targeting ligands can be grafted to improve efficacy and further decrease toxicity. The application of these materials for addressing cancer, viral infection, bacterial infection inflammatory bowel disease, and bone diseases is reviewed. In the end, some future directions are discussed from fundamental research, materials science, and medicine.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| | - Zhenyu Nie
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| |
Collapse
|
8
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
9
|
Chavda VP, Teli D, Balar PC, Davidson M, Bojarska J, Vaghela DA, Apostolopoulos V. Self-assembled peptide hydrogels for the treatment of diabetes and associated complications. Colloids Surf B Biointerfaces 2024; 235:113761. [PMID: 38281392 DOI: 10.1016/j.colsurfb.2024.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
Diabetes is a widespread epidemic that includes a number of comorbid conditions that greatly increase the chance of acquiring other chronic illnesses. Every year, there are significantly more people with diabetes because of the rise in type-2 diabetes prevalence. The primary causes of illness and mortality worldwide are, among these, hyperglycemia and its comorbidities. There has been a lot of interest in the creation of peptide-based hydrogels as a potentially effective platform for the treatment of diabetes and its consequences. Here, we emphasize the use of self-assembled hydrogel formulations and their unique potential for the treatment/management of type-2 diabetes and its consequences. (i.e., wounds). Key aspects covered include the characteristics of self-assembled peptide hydrogels, methods for their preparation, and their pre-clinical and clinical applications in addressing metabolic disorders such as type-2 diabetes.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India.
| | - Divya Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromski S.t, 90-924 Lodz, Poland.
| | - Dixa A Vaghela
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia; Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, Lu Z. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv 2023; 30:2161670. [PMID: 36587630 PMCID: PMC9809389 DOI: 10.1080/10717544.2022.2161670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis. Tumor immunotherapy, including checkpoint blockade and tumor vaccines, has developed rapidly in recent years, showing good curative effects and minimal side effects in the treatment of gastrointestinal tumors. National Comprehensive Cancer Network guidelines recommend tumor immunotherapy as part of the treatment of gastrointestinal tumors. However, the heterogeneity of tumor cells, complicacy of the tumor microenvironment and poor tumor immunogenicity hamper the effectiveness of tumor immunotherapy. Hydrogels, defined as three-dimensional, hydrophilic, and water-insoluble polymeric networks, could significantly improve the overall response rate of immunotherapy due to their superior drug loading efficacy, controlled release and drug codelivery ability. In this article, we briefly describe the research progress made in recent years on hydrogel delivery systems in immunotherapy for gastrointestinal tumors and discuss the potential future application prospects and challenges to provide a reference for the clinical application of hydrogels in tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,Jie Gao Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Zhengmao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,CONTACT Zhengmao Lu Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| |
Collapse
|
11
|
d'Aquino AI, Maikawa CL, Nguyen LT, Lu K, Hall IA, Jons CK, Kasse CM, Yan J, Prossnitz AN, Chang E, Baker SW, Hovgaard L, Steensgaard DB, Andersen HB, Simonsen L, Appel EA. Use of a biomimetic hydrogel depot technology for sustained delivery of GLP-1 receptor agonists reduces burden of diabetes management. Cell Rep Med 2023; 4:101292. [PMID: 37992687 PMCID: PMC10694761 DOI: 10.1016/j.xcrm.2023.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. Long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central to treating type 2 diabetes (T2D); however, these therapies are burdensome, as they must be taken daily or weekly. Technological innovations that enable less frequent administrations would reduce patient burden and increase patient compliance. Herein, we leverage an injectable hydrogel depot technology to develop a GLP-1 RA drug product capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirm that one injection of hydrogel-based therapy sustains exposure of GLP-1 RA over 42 days, corresponding to a once-every-4-months therapy in humans. Hydrogel therapy maintains management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug. This long-acting GLP-1 RA treatment is a promising therapy for more effective T2D management.
Collapse
Affiliation(s)
- Andrea I d'Aquino
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Leslee T Nguyen
- Department of Biochemistry, Stanford University, Palo Alto, CA 94305, USA
| | - Katie Lu
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ian A Hall
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carolyn K Jons
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Catherine M Kasse
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Jerry Yan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander N Prossnitz
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Enmian Chang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA
| | - Sam W Baker
- Department of Comparative Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Lars Hovgaard
- Department of Biophysics and Formulations, Global Research Technologies, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Dorte B Steensgaard
- Department of Biophysics and Formulations, Global Research Technologies, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Hanne B Andersen
- Department of Biophysics and Formulations, Global Research Technologies, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Lotte Simonsen
- Department of Obesity Research, Global Drug Discovery, Novo Nordisk Park, 2760 Maaloev, Denmark
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94025, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Thomas JA, Hinton ZR, Korley LTJ. Peptide-polyurea hybrids: a platform for tunable, thermally-stable, and injectable hydrogels. SOFT MATTER 2023; 19:7912-7922. [PMID: 37706333 PMCID: PMC10615840 DOI: 10.1039/d3sm00780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Drawing inspiration from natural systems, such as the highly segmented structures found in silk fibroin, is an important strategy when designing strong, yet dynamic biomaterials. Polymer-peptide hybrids aim to incorporate the benefits of hierarchical polypeptide structures into synthetic platforms that are promising materials for hydrogel systems due to aspects such as their biocompatibility and structural tunability. In this work, we demonstrated the utility of poly(ethylene glycol) (PEG) peptide-polyurea hybrids as self-assembled hydrogels. Specifically, poly(ε-carbobenzyloxy-L-lysine)-b-PEG-b-poly(ε-carbobenzyloxy-L-lysine) and poly(β-benzyl-L-aspartate)-b-PEG-b-poly(β-benzyl-L-aspartate) triblock copolymers were used as the soft segments in linear peptide-polyurea (PPU) hybrids. We systematically examined the effect of peptide secondary structure and peptide segment length on hydrogelation, microstructure, and rheological properties of our PPU hydrogels. Polymers containing α-helical secondary structures resulted in rapid gelation upon the addition of water, as driven by hierarchical assembly of the peptide segments. Peptide segment length dictated gel strength and resistance to deformation via complex relationships. Simulated injection experiments demonstrated that PPU hydrogels recover their original gel network within 10 s of cessation of high shear. Finally, we showed that PPU hydrogels remain solid-like within the range of 10 to 80 °C; however, a unique softening transition occurs at temperatures corresponding to slight melting of secondary structures. Overall, this bioinspired PPU hybrid platform provides opportunities to design synthetic, bioinspired polymers for hydrogels with tunable microstructure and mechanics for a wide range of thermal and injection-based applications.
Collapse
Affiliation(s)
- Jessica A Thomas
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Zachary R Hinton
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
13
|
Kasse CM, Yu AC, Powell AE, Roth GA, Liong CS, Jons CK, Buahin A, Maikawa CL, Zhou X, Youssef S, Glanville JE, Appel EA. Subcutaneous delivery of an antibody against SARS-CoV-2 from a supramolecular hydrogel depot. Biomater Sci 2023; 11:2065-2079. [PMID: 36723072 PMCID: PMC10012178 DOI: 10.1039/d2bm00819j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/21/2022] [Indexed: 01/31/2023]
Abstract
Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective. In this work, we develop a supramolecular hydrogel as an injectable, subcutaneous depot to encapsulate and deliver antibody drug cargo. This polymer-nanoparticle (PNP) hydrogel exhibits shear-thinning and self-healing properties that are required for an injectable drug delivery vehicle. In vitro drug release assays and diffusion measurements indicate that the PNP hydrogels prevent burst release and slow the release of encapsulated antibodies. Delivery of bnAbs against SARS-CoV-2 from PNP hydrogels is compared to standard routes of administration in a preclinical mouse model. We develop a multi-compartment model to understand the ability of these subcutaneous depot materials to modulate the pharmacokinetics of released antibodies; the model is extrapolated to explore the requirements needed for novel materials to successfully deliver relevant antibody therapeutics with different pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Catherine M Kasse
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Anthony C Yu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Abigail E Powell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Gillie A Roth
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Celine S Liong
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Carolyn K Jons
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Awua Buahin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Xueting Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Sawsan Youssef
- Centivax Inc., 329 Oyster Point Drive, 3rd Floor South San Francisco, CA 94080, USA
| | - Jacob E Glanville
- Centivax Inc., 329 Oyster Point Drive, 3rd Floor South San Francisco, CA 94080, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
- Institute for Immunity, Transplantation, & Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Dâ Aquino AI, Maikawa CL, Nguyen LT, Lu K, Hall IA, Prossnitz AN, Chang E, Baker SW, Kasse CM, Jons CK, Yan J, Hovgaard L, Steensgaard DB, Andersen HB, Simonsen L, Appel EA. Sustained Delivery of GLP-1 Receptor Agonists from Injectable Biomimetic Hydrogels Improves Treatment of Diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526057. [PMID: 36778223 PMCID: PMC9915491 DOI: 10.1101/2023.01.28.526057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L-cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. GLP-1 in itself is rapidly degraded, but long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central in the treatment of T2D because of the beneficial effects extending also beyond glucose control. Currently, these therapeutics must be injected either daily or weekly or taken daily orally, leaving room for technological innovations that enable less frequent administrations, which will reduce patient burden and increase patient compliance. An ideal GLP-1 RA drug product would provide continuous therapy for upwards of four months from a single administration to match the cadence with which T2D patients typically visit their physician. In this work, we leveraged an injectable hydrogel depot technology to develop a long-acting GLP-1 RA drug product. By modulating the hydrogel properties to tune GLP-1 RA retention within the hydrogel depot, we engineered formulations capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirmed that a single injection of hydrogel-based therapies exhibits sustained exposure of GLP-1 RA over 42 days, corresponding to a once-every four month therapy in humans. Moreover, these hydrogel therapies maintained optimal management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug molecule. The pharmacokinetics and pharmacodynamics of these hydrogel-based long-acting GLP-1 RA treatments are promising for development of novel therapies reducing treatment burden for more effective management of T2D.
Collapse
|
15
|
Walther M, Vestweber PK, Kühn S, Rieger U, Schäfer J, Münch C, Vogel-Kindgen S, Planz V, Windbergs M. Bioactive Insulin-Loaded Electrospun Wound Dressings for Localized Drug Delivery and Stimulation of Protein Expression Associated with Wound Healing. Mol Pharm 2023; 20:241-254. [PMID: 36538353 DOI: 10.1021/acs.molpharmaceut.2c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Effective therapy of wounds is difficult, especially for chronic, non-healing wounds, and novel therapeutics are urgently needed. This challenge can be addressed with bioactive wound dressings providing a microenvironment and facilitating cell proliferation and migration, ideally incorporating actives, which initiate and/or progress effective healing upon release. In this context, electrospun scaffolds loaded with growth factors emerged as promising wound dressings due to their biocompatibility, similarity to the extracellular matrix, and potential for controlled drug release. In this study, electrospun core-shell fibers were designed composed of a combination of polycaprolactone and polyethylene oxide. Insulin, a proteohormone with growth factor characteristics, was successfully incorporated into the core and was released in a controlled manner. The fibers exhibited favorable mechanical properties and a surface guiding cell migration for wound closure in combination with a high uptake capacity for wound exudate. Biocompatibility and significant wound healing effects were shown in interaction studies with human skin cells. As a new approach, analysis of the wound proteome in treated ex vivo human skin wounds clearly demonstrated a remarkable increase in wound healing biomarkers. Based on these findings, insulin-loaded electrospun wound dressings bear a high potential as effective wound healing therapeutics overcoming current challenges in the clinics.
Collapse
Affiliation(s)
- Marcel Walther
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Pia Katharina Vestweber
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Shafreena Kühn
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Ulrich Rieger
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Jasmin Schäfer
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| |
Collapse
|
16
|
Gelb M, Messina KMM, Vinciguerra D, Ko JH, Collins J, Tamboline M, Xu S, Ibarrondo FJ, Maynard HD. Poly(trehalose methacrylate) as an Excipient for Insulin Stabilization: Mechanism and Safety. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37410-37423. [PMID: 35968684 PMCID: PMC9412841 DOI: 10.1021/acsami.2c09301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 05/07/2023]
Abstract
Insulin, the oldest U.S. Food and Drug Administration (FDA)-approved recombinant protein and a World Health Organization (WHO) essential medicine for treating diabetes globally, faces challenges due to its storage instability. One approach to stabilize insulin is the addition of poly(trehalose methacrylate) (pTrMA) as an excipient. The polymer increases the stability of the peptide to heat and mechanical agitation and has a low viscosity suitable for injection and pumps. However, the safety and stabilizing mechanism of pTrMA is not yet known and is required to understand the potential suitability of pTrMA as an insulin excipient. Herein is reported the immune response, biodistribution, and insulin plasma lifetime in mice, as well as investigation into insulin stabilization. pTrMA alone or formulated with ovalbumin did not elicit an antibody response over 3 weeks in mice, and there was no observable cytokine production in response to pTrMA. Micropositron emission tomography/microcomputer tomography of 64Cu-labeled pTrMA showed excretion of 78-79% ID/cc within 24 h and minimal liver accumulation at 6-8% ID/cc when studied out to 120 h. Further, the plasma lifetime of insulin in mice was not altered by added pTrMA. Formulating insulin with 2 mol equiv of pTrMA improved the stability of insulin to standard storage conditions: 46 weeks at 4 °C yielded 87.0% intact insulin with pTrMA present as compared to 7.8% intact insulin without the polymer. The mechanism by which pTrMA-stabilized insulin was revealed to be a combination of inhibiting deamidation of amino acid residues and preventing fibrillation, followed by aggregation of inactive and immunogenic amyloids all without complexing insulin into its hexameric state, which could delay the onset of insulin activity. Based on the data reported here, we suggest that pTrMA stabilizes insulin as an excipient without adverse effects in vivo and is promising to investigate further for the safe formulation of insulin.
Collapse
Affiliation(s)
- Madeline
B. Gelb
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Kathryn M. M. Messina
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Daniele Vinciguerra
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeong Hoon Ko
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeffrey Collins
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - Mikayla Tamboline
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - Shili Xu
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - F. Javier Ibarrondo
- Division
of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1569, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
17
|
Marco-Dufort B, Janczy JR, Hu T, Lütolf M, Gatti F, Wolf M, Woods A, Tetter S, Sridhar BV, Tibbitt MW. Thermal stabilization of diverse biologics using reversible hydrogels. SCIENCE ADVANCES 2022; 8:eabo0502. [PMID: 35930644 PMCID: PMC9355364 DOI: 10.1126/sciadv.abo0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Improving the thermal stability of biologics, including vaccines, is critical to reduce the economic costs and health risks associated with the cold chain. Here, we designed a versatile, safe, and easy-to-use reversible PEG-based hydrogel platform formed via dynamic covalent boronic ester cross-linking for the encapsulation, stabilization, and on-demand release of biologics. Using these reversible hydrogels, we thermally stabilized a wide range of biologics up to 65°C, including model enzymes, heat-sensitive clinical diagnostic enzymes (DNA gyrase and topoisomerase I), protein-based vaccines (H5N1 hemagglutinin), and whole viruses (adenovirus type 5). Our data support a generalized protection mechanism for the thermal stabilization of diverse biologics using direct encapsulation in reversible hydrogels. Furthermore, preliminary toxicology data suggest that the components of our hydrogel are safe for in vivo use. Our reversible hydrogel platform offers a simple material solution to mitigate the costs and risks associated with reliance on a continuous cold chain for biologic transport and storage.
Collapse
Affiliation(s)
- Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Tianjing Hu
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Marco Lütolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Francesco Gatti
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Alex Woods
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
18
|
Grosskopf AK, Labanieh L, Klysz DD, Roth GA, Xu P, Adebowale O, Gale EC, Jons CK, Klich JH, Yan J, Maikawa CL, Correa S, Ou BS, d’Aquino AI, Cochran JR, Chaudhuri O, Mackall CL, Appel EA. Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. SCIENCE ADVANCES 2022; 8:eabn8264. [PMID: 35394838 PMCID: PMC8993118 DOI: 10.1126/sciadv.abn8264] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/19/2022] [Indexed: 05/21/2023]
Abstract
Adoptive cell therapy (ACT) has proven to be highly effective in treating blood cancers, but traditional approaches to ACT are poorly effective in treating solid tumors observed clinically. Novel delivery methods for therapeutic cells have shown promise for treatment of solid tumors when compared with standard intravenous administration methods, but the few reported approaches leverage biomaterials that are complex to manufacture and have primarily demonstrated applicability following tumor resection or in immune-privileged tissues. Here, we engineer simple-to-implement injectable hydrogels for the controlled co-delivery of CAR-T cells and stimulatory cytokines that improve treatment of solid tumors. The unique architecture of this material simultaneously inhibits passive diffusion of entrapped cytokines and permits active motility of entrapped cells to enable long-term retention, viability, and activation of CAR-T cells. The generation of a transient inflammatory niche following administration affords sustained exposure of CAR-T cells, induces a tumor-reactive CAR-T phenotype, and improves efficacy of treatment.
Collapse
Affiliation(s)
- Abigail K. Grosskopf
- Department of Chemical Engineering, Stanford
University, Stanford, CA 94305, USA
| | - Louai Labanieh
- Department of Bioengineering, Stanford University,
Stanford, CA 94305, USA
| | - Dorota D. Klysz
- Center for Cancer Cell Therapy, Stanford Cancer
Institute, Stanford University School of Medicine, Stanford, CA 94305,
USA
| | - Gillie A. Roth
- Department of Bioengineering, Stanford University,
Stanford, CA 94305, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer
Institute, Stanford University School of Medicine, Stanford, CA 94305,
USA
| | - Omokolade Adebowale
- Department of Chemical Engineering, Stanford
University, Stanford, CA 94305, USA
| | - Emily C. Gale
- Department of Biochemistry, Stanford University,
Stanford, CA 94305, USA
| | - Carolyn K. Jons
- Department of Materials Science and Engineering,
Stanford University, Stanford, CA 94305, USA
| | - John H. Klich
- Department of Bioengineering, Stanford University,
Stanford, CA 94305, USA
| | - Jerry Yan
- Department of Bioengineering, Stanford University,
Stanford, CA 94305, USA
| | - Caitlin L. Maikawa
- Department of Bioengineering, Stanford University,
Stanford, CA 94305, USA
| | - Santiago Correa
- Department of Materials Science and Engineering,
Stanford University, Stanford, CA 94305, USA
| | - Ben S. Ou
- Department of Bioengineering, Stanford University,
Stanford, CA 94305, USA
| | - Andrea I. d’Aquino
- Department of Materials Science and Engineering,
Stanford University, Stanford, CA 94305, USA
| | - Jennifer R. Cochran
- Department of Chemical Engineering, Stanford
University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University,
Stanford, CA 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford
University, Stanford, CA 94305, USA
| | - Crystal L. Mackall
- Center for Cancer Cell Therapy, Stanford Cancer
Institute, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pediatrics, Stanford University School
of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School
of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of
Medicine, Stanford, CA 94305, USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University,
Stanford, CA 94305, USA
- Department of Materials Science and Engineering,
Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School
of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School
of Medicine, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA
94305, USA
- Woods Institute for the Environment, Stanford
University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Jarosinski MA, Chen YS, Varas N, Dhayalan B, Chatterjee D, Weiss MA. New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals. J Clin Endocrinol Metab 2022; 107:909-928. [PMID: 34850005 PMCID: PMC8947325 DOI: 10.1210/clinem/dgab849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Design of "first-generation" insulin analogues over the past 3 decades has provided pharmaceutical formulations with tailored pharmacokinetic (PK) and pharmacodynamic (PD) properties. Application of a molecular tool kit-integrating protein sequence, chemical modification, and formulation-has thus led to improved prandial and basal formulations for the treatment of diabetes mellitus. Although PK/PD changes were modest in relation to prior formulations of human and animal insulins, significant clinical advantages in efficacy (mean glycemia) and safety (rates of hypoglycemia) were obtained. Continuing innovation is providing further improvements to achieve ultrarapid and ultrabasal analogue formulations in an effort to reduce glycemic variability and optimize time in range. Beyond such PK/PD metrics, next-generation insulin analogues seek to exploit therapeutic mechanisms: glucose-responsive ("smart") analogues, pathway-specific ("biased") analogues, and organ-targeted analogues. Smart insulin analogues and delivery systems promise to mitigate hypoglycemic risk, a critical barrier to glycemic control, whereas biased and organ-targeted insulin analogues may better recapitulate physiologic hormonal regulation. In each therapeutic class considerations of cost and stability will affect use and global distribution. This review highlights structural principles underlying next-generation design efforts, their respective biological rationale, and potential clinical applications.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
20
|
Bovone G, Guzzi EA, Bernhard S, Weber T, Dranseikiene D, Tibbitt MW. Supramolecular Reinforcement of Polymer-Nanoparticle Hydrogels for Modular Materials Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106941. [PMID: 34954875 DOI: 10.1002/adma.202106941] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Moldable hydrogels are increasingly used as injectable or extrudable materials in biomedical and industrial applications owing to their ability to flow under applied stress (shear-thin) and reform a stable network (self-heal). Nanoscale components can be added to dynamic polymer networks to modify their mechanical properties and broaden the scope of applications. Viscoelastic polymer-nanoparticle (PNP) hydrogels comprise a versatile and tunable class of dynamic nanocomposite materials that form via reversible interactions between polymer chains and nanoparticles. However, PNP hydrogel formation is restricted to specific interactions between select polymers and nanoparticles, resulting in a limited range of mechanical properties and constraining their utility. Here, a facile strategy to reinforce PNP hydrogels through the simple addition of α-cyclodextrin (αCD) to the formulation is introduced. The formation of polypseudorotoxanes between αCD and the hydrogel components resulted in a drastic enhancement of the mechanical properties. Furthermore, supramolecular reinforcement of CD-PNP hydrogels enabled decoupling of the mechanical properties and material functionality. This allows for modular exchange of structural components from a library of functional polymers and nanoparticles. αCD supramolecular binding motifs are leveraged to form CD-PNP hydrogels with biopolymers for high-fidelity 3D (bio)printing and drug delivery as well as with inorganic NPs to engineer magnetic or conductive materials.
Collapse
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Elia A Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Tim Weber
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Dalia Dranseikiene
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
21
|
Swarup A, Grosskopf AK, Stapleton LM, Subramaniam VR, Li B, Weissman IL, Appel EA, Wu AY. PNP Hydrogel Prevents Formation of Symblephara in Mice After Ocular Alkali Injury. Transl Vis Sci Technol 2022; 11:31. [PMID: 35191963 PMCID: PMC8883170 DOI: 10.1167/tvst.11.2.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To create an alkali injury symblephara mouse model to study conjunctival fibrosis pathophysiology and test polymer nanoparticle (PNP) hydrogel as a preventative therapeutic. METHODS Mice were injured using NaOH-soaked filter paper to determine the optimal NaOH concentration to induce the formation of symblephara. Injured mice were observed for 7 days to detect the formation of symblephara. Forniceal shortening observed on hematoxylin and eosin (H&E)-stained tissue sections was used as a symblephara marker. Alpha-smooth muscle actin (α-SMA) expression, Masson's trichrome assay, and periodic acid-Schiff (PAS) staining were used to determine myofibroblast expression, collagen deposition, and goblet cell integrity. PNP hydrogel, with multivalent, noncovalent interactions between modified biopolymers and nanoparticles, was applied immediately after alkali injury to determine its ability to prevent the formation of symblephara. RESULTS Forniceal shortening was observed in H&E images with 1N NaOH for 2 minutes after 7 days without globe destruction. PNP hydrogel prevented forniceal shortening after alkali injury as observed by H&E histology. α-SMA expression and collagen deposition in eye tissue sections were increased in the fornix after injury with 1N NaOH compared with uninjured controls. PNP hydrogel treatment immediately after injury reduced α-SMA expression and collagen deposition in the forniceal region. Mucin-secreting goblet cells stained with PAS were significantly lower in alkali-injured and PNP hydrogel-treated conjunctivas than in uninjured control conjunctivas. CONCLUSIONS We observed that 1N NaOH for 2 minutes induced maximal forniceal shortening and symblephara in mice. PNP hydrogel prevented forniceal shortening and conjunctival fibrosis after injury. This first murine model for symblephara will be useful to study fibrosis pathophysiology after conjunctival injury and to determine therapeutic targets for cicatrizing diseases. TRANSLATIONAL RELEVANCE This mouse model of symblephara can be useful for studying conjunctival scarring disease pathophysiology and preventative therapeutics. We tested PNP hydrogel, which prevented the formation of symblephara after injury.
Collapse
Affiliation(s)
- Aditi Swarup
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abigail K. Grosskopf
- Department of Materials Science and Engineering, Stanford University, Palo Alto, CA, USA
| | - Lindsay M. Stapleton
- Department of Materials Science and Engineering, Stanford University, Palo Alto, CA, USA
| | - Varun R. Subramaniam
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - BaoXiang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Irving L. Weissman
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric A. Appel
- Department of Materials Science and Engineering, Stanford University, Palo Alto, CA, USA
| | - Albert Y. Wu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
22
|
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. NATURE REVIEWS. MATERIALS 2022; 7:174-195. [PMID: 34603749 PMCID: PMC8477997 DOI: 10.1038/s41578-021-00372-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 05/02/2023]
Abstract
Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.
Collapse
Affiliation(s)
- Gillie A. Roth
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Vittoria C. T. M. Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Wei Luo
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Paediatrics — Endocrinology, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
23
|
Grosskopf AK, Saouaf OA, Lopez Hernandez H, Appel EA. Gelation and yielding behavior of
polymer–nanoparticle
hydrogels. JOURNAL OF POLYMER SCIENCE 2021; 59:2854-2866. [PMID: 35875706 PMCID: PMC9298381 DOI: 10.1002/pol.20210652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
Polymer–nanoparticle hydrogels are a unique class of self‐assembled, shear‐thinning, yield‐stress fluids that have demonstrated potential utility in many impactful applications. Here, we present a thorough analysis of the gelation and yielding behavior of these materials with respect to the polymer and nanoparticle component stoichiometry. Through comprehensive rheological and diffusion studies, we reveal insights into the structural dynamics of the polymer nanoparticle network that identify that stoichiometry plays a key role in gelation and yielding, ultimately enabling the development of hydrogel formulations with unique shear‐thinning and yield‐stress behaviors. Access to these materials opens new doors for interesting applications in a variety of fields including tissue engineering, drug delivery, and controlled solution viscosity.
Collapse
Affiliation(s)
| | - Olivia A. Saouaf
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Hector Lopez Hernandez
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Eric A. Appel
- Department of Materials Science and Engineering Stanford University Stanford California USA
- Department of Pediatrics—Endocrinology Stanford University Stanford California USA
- Department of Bioengineering Stanford University Stanford California USA
- ChEM‐H Institute Stanford University Stanford California USA
| |
Collapse
|
24
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Oliva N, Shin M, Burdick JA. Editorial: Special Issue on Advanced Biomedical Hydrogels. ACS Biomater Sci Eng 2021; 7:3993-3996. [PMID: 34510909 DOI: 10.1021/acsbiomaterials.1c01059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nuria Oliva
- Department of Bioengineering, Imperial College
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University
| | | |
Collapse
|
26
|
Maikawa CL, Mann JL, Kannan A, Meis CM, Grosskopf AK, Ou BS, Autzen AAA, Fuller GG, Maahs DM, Appel EA. Engineering Insulin Cold Chain Resilience to Improve Global Access. Biomacromolecules 2021; 22:3386-3395. [PMID: 34213889 PMCID: PMC8627795 DOI: 10.1021/acs.biomac.1c00474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are 150 million people with diabetes worldwide who require insulin replacement therapy, and the prevalence of diabetes is rising the fastest in middle- and low-income countries. The current formulations require costly refrigerated transport and storage to prevent loss of insulin integrity. This study shows the development of simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks. Further, when these copolymers are added to Humulin R (Eli Lilly) in original commercial packaging, they prevent insulin aggregation for up to 4 days at 50 °C compared to less than 1 day for Humulin R alone. These copolymers demonstrate promise as simple formulation additives to increase the cold chain resilience of commercial insulin formulations, thereby expanding global access to these critical drugs for treatment of diabetes.
Collapse
Affiliation(s)
- Caitlin L. Maikawa
- Department of Bioengineering, Stanford University, Stanford California 94305, United States
| | - Joseph L. Mann
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Aadithya Kannan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Catherine M. Meis
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford California 94305, United States
| | - Anton A. A. Autzen
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Department of Science and Technology, Aarhus University, Aarhus 8000, Denmark
| | - Gerald G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - David M. Maahs
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, California 94305, United States
- Diabetes Research Center, Stanford University, Stanford, California 94305, United States
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford California 94305, United States
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, California 94305, United States
- Diabetes Research Center, Stanford University, Stanford, California 94305, United States
- Stanford CHEM-H Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
27
|
Contreras-Montoya R, Arredondo-Amador M, Escolano-Casado G, Mañas-Torres MC, González M, Conejero-Muriel M, Bhatia V, Díaz-Mochón JJ, Martínez-Augustin O, de Medina F, Lopez-Lopez MT, Conejero-Lara F, Gavira JA, de Cienfuegos LÁ. Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11672-11682. [PMID: 33661596 PMCID: PMC8479728 DOI: 10.1021/acsami.1c00639] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 05/08/2023]
Abstract
Protein therapeutics have a major role in medicine in that they are used to treat diverse pathologies. Their three-dimensional structures not only offer higher specificity and lower toxicity than small organic compounds but also make them less stable, limiting their in vivo half-life. Protein analogues obtained by recombinant DNA technology or by chemical modification and/or the use of drug delivery vehicles has been adopted to improve or modulate the in vivo pharmacological activity of proteins. Nevertheless, strategies to improve the shelf-life of protein pharmaceuticals have been less explored, which has challenged the preservation of their activity. Herein, we present a methodology that simultaneously increases the stability of proteins and modulates the release profile, and implement it with human insulin as a proof of concept. Two novel thermally stable insulin composite crystal formulations intended for the therapeutic treatment of diabetes are reported. These composite crystals have been obtained by crystallizing insulin in agarose and fluorenylmethoxycarbonyl-dialanine (Fmoc-AA) hydrogels. This process affords composite crystals, in which hydrogel fibers are occluded. The insulin in both crystalline formulations remains unaltered at 50 °C for 7 days. Differential scanning calorimetry, high-performance liquid chromatography, mass spectrometry, and in vivo studies have shown that insulin does not degrade after the heat treatment. The nature of the hydrogel modifies the physicochemical properties of the crystals. Crystals grown in Fmoc-AA hydrogel are more stable and have a slower dissolution rate than crystals grown in agarose. This methodology paves the way for the development of more stable protein pharmaceuticals overcoming some of the existing limitations.
Collapse
Affiliation(s)
- Rafael Contreras-Montoya
- Departamento
de Química Orgánica, Universidad
de Granada, (UGR), C.
U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - María Arredondo-Amador
- Departamento
de Farmacología, Centro de Investigación Biomédica
en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School
of Pharmacy, Instituto de Investigación
Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
| | - Guillermo Escolano-Casado
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-UGR), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Mari C. Mañas-Torres
- Departamento
de Química Orgánica, Universidad
de Granada, (UGR), C.
U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Mercedes González
- Departamento
de Farmacología, Centro de Investigación Biomédica
en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School
of Pharmacy, Instituto de Investigación
Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
| | - Mayte Conejero-Muriel
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-UGR), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Vaibhav Bhatia
- Lamark
Biotech Pvt. Ltd., VIT-TBI, 632 014 Vellore, Tamil Nadu, India
| | - Juan J. Díaz-Mochón
- Departamento
de Química Farmacéutica y Orgánica, Facultad de Farmacia, UGR, 18011 Granada, Spain
- Centre
for Genomics and Oncological Research, Pfizer/University
of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración
114, 18016 Granada, Spain
| | - Olga Martínez-Augustin
- Departamento
de Bioquímica y Biología Molecular II, Centro de Investigación
Biomédica en Red de Enfermedades Hepáticas y Digestivas
(CIBERehd), School of Pharmacy, Instituto
de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
| | - Fermín
Sánchez de Medina
- Departamento
de Farmacología, Centro de Investigación Biomédica
en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School
of Pharmacy, Instituto de Investigación
Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
| | - Modesto T. Lopez-Lopez
- Departamento
de Física Aplicada, Facultad de Ciencias,
UGR, C. U. Fuentenueva,
Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física, Facultad de Ciencias, UGR, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - José A. Gavira
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-UGR), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Universidad
de Granada, (UGR), C.
U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| |
Collapse
|