1
|
Lee S, Kim H, Kim M, Kang R, Lim I, Jang Y. Rapid and simple on-site salmonella detection in food via direct sample loading using a lipopolysaccharide-imprinted polymer. J Nanobiotechnology 2025; 23:279. [PMID: 40189550 PMCID: PMC11974074 DOI: 10.1186/s12951-025-03341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Salmonella is a major foodborne pathogen that causes salmonellosis, which is characterized by symptoms such as diarrhea, fever, and abdominal cramps. Existing methods for detecting Salmonella, such as culture plating, ELISA, and PCR, are accurate but time-consuming and unsuitable for on-site applications. In this study, we developed a rapid and sensitive electrochemical sensor using a molecularly imprinted polymer (MIP) to detect Salmonella typhimurium (S. typhimurium) by targeting lipopolysaccharides (LPS). Polydopamine (PDA) was used as the polymer matrix because of its cost-efficiency and functional versatility. The sensor demonstrated high sensitivity and selectivity, with a detection limit of 10 CFU/mL and a linear response over the 10²-10⁸ CFU/mL range. The specificity of the sensor was validated against other gram-positive and gram-negative bacteria and showed no significant cross-reactivity. Furthermore, the sensor performed effectively in real food samples, including tap water, milk, and pork, without complex preprocessing. These results highlight the potential of the LPS-imprinted MIP sensor for practical on-site detection of S. typhimurium, improving food safety monitoring and preventing outbreaks in food-handling environments.
Collapse
Affiliation(s)
- Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Hyunsoo Kim
- DRB Research, DRB Industrial, 28, Gongdandong-ro 55beon-gil, Busan, 46329, Republic of Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Ryun Kang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Inje Lim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea.
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, 04736, Korea.
| |
Collapse
|
2
|
Ma X, Cui Y, Zhang M, Lyu Q, Zhao J. A Multifunctional Nanodrug Co-Delivering VEGF-siRNA and Dexamethasone for Synergistic Therapy in Ocular Neovascular Diseases. Int J Nanomedicine 2024; 19:12369-12387. [PMID: 39606561 PMCID: PMC11598607 DOI: 10.2147/ijn.s492363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Oxidant stress, abnormal angiogenesis, and inflammation are three key factors contributing to the development of ocular neovascular diseases (ONDs). This study aims to develop a multifunctional nanodrug, DEX@MPDA-Arg@Si (DMAS), which integrates mesoporous polydopamine, vascular endothelial growth factor (VEGF)-siRNA, and dexamethasone (DEX) to address these therapeutic targets. Methods Physicochemical properties of DMAS were measured using transmission electron microscopy and a nanoparticle size analyzer. The encapsulation efficiency and drug loading capacity of DMAS were measured using a UV-visible spectrophotometer. The in vivo therapeutic efficacy and ocular safety of DMAS were evaluated using three established mouse models, including the alkali burn-induced corneal neovascularization (CoNV) model, the oxygen-induced retinopathy (OIR) model, and the laser-induced choroidal neovascularization (CNV) model. Results The DMAS nanoparticles demonstrated a uniform bowl-like shape with an average size of 264.9 ± 2.5 nm and a zeta potential of -28.2 ± 4.2 mV. They exhibited high drug-loading efficiency (36.04 ± 3.60% for DEX) and excellent biocompatibility. In vitro studies confirmed its potent antioxidant, anti-inflammatory, and anti-apoptotic properties. In vivo, DMAS treatment led to significant therapeutic effects across all models. It effectively inhibited CoNV, promoted corneal repair, and modulated inflammation in the alkali burn model. In the OIR model, DMAS reduced retinal neovascularization by decreasing VEGF expression. In the laser-induced CNV model, it significantly reduced the CNV area and lesion thickness. Conclusion This research developed a multifunctional nanodrug, DMAS, capable of co-delivering VEGF-siRNA and DEX, offering synergistic therapeutic benefits for treating ONDs. The DMAS nanodrug demonstrates promising anti-inflammatory, antioxidative, and anti-angiogenic effects, highlighting its potential as a versatile and effective treatment for multiple ocular conditions.
Collapse
Affiliation(s)
- Xiaochen Ma
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, People’s Republic of China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Min Zhang
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, People’s Republic of China
| | - Qinghua Lyu
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Tan YL, Wong YJ, Ong NWX, Leow Y, Wong JHM, Boo YJ, Goh R, Loh XJ. Adhesion Evolution: Designing Smart Polymeric Adhesive Systems with On-Demand Reversible Switchability. ACS NANO 2024; 18:24682-24704. [PMID: 39185924 DOI: 10.1021/acsnano.4c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Smart polymeric switchable adhesives represent a rapidly emerging class of advanced materials, exhibiting the ability to undergo on-demand transitioning between "On" and "Off" adhesion states. By selectively tuning external stimuli triggers (including temperature, light, electricity, magnetism, and chemical agents), we can engineer these materials to undergo reversible changes in their bonding capabilities. The strategic design selection of stimuli is a pivotal factor in the design of switchable adhesive systems. This review outlines recent advancements in the field of smart switchable polymeric adhesives over the past decade with a focus on the selection of stimulus triggers. These systems are further categorized into one of four adhesion switching mechanisms upon initiation by a specific stimuli-trigger: (i) interfacial adhesion, (ii) stiffness, (iii) contact area, or (iv) suction-based switching. Evaluation of adhesion switching performance across systems is primarily made based on three key metrics: (i) maximum adhesion strength, (ii) switch ratio, and (iii) switch time. Different stimuli and mechanisms offer distinct advantages and limitations, influencing the performance characteristics and applicability of these materials across domains such as detachable biomedical devices, robotic grippers, and climbing robots. This review thus offers a perspective on the present advancements and challenges in this emerging field, along with insights into future directions.
Collapse
Affiliation(s)
- Yee Lin Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jing Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Nicholas Wei Xun Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| |
Collapse
|
4
|
He Y, Fan Z, Sun P, Jiang H, Chen Z, Tang G, Hou Z, Sun Y, Yi Y, Shi W, Ge D. Mechanism of Self-Oxidative Copolymerization and its Application with Polydopamine-pyrrole Nano-copolymers. SMALL METHODS 2024; 8:e2301405. [PMID: 38168901 DOI: 10.1002/smtd.202301405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Currently, the copolymer of dopamine (DA) and pyrrole (PY) via chemical and electrochemical oxidation usually requires additional oxidants, and lacks flexibility in regulating the size and morphology, thereby limiting the broad applications of DA-PY copolymer in biomedicine. Herein, the semiquinone radicals produced by the self-oxidation of DA is ingeniously utilized as the oxidant to initiate the following copolymerization with PY, and a series of quinone-rich polydopamine-pyrrole copolymers (PDAm-nPY) with significantly enhanced absorption in near-infrared (NIR) region without any additional oxidant assistance is obtained. Moreover, the morphology and size of PDAm-nPY can be regulated by changing the concentration of DA and PY, thereby optimizing nanoscale PDA0.05-0.15PY particles (≈ 150 nm) with excellent NIR absorption and surface modification activity are successfully synthesized. Such PDA0.05-0.15PY particles show effective photoacoustic (PA) imaging and photothermal therapy (PTT) against 4T1 tumors in vivo. Furthermore, other catechol derivatives can also copolymerize with PY under the same conditions. This work by fully utilizing the semiquinone radical active intermediates produced through the self-oxidation of DA reduces the dependence on external oxidants in the synthesis of composite materials and predigests the preparation procedure, which provides a novel, simple, and green strategy for the synthesis of other newly catechol-based functional copolymers.
Collapse
Affiliation(s)
- Yuan He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Cardiothoracic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, 363000, China
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, China
| | - Pengfei Sun
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hairong Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhou Chen
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenqing Hou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunfeng Yi
- Department of Cardiothoracic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, 363000, China
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
5
|
Lee JS, Jeong JR, Lee MH, Kang K. Ultrathin and Smooth Pheomelanin-like Photoconductive Film. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31768-31775. [PMID: 38838199 DOI: 10.1021/acsami.4c03824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This study introduces a facile method for the substrate-independent deposition of pheomelanin-like films, revealing unique and promising electrical characteristics. The conventional darkening of a dopamine solution at a basic pH was significantly delayed by the addition of l-cysteine, resulting in a distinctive temporal pattern: an initial quiescent period without apparent color change followed by an abrupt and explosive burst. Surprisingly, within the quiescent period, the deposition of ultrathin and smooth pheomelanin-like films was observed, in addition to rough and thick films formed after the burst. Regardless of thickness or texture, these films exhibited common chemical properties, including moisture-capturing capability and dark- and bright-state conductivities. Particularly noteworthy were consistent photocurrent responses under bias voltage across various pheomelanin-like films, which were not observed in polydopamine films, highlighting the influential role of l-cysteine addition. These findings present a novel avenue for the potential application of pheomelanin-like films in bioelectronics, emphasizing their distinct electrical characteristics and prompting further exploration into their intricate conductive mechanisms. The study contributes to advancing our understanding of melanin-based materials and their potential in diverse scientific and technological domains.
Collapse
Affiliation(s)
- Jeong Sun Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Jae Ryeol Jeong
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Min Hyung Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| |
Collapse
|
6
|
Srinivas S, Senthil Kumar A. Electrical Wiring of Malarial Parasite Intermediate Hematin on a Tailored N-Doped Carbon Nanomaterial Surface and Its Bioelectrocatalytic Hydrogen Peroxide Reduction and Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10634-10647. [PMID: 38723623 DOI: 10.1021/acs.langmuir.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hematin, an iron-containing porphyrin compound, plays a crucial role in various biological processes, including oxygen transport, storage, and functionality of the malarial parasite. Specifically, hematin-Fe interacts with the nitrogen atom of antimalarial drugs, forming an intermediate step crucial for their function. The electron transfer functionality of hematin in biological systems has been scarcely investigated. In this study, we developed a biomimicking electrical wiring of hematin-Fe with a model N-drug system, represented as {hematin-Fe---N-drug}. We achieved this by immobilizing hematin on a multiwalled carbon nanotube (MWCNT)/N-graphene quantum dot (N-GQD) modified electrode (MWCNT/N-GQD@Hemat). N-GQD serves as a model molecular drug system containing nitrogen atoms to mimic the {hematin-Fe---N-drug} interaction. The prepared bioelectrode exhibited a distinct redox peak at a measured potential (E1/2) of -0.410 V vs Ag/AgCl, accompanied by a surface excess value of 3.54 × 10-9 mol cm-2. This observation contrasts significantly with the weak or electroinactive electrochemical responses documented in literature-based hematin systems. We performed a comprehensive set of physicochemical and electrochemical characterizations on the MWCNT/N-GQD@Hemat system, employing techniques including FESEM, TEM, Raman spectroscopy, IR spectroscopy, and AFM. To evaluate the biomimetic electrode's electroactivity, we investigated the selective-mediated reduction of H2O2 as a model system. As an important aspect of our research, we demonstrated the use of scanning electrochemical microscopy to visualize the in situ electron transfer reaction of the biomimicking electrode. In an independent study, we showed enzyme-less electrocatalytic reduction and selective electrocatalytic sensing of H2O2 with a detection limit of 319 nM. We achieved this using a batch injection analysis-coupled disposable screen-printed electrode system in physiological solution.
Collapse
Affiliation(s)
- Sakthivel Srinivas
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| |
Collapse
|
7
|
Vuppala S, Chitumalla RK, Choi S, Kim T, Park H, Jang J. Machine Learning-Assisted Computational Screening of Adhesive Molecules Derived from Dihydroxyphenyl Alanine. ACS OMEGA 2024; 9:994-1000. [PMID: 38222596 PMCID: PMC10785072 DOI: 10.1021/acsomega.3c07208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Marine mussels adhere to virtually any surface via 3,4-dihydroxyphenyl-L-alanines (L-DOPA), an amino acid largely contained in their foot proteins. The biofriendly, water-repellent, and strong adhesion of L-DOPA are unparalleled by any synthetic adhesive. Inspired by this, we computationally designed diverse derivatives of DOPA and studied their potential as adhesives or coating materials. We used first-principles calculations to investigate the adsorption of the DOPA derivatives on graphite. The presence of an electron-withdrawing group, such as nitrogen dioxide, strengthens the adsorption by increasing the π-π interaction between DOPA and graphite. To quantify the distribution of electron charge and to gain insights into the charge distribution at interfaces, we performed Bader charge analysis and examined charge density difference plots. We developed a quantitative structure-property relationship (QSPR) model using an artificial neural network (ANN) to predict the adsorption energy. Using the three-dimensional and quantum mechanical electrostatic potential of a molecule as a descriptor, the present quantum NN model shows promising performance as a predictive QSPR model.
Collapse
Affiliation(s)
- Srimai Vuppala
- Department
of Nanoenergy Engineering, Pusan National
University, Busan 46241, Republic
of Korea
| | - Ramesh Kumar Chitumalla
- Department
of Nanoenergy Engineering, Pusan National
University, Busan 46241, Republic
of Korea
| | - Seyong Choi
- Department
of Nanoenergy Engineering, Pusan National
University, Busan 46241, Republic
of Korea
| | - Taeho Kim
- Department
of Bioscience and Biotechnology, Sejong
University, Seoul 05006, Republic
of Korea
| | - Hwangseo Park
- Department
of Bioscience and Biotechnology, Sejong
University, Seoul 05006, Republic
of Korea
| | - Joonkyung Jang
- Department
of Nanoenergy Engineering, Pusan National
University, Busan 46241, Republic
of Korea
| |
Collapse
|
8
|
Ye B, Ma Y, Zhang D, Gu J, Wang Z, Zhang Y, Chen J. Glycopolymer-Based Antiswelling, Conductive, and Underwater Adhesive Hydrogels for Flexible Strain Sensor Application. ACS Biomater Sci Eng 2023; 9:6891-6901. [PMID: 38013423 DOI: 10.1021/acsbiomaterials.3c01539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
With the fast development of soft electronics, underwater adhesion has become a highly desired feature for various sensing uses. Currently, most adhesive hydrogels are based on catechol-based structures, such as polydopamine, pyrogallol, and tannic acid, with very limited structural variety. Herein, a new type of glycopolymer-based underwater adhesive hydrogel has been prepared straightforwardly by random copolymerization of acrylic acid, acetyl-protected/unprotected glucose, and methacrylic anhydride in dimethyl sulfoxide (DMSO). By employing a DMSO-water solvent exchange strategy, the underwater adhesion was skillfully induced by the synergetic effects of hydrophobic aggregation and hydrogen bonding, leading to excellent adhesion behaviors on various surfaces, including pig skins, glasses, plastics, and metals, even after 5 days of storage in water. In addition, the underwater adhesive hydrogels with simple and low-cost protected/unprotected carbohydrate compositions showed good mechanical and rheological properties, together with cytocompatibility and antiswelling behavior in water, all of which are beneficial for underwater adhesions. In application as a flexible strain sensor, the adhesive hydrogel exhibited stable and reliable sensing ability for monitoring human motion in real time, suggesting great potential for intelligent equipment design.
Collapse
Affiliation(s)
- Baotong Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Difei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ziyan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
9
|
Zhou C, Bai J, Zhang F, Zhang R, Zhang X, Zhong K, Yan B. Development of mussel-inspired chitosan-derived edible coating for fruit preservation. Carbohydr Polym 2023; 321:121293. [PMID: 37739502 DOI: 10.1016/j.carbpol.2023.121293] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
Fruit rotting at the postharvest stage severely limits their marketing supply chains and shelf-life. Thus, developing a green and cost-effective approach to extend the shelf-life of perishable foods is highly desired. In this study, inspired by the mussel-adhesion strategy, a multifunctional fruit coating material has been developed using a quaternized catechol-functionalized chitosan (CQ-CS) grafted with 2, 3-epoxypropyl trimethyl ammonium chloride and 3, 4-dihydroxy benzaldehyde. The as-prepared CQ-CS coating exhibited excellent mechanical properties, universal surface adhesion abilities, antimicrobial and antioxidant capacities without any potential toxicity effects. Using strawberry and banana as model fruits, we showed that the CQ-CS coating could effectively maintain the fruit's firmness and color, decrease the weight loss rate, and prevent microbial growth, thus finally extending their shelf- life when compared to uncoated samples, indicating the universal application of the as-prepared CQ-CS coating. These findings demonstrated that this novel conformal coating of CQ-CS has great potential for fruit preservation in the food industry.
Collapse
Affiliation(s)
- Chaomei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinrong Bai
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Xiaolei Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Kai Zhong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Kang J, Zajforoushan Moghaddam S, Thormann E. Self-Cross-Linkable Chitosan-Alginate Complexes Inspired by Mussel Glue Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15499-15506. [PMID: 37870990 DOI: 10.1021/acs.langmuir.3c01750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In this study, mussel-inspired chemistry, based on catechol-amine reactions, was adopted to develop self-cross-linkable chitosan-alginate (Chi-Alg) complexes. To do so, the biopolymers were each substituted with ∼20% catechol groups (ChiC and AlgC), and then four complex combinations (Chi-Alg, ChiC-Alg, Chi-AlgC, ChiC-AlgC) were prepared at the surface and in bulk solution. Based on QCM-D and lap shear adhesion tests, the complex with catechol only on Chi (ChiC-Alg) did not show a significant variation from the control complex (Chi-Alg). Conversely, the complexes with catechol on alginate (Chi-AlgC and ChiC-AlgC) rendered a self-cross-linking property and enhanced cohesive properties.
Collapse
Affiliation(s)
- Junjie Kang
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Wang Z, Cui F, Sui Y, Yan J. Radical chemistry in polymer science: an overview and recent advances. Beilstein J Org Chem 2023; 19:1580-1603. [PMID: 37915554 PMCID: PMC10616707 DOI: 10.3762/bjoc.19.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Radical chemistry is one of the most important methods used in modern polymer science and industry. Over the past century, new knowledge on radical chemistry has both promoted and been generated from the emergence of polymer synthesis and modification techniques. In this review, we discuss radical chemistry in polymer science from four interconnected aspects. We begin with radical polymerization, the most employed technique for industrial production of polymeric materials, and other polymer synthesis involving a radical process. Post-polymerization modification, including polymer crosslinking and polymer surface modification, is the key process that introduces functionality and practicality to polymeric materials. Radical depolymerization, an efficient approach to destroy polymers, finds applications in two distinct fields, semiconductor industry and environmental protection. Polymer chemistry has largely diverged from organic chemistry with the fine division of modern science but polymer chemists constantly acquire new inspirations from organic chemists. Dialogues on radical chemistry between the two communities will deepen the understanding of the two fields and benefit the humanity.
Collapse
Affiliation(s)
- Zixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| |
Collapse
|
12
|
Prampolini G, Campetella M, Ferretti A. Solvent effects on catechol's binding affinity: investigating the role of the intra-molecular hydrogen bond through a multi-level computational approach. Phys Chem Chem Phys 2023; 25:2523-2536. [PMID: 36602108 DOI: 10.1039/d2cp04500a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The subtle interplay between the inter-molecular interactions established by catechol with the surrounding solvent and the intra-molecular hydrogen bond (HB) characterizing its conformational dynamics is investigated through a multi-level computational approach. First, quantum mechanical (QM) calculations are employed to accurately characterize both large portions of the catechol's potential energy surface and the interaction energy with neighboring solvent molecules. The acquired information is thereafter exploited to develop a QM derived force-field (QMD-FF), in turn employed in molecular dynamics (MD) simulations based on classical mechanics. The reliability of the QMD-FF is further validated through a comparison with the outcomes of ab initio molecular dynamics, also purposely carried out in this work. In agreement with recent experimental findings, the MD results reveal remarkable differences in the conformational behavior of isolated and solvated catechol, as well as among the investigated solvents, namely water, acetonitrile or cyclohexane. The rather strong intramolecular HB, settled between the vicinal phenolic groups and maintained in the gas phase, loses stability when catechol is solvated in polar solvents, and is definitively lost in protic solvents such as water. In fact, the internal energy increase associated with the rotation of one hydroxyl group and the breaking of the internal HB is well compensated by the intermolecular HB network available when both phenolic hydrogens point toward the surrounding solvent. In such a case, catechol is stabilized in a chelating conformation, which in turn could be very effective in water removal and surface anchoring. Besides unraveling the role of the different contributors that govern catechol's conformational dynamics, the QMD-FF developed in this work could be in future employed to model larger catechol containing molecules, due to its accuracy to reliably model both internal flexibility and solvent effects, while exploiting MD computational benefits to include more complex players as for instance surfaces, ions or biomolecules.
Collapse
Affiliation(s)
- Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - Marco Campetella
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2 SI, Siena, I-53100, Italy
| | - Alessandro Ferretti
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| |
Collapse
|
13
|
Calmels JJ, Aguilar L, Mancebo-Aracil J, Radivoy G, Domini C, Garrido M, Sánchez MD, Nador F. Novel pH-sensitive catechol dyes synthesised by a three component one-pot reaction. Front Chem 2023; 10:1116887. [PMID: 36704615 PMCID: PMC9871305 DOI: 10.3389/fchem.2022.1116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The synthesis and characterisation of new dyes based on indolizines bearing catechol groups in their structure is presented. The preparation was carried out through a simple three component one-pot reaction promoted by CuNPs/C, between pyridine-2-carbaldehyde, an aromatic alkyne and a tetrahydroisoquinoline (THIQ) functionalized with catechol groups. The products were isolated in 30%-34% yield, which was considered more than acceptable considering that the catechol hydroxyl groups were not protected prior to reaction. In view of the colour developed by the products and their response to the acidic and basic conditions of the medium, product 3aa was studied by UV-Vis and NMR spectroscopies at different pH values. We concluded that product 3aa suffered two deprotonations at pKa of 4.4 and 9.5, giving three species in a pH range between 2-12, with colours varying from light red to deep orange. The reversibility of the process observed for 3aa at different pH values, together with its changes in colour, make this new family of products attractive candidates to use them as pH indicators.
Collapse
Affiliation(s)
- Juan José Calmels
- Instituto de Química del Sur (INQUISUR-CONICET)—Grupo de Nanocatálisis y Síntesis Orgánica del Sur Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
| | - Leandro Aguilar
- Instituto de Química del Sur (INQUISUR-CONICET)—Grupo de Nanocatálisis y Síntesis Orgánica del Sur Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
| | - Juan Mancebo-Aracil
- Instituto de Química del Sur (INQUISUR-CONICET)—Grupo de Nanocatálisis y Síntesis Orgánica del Sur Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
| | - Gabriel Radivoy
- Instituto de Química del Sur (INQUISUR-CONICET)—Grupo de Nanocatálisis y Síntesis Orgánica del Sur Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
| | - Claudia Domini
- Instituto de Química del Sur (INQUISUR-CONICET), Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Mariano Garrido
- Instituto de Química del Sur (INQUISUR-CONICET), Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Miguel D. Sánchez
- Instituto de Física del Sur (IFISUR-CONICET), Departamento de Física, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Fabiana Nador
- Instituto de Química del Sur (INQUISUR-CONICET)—Grupo de Nanocatálisis y Síntesis Orgánica del Sur Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina,*Correspondence: Fabiana Nador,
| |
Collapse
|
14
|
Chen P, Zhang C, He P, Pan S, Zhong W, Wang Y, Xiao Q, Wang X, Yu W, He Z, Gao X, Song J. A Biomimetic Smart Nanoplatform as “Inflammation Scavenger” for Regenerative Therapy of Periodontal Tissue. Int J Nanomedicine 2022; 17:5165-5186. [PMID: 36388874 PMCID: PMC9642321 DOI: 10.2147/ijn.s384481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The functional reconstruction of periodontal tissue defects remains a clinical challenge due to excessive and prolonged host response to various endogenous and exogenous pro-inflammatory stimuli. Thus, a biomimetic nanoplatform with the capability of modulating inflammatory response in a microenvironment-responsive manner is attractive for regenerative therapy of periodontal tissue. Methods Herein, a facile and green design of engineered bone graft materials was developed by integrating a biomimetic apatite nanocomposite with a smart-release coating, which could realize inflammatory modulation by “on-demand” delivery of the anti-inflammatory agent through a pH-sensing mechanism. Results In vitro and in vivo experiments demonstrated that this biocompatible nanoplatform could facilitate the clearance of reactive oxygen species in human periodontal ligament stem cells under inflammatory conditions via inhibiting the production of endogenous proinflammatory mediators, in turn contributing to the enhanced healing efficacy of periodontal tissue. Moreover, this system exhibited effective antimicrobial activity against common pathogenic bacteria in the oral cavity, which is beneficial for the elimination of exogenous pro-inflammatory factors from bacterial infection during healing of periodontal tissue. Conclusion The proposed strategy provides a versatile apatite nanocomposite as a promising “inflammation scavenger” and propels the development of intelligent bone graft materials for periodontal and orthopedic applications.
Collapse
Affiliation(s)
- Poyu Chen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Ping He
- Department of Stomatology, Dazhou Central Hospital, Dazhou, SiChuan, 635000, People’s Republic of China
| | - Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xinyan Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenliang Yu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Zhangmin He
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Correspondence: Xiang Gao; Jinlin Song, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China, Tel/Fax +86 23 88860105; Tel/Fax +86 23 88860026, Email ;
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
15
|
Kim Y, Jeong Y, Kang SM. Surface Coating with Naphthalene Trisulfonate/Hafnium(IV) Complexes: Versatility and Post-Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12711-12716. [PMID: 36209435 DOI: 10.1021/acs.langmuir.2c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Naphthalene trisulfonate is found to have versatile surface coating capability when combined with hafnium(IV) ions, thereby forming complexes. Solid substrates such as titanium/titanium dioxide, glass, and nylon immersed in a solution of naphthalene trisulfonate and HfIV produces naphthalene trisulfonate/HfIV complex coating. The coating is not produced when the HfIV ions are absent or when naphthalene monosulfonate replaces naphthalene trisulfonate; this indicates the significance of HfIV ions and multiple sulfonates in this coating system. The versatile surface coating property of naphthalene trisulfonate/HfIV complexes is attributed to the coexistence of hydrophobic aromatic and hydrophilic side groups in naphthalene trisulfonate. Additionally, HfIV ion-mediated cross-linking reactions between naphthalene trisulfonate molecules induce molecular assembly, facilitating versatile surface coating. Post-functionalization of the coating is accomplished through additional HfIV-mediated coordinate bond formation; alginate and λ-carrageenan are successfully grafted onto the coating for nonbiofouling applications.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yeonwoo Jeong
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
16
|
Huang X, Hong M, Wang L, Meng Q, Ke Q, Kou X. Bioadhesive and antibacterial edible coating of EGCG-grafted pectin for improving the quality of grapes during storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wang XT, Deng X, Zhang TD, Zhang J, Chen LL, Wang YF, Cao X, Zhang YZ, Zheng X, Yin DC. A Versatile Hydrophilic and Antifouling Coating Based on Dopamine Modified Four-Arm Polyethylene Glycol by One-Step Synthesis Method. ACS Macro Lett 2022; 11:805-812. [PMID: 35666550 DOI: 10.1021/acsmacrolett.2c00277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A versatile hydrophilic and antifouling coating was designed and prepared based on catechol-modified four-arm polyethylene glycol. The dopamine (DA) molecules were grafted onto the end of the four-arm polyethylene glycol carboxyl (4A-PEG-COOH) through the amidation reaction, which was proven by 1H NMR and FTIR analysis, assisting the strong adhesion of PEG on the surface of various types of materials, including metallic, inorganic, and polymeric materials. The reduction of the water contact angle and the bacteria-repellent and protein-repellent effects indicated that the coating had good hydrophilicity and antifouling performance. Raman spectroscopy analysis demonstrated the affinity between the polymeric surface and water, which further confirmed the hydrophilicity of the coating. Finally, in vitro cytotoxicity assay demonstrated good biocompatibility of the coating layer.
Collapse
Affiliation(s)
- Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jie Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yi-Fan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yao-Zhong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
18
|
Kim Y, You A, Kim D, Bisht H, Heo Y, Hong D, Kim M, Kang SM. Effect of N-Methylation on Dopamine Surface Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6404-6410. [PMID: 35574836 DOI: 10.1021/acs.langmuir.2c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dopamine (DA) surface chemistry has received significant attention because of its applicability in a wide range of research fields and the ability to graft functional molecules onto numerous solid surfaces. Various DA derivatives have been newly synthesized to identify key factors affecting the coating efficiency and to advance the coating system development. The oxidation of catechol into quinone followed by internal cyclization via the nucleophilic attack of primary amine is crucial for DA-based surface coating. Thus, it is expected that the amine group's nucleophilicity control directly affects the coating efficiency. However, it has not been systematically investigated, and most studies have been conducted with the focus on the transformation of amines into amides, despite such approaches decreasing the coating efficiency; the nitrogen in amides is less nucleophilic than that in free amines. In this study, we investigated the effect of N-alkylation on dopamine surface chemistry. N,N-Dimethyldopamine (DMDA) was newly synthesized, and the coating efficiency was systematically compared with DA and N-methyldopamine (MDA). DA N-monomethylation improved the coating rate by increasing the nitrogen nucleophilicity, whereas N,N-dimethylation dramatically decreased the DA surface coating property. In addition, MDA remained capable of universal surface coating and secondary reactions using the surface catechols. This study provides opportunities for developing coating materials with advanced functions and an improved coating rate.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Ahrom You
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Dahee Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Himani Bisht
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yoonji Heo
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
19
|
Smolyaninov IV, Burmistrova DA, Arsenyev MV, Polovinkina MA, Pomortseva NP, Fukin GK, Poddel’sky AI, Berberova NT. Synthesis and Antioxidant Activity of New Catechol Thioethers with the Methylene Linker. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103169. [PMID: 35630646 PMCID: PMC9144179 DOI: 10.3390/molecules27103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022]
Abstract
Novel catechol thio-ethers with different heterocyclic substituents at sulfur atom were prepared by reacting 3,5-di-tert-butyl-6-methoxymethylcatechol with functionalized thiols under acidic conditions. A common feature of compounds is a methylene bridge between the catechol ring and thioether group. Two catechols with the thio-ether group, bound directly to the catechol ring, were also considered to assess the effect of the methylene linker on the antioxidant properties. The crystal structures of thio-ethers with benzo-thiazole moieties were established by single-crystal X-ray analysis. The radical scavenging and antioxidant activities were determined using 2,2′-diphenyl-1-picrylhydrazyl radical test, ABTS∙+, CUPRAC (TEAC) assays, the reaction with superoxide radical anion generated by xanthine oxidase (NBT assay), the oxidative damage of the DNA, and the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro. Most catechol-thioethers exhibit the antioxidant effect, which varies from mild to moderate depending on the model system. The dual anti/prooxidant activity characterizes compounds with adamantyl or thio-phenol substituent at the sulfur atom. Catechol thio-ethers containing heterocyclic groups (thiazole, thiazoline, benzo-thiazole, benzo-xazole) can be considered effective antioxidants with cytoprotective properties. These compounds can protect molecules of DNA and lipids from the different radical species.
Collapse
Affiliation(s)
- Ivan V. Smolyaninov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
- Correspondence: (I.V.S.); (A.I.P.)
| | - Daria A. Burmistrova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Maxim V. Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Maria A. Polovinkina
- Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova Str., 344006 Rostov-on-Don, Russia;
| | - Nadezhda P. Pomortseva
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Georgy K. Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Andrey I. Poddel’sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
- Correspondence: (I.V.S.); (A.I.P.)
| | - Nadezhda T. Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| |
Collapse
|
20
|
Lv H, Xing F, Zhu S. Synthesis, structure, and properties of catechol functionalized tripodal chelate and its radical complex of strontium. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Kim M, Park J, Lee KM, Shin E, Park S, Lee J, Lim C, Kwak SK, Lee DW, Kim BS. Peptidomimetic Wet-Adhesive PEGtides with Synergistic and Multimodal Hydrogen Bonding. J Am Chem Soc 2022; 144:6261-6269. [PMID: 35297615 DOI: 10.1021/jacs.1c11737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The remarkable underwater adhesion of mussel foot proteins has long been an inspiration in the design of peptidomimetic materials. Although the synergistic wet adhesion of catechol and lysine has been recently highlighted, the critical role of the polymeric backbone has remained largely underexplored. Here, we present a peptidomimetic approach using poly(ethylene glycol) (PEG) as a platform to evaluate the synergistic compositional relation between the key amino acid residues (i.e., DOPA and lysine), as well as the role of the polyether backbone in interfacial adhesive interactions. A series of PEG-based peptides (PEGtides) were synthesized using functional epoxide monomers corresponding to catechol and lysine via anionic ring-opening polymerization. Using a surface force apparatus, highly synergistic surface interactions among these PEGtides with respect to the relative compositional ratio were revealed. Furthermore, the critical role of the catechol-amine synergy and diverse hydrogen bonding within the PEGtides in the superior adhesive interactions was verified by molecular dynamics simulations. Our study sheds light on the design of peptidomimetic polymers with reduced complexity within the framework of a polyether backbone.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinwoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyung Min Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eeseul Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Suebin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Chanoong Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
22
|
Sunoqrot S, Al-Hadid A, Manasrah A, Khnouf R, Hasan Ibrahim L. Immobilization of glucose oxidase on bioinspired polyphenol coatings as a high-throughput glucose assay platform. RSC Adv 2021; 11:39582-39592. [PMID: 35492494 PMCID: PMC9044463 DOI: 10.1039/d1ra07467a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/21/2021] [Indexed: 12/23/2022] Open
Abstract
Glucose oxidase (GOx) is an enzyme with important industrial and biochemical applications, particularly in glucose detection. Here we leveraged the oxidative self-polymerization phenomenon of simple polyphenols (pyrogallol or catechol) in the presence of polyethylenimine (PEI) to form adhesive coatings that enabled GOx immobilization on conventional multi-well plates. Immobilization was verified and optimized by directly measuring GOx activity inside the coated wells. Our results showed that incorporating PEI in polyphenol coatings enhanced their enzyme immobilization efficiency, with pyrogallol (PG)-based coatings displaying the greatest enzyme activity. The immobilized enzyme maintained similar affinity to glucose compared to the free enzyme. GOx-immobilized PG/PEI-coated wells exhibited intermediate recycling ability but excellent resistance to urea as a denaturing agent compared to the free enzyme. GOx-immobilized 96-well plates allowed the construction of a linear glucose calibration curve upon adding glucose standards, with a detection limit of 0.4–112.6 mg dL−1, which was comparable to commercially available enzymatic glucose assay kits. The assay platform was also capable of effectively detecting glucose in rat plasma samples. Our findings present a simple enzyme immobilization technique that can be used to construct a glucose assay platform in a convenient multi-well format for high-throughput glucose quantification. Glucose oxidase was immobilized on conventional multi-well plates via bioinspired polyphenol chemistry for convenient colorimetric quantitation of glucose.![]()
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan +962 64291423 +962 64291511 ext. 197
| | - Amani Al-Hadid
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan +962 64291423 +962 64291511 ext. 197
| | - Ahmad Manasrah
- Department of Mechanical Engineering, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan Amman 11733 Jordan
| | - Ruba Khnouf
- Department of Biomedical Engineering, Faculty of Engineering, Jordan University of Science and Technology Irbid 22110 Jordan
| | - Lina Hasan Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan +962 64291423 +962 64291511 ext. 197
| |
Collapse
|
23
|
Binu NM, Prema D, Prakash J, Balagangadharan K, Balashanmugam P, Selvamurugan N, Venkatasubbu GD. Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Hwang YE, Im S, Kim H, Sohn JH, Cho BK, Cho JH, Sung BH, Kim SC. Adhesive Antimicrobial Peptides Containing 3,4-Dihydroxy-L-Phenylalanine Residues for Direct One-Step Surface Coating. Int J Mol Sci 2021; 22:ijms222111915. [PMID: 34769345 PMCID: PMC8584447 DOI: 10.3390/ijms222111915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial colonization and transmission via surfaces increase the risk of infection. In this study, we design and employ novel adhesive antimicrobial peptides to prevent bacterial contamination of surfaces. Repeats of 3,4-dihydroxy-L-phenylalanine (DOPA) were added to the C-terminus of NKC, a potent synthetic antimicrobial peptide, and the adhesiveness and antibacterial properties of the resulting peptides are evaluated. The peptide is successfully immobilized on polystyrene, titanium, and polydimethylsiloxane surfaces within 10 min in a one-step coating process with no prior surface functionalization. The antibacterial effectiveness of the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces is confirmed by complete inhibition of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus within 2 h. The stability of the peptide coated on the substrate surface is maintained for 84 days, as confirmed by its bactericidal activity. Additionally, the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces show no cytotoxicity toward the human keratinocyte cell line HaCaT. The antimicrobial properties of the peptide-coated surfaces are confirmed in a subcutaneous implantation animal model. The adhesive antimicrobial peptide developed in this study exhibits potential as an antimicrobial surface-coating agent for efficiently killing a broad spectrum of bacteria on contact.
Collapse
Affiliation(s)
- Young Eun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.E.H.); (B.-K.C.)
| | - Seonghun Im
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.I.); (J.-H.S.)
| | - Hyun Kim
- Division of Applied Life Science (BK21Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.C.)
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.I.); (J.-H.S.)
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.E.H.); (B.-K.C.)
| | - Ju Hyun Cho
- Division of Applied Life Science (BK21Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.C.)
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.I.); (J.-H.S.)
- Correspondence: (B.H.S.); (S.C.K.)
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.E.H.); (B.-K.C.)
- Correspondence: (B.H.S.); (S.C.K.)
| |
Collapse
|
25
|
Barros NR, Chen Y, Hosseini V, Wang W, Nasiri R, Mahmoodi M, Yalcintas EP, Haghniaz R, Mecwan MM, Karamikamkar S, Dai W, Sarabi SA, Falcone N, Young P, Zhu Y, Sun W, Zhang S, Lee J, Lee K, Ahadian S, Dokmeci MR, Khademhosseini A, Kim HJ. Recent developments in mussel-inspired materials for biomedical applications. Biomater Sci 2021; 9:6653-6672. [PMID: 34550125 DOI: 10.1039/d1bm01126j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the decades, researchers have strived to synthesize and modify nature-inspired biomaterials, with the primary aim to address the challenges of designing functional biomaterials for regenerative medicine and tissue engineering. Among these challenges, biocompatibility and cellular interactions have been extensively investigated. Some of the most desirable characteristics for biomaterials in these applications are the loading of bioactive molecules, strong adhesion to moist areas, improvement of cellular adhesion, and self-healing properties. Mussel-inspired biomaterials have received growing interest mainly due to the changes in mechanical and biological functions of the scaffold due to catechol modification. Here, we summarize the chemical and biological principles and the latest advancements in production, as well as the use of mussel-inspired biomaterials. Our main focus is the polydopamine coating, the conjugation of catechol with other polymers, and the biomedical applications that polydopamine moieties are used for, such as matrices for drug delivery, tissue regeneration, and hemostatic control. We also present a critical conclusion and an inspired view on the prospects for the development and application of mussel-inspired materials.
Collapse
Affiliation(s)
| | - Yi Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China.,Guangzhou Redsun Gas Appliance CO., Ltd, Guangzhou 510460, P. R. China
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Weiyue Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | | | | | - Wei Dai
- Department of Research and Design, Beijing Biosis Healing Biological Technology Co., Ltd, Daxing District, Biomedical Base, Beijing 102600, P. R. China
| | - Shima A Sarabi
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Wujin Sun
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Shiming Zhang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,Department of Electrical and Electronic Engineering, The University of Hong Kong, China
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Kangju Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, South Korea
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
26
|
SHEN H, ZHU L, LIN Q, GUO S, ZHANG H. Urushiol-resourced dopamine analogue as a trigger to construct clay-hexacyanoferrate hydrogel for cesium removal. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106140. [DOI: 10.1016/j.jece.2021.106140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Bryaskova R, Philipova N, Georgiev N, Lalov I, Bojinov V, Detrembleur C. Photoactive mussels inspired polymer coatings: Preparation and antibacterial activity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rayna Bryaskova
- Department of Polymer Engineering University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Nikoleta Philipova
- Department of Polymer Engineering University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Nikolay Georgiev
- Department of Organic Synthesis University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Ivo Lalov
- Department of Biotechnology University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Vladimir Bojinov
- Department of Organic Synthesis University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department University of Liege Liège Belgium
| |
Collapse
|
28
|
Fabrication of gold nanostructure decorated polystyrene hybrid nanosystems via poly(L-DOPA) and their applications in surface-enhanced Raman Spectroscopy (SERS), and catalytic activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Comprehensive study of the electrochemical growth and physicochemical properties of polycatecholamines and polycatechol. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Hsueh N, Chai CLL. Evaluation of 2-Bromoisobutyryl Catechol Derivatives for Atom Transfer Radical Polymerization-Functionalized Polydopamine Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8811-8820. [PMID: 34270891 DOI: 10.1021/acs.langmuir.1c01143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of α-bromoisobutyryl-functionalized polydopamine (PDA), derived from an in situ mixture with dopamine (DA) and α-bromoisobutyryl bromide, enables surface-initiated atom transfer radical polymerization (SI-ATRP) of a broad range of methacrylate monomers for surface functionalization. Although the putative intermediate 2-bromo-N-(3,4-dihydroxyphenethyl)-2-methylpropanamide 1 has been proposed to account for the SI-ATRP activity of α-bromoisobutyryl-functionalized PDA, there has not been a systematic investigation on the efficacy of other catechol-derived 2-bromoisobutyryl derivatives for SI-ATRP. In this work, a number of catechol-derived ATRP initiators containing the 2-bromoisobutyryl moiety were designed and synthesized, in an effort to investigate the effect of changes in structure on initiator immobilization, and subsequent ATRP performance. The change in the length of the linker unit bearing the 2-bromoisobutyryl moiety, the introduction of a free amine group, or the replacement of the amide with an ester were found to have profound effects on the ability of the molecule to deposit ATRP-initiator-modified PDA coatings, as well as the subsequent SI-ATRP performance. Among the ATRP initiators synthesized, 5-(2-aminoethyl)-2,3-dihydroxyphenethyl 2-bromo-2-methylpropanoate hydrobromide 4·HBr was most efficiently incorporated into ATRP-initiator-modified PDA coatings and also the best at effecting SI-ATRP with 2-hydroxyethyl methacrylate; the high performance of this initiator is likely due to the presence of a free amine and an appropriately long methylene linker unit to the 2-bromoisobutyryl moiety. This methodology was found to be suitable for the functionalization of a range of organic and inorganic surfaces, for the fabrication of high-value surface-grafted polymer brush coatings for various applications.
Collapse
Affiliation(s)
- Nathanael Hsueh
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Christina L L Chai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
31
|
Mazlumoglu H, Yilmaz M. Silver nanoparticle-decorated titanium dioxide nanowire systems via bioinspired poly(L-DOPA) thin film as a surface-enhanced Raman spectroscopy (SERS) platform, and photocatalyst. Phys Chem Chem Phys 2021; 23:13396-13404. [PMID: 34105556 DOI: 10.1039/d1cp01322j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver nanostructure decorated-titanium dioxide (TiO2) nanocomposite systems with their unique characteristics provide extraordinary performance in various applications including surface-enhanced Raman spectroscopy (SERS), and photocatalysis. Despite the recent progress, novel, simple, effective, low-cost, reducing and stabilizing agent-free, and easy-to-tune approaches are heavily demanded for the preparation of these nanocomposites. In this context, we propose the fabrication of silver nanostructure decorated TiO2 nanowires (TiO2 NWs) through a thin interphase layer of the polymer of 3,4-dihydroxyphenyl-l-alanine (PLDOPA). In the first step, TiO2 NWs were synthesized through the hydrothermal method and then a conformal thin film of PLDOPA was deposited onto the TiO2 NWs (TiO2@PLDOPA) by oxidative polymerization of l-DOPA. Having various functional groups including catechol and amine, the PLDOPA thin-film reduced the silver ions onto the TiO2 NWs and stabilized the resultant nanocomposites without the employment of any surfactant, reducing agent, and seed material. By simply tuning the amount of silver ions, we could manipulate the size, morphology, and interparticle distance of silver nanostructures decorated onto the TiO2@PLDOPA colloidal composite system (TiO2@PLDOPA@Ag NP). The TiO2@PLDOPA@Ag nanocomposite systems provided unique properties as an ideal SERS platform and photocatalyst. The optimized TiO2@PLDOPA@Ag nanosystem demonstrated a high SERS activity, reproducibility, and self-cleaning property with an enhancement factor of 5.1 × 105. As a photocatalyst, the TiO2@PLDOPA@Ag NP systems provided remarkable performance under visible light irradiation in the catalytic degradation of methylene blue.
Collapse
Affiliation(s)
| | - Mehmet Yilmaz
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey. and East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey and Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
32
|
Metal-phenolic network coatings for engineering bioactive interfaces. Colloids Surf B Biointerfaces 2021; 205:111851. [PMID: 34020152 DOI: 10.1016/j.colsurfb.2021.111851] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
The surface modification of biomaterials is crucial for constructing bioactive interfaces capable of interacting with specific biomolecules, controlling cell behavior and regulating biological processes. Because of their excellent biocompatibility, facile preparation, pH-responsiveness and universal adhesion, surface coatings made from metal-phenolic network (MPN) have attracted extensive attention for handling interfacial properties and designing biomaterials in recent years. Different methods and technologies for assembling MPN coatings are summarized and compared in this paper, followed by highlighting the advantages of MPN coatings as bioactive interfaces for controlling biological process at the molecular, cellular, and tissue levels. Current challenges and prospects of MPN coatings for biomedical applications are also discussed.
Collapse
|
33
|
Turan H, Calis B, Dizaji AN, Tarhan S, Mazlumoglu H, Aysin F, Yilmaz A, Yilmaz M. Poly(L-DOPA)-mediated bimetallic core-shell nanostructures of gold and silver and their employment in SERS, catalytic activity, and cell viability. NANOTECHNOLOGY 2021; 32:315702. [PMID: 33878753 DOI: 10.1088/1361-6528/abf9c7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Core-shell gold nanorod (AuNR)@silver (Ag) nanostructures with their unique properties have gained enormous interest and are widely utilized in various applications including sensor systems, catalytic reactions, diagnosis, and therapy. Despite the recent progress, simple, effective, low-cost, and easy-to-tune strategies are heavily required to fabricate these nanoparticles (NP) systems. For this, we propose the employment of the polymer of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) as a ligand molecule. A conformal thin layer of polymer of L-DOPA (PLDOPA) with its various functional groups enabled the reduction of silver ions onto the AuNRs and stabilization of the resultant NPs without using any surfactant, reducing agent, and seed material. The shape and growth model of the AuNR@Ag nanostructures was manipulated by simply tuning the amount of silver ions. This procedure created different NP morphologies ranging from concentric to acentric/island shape core-shell nanostructures. Also, even at the highest Ag deposition, the PLDOPA layer is still conformally present onto the Au@Ag core-shell NRs. The unique properties of NP systems provided remarkable characteristics in surface-enhanced Raman spectroscopy, catalytic activity, and cell viability tests.
Collapse
Affiliation(s)
- Hasan Turan
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey
| | - Baris Calis
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Molecular Biology and Genetics, Ataturk University, 25240 Erzurum, Turkey
| | - Araz Norouz Dizaji
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey
| | - Seda Tarhan
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey
| | | | - Ferhunde Aysin
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Biology, Ataturk University, 25240 Erzurum, Turkey
| | - Asli Yilmaz
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Molecular Biology and Genetics, Ataturk University, 25240 Erzurum, Turkey
| | - Mehmet Yilmaz
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
34
|
Zhang Y, Xing F, Zhu S. Structures and Chromogenic Ion-Pair Recognition of a Catechol-Functionalized 1,8-Anthraquinone Macrocycle in Dimethyl Sulfoxide. Inorg Chem 2021; 60:5042-5053. [PMID: 33706508 DOI: 10.1021/acs.inorgchem.1c00083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A lariat anthraquinone macrocycle functionalized with catechol (H2L) was synthesized via the Mannich reaction. The Mannich base H2L can be partially decomposed into L1·3H2O and HL1·NO3·2H2O in the presence of tetrabutylammonium hydroxide/Al(NO3)3·9H2O in dimethyl sulfoxide (DMSO). Free L1·3H2O is essentially coplanar, while protonated HL1·NO3·2H2O is highly distorted. Dark-green FeCl3·H2L·2H2O powder and Fe2(HL)2Cl4 crystal can be isolated from ethanol (C2H5OH) in high/low H2L concentration. Anthraquinone in H2L is essentially coplanar but distorted in Fe2(HL)2Cl4. The Fe(III) ion in Fe2(HL)2Cl4 adopts a less common five-coordination with three catecholate O and two Cl atoms in the dimer. The distortion of inbound C═O is much higher than that of outbound C═O in anthraquinone in all of these compounds. H2L responds to chlorides of Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Fe3+, Cu2+, Zn2+, and Al3+ in a DMSO solution, which can be observed by differential pulse voltammetry, UV-vis, and 1H NMR. All of these metal ions shift Ep of anthraquinone to positive, especially the second reduction peak of anthraquinone. Fe3+, Zn2+, and Al3+ change the reduction of catechol fundamentally. H2L (0.50 mM) shows a chromogenic response to FeCl3 and Fe(NO3)3 to form uncommon 2:1 and 3:2 (H2L/Fe) complexes, both peaking at 748 nm in DMSO. In the presence of 2 equiv of sodium hydroxide (NaOH), the 748 nm absorbance shifts to 777 nm, identical with Fe2(HL)2Cl4 in DMSO. Different from the fast reaction between H2L and FeCl3, Fe(NO3)3 reacts with H2L rather slowly in DMSO. Catechol can coordinate to FeCl3 without any deprotonation in C2H5OH and DMSO. H2L also shows a chromogenic response to fluorides and hydroxides, which peak at 670 and 684 nm, respectively, in DMSO. The binding ratio between H2L and F-/OH- is 1:2. In a higher concentration of hydroxides, a 684 nm greenish-blue 1:2 complex forms immediately, which gradually transforms to a red complex and peaks at ∼530 nm in minutes at room temperature. No color change can be observed in an C2H5OH solution in the presence of OH-.
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Feifei Xing
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Shourong Zhu
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|
35
|
Kuang J, Lyu Q, Wang J, Cui Y, Zhao J. Advances in base editing with an emphasis on an AAV-based strategy. Methods 2021; 194:56-64. [PMID: 33774157 DOI: 10.1016/j.ymeth.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/07/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based base editors have been developed for precisely installing point mutations in genomes with high efficiency. Two editing systems of cytosine base editors (CBEs) and adenine base editors (ABEs) have been developed for conversion of C.G-to-T.A and A.T-to-G.C, respectively, showing the prominence in genomic DNA correction and mutation. Here, we summarize recent optimized approaches in improving base editors, including the evolution of Cas proteins, the choice of deamination enzymes, modification on linker length, base-editor expression, and addition of functional domains. Specifically, in this paper we highlight a strategy of split-intein mediated base-editor reconstitution for its adeno-associated virus (AAV) delivery. The purpose of this article is to offer readers with a better understanding of AAV-mediated base editors, and facilitate them to use this tool in in vivo experiments and potential clinical applications.
Collapse
Affiliation(s)
- Jiajie Kuang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen 518000, China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Qinghua Lyu
- School of Ophthalmology & Optometry, Shenzhen Eye Hospital, Shenzhen University, Shenzhen 518000, China; Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiao Wang
- School of Ophthalmology & Optometry, Shenzhen Eye Hospital, Shenzhen University, Shenzhen 518000, China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jun Zhao
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen 518000, China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
36
|
Behboodi-Sadabad F, Li S, Lei W, Liu Y, Sommer T, Friederich P, Sobek C, Messersmith PB, Levkin PA. High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines. Mater Today Bio 2021; 10:100108. [PMID: 33912825 PMCID: PMC8063910 DOI: 10.1016/j.mtbio.2021.100108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 10/31/2022] Open
Abstract
Biomimetic surface coatings based on plant polyphenols and catecholamines have been used broadly in a variety of applications. However, the lack of a rational cost-effective platform for screening these coatings and their properties limits the true potential of these functional materials to be unleashed. Here, we investigated the oxidation behavior and coating formation ability of a library consisting of 45 phenolic compounds and catecholamines. UV-vis spectroscopy demonstrated significant acceleration of oxidation and polymerization under UV irradiation. We discovered that several binary mixtures resulted in non-additive behavior (synergistic or antagonistic effect) yielding much thicker or thinner coatings than individual compounds measured by ellipsometry. To investigate the properties of coatings derived from new combinations, we used a miniaturized high-throughput strategy to screen 2,532 spots coated with single, binary, and ternary combinations of coating precursors in one run. We evaluated the use of machine learning models to learn the relation between the chemical structure of the precursors and the thickness of the nanocoatings. Formation and stability of nanocoatings were investigated in a high-throughput manner via discontinuous dewetting. 30 stable combinations (hits) were used to tune the surface wettability and to form water droplet microarray and spot size gradients of water droplets on the coated surface. No toxicity was observed against eukaryotic HeLa cells and Pseudomonas aeruginosa (strain PA30) bacteria after 24 h incubation at 37 °C. The strategy introduced here for high-throughput screening of nanocoatings derived from combinations of coating precursors enables the discovery of new functional materials for various applications in science and technology in a cost-effective miniaturized manner.
Collapse
Affiliation(s)
- F Behboodi-Sadabad
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - S Li
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - W Lei
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - Y Liu
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - T Sommer
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe, 76131, Germany
| | - P Friederich
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe, 76131, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - C Sobek
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, CA, 94720-1760, USA
| | - P B Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, CA, 94720-1760, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - P A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
37
|
Lyu Q, Peng L, Hong X, Fan T, Li J, Cui Y, Zhang H, Zhao J. Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials 2021; 270:120682. [PMID: 33529961 DOI: 10.1016/j.biomaterials.2021.120682] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Smart nano-micro platforms have been extensively applied for diverse biomedical applications, mostly focusing on cancer therapy. In comparison with conventional nanotechnology, the smart nano-micro matrix can exhibit specific response to exogenous or endogenous triggers, and thus can achieve multiple functions e.g. site-specific drug delivery, bio-imaging and detection of bio-molecules. These intriguing techniques have expanded into ophthalmology in recent years, yet few works have been summarized in this field. In this work, we provide the state-of-the-art of diverse nano-micro platforms based on both the conventional materials (e.g. natural or synthetic polymers, lipid nanomaterials, metal and metal oxide nanoparticles) and emerging nanomaterials (e.g. up-conversion nanoparticles, quantum dots and carbon materials) in ophthalmology, with some smart nano/micro platformers highlighted. The common ocular diseases studied in the field of nano-micro systems are firstly introduced, and their therapeutic method and the related drawback in clinic treatment are presented. The recent progress of different materials for diverse ocular applications is then demonstrated, with the representative nano- and micro-systems highlighted in detail. At last, an in-depth discussion on the clinical translation challenges faced in this field and the future direction are provided. This review would allow the researchers to design more smart nanomedicines in a more rational manner for specific ophthalmology applications.
Collapse
Affiliation(s)
- Qinghua Lyu
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ling Peng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jingying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Zhao
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China.
| |
Collapse
|
38
|
He Y, Chen Q, Zhang Y, Zhao Y, Chen L. H 2O 2-Triggered Rapid Deposition of Poly(caffeic acid) Coatings: A Mechanism-Based Entry to Versatile and High-Efficient Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52104-52115. [PMID: 33156623 DOI: 10.1021/acsami.0c13382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant-derived polyphenol coating offers a promising route to fabricate functional surfaces for different substrate materials. However, almost all of the deposition approaches are time-consuming and involve inefficient processes, and the mechanisms behind the coating deposition are rarely understood. Herein, we report a rational methodology to achieve the rapid deposition of poly(caffeic acid) (PCA) by using H2O2 as a trigger under the assistance of copper sulfate (CuSO4). The comparative monomer structure of PCA oxidation polymerization has illustrated a significant distinction in the reaction path for PCA coating deposition which has never been reported before. Until now, the unprecedented fast velocity for polyphenol coating has been obtained, and the PCA coating exhibits excellent homogeneity, spatiotemporal tunability, and firm stability. Moreover, three different types of filtration membranes, poly(vinylidene fluoride) microfiltration membrane (PVDF MF membrane), poly(ether sulfone) (PES) ultrafiltration (UF) hollow fiber membrane, and PCA-coated PES nanofiltration (NF) membrane, are all successfully dip-coated using H2O2-triggered PCA coating. Without synthetic complexities and intricate procedures, the formation of hydrophilic and homogeneous PCA aggregates on the surface and/or inside pore walls resulted in various membranes. The as-prepared PCA-coated PVDF MF membrane demonstrates excellent oil/water separation efficiency of less than 150 ppm and a flux recovery rate of approximately 90% even after five cycles. By one-step co-deposition of PCA and poly(2-ethyl-2-oxazoline) (PEtOx) on the PES UF membrane surface, hydrophilicity and biofouling resistance are implemented for efficient protein filtration. The PES NF membrane formed by the PCA layer exhibits high mono-/divalent ion selectivity and excellent chlorine resistance. Overall, these results represent a rapid and sustainable approach to tailor PCA coatings for versatile liquid separation processes.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qi Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yongjian Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
39
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
40
|
Lee SC, Gillispie G, Prim P, Lee SJ. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chem Rev 2020; 120:10834-10886. [PMID: 32815369 PMCID: PMC7673205 DOI: 10.1021/acs.chemrev.0c00015] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioprinting researchers agree that "printability" is a key characteristic for bioink development, but neither the meaning of the term nor the best way to experimentally measure it has been established. Furthermore, little is known with respect to the underlying mechanisms which determine a bioink's printability. A thorough understanding of these mechanisms is key to the intentional design of new bioinks. For the purposes of this review, the domain of printability is defined as the bioink requirements which are unique to bioprinting and occur during the printing process. Within this domain, the different aspects of printability and the factors which influence them are reviewed. The extrudability, filament classification, shape fidelity, and printing accuracy of bioinks are examined in detail with respect to their rheological properties, chemical structure, and printing parameters. These relationships are discussed and areas where further research is needed, are identified. This review serves to aid the bioink development process, which will continue to play a major role in the successes and failures of bioprinting, tissue engineering, and regenerative medicine going forward.
Collapse
Affiliation(s)
- Sang Cheon Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gregory Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| | - Peter Prim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
41
|
Emechebe GA, Obiweluozor FO, Jeong IS, Park JK, Park CH, Kim CS. Merging 3D printing with electrospun biodegradable small-caliber vascular grafts immobilized with VEGF. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102306. [PMID: 32992018 DOI: 10.1016/j.nano.2020.102306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
The major challenge of commercially available vascular substitutes comes from their limitations in terms of hydrophobic surface, which is hostile to cell growth. To date, tissue-engineered and synthetic grafts have not translated well to clinical trials when looking at small diameters. We conceptualized a cell-free structurally reinforced biodegradable vascular graft recapitulating the anisotropic feature of a native blood vessel. The nanofibrous scaffold is designed in such a way that it will gradually degrade systematically to yield a neo-vessel, facilitated by an immobilized bioactive molecule-vascular endothelial growth factor (VEGF). The nano-topographic cue of the device is capable of direct host cell infiltration. We evaluated the burst pressure, histology, hemocompatibility, compression test, and mechanical analysis of the new graft. The graft implanted into the carotid artery of a porcine model demonstrated a good patency rate as early as two week post-implantation. This graft reinforced design approach when employed in vascular tissue engineering might strongly influencing regenerative medicine.
Collapse
Affiliation(s)
- Gladys A Emechebe
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Francis O Obiweluozor
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju city, Republic of Korea; Department of thoracic and cardiovascular surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea.
| | - In Seok Jeong
- Department of thoracic and cardiovascular surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea
| | | | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea; Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju city, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea; Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju city, Republic of Korea.
| |
Collapse
|
42
|
Mayuri PV, Bhatt A, Parameswaran R. Investigation of the potency of leukodepletion filter membranes immobilized with bovine serum albumin via polydopamine spacer. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03515-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
43
|
Seidi F, Zhao WF, Xiao HN, Jin YC, Saeb MR, Zhao CS. Advanced Surfaces by Anchoring Thin Hydrogel Layers of Functional Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2474-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Alfieri ML, Panzella L, Arntz Y, Napolitano A, Ball V, d’Ischia M. A Clean and Tunable Mussel-Inspired Coating Technology by Enzymatic Deposition of Pseudo-Polydopamine (ψ-PDA) Thin Films from Tyramine. Int J Mol Sci 2020; 21:E4873. [PMID: 32664213 PMCID: PMC7402308 DOI: 10.3390/ijms21144873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
The tyrosinase-catalyzed oxidation of tyramine, leading to the deposition of pseudo-polydopamine (ψ-PDA) thin films, is disclosed herein as a superior technology for surface functionalization and coating at a neutral pH and at a low substrate concentration, compared to the standard autoxidative PDA coating protocols. Smooth ψ-PDA thin films of variable thickness up to 87 nm were obtained from 1 mM tyramine by varying tyrosinase concentrations (5-100 U/mL). Compared to the PDA films obtained by the similar enzymatic oxidation of 1 mM dopamine with tyrosinase (T-PDA), ψ-PDA displayed slower deposition kinetics, lower water contact angles in the range of 11°-28°, denoting higher hydrophilicity but similar UV-vis absorption profiles, as well as electrochemical properties and antioxidant activity. MALDI-MS analysis indicated for ψ-PDA a well defined pattern of peaks compatible with dopamine tetrameric structures degraded to a variable extent. The exposure to a tyramine solution of tyrosinase-loaded alginate spheres, or films deposited on glass or polyethylene, resulted in a rapid gel-confined ψ-PDA formation with no leakage or darkening of the solution, allowing the complete recovery and re-utilization of the unreacted tyramine. In contrast, an abundant PDA precipitation outside the gel was observed with dopamine under the same conditions. The ψ-PDA deposition by tyrosinase-catalyzed tyramine oxidation is thus proposed as a controllable and low-waste technology for selective surface functionalization and coating or for clean eumelanin particle production.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy; (M.L.A.); (L.P.); (A.N.)
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy; (M.L.A.); (L.P.); (A.N.)
| | - Youri Arntz
- Faculté de Chirurgie dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France;
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg, CEDEX, France
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy; (M.L.A.); (L.P.); (A.N.)
| | - Vincent Ball
- Faculté de Chirurgie dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France;
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg, CEDEX, France
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy; (M.L.A.); (L.P.); (A.N.)
| |
Collapse
|
45
|
Gao P, Qiu H, Xiong K, Li X, Tu Q, Wang H, Lyu N, Chen X, Huang N, Yang Z. Metal-catechol-(amine) networks for surface synergistic catalytic modification: Therapeutic gas generation and biomolecule grafting. Biomaterials 2020; 248:119981. [DOI: 10.1016/j.biomaterials.2020.119981] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
|
46
|
Seidi F, Zhao W, Xiao H, Jin Y, Zhao C. Layer‐by‐Layer Assembly for Surface Tethering of Thin‐Hydrogel Films: Design Strategies and Applications. CHEM REC 2020; 20:857-881. [DOI: 10.1002/tcr.202000007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp & Paper Sci and Tech, and Joint International Research Lab of Lignocellulosic Functional MaterialsNanjing Forestry University Nanjing 210037 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| | - Huining Xiao
- Department of Chemical EngineeringUniversity of New Brunswick Fredericton NB E3B 5 A3 Canada
| | - Yongcan Jin
- Provincial Key Lab of Pulp & Paper Sci and Tech, and Joint International Research Lab of Lignocellulosic Functional MaterialsNanjing Forestry University Nanjing 210037 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| |
Collapse
|
47
|
d'Ischia M, Napolitano A, Pezzella A, Meredith P, Buehler M. Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandro Pezzella
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Paul Meredith
- Department of Physics Swansea University Vivian Building, Singleton Campus SA2 8PP Swansea UK
| | - Markus Buehler
- Laboratory for Atomistic and Molecular Mechanics School of Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
48
|
Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew Chem Int Ed Engl 2020; 59:11196-11205. [DOI: 10.1002/anie.201914276] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/17/2022]
|
49
|
Zhou F, Luo J, Song S, Wan Y. Nanostructured Polyphenol-Mediated Coating: a Versatile Platform for Enzyme Immobilization and Micropollutant Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siqing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
50
|
Sridharan M, Kamaraj P, Vennila R, Huh YS, Arthanareeswari M. Bio-inspired construction of melanin-like polydopamine-coated CeO2 as a high-performance visible-light-driven photocatalyst for hydrogen production. NEW J CHEM 2020. [DOI: 10.1039/d0nj02234a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, cerium oxide has been the most widely studied photocatalyst due to its unique properties.
Collapse
Affiliation(s)
- M. Sridharan
- Department of Chemistry
- SRM Institute of Science and Technology
- Chennai
- India
| | - P. Kamaraj
- Department of Chemistry
- Bharath Institute of Higher Education and Research
- Chennai
- India
| | - R. Vennila
- Department of Chemistry
- Adhiyaman Arts & Science College for Women
- Krishnagiri
- India
| | - Yun Suk Huh
- Department of Biological Engineering
- College of Engineering
- Inha University
- Incheon
- Korea
| | - M. Arthanareeswari
- Department of Chemistry
- SRM Institute of Science and Technology
- Chennai
- India
| |
Collapse
|