1
|
Verbeeck Mendez S, Do Orozco IL, Gavilanez-Chavez GE, Nava-Zavala AH, Zavala-Cerna MG. Challenges and Opportunities for Post-COVID Pulmonary Disease: A Focused Review of Immunomodulation. Int J Mol Sci 2025; 26:3850. [PMID: 40332501 PMCID: PMC12027742 DOI: 10.3390/ijms26083850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
The resolution of the recent COVID-19 pandemic still requires attention, since the consequences of having suffered the infection, even in mild cases, are associated with several acute and chronic pathological conditions referred to as post-COVID syndrome (PCS). PCS often manifests with pulmonary disease and, in up to 9% of cases, a more serious complication known as post-COVID-19 pulmonary fibrosis (PC19-PF), which has a similar clinical course as idiopathic pulmonary fibrosis (IPF). Generating knowledge to provide robust evidence about the clinical benefits of different therapeutic strategies to treat the pulmonary effects of PCS can provide new insights to amplify therapeutic options for these patients. We present evidence found after a scoping review, following extended PRIMSA guidelines, for the use of immunomodulators in pulmonary PCS. We start with a brief description of the immunomodulatory properties of the relevant drugs, their clinically proven efficacy for viral infections and chronic inflammatory conditions, and their use during the COVID-19 pandemic. We emphasize the need for well-designed clinical trials to improve our understanding the physiopathology of pulmonary PCS and PC19-PF and also to determine the efficacy and safety of candidate treatments.
Collapse
Affiliation(s)
| | - Isabella L. Do Orozco
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Guadalupe E. Gavilanez-Chavez
- Hospital General Regional 46, Órgano de Operación Administrativa Desconcentrada Jalisco, Instituto Mexicano del Seguro Social, Guadalajara 44329, Mexico;
| | - Arnulfo Hernán Nava-Zavala
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Centro Médico Nacional de Occidente Órgano de Operación Administrativa Desconcentrada Jalisco, Instituto Mexicano del Seguro Social, Guadalajara 44329, Mexico;
- Programa Internacional de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico
- Departamento de Inmunología y Reumatología, Hospital General de Occidente, Secretaría de Salud Jalisco, Zapopan 45170, Mexico
| | - Maria G. Zavala-Cerna
- Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico;
| |
Collapse
|
2
|
Argade MD, Achi JG, Bott R, Morsheimer KM, Owen CD, Zielinski CA, Gaisin AM, Alvarez M, Moore TW, Bu F, Li F, Cameron M, Anantpadma M, Davey RA, Peet NP, Rong L, Gaisina IN. Guardians at the Gate: Optimization of Small Molecule Entry Inhibitors of Ebola and Marburg Viruses. J Med Chem 2025; 68:135-155. [PMID: 39680623 DOI: 10.1021/acs.jmedchem.4c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Ebola and Marburg (EBOV and MARV) filoviral infections lead to fatal hemorrhagic fevers and have caused over 30 outbreaks in the last 50 years. Currently, there are no FDA-approved small molecule therapeutics for effectively treating filoviral diseases. To address this unmet medical need, we have conducted a systematic structural optimization of an early lead compound, N-(4-(4-methylpiperidin-1-yl)-3-(trifluoromethyl)phenyl)-4-(morpholinomethyl)benzamide (1), borne from our previously reported hit-to-lead effort. This secondary round of structure-activity relationship (SAR) involved the design and synthesis of several deconstructed and reconstructed analogs of compound 1, which were then tested against pseudotyped EBOV and MARV. The antiviral activities of the most promising leads were further validated in infectious assays. The optimized analogs exhibited desirable antiviral activity against different ebolaviruses and reduced off-target activity. Additionally, they also possessed druglike properties, that make them ideal candidates for in vivo efficacy studies as part of our ongoing drug discovery campaign against EBOV and MARV.
Collapse
Affiliation(s)
- Malaika D Argade
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Kimberly M Morsheimer
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Callum D Owen
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Christian A Zielinski
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Arsen M Gaisin
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Mario Alvarez
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael Cameron
- Department of Molecular Medicine, Herbert Wertheim, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida 33458, United States
| | - Manu Anantpadma
- The Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Frederick, Maryland 20892, United States
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Irina N Gaisina
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| |
Collapse
|
3
|
Montero F, Parra-López M, Rodríguez-Martínez A, Murciano-Calles J, Buzon P, Han Z, Lin LY, Ramos MC, Ruiz-Sanz J, Martinez JC, Radi M, Moog C, Diederich S, Harty RN, Pérez-Sánchez H, Vicente F, Castillo F, Luque I. Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals. Protein Sci 2025; 34:e70005. [PMID: 39724449 DOI: 10.1002/pro.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics. Here, we assess the druggability of the TSG101-UEV/PTAP binding interface by searching for drug-like inhibitors and evaluating their ability to block PTAP recognition, impair budding, and inhibit viral proliferation. A discovery workflow was established by combining in vitro miniaturized HTS assays and a set of cell-based activity assays including high-content bimolecular complementation, virus-like particle release measurement, and antiviral testing in live virus infection. This approach has allowed us to identify a set of chemically diverse molecules that block TSG101-UEV/PTAP binding with IC50s in the low μM range and are able to disrupt the interaction between full-length TSG101 and viral proteins in human cells and inhibit viral replication. State-of-the-art molecular docking studies reveal that the active compounds exploit binding hotspots at the PTAP binding site, unlocking the full binding potential of the TSG101-UEV binding pockets. These inhibitors represent promising hits for the development of novel broad-spectrum antivirals through targeted optimization and are also valuable tools for investigating the involvement of ESCRT in the proliferation of different virus families and study the secondary effects induced by the disruption of ESCRT/virus interactions.
Collapse
Affiliation(s)
- Fernando Montero
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Marisa Parra-López
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Alejandro Rodríguez-Martínez
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - Javier Murciano-Calles
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Pedro Buzon
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - L-Y Lin
- Laboratoire d'ImmunoRhumatologie Moléculaire, UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | | | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | | | | | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Islam MA, Pathak K, Saikia R, Pramanik P, Das A, Talukdar P, Shakya A, Ghosh SK, Singh UP, Bhat HR. An in-depth analysis of COVID-19 treatment: Present situation and prospects. Arch Pharm (Weinheim) 2024; 357:e2400307. [PMID: 39106224 DOI: 10.1002/ardp.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024]
Abstract
Coronavirus disease 2019 (COVID-19) the most contagious infection caused by the unique type of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), produced a global pandemic that wreaked havoc on the health-care system, resulting in high morbidity and mortality. Several methods were implemented to tackle the virus, including the repurposing of existing medications and the development of vaccinations. The purpose of this article is to provide a complete summary of the current state and future possibilities for COVID-19 therapies. We describe the many treatment classes, such as antivirals, immunomodulators, and monoclonal antibodies, that have been repurposed or developed to treat COVID-19. We also looked at the clinical evidence for these treatments, including findings from observational studies and randomized-controlled clinical trials, and highlighted the problems and limitations of the available evidence. Furthermore, we reviewed existing clinical trials and prospective COVID-19 therapeutic options, such as novel medication candidates and combination therapies. Finally, we discussed the long-term consequences of COVID-19 and the importance of ongoing research into the development of viable treatments. This review will help physicians, researchers, and policymakers to understand the prevention and mitigation of COVID-19.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pallab Pramanik
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Prasenjit Talukdar
- Department of Petroleum Engineering, DUIET, Dibrugarh, University, Assam, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
5
|
Cocetta V, Zorzi M, Bejor S, Cesta MC, De Pizzol M, Theurillat JP, Allegretti M, Alimonti A, Montopoli M, Rugge M. Retrospective Analysis of the Effect of Postmenopausal Women Medications on SARS-CoV-2 Infection Progression. Life (Basel) 2024; 14:1107. [PMID: 39337891 PMCID: PMC11433321 DOI: 10.3390/life14091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, it has been evident that women and young people were less susceptible to severe infections compared to males. In a previous study, we observed a reduced prevalence of SARS-CoV-2 infections in hormonal-driven breast cancer patients undergoing SERM (selective estrogen receptor modulator) therapy with respect to other treatments inhibiting estrogen synthesis. In addition to being used in anticancer therapy, SERMs are also prescribed for postmenopausal osteoporosis prevention and treatment. Therefore, in this study, a retrospective analysis of the clinical outcomes of SARS-CoV-2 infections in a population of women over 50 years who were treated for the management of menopausal symptoms was performed. SARS-CoV-2 infections, hospitalizations, and death rates were evaluated in women residing in the Italian north-eastern Veneto Region who were undergoing treatment with Estrogen Modulators (EMs); Estrogen or Progestin, and their combination (EPs); Bisphosphonates (BIs); or cholecalciferol (vitamin D3) ± calcium supplementation (CC). The final cohort study included 124,393 women, of whom 6412 were found to be SARS-CoV-2 infected (CoV2+ve). The results indicated that only women treated with vitamin D3 alone or in combination with calcium showed a significant reduction in their SARS-CoV-2 infection risk by 26% (OR 0.74; 95%CI 0.60-0.91). On the other hand, an increased risk of hospitalization (OR 2.69; 95%CI 1.77-4.07) was shown for the same treatments. The results highlighted in this work contribute to shedding some light on the widely debated role of vitamin D in the prevention of SARS-CoV-2 infections and the disease's treatment.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Manuel Zorzi
- Veneto Tumour Registry, Azienda Zero, 35131 Padova, Italy
| | - Stefano Bejor
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | | | | | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | | | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- VIMM-Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zurich, Switzerland
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- VIMM-Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy
| | - Massimo Rugge
- Veneto Tumour Registry, Azienda Zero, 35131 Padova, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
| |
Collapse
|
6
|
Durante D, Bott R, Cooper L, Owen C, Morsheimer KM, Patten J, Zielinski C, Peet NP, Davey RA, Gaisina IN, Rong L, Moore TW. N-Substituted Pyrrole-Based Heterocycles as Broad-Spectrum Filoviral Entry Inhibitors. J Med Chem 2024; 67:13737-13764. [PMID: 39169825 PMCID: PMC11812679 DOI: 10.1021/acs.jmedchem.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Since the largest and most fatal Ebola virus epidemic during 2014-2016, there have been several consecutive filoviral outbreaks in recent years, including those in 2021, 2022, and 2023. Ongoing outbreak prevalence and limited FDA-approved filoviral therapeutics emphasize the need for novel small molecule treatments. Here, we showcase the structure-activity relationship development of N-substituted pyrrole-based heterocycles and their potent, submicromolar entry inhibition against diverse filoviruses in a target-based pseudovirus assay. Inhibitor antiviral activity was validated using replication-competent Ebola, Sudan, and Marburg viruses. Mutational analysis was used to map the targeted region within the Ebola virus glycoprotein. Antiviral counter-screen and phospholipidosis assays were performed to demonstrate the reduced off-target activity of these filoviral entry inhibitors. Favorable antiviral potency, selectivity, and drug-like properties of the N-substituted pyrrole-based heterocycles support their potential as broad-spectrum antifiloviral treatments.
Collapse
Affiliation(s)
- Destiny Durante
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Callum Owen
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, MA 02118, United States
| | - Kimberly M. Morsheimer
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, MA 02118, United States
| | - J.J. Patten
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, MA 02118, United States
| | - Christian Zielinski
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Norton P. Peet
- Chicago BioSolutions Inc., Chicago, IL 60612, United States
| | - Robert A. Davey
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, MA 02118, United States
| | - Irina N. Gaisina
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, United States
- Chicago BioSolutions Inc., Chicago, IL 60612, United States
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, United States
- Chicago BioSolutions Inc., Chicago, IL 60612, United States
| | - Terry W. Moore
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, United States
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL 60612, United States
| |
Collapse
|
7
|
Yang JJ, Goff A, Wild DJ, Ding Y, Annis A, Kerber R, Foote B, Passi A, Duerksen JL, London S, Puhl AC, Lane TR, Braunstein M, Waddell SJ, Ekins S. Computational drug repositioning identifies niclosamide and tribromsalan as inhibitors of Mycobacterium tuberculosis and Mycobacterium abscessus. Tuberculosis (Edinb) 2024; 146:102500. [PMID: 38432118 PMCID: PMC10978224 DOI: 10.1016/j.tube.2024.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Tuberculosis (TB) is still a major global health challenge, killing over 1.5 million people each year, and hence, there is a need to identify and develop novel treatments for Mycobacterium tuberculosis (M. tuberculosis). The prevalence of infections caused by nontuberculous mycobacteria (NTM) is also increasing and has overtaken TB cases in the United States and much of the developed world. Mycobacterium abscessus (M. abscessus) is one of the most frequently encountered NTM and is difficult to treat. We describe the use of drug-disease association using a semantic knowledge graph approach combined with machine learning models that has enabled the identification of several molecules for testing anti-mycobacterial activity. We established that niclosamide (M. tuberculosis IC90 2.95 μM; M. abscessus IC90 59.1 μM) and tribromsalan (M. tuberculosis IC90 76.92 μM; M. abscessus IC90 147.4 μM) inhibit M. tuberculosis and M. abscessus in vitro. To investigate the mode of action, we determined the transcriptional response of M. tuberculosis and M. abscessus to both compounds in axenic log phase, demonstrating a broad effect on gene expression that differed from known M. tuberculosis inhibitors. Both compounds elicited transcriptional responses indicative of respiratory pathway stress and the dysregulation of fatty acid metabolism.
Collapse
Affiliation(s)
- Jeremy J Yang
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA; Data2Discovery, Inc., Bloomington, IN, USA; Department of Internal Medicine Translational Informatics Division, University of New Mexico, Albuquerque, NM, USA
| | - Aaron Goff
- Department of Global Health and Infection, Brighton & Sussex Medical School, University of Sussex, UK
| | - David J Wild
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA; Data2Discovery, Inc., Bloomington, IN, USA
| | - Ying Ding
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA; Data2Discovery, Inc., Bloomington, IN, USA; School of Information, Dell Medical School, University of Texas, Austin, TX, USA
| | - Ayano Annis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | | | | | - Anurag Passi
- Department of Pediatrics, UC San Diego, San Diego, CA, USA
| | | | | | - Ana C Puhl
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Thomas R Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton & Sussex Medical School, University of Sussex, UK
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.
| |
Collapse
|
8
|
Prajapat SK, Mishra L, Khera S, Owusu SD, Ahuja K, Sharma P, Choudhary E, Chhabra S, Kumar N, Singh R, Kaushal PS, Mahajan D, Banerjee A, Motiani RK, Vrati S, Kalia M. Methotrimeprazine is a neuroprotective antiviral in JEV infection via adaptive ER stress and autophagy. EMBO Mol Med 2024; 16:185-217. [PMID: 38177535 PMCID: PMC10897192 DOI: 10.1038/s44321-023-00014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.
Collapse
Affiliation(s)
- Surendra K Prajapat
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sakshi Khera
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Shadrack D Owusu
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 67000, Strasbourg, France
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Puja Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Eira Choudhary
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Simran Chhabra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajan Singh
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Centre for Drug Design and Discovery, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Arup Banerjee
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
9
|
Vieux N, Perrier Q, Bedouch P, Epaulard O. Much ado about nothing? Discrepancy between the available data on the antiviral effect of hydroxychloroquine in March 2020 and its inclusion in COVID-19 clinical trials and outpatient prescriptions. Public Health 2023; 225:35-44. [PMID: 37918175 DOI: 10.1016/j.puhe.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/10/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Many of the 2020 COVID-19 clinical trials included an (hydroxy)chloroquine ((H)CQ) arm. We aimed to juxtapose the state of science before April 2020 regarding the benefits of (H)CQ for viral infections with the number and size of the clinical trials studying (H)CQ and the volume of (H)CQ dispensed in France. STUDY DESIGN We identified and analysed published scientific material regarding the antiviral activity of (H)CQ and publicly available data regarding clinical trials and drug dispensation in France. METHODS We conducted a review of scientific publications available before April 2020 and a systematic analysis of COVID-19 clinical trials featuring (H)CQ registered on clinicaltrials.gov. RESULTS Before April 2020, 894 scientific publications mentioning (H)CQ for viruses other than coronaviruses were available, including 35 in vitro studies (reporting an inconstant inhibition of viral replication), 11 preclinical studies (reporting no or disputable positive effects), and 32 clinical trials (reporting no or disputable positive effects). Moreover, 67 publications on (H)CQ and coronavirus infections were available, including 12 in vitro studies (reporting an inconstant inhibition of viral replication), two preclinical studies (reporting contradictory results), and no clinical trials. Meanwhile, 253 therapeutic clinical trials featuring an HCQ arm were registered in 2020, intending to enrol 246,623 patients. CONCLUSIONS The number and size of (H)CQ clinical trials for COVID-19 launched in 2020 were not supported by the literature published before April 2020.
Collapse
Affiliation(s)
- N Vieux
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Q Perrier
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetic (LBFA), INSERM U1055, Grenoble, France
| | - P Bedouch
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - O Epaulard
- Infectious Disease Department, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France; Groupe de Recherche en Infectiologie Clinique, CIC-1406, INSERM-UGA-CHUGA, France.
| |
Collapse
|
10
|
Couto JCM, Vidal T, Decker ER, Santurio JM, Mello CF, Pillat MM. Use of recombinant S1 protein with hFc for analysis of SARS-CoV-2 adsorption and evaluation of drugs that inhibit entry into VERO E6 cells. Immunol Lett 2023; 263:105-112. [PMID: 37683695 DOI: 10.1016/j.imlet.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/07/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The significant number of deaths and infection caused by the new coronavirus SARS-CoV-2 has created an urgent demand for effective and readily available drugs for the treatment of COVID-19. However, the requirements for biosafety level 3 (NB-3) laboratories for experiments with the virus has made it very challenging for such research to meet this demand. It is known that angiotensin-converting enzyme 2 (ACE2), located on the surface of host cells, serves as the viral receptor for the spike (S) protein of SARS-CoV-2. This protein is a tetramer subdivided into S1 and S2 regions, with the former containing the receptor-binding domain (RBD). Therefore, drugs that interfere with the interaction between the spike and the receptor (as well as accessory proteins) or suppress their expression could inhibit the entry and spread of SARS-CoV-2 between cells. In this context, we standardized the use of recombinant SARS-CoV-2 S1 Protein with hFc (human Fc) for the analysis of binding in VERO E6 cells by flow cytometry, aiming to provide a new tool for identifying drugs and neutralizing antibodies, thus eliminating the need for NB-3 laboratories. Because minocycline (MCL), nimesulide (NMS), and berberine (BBR) have effects related to the ACE2 receptor, inhibit inflammation, and do not suppress the adaptive immune response (crucial for patient recovery), we investigated whether these drugs prevent the absorption of the spike protein into the host cell. For this purpose, we used VERO E6 cells under control conditions, pre-treated with these drugs and exposed to recombinant SARS-CoV-2 S1 Protein with hFC. We found that an exposure time of 30 min and a concentration of 10 μg/mL of spike S1 caused a strong signal detected by flow cytometry, using the secondary anti-hFc antibody conjugated with Alexa Fluor 647. Pre-treatment of cells with BBR for 30 min suppressed the signal from spike-positive cells, suggesting that this alkaloid interferes with spike adsorption on ACE2. The pre-incubation of spike protein with BBR did not alter its adsorption and internalization, indicating that BBR does not directly interact with spike protein. The ACE2 inactivation with a specific antibody inhibited spike protein adsorption and internalization. Furthermore, the pharmacological treatments did not alter the expression of ACE2. Exposure to spike protein increased IFNγ levels and the treatments with MCL and NMS were effective in inhibiting this increase. Taken together, we standardized a technique for analyzing the adsorption of SARS-CoV-2 and studying molecules that inhibit this process. Additionally, we demonstrated that BBR blocks spike entry bypre-binding to the host cell,and that the ACE2 receptor inactivation prevents Spike protein adsorption and penetration into cells.
Collapse
Affiliation(s)
- Jéssica Carla Martins Couto
- Programa de Pós-graduação em Farmacologia. Universidade Federal de Santa Maria, Building 15B, Roraima Av. 1000, Santa Maria, RS 97105900, Brazil.
| | - Taís Vidal
- Programa de Pós-graduação em Ciências Farmacêuticas. Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Janio M Santurio
- Programa de Pós-graduação em Ciências Farmacêuticas. Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Carlos Fernando Mello
- Programa de Pós-graduação em Farmacologia. Universidade Federal de Santa Maria, Building 15B, Roraima Av. 1000, Santa Maria, RS 97105900, Brazil
| | - Micheli Mainardi Pillat
- Programa de Pós-graduação em Farmacologia. Universidade Federal de Santa Maria, Building 15B, Roraima Av. 1000, Santa Maria, RS 97105900, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas. Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Xu J, Xue Y, Bolinger AA, Li J, Zhou M, Chen H, Li H, Zhou J. Therapeutic potential of salicylamide derivatives for combating viral infections. Med Res Rev 2023; 43:897-931. [PMID: 36905090 PMCID: PMC10247541 DOI: 10.1002/med.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/09/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
Since time immemorial human beings have constantly been fighting against viral infections. The ongoing and devastating coronavirus disease 2019 pandemic represents one of the most severe and most significant public health emergencies in human history, highlighting an urgent need to develop broad-spectrum antiviral agents. Salicylamide (2-hydroxybenzamide) derivatives, represented by niclosamide and nitazoxanide, inhibit the replication of a broad range of RNA and DNA viruses such as flavivirus, influenza A virus, and coronavirus. Moreover, nitazoxanide was effective in clinical trials against different viral infections including diarrhea caused by rotavirus and norovirus, uncomplicated influenza A and B, hepatitis B, and hepatitis C. In this review, we summarize the broad antiviral activities of salicylamide derivatives, the clinical progress, and the potential targets or mechanisms against different viral infections and highlight their therapeutic potential in combating the circulating and emerging viral infections in the future.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
12
|
Vashi Y, Nehru G, Kumar S. Niclosamide inhibits Newcastle disease virus replication in chickens by perturbing the cellular glycolysis. Virology 2023; 585:196-204. [PMID: 37384966 DOI: 10.1016/j.virol.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Newcastle disease virus (NDV), a member of Paramyxoviridae family, is one of the most important pathogens in poultry. To ensure optimal environments for their replication and spread, viruses rely largely on host cellular metabolism. In the present study, we evaluated the small drug molecule niclosamide for its anti-NDV activity. Our study has shown that a sublethal dose of 1 μM niclosamide could drastically reduce NDV replication. The results showed that niclosamide has antiviral activity against NDV infection during in vitro, in ovo and in vivo assays. Pharmacologically inhibiting the glycolytic pathway remarkably reduced NDV RNA synthesis and infectious virion production. Our results suggest that the effect of niclosamide on cellular glycolysis could be the possible reason for the specific anti-NDV effect. This study could help us understand antiviral strategies against similar pathogens and may lead to novel therapeutic approaches through targeted inhibition of specific cellular metabolic pathways.
Collapse
Affiliation(s)
- Yoya Vashi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ganesh Nehru
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
13
|
Abstract
There is a large global unmet need for the development of countermeasures to combat hundreds of viruses known to cause human disease and for the establishment of a therapeutic portfolio for future pandemic preparedness. Most approved antiviral therapeutics target proteins encoded by a single virus, providing a narrow spectrum of coverage. This, combined with the slow pace and high cost of drug development, limits the scalability of this direct-acting antiviral (DAA) approach. Here, we summarize progress and challenges in the development of broad-spectrum antivirals that target either viral elements (proteins, genome structures, and lipid envelopes) or cellular proviral factors co-opted by multiple viruses via newly discovered compounds or repurposing of approved drugs. These strategies offer new means for developing therapeutics against both existing and emerging viral threats that complement DAAs.
Collapse
Affiliation(s)
- Marwah Karim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
| | - Chieh-Wen Lo
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Vignaux P, Lane TR, Puhl AC, Hau RK, Wright SH, Cherrington NJ, Ekins S. Transporter Inhibition Profile for the Antivirals Tilorone, Quinacrine and Pyronaridine. ACS OMEGA 2023; 8:12532-12537. [PMID: 37033868 PMCID: PMC10077433 DOI: 10.1021/acsomega.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 05/28/2023]
Abstract
Pyronaridine, tilorone and quinacrine are cationic molecules that have in vitro activity against Ebola, SARS-CoV-2 and other viruses. All three molecules have also demonstrated in vivo activity against Ebola in mice, while pyronaridine showed in vivo efficacy against SARS-CoV-2 in mice. We have recently tested these molecules and other antivirals against human organic cation transporters (OCTs) and apical multidrug and toxin extruders (MATEs). Quinacrine was found to be an inhibitor of OCT2, while tilorone and pyronaridine were less potent, and these displayed variability depending on the substrate used. To assess whether any of these three molecules have other potential interactions with additional transporters, we have now screened them at 10 μM against various human efflux and uptake transporters including P-gp, OATP1B3, OAT1, OAT3, MRP1, MRP2, MRP3, BCRP, as well as confirmational testing against OCT1, OCT2, MATE1 and MATE2K. Interestingly, in this study tilorone appears to be a more potent inhibitor of OCT1 and OCT2 than pyronaridine or quinacrine. However, both pyronaridine and quinacrine appear to be more potent inhibitors of MATE1 and MATE2K. None of the three compounds inhibited MRP1, MRP2, MRP3, OAT1, OAT3, P-gp or OATP1B3. Similarly, we previously showed that tilorone and pyronaridine do not inhibit OATP1B1 and have confirmed that quinacrine behaves similarly. In total, these observations suggest that the three compounds only appear to interact with OCTs and MATEs to differing extents, suggesting they may be involved in fewer clinically relevant drug-transporter interactions involving pharmaceutical substrates of the other major transporters tested.
Collapse
Affiliation(s)
- Patricia
A. Vignaux
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Raymond K. Hau
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Stephen H. Wright
- Department
of Physiology, College of Medicine, University
of Arizona, Tucson, Arizona 85721, United
States
| | - Nathan J. Cherrington
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
15
|
Bílek R, Danzig V, Grimmichová T. Antiviral activity of amiodarone in SARS-CoV-2 disease. Physiol Res 2022. [DOI: 10.33549/physiolres.934974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Amiodarone seems to exhibit some antiviral activity in the disease caused by SARS-CoV-2. Here we have examined the SARS-CoV-2 disease course in the entire population of the Czech Republic and compared it with the course of the disease in patients treated with amiodarone in two major Prague’s hospitals. In the whole population of the Czech Republic SARS-CoV-2 infected 1665070 persons (15.6 %) out of 10694000 (100 %) between 1 April 2020 and 30 June 2021. In the same time period only 35 patients (3.4 %) treated with amiodarone were infected with SARS-CoV-2 virus out of 1032 patients (100 %) who received amiodarone. It appears that amiodarone can prevent SARS-CoV-2 virus infection by multiple mechanisms. In in-vitro experiments it exhibits SARS-CoV-2 virus replication inhibitions. Due to its anti-inflammatory and antioxidant properties, it may have beneficial effect on the complications caused by SARS-CoV-2 as well. Additionally, inorganic iodine released from amiodarone can be converted to hypoiodite (IO-), which has antiviral and antibacterial activity, and thus can affect the life cycle of the virus.
Collapse
Affiliation(s)
- R Bílek
- Institute of Endocrinology, Národní 8, 110 00 Prague 1, Czech Republic. ,
| | | | | |
Collapse
|
16
|
Jamal QMS. Antiviral Potential of Plants against COVID-19 during Outbreaks-An Update. Int J Mol Sci 2022; 23:13564. [PMID: 36362351 PMCID: PMC9655040 DOI: 10.3390/ijms232113564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 12/01/2023] Open
Abstract
Several human diseases are caused by viruses, including cancer, Type I diabetes, Alzheimer's disease, and hepatocellular carcinoma. In the past, people have suffered greatly from viral diseases such as polio, mumps, measles, dengue fever, SARS, MERS, AIDS, chikungunya fever, encephalitis, and influenza. Recently, COVID-19 has become a pandemic in most parts of the world. Although vaccines are available to fight the infection, their safety and clinical trial data are still questionable. Social distancing, isolation, the use of sanitizer, and personal productive strategies have been implemented to prevent the spread of the virus. Moreover, the search for a potential therapeutic molecule is ongoing. Based on experiences with outbreaks of SARS and MERS, many research studies reveal the potential of medicinal herbs/plants or chemical compounds extracted from them to counteract the effects of these viral diseases. COVID-19's current status includes a decrease in infection rates as a result of large-scale vaccination program implementation by several countries. But it is still very close and needs to boost people's natural immunity in a cost-effective way through phytomedicines because many underdeveloped countries do not have their own vaccination facilities. In this article, phytomedicines as plant parts or plant-derived metabolites that can affect the entry of a virus or its infectiousness inside hosts are described. Finally, it is concluded that the therapeutic potential of medicinal plants must be analyzed and evaluated entirely in the control of COVID-19 in cases of uncontrollable SARS infection.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| |
Collapse
|
17
|
Antonazzo IC, Fornari C, Rozza D, Conti S, di Pasquale R, Cortesi P, Kaleci S, Ferrara P, Zucchi A, Maifredi G, Silenzi A, Cesana G, Mantovani LG, Mazzaglia G. Azithromycin use and outcomes in patients with COVID-19: an observational real-world study. Int J Infect Dis 2022; 124:27-34. [PMID: 36089152 PMCID: PMC9458549 DOI: 10.1016/j.ijid.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Previous studies ruled out the benefits of azithromycin for treatment of patients with COVID-19 who are hospitalized. However, the effects of azithromycin for treatment of patients with positive SARS-CoV-2 test results in the community remains a matter of debate. This study aimed to assess whether azithromycin, when used in subjects with positive test results for SARS-CoV-2, is associated with a reduced risk of hospitalization, in-hospital COVID-19 outcomes, and death. METHODS Two study cohorts were selected. Cohort A included subjects with positive test results for SARS-CoV-2 between February 20, 2020 and December 10, 2020; cohort B included subjects infected with SARS-CoV-2 and hospitalized between February 20, 2020 and December 31, 2020. We compared the risk of hospitalization, intensive care unit access, need for mechanical ventilation, and death in azithromycin users versus nonusers. A clustered Fine-Gray analysis was employed to assess the risk of hospitalization; logistic and Cox regressions were performed to assess the risk of intensive care unit access, mechanical ventilation, and death. RESULTS In cohort A, among 4861 azithromycin users and 4861 propensity-matched nonusers, azithromycin use was associated with higher risk of hospitalization (hazard ratio [HR] 1.59, 95% confidence interval [CI] 1.45-1.75) compared with nonuse. In cohort B, among 997 subjects selected in both groups, azithromycin use was not significantly associated with intensive care unit access (odds ratio [OR] 1.22, 95% CI 0.93-1.56), mechanical ventilation (OR 1.30, 95% CI 0.99-1.70), 14-day mortality (HR0.88, 95% CI 0.74-1.05), or 30-day mortality (HR 0.89, 95% CI 0.77-1.03). CONCLUSION Our findings confirm the lack of benefits of azithromycin treatment among community patients infected with SARS-CoV-2, raising concern on potential risks associated with its inappropriate use.
Collapse
Affiliation(s)
| | - Carla Fornari
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | - Davide Rozza
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy.
| | - Sara Conti
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | | | - Paolo Cortesi
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | - Shaniko Kaleci
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | - Pietro Ferrara
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | - Alberto Zucchi
- Health Protection Agency of Bergamo (ATS Bergamo), Bergamo, Italy
| | | | - Andrea Silenzi
- General Directorate for Health Prevention, Ministry of Health, Rome, Italy
| | - Giancarlo Cesana
- Research Centre on Public Health, University of Milan-Bicocca, Monza, Italy
| | | | | |
Collapse
|
18
|
Madrid PB, Chang PY. Accelerating space radiation countermeasure development through drug repurposing. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:30-35. [PMID: 36336366 DOI: 10.1016/j.lssr.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/16/2023]
Abstract
The discovery of safe and effective radiation countermeasures (MCM) for long-duration spaceflight is challenging due to the complexity of the space radiation biology and high safety requirements. There are few if any clinically-validated molecular targets for this use case, and preclinical models have several known limitations. These challenges make the evaluation of existing FDA-approved drugs for this indication, or drug repurposing, an attractive strategy to accelerate space radiation countermeasure development. Drug repurposing offers several advantages over de novo drug discovery including established manufacturing methods, human clinical safety data, and well-understood dosing and pharmacokinetic considerations. There are limitations working with a fixed set of possible candidate compounds, but some properties of repurposed drugs can be tailored for well-defined new indications through reformulation and development of drug combinations. Drug repurposing is thus an attractive strategy for mitigating the high risks and costs of drug development and delivering new countermeasures to protect human from space radiation in long-term missions.
Collapse
Affiliation(s)
- P B Madrid
- SRI International, Biosciences Division, Menlo Park CA United States
| | - P Y Chang
- SRI International, Biosciences Division, Menlo Park CA United States.
| |
Collapse
|
19
|
Adams J, Agyenkwa-Mawuli K, Agyapong O, Wilson MD, Kwofie SK. EBOLApred: A machine learning-based web application for predicting cell entry inhibitors of the Ebola virus. Comput Biol Chem 2022; 101:107766. [DOI: 10.1016/j.compbiolchem.2022.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
|
20
|
Azithromycin through the Lens of the COVID-19 Treatment. Antibiotics (Basel) 2022; 11:antibiotics11081063. [PMID: 36009932 PMCID: PMC9404997 DOI: 10.3390/antibiotics11081063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Azithromycin has become famous in the last two years, not for its main antimicrobial effect, but for its potential use as a therapeutic agent for COVID-19 infection. Initially, there were some promising results that supported its use, but it has become clear that scientific results are insufficient to support such a positive assessment. In this review we will present all the literature data concerning the activity of azithromycin as an antimicrobial, an anti-inflammatory, or an antivirus agent. Our aim is to conclude whether its selection should remain as a valuable antivirus agent or if its use simply has an indirect therapeutic contribution due to its antimicrobial and/or immunomodulatory activity, and therefore, if its further use for COVID-19 treatment should be interrupted. This halt will prevent further antibiotic resistance expansion and will keep azithromycin as a valuable anti-infective therapeutic agent.
Collapse
|
21
|
Kabi AK, Pal M, Gujjarappa R, Malakar CC, Roy M. Overview of Hydroxychloroquine and Remdesivir on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Heterocycl Chem 2022; 60:JHET4541. [PMID: 35942205 PMCID: PMC9349740 DOI: 10.1002/jhet.4541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the ongoing pandemic named COVID-19 which causes a serious emergency on public health hazards of international concern. In the face of a critical medical emergency, repositioning of drugs is one of the most authentic options to design an adequate treatment for infected patients immediately. In this strategy, Remdesivir (Veklury), Hydroxychloroquine appears to be the drug of choice and garnered unprecedented attention as potential therapeutic agents against the pandemic realized worldwide due to SARS-CoV-2 infection. These are the breathtaking instances of possible repositioning of drugs, whose pharmacokinetics and optimal dosage are familiar. In this review, we provide an overview of these medications, their synthesis, and the possible mechanism of action against SARS-CoV-2.
Collapse
Affiliation(s)
- Arup K. Kabi
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Maynak Pal
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Raghuram Gujjarappa
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Chandi C. Malakar
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Mithun Roy
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| |
Collapse
|
22
|
Singh S, Weiss A, Goodman J, Fisk M, Kulkarni S, Lu I, Gray J, Smith R, Sommer M, Cheriyan J. Niclosamide-A promising treatment for COVID-19. Br J Pharmacol 2022; 179:3250-3267. [PMID: 35348204 PMCID: PMC9111792 DOI: 10.1111/bph.15843] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccines have reduced the transmission and severity of COVID-19, but there remains a paucity of efficacious treatment for drug-resistant strains and more susceptible individuals, particularly those who mount a suboptimal vaccine response, either due to underlying health conditions or concomitant therapies. Repurposing existing drugs is a timely, safe and scientifically robust method for treating pandemics, such as COVID-19. Here, we review the pharmacology and scientific rationale for repurposing niclosamide, an anti-helminth already in human use as a treatment for COVID-19. In addition, its potent antiviral activity, niclosamide has shown pleiotropic anti-inflammatory, antibacterial, bronchodilatory and anticancer effects in numerous preclinical and early clinical studies. The advantages and rationale for nebulized and intranasal formulations of niclosamide, which target the site of the primary infection in COVID-19, are reviewed. Finally, we give an overview of ongoing clinical trials investigating niclosamide as a promising candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary and Critical Care MedicineNYU School of MedicineNew YorkNew YorkUSA
| | - Anne Weiss
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION Therapeutics Research ServicesHellerupDenmark
| | - James Goodman
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Marie Fisk
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Spoorthy Kulkarni
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ing Lu
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Joanna Gray
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Rona Smith
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Morten Sommer
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION TherapeuticsHellerupDenmark
| | - Joseph Cheriyan
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
23
|
Jitobaom K, Boonarkart C, Manopwisedjaroen S, Punyadee N, Borwornpinyo S, Thitithanyanont A, Avirutnan P, Auewarakul P. Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations. BMC Pharmacol Toxicol 2022; 23:41. [PMID: 35717393 PMCID: PMC9206137 DOI: 10.1186/s40360-022-00580-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND COVID-19 pandemic has claimed millions of lives and devastated the health service system, livelihood, and economy in many countries worldwide. Despite the vaccination programs in many countries, the spread of the pandemic continues, and effective treatment is still urgently needed. Although some antiviral drugs have been shown to be effective, they are not widely available. Repurposing of anti-parasitic drugs with in vitro anti-SARS-CoV-2 activity is a promising approach being tested in many clinical trials. Combination of these drugs is a plausible way to enhance their effectiveness. METHODS The in vitro anti-SARS-CoV-2 activity of combinations of niclosamide, ivermectin and chloroquine were evaluated in Vero E6 and lung epithelial cells, Calu-3. RESULTS All the two-drug combinations showed higher potency resulting in up to 4-fold reduction in the half maximal inhibitory concentration (IC50) values compared to individual drugs. Among these combinations, niclosamide-ivermectin achieved the highest inhibitory level of over 99%. Combination synergy analysis showed niclosamide-ivermectin combination to have the best synergy score with a mean Loewe synergy score of 4.28 and a peak synergy score of 24.6 in Vero E6 cells and a mean Loewe synergy score of 3.82 and a peak synergy score of 10.86 in Calu-3 cells. CONCLUSIONS The present study demonstrated the benefit of drug combinations on anti-SARS-CoV-2 activity. Niclosamide and ivermectin showed the best synergistic profile and should be further tested in clinical trials.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
24
|
Plescia CB, Lindstrom AR, Quintero MV, Keiser P, Anantpadma M, Davey R, Stahelin RV, Davisson VJ. Evaluation of Phenol-Substituted Diphyllin Derivatives as Selective Antagonists for Ebola Virus Entry. ACS Infect Dis 2022; 8:942-957. [PMID: 35357134 PMCID: PMC9112336 DOI: 10.1021/acsinfecdis.1c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ebola
virus (EBOV) is an aggressive filoviral pathogen that can
induce severe hemorrhagic fever in humans with up to 90% fatality
rate. To date, there are no clinically effective small-molecule drugs
for postexposure therapies to treat filoviral infections. EBOV cellular
entry and infection involve uptake via macropinocytosis, navigation
through the endocytic pathway, and pH-dependent escape into the cytoplasm.
We report the inhibition of EBOV cell entry via selective inhibition
of vacuolar (V)-ATPase by a new series of phenol-substituted derivatives
of the natural product scaffold diphyllin. In cells challenged with
Ebola virus, the diphyllin derivatives inhibit viral entry dependent
upon structural variations to low nanomolar potencies. Mechanistically,
the diphyllin derivatives had no effect on uptake and colocalization
of viral particles with endocytic marker LAMP1 but directly modulated
endosomal pH. The most potent effects were reversible exhibiting higher
selectivity than bafilomycin or the parent diphyllin. Unlike general
lysosomotrophic agents, the diphyllin derivatives showed no major
disruptions of endocytic populations or morphology when examined with
Rab5 and LAMP1 markers. The dilated vacuole phenotype induced by apilimod
treatment or in constitutively active Rab5 mutant Q79L-expressing
cells was both blocked and reversed by the diphyllin derivatives.
The results are consistent with the action of the diphyllin scaffold
as a selective pH-dependent viral entry block in late endosomes. Overall,
the compounds show improved selectivity and minimal cytotoxicity relative
to classical endosomal acidification blocking agents.
Collapse
Affiliation(s)
| | | | - Maritza V. Quintero
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio 78229-3900, United States
| | - Patrick Keiser
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Manu Anantpadma
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Robert Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
25
|
Liu CH, Hu YT, Wong SH, Lin LT. Therapeutic Strategies against Ebola Virus Infection. Viruses 2022; 14:v14030579. [PMID: 35336986 PMCID: PMC8954160 DOI: 10.3390/v14030579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Since the 2014–2016 epidemic, Ebola virus (EBOV) has spread to several countries and has become a major threat to global health. EBOV is a risk group 4 pathogen, which imposes significant obstacles for the development of countermeasures against the virus. Efforts have been made to develop anti-EBOV immunization and therapeutics, with three vaccines and two antibody-based therapeutics approved in recent years. Nonetheless, the high fatality of Ebola virus disease highlights the need to continuously develop antiviral strategies for the future management of EBOV outbreaks in conjunction with vaccination programs. This review aims to highlight potential EBOV therapeutics and their target(s) of inhibition, serving as a summary of the literature to inform readers of the novel candidates available in the continued search for EBOV antivirals.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yee-Tung Hu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Shu Hui Wong
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence:
| |
Collapse
|
26
|
Keshavarzi Arshadi A, Salem M, Firouzbakht A, Yuan JS. MolData, a molecular benchmark for disease and target based machine learning. J Cheminform 2022; 14:10. [PMID: 35255958 PMCID: PMC8899453 DOI: 10.1186/s13321-022-00590-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022] Open
Abstract
Deep learning’s automatic feature extraction has been a revolutionary addition to computational drug discovery, infusing both the capabilities of learning abstract features and discovering complex molecular patterns via learning from molecular data. Since biological and chemical knowledge are necessary for overcoming the challenges of data curation, balancing, training, and evaluation, it is important for databases to contain information regarding the exact target and disease of each bioassay. The existing depositories such as PubChem or ChEMBL offer the screening data for millions of molecules against a variety of cells and targets, however, their bioassays contain complex biological descriptions which can hinder their usage by the machine learning community. In this work, a comprehensive disease and target-based dataset is collected from PubChem in order to facilitate and accelerate molecular machine learning for better drug discovery. MolData is one the largest efforts to date for democratizing the molecular machine learning, with roughly 170 million drug screening results from 1.4 million unique molecules assigned to specific diseases and targets. It also provides 30 unique categories of targets and diseases. Correlation analysis of the MolData bioassays unveils valuable information for drug repurposing for multiple diseases including cancer, metabolic disorders, and infectious diseases. Finally, we provide a benchmark of more than 30 models trained on each category using multitask learning. MolData aims to pave the way for computational drug discovery and accelerate the advancement of molecular artificial intelligence in a practical manner. The MolData benchmark data is available at https://GitHub.com/Transilico/MolData as well as within the additional files.
Collapse
|
27
|
Antiviral effects of azithromycin: A narrative review. Biomed Pharmacother 2022; 147:112682. [PMID: 35131658 PMCID: PMC8813546 DOI: 10.1016/j.biopha.2022.112682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Viral infections have a great impact on human health. The urgent need to find a cure against different viruses led us to investigations in a vast range of drugs. Azithromycin (AZT), classified as a macrolide, showed various effects on different known viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV), Zika, Ebola, Enterovirus (EVs) and Rhinoviruses (RVs), and Influenza A previously; namely, these viruses, which caused global concerns, are considered as targets for AZT different actions. Due to AZT background in the treatment of known viral infections mentioned above (which is described in this study), in the early stages of COVID-19 (a new zoonotic disease caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) development, AZT drew attention to itself due to its antiviral and immunomodulatory effects as a valuable candidate for COVID-19 treatment. AZT usage instructions for treating different viral infections have always been under observation, and COVID-19 is no exception. There are still debates about the use of AZT in COVID-19 treatment. However, eventually, novel researches convinced WHO to announce the discontinuation of AZT use (alone or in combination with hydroxychloroquine) in treating SARS-CoV-2 infection. This research aims to study the structure of all of the viruses mentioned above and the molecular and clinical effects of AZT against the virus.
Collapse
|
28
|
de Barros AODS, Pinto SR, dos Reis SRR, Ricci-Junior E, Alencar LMR, Bellei NCJ, Janini LRM, Maricato JT, Rosa DS, Santos-Oliveira R. Polymeric nanoparticles and nanomicelles of hydroxychloroquine co-loaded with azithromycin potentiate anti-SARS-CoV-2 effect. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 13:263-281. [PMID: 35251554 PMCID: PMC8881703 DOI: 10.1007/s40097-022-00476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/27/2021] [Indexed: 05/16/2023]
Abstract
The outbreak of coronavirus (COVID-19) has put the world in an unprecedented scenario. To reestablish the world routine as promote the effective treatment of this disease, the world is looking for new (and old) drug that can efficiently kill the virus. In this study, we have developed two nanosystems: polymeric nanoparticles and nanomicelles-based on hydroxychloroquine and azithromycin. The nanosystem was fully characterized by AFM and DLS techniques. Also, the nanosystems were radiolabeled with 99mTc and pulmonary applied (installation) in vivo to evaluate the biological behavior. The toxicity of both nanosystem were evaluated in primary cells (FGH). Finally, both nanosystems were evaluated in vitro against the SARS-CoV-2. The results demonstrated that the methodology used to produce the nanomicelles and the nanoparticle was efficient, the characterization showed a nanoparticle with a spherical shape and a medium size of 390 nm and a nanomicelle also with a spherical shape and a medium size of 602 nm. The nanomicelles were more efficient (~ 70%) against SARS-CoV-2 than the nanoparticles. The radiolabeling process with 99mTc was efficient (> 95%) in both nanosystems and the pulmonary application demonstrated to be a viable route for both nanosystems with a local retention time of approximately, 24 h. None of the nanosystems showed cytotoxic effect on FGH cells, even in high doses, corroborating the safety of both nanosystems. Thus, claiming the benefits of the nanotechnology, especially with regard the reduced adverse we believe that the use of nanosystems for COVID-19 treatment can be an optimized choice. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40097-022-00476-3.
Collapse
Affiliation(s)
- Aline Oliveira da Siliva de Barros
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
| | - Suyene Rocha Pinto
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
| | - Sara Rhaissa Rezende dos Reis
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
| | - Eduardo Ricci-Junior
- Galenical Development Laboratory, College of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Luiz Ramos Mário Janini
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Rosca A, Balcaen T, Lanoix JP, Michaud A, Moyet J, Marcq I, Schmit JL, Bloch F, Deschasse G. Mortality risk and antibiotic use for COVID-19 in hospitalized patients over 80. Biomed Pharmacother 2022; 146:112481. [PMID: 35062049 PMCID: PMC8712262 DOI: 10.1016/j.biopha.2021.112481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Patients over 80 years of age are more prone to develop severe symptoms and die from COVID-19. Antibiotics were massively prescribed in the first days of the pandemic without evidence of super infection. Antibiotics may increase the risk of mortality in cases of viral pneumonia. With age and antibiotic use, the microbiota becomes altered and less protective effect against lethal viral pneumonia. Thus we assessed whether it is safe to prescribe antibiotics for COVID-19 pneumonia to patients over 80 years of age. METHOD We conducted a retrospective monocentric study in a 1240-bed university hospital. Our inclusion criteria were patients aged ≥ 80 years, hospitalized in a COVID-19 unit, with either a positive SARS-CoV-2 RT-PCR from a nasopharyngeal swab or a CT scan within 72 h after or prior to hospitalization in the unit suggestive of infection. RESULTS We included 101 patients who received antibiotics and 48 who did not. The demographics in the two groups were similar. Overall mortality was higher for the group that received antibiotics than for the other group (36.6% vs 14.6%,). According to univariate COX analysis, the risk of mortality was higher (HR = 1.98 [0.926; 4.23]) but non-significantly for the antibiotic group. In multivariate analysis, independent risk factors of mortality were an increased leukocyte count and decreased oxygen saturation (HR = 1.097 [1.022; 1.178] and HR = 0.927 [0.891; 0.964], respectively). CONCLUSION This study raises questions about the interest of antibiotic therapy, its efficacy, and its effect on COVID-19 and encourages further research.
Collapse
Affiliation(s)
- Andreea Rosca
- Service of Pharmacy, University Hospital Amiens-Picardie, France.
| | - Thibaut Balcaen
- CHU Amiens, Medical Information Department, F-80000 Amiens, France
| | - Jean-Philippe Lanoix
- Service de Maladies Infectieuses et Tropicales, CHU Amiens-Picardie – Hôpital Nord, Place Victor Pauchet, 80000 Amiens, France,UR 4294 AGIR, Université Picardie Jules Verne, CURS, Rond point Pr Cabrol, 80000 Amiens, France
| | - Audrey Michaud
- Department of Clinical Research, Amiens Picardy University Hospital, 80054 Amiens, France
| | - Julien Moyet
- Department of Geriatric medicine, University Hospital Amiens-Picardie, France
| | - Ingrid Marcq
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances INSERM UMR1247, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Jean-Luc Schmit
- Service de Maladies Infectieuses et Tropicales, CHU Amiens-Picardie – Hôpital Nord, Place Victor Pauchet, 80000 Amiens, France,UR 4294 AGIR, Université Picardie Jules Verne, CURS, Rond point Pr Cabrol, 80000 Amiens, France
| | - Frederic Bloch
- Department of Geriatric medicine, University Hospital Amiens-Picardie, France,Laboratory of Functional Neurosciences EA 4559, University of Picardie – Jules-Verne, Amiens, France
| | - Guillaume Deschasse
- Department of Geriatric medicine, University Hospital Amiens-Picardie, France
| |
Collapse
|
30
|
Kandwal S, Fayne D. Repurposing drugs for treatment of SARS-CoV-2 infection: computational design insights into mechanisms of action. J Biomol Struct Dyn 2022; 40:1316-1330. [PMID: 32964805 PMCID: PMC7544922 DOI: 10.1080/07391102.2020.1825232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has negatively affected human life globally. It has led to economic crises and health emergencies across the world, spreading rapidly among the human population and has caused many deaths. Currently, there are no treatments available for COVID-19 so there is an urgent need to develop therapeutic interventions that could be used against the novel coronavirus infection. In this research, we used computational drug design technologies to repurpose existing drugs as inhibitors of SARS-CoV-2 viral proteins. The Broad Institute's Drug Repurposing Hub consists of in-development/approved drugs and was computationally screened to identify potential hits which could inhibit protein targets encoded by the SARS-CoV-2 genome. By virtually screening the Broad collection, using rationally designed pharmacophore features, we identified molecules which may be repurposed against viral nucleocapsid and non-structural proteins. The pharmacophore features were generated after careful visualisation of the interactions between co-crystalised ligands and the protein binding site. The ChEMBL database was used to determine the compound's level of inhibition of SARS-CoV-2 and correlate the predicted viral protein target with whole virus in vitro data. The results from this study may help to accelerate drug development against COVID-19 and the hit compounds should be progressed through further in vitro and in vivo studies on SARS-CoV-2.
Collapse
Affiliation(s)
- Shubhangi Kandwal
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Darren Fayne
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
31
|
Abel L, Perera SM, Yam D, Garbern S, Kennedy SB, Massaquoi M, Sahr F, Woldemichael D, Liu T, Levine AC, Aluisio AR. Association between oral antimalarial medication administration and mortality among patients with Ebola virus disease: a multisite cohort study. BMC Infect Dis 2022; 22:71. [PMID: 35057753 PMCID: PMC8772178 DOI: 10.1186/s12879-021-06811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Empiric antimalarial treatment is a component of protocol-based management of Ebola virus disease (EVD), yet this approach has limited clinical evidence for patient-centered benefits. METHODS This retrospective cohort study evaluated the association between antimalarial treatment and mortality among patients with confirmed EVD. The data was collected from five International Medical Corps operated Ebola Treatment Units (ETUs) in Sierra Leone and Liberia from 2014 through 2015. The standardized protocol used for patient care included empiric oral treatment with combination artemether and lumefantrine, twice daily for three days; however, only a subset of patients received treatment due to resource variability. The outcome of interest was mortality, comparing patients treated with oral antimalarials within 48-h of admission to those not treated. Analysis was conducted with logistic regression to generate adjusted odds ratios (aORs). Multivariable analyses controlled for ETU country, malaria rapid diagnostic test result, age, EVD cycle threshold value, symptoms of bleeding, diarrhea, dysphagia and dyspnea, and additional standard clinical treatments. RESULTS Among the 424 cases analyzed, 376 (88.7%) received early oral antimalarials. Across all cases, mortality occurred in 57.5% (244). In comparing unadjusted mortality prevalence, early antimalarial treated cases yielded 55.1% mortality versus 77.1% mortality for those untreated (p = 0.005). Multivariable analysis demonstrated evidence of reduced aOR for mortality with early oral antimalarial treatment versus non-treatment (aOR = 0.34, 95% Confidence Interval: 0.12, 0.92, p = 0.039). CONCLUSION Early oral antimalarial treatment in an EVD outbreak was associated with reduced mortality. Further study is warranted to investigate this association between early oral antimalarial treatment and mortality in EVD patients.
Collapse
Affiliation(s)
- Logan Abel
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Derrick Yam
- Center for Statistical Sciences, Department of Biostatistics, Brown University School of Public Health, Providence, RI, USA
| | - Stephanie Garbern
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, 55 Claverick Street, Room 274, Providence, RI, 02903, USA
| | | | | | - Foday Sahr
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | | | - Tao Liu
- Center for Statistical Sciences, Department of Biostatistics, Brown University School of Public Health, Providence, RI, USA
| | - Adam C Levine
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, 55 Claverick Street, Room 274, Providence, RI, 02903, USA
| | - Adam R Aluisio
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, 55 Claverick Street, Room 274, Providence, RI, 02903, USA.
| |
Collapse
|
32
|
Antidepressant Sertraline Is a Broad-Spectrum Inhibitor of Enteroviruses Targeting Viral Entry through Neutralization of Endolysosomal Acidification. Viruses 2022; 14:v14010109. [PMID: 35062313 PMCID: PMC8780434 DOI: 10.3390/v14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Enterovirus 71 (EV71) is an etiological agent of hand foot and mouth disease and can also cause neurological complications in young children. However, there are no approved drugs as of yet to treat EV71 infections. In this study, we conducted antiviral drug screening by using a Food and Drug Administration (FDA)-approved drug library. We identified five drugs that showed dose-dependent inhibition of viral replication. Sertraline was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index among the five hits. The antiviral activity of sertraline was noted for other EV serotypes. The drug’s antiviral effect is not likely associated with its approved indications as an antidepressant and its mode-of-action as a selective serotonin reuptake inhibitor. The time-of-addition assay revealed that sertraline inhibited an EV71 infection at the entry stage. We also showed that sertraline partitioned into acidic compartments, such as endolysosomes, to neutralize the low pH levels. In agreement with the findings, the antiviral effect of sertraline could be greatly relieved by exposing virus-infected cells to extracellular low-pH culture media. Ultimately, we have identified a use for an FDA-approved antidepressant in broad-spectrum EV inhibition by blocking viral entry through the alkalization of the endolysosomal route.
Collapse
|
33
|
Mtewa AG, Amanjot A, Lampiao F, Okella H, Weisheit A, Tolo CU, Ogwang P. SARS-CoV-2 vaccine development. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217717 DOI: 10.1016/b978-0-323-85156-5.00046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
SARS-CoV-2 is a well-known viral strain that causes COVID-19. The disease became a pandemic in early 2020 and infected millions of people and killed hundreds of thousands of people worldwide. Vaccine development against the disease was accelerated with multiple collaborations among research institutions in order to shorten the duration that vaccine development normally takes. Prior coronavirus vaccines present a basis on which vaccines against the current strain can be developed with much speed and relative ease. Among the patented coronavirus vaccines, DNA-based vaccine had the most patents registered which must have clues to guide the efforts in the current works. This work presents some progress on COVID-19 vaccine development and also possible animal venom protein sources that can potentially be used in the pipeline. The future of COVID-19 vaccine is bright with the heightened collaborative efforts and data sharing opportunities that the pandemic has brought among researchers.
Collapse
|
34
|
Abstract
Coronavirus disease 2019 (COVID-19), the disease arising from the beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented a major challenge to health-care systems and societies across the world. Although previous highly pathogenic coronaviruses have emerged, namely severe acute respiratory syndrome coronavirus 1 and Middle East respiratory syndrome coronavirus, neither had the spread nor the persistence to result in large clinical trials of drug therapy. Much of our therapeutic knowledge in these viruses was therefore informed by inference from observational, in vitro, and experimental model studies. As a result, when SARS-CoV-2 emerged with a noted high morbidity and mortality, initial therapeutic drug treatment was often empiric. There are currently over 4400 trials concerning COVID-19 registered on the World Health Organization international clinical trials registry, and while not all these are interventional therapeutic trials, this illustrates the desire of the international clinical-scientific community to develop systematic and evidence-based approaches for the management of this major threat. This chapter discusses the broad strategies of therapeutic pharmacological approaches suggested, namely antiviral therapy, antiinflammatories, and immunomodulatory. Nonpharmacological approaches are also to be discussed. Then, it reviews the approaches to trials and trial design, the development and use of core outcome sets, and regulation of trials in pandemic settings. It reviews the publication and preprint availability of completed trials before discussing the ethics of empiric treatment outside the context of trials.
Collapse
|
35
|
Al-Kuraishy HM, Al-Gareeb AI, Alzahrani KJ, Alexiou A, Batiha GES. Niclosamide for Covid-19: bridging the gap. Mol Biol Rep 2021; 48:8195-8202. [PMID: 34664162 PMCID: PMC8522539 DOI: 10.1007/s11033-021-06770-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023]
Abstract
AIM/PURPOSE Niclosamide (NCL) is an anthelminthic drug, which is widely used to treat various diseases due to its pleiotropic anti-inflammatory and antiviral activities. NCL modulates of uncoupling oxidative phosphorylation and different signaling pathways in human biological processes. The wide-spectrum antiviral effect of NCL makes it a possible candidate for recent pandemic SARS-CoV-2 infection and may reduce Covid-19 severity. Therefore, the aim of the present study was to review and clarify the potential role of NCL in Covid-19. METHODS This study reviewed and highlighted the protective role of NCL therapy in Covid-19. A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science Direct was done. RESULTS NCL has noteworthy anti-inflammatory and antiviral effects. The primary antiviral mechanism of NCL is through neutralization of endosomal PH and inhibition of viral protein maturation. NCL acts as a proton carrier, inhibits homeostasis of endosomal PH, which limiting of viral proliferation and release. The anti-inflammatory effects of NCL are mediated by suppression of inflammatory signaling pathways and release of pro-inflammatory cytokines. However, the major limitation in using NCL is low aqueous solubility, which reduces oral bioavailability and therapeutic serum concentration that reducing the in vivo effect of NCL against SARS-CoV-2. CONCLUSIONS NCL has anti-inflammatory and immune regulatory effects by modulating the release of pro-inflammatory cytokines, inhibition of NF-κB /NLRP3 inflammasome and mTOR signaling pathway. NCL has an anti-SARS-CoV-2 effect via interruption of viral life-cycle and/or induction of cytopathic effect. Prospective clinical studies and clinical trials are mandatory to confirm the potential role of NCL in patients with Covid-19 concerning the severity and clinical outcomes.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
- AFNP Med Austria, Wien, Austria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, El Beheira, Egypt.
| |
Collapse
|
36
|
Al-Hadidi SH, Alhussain H, Abdel Hadi H, Johar A, Yassine HM, Al Thani AA, Eltai NO. The Spectrum of Antibiotic Prescribing During COVID-19 Pandemic: A Systematic Literature Review. Microb Drug Resist 2021; 27:1705-1725. [PMID: 34077290 PMCID: PMC8713256 DOI: 10.1089/mdr.2020.0619] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives: Over the last decades, there has been a significant increase in antimicrobial prescribing and consumption associated with the development of patients' adverse events and antimicrobial resistance (AMR) to the point of becoming a global priority. This study aims at evaluating antibiotic prescribing during COVID-19 pandemic from November 2019 to December 2020. Materials and Methods: A systematic review was conducted primarily through the NCBI database, using PRISMA guidelines to identify relevant literature for the period between November 1, 2019 and December 19, 2020, using the keywords: COVID-19 OR SARS-Cov-2 AND antibiotics restricted to the English language excluding nonclinical articles. Five hundred twenty-seven titles were identified; all articles fulfilling the study criteria were included, 133 through the NCBI, and 8 through Google Scholar with a combined total of 141 studies. The patient's spectrum included all ages from neonates to elderly with all associated comorbidities, including immune suppression. Results: Of 28,093 patients included in the combined studies, 58.7% received antibiotics (16,490/28,093), ranging from 1.3% to 100% coverage. Antibiotics coverage was less in children (57%) than in adults with comorbidities (75%). Broad-spectrum antibiotics were prescribed presumptively without pathogen identifications, which might contribute to adverse outcomes. Conclusions: During the COVID-19 pandemic, there has been a significant and wide range of antibiotic prescribing in patients affected by the disease, particularly in adults with underlying comorbidities, despite the paucity of evidence of associated bacterial infections. The current practice might increase patients' immediate and long-term risks of adverse events, susceptibility to secondary infections as well as aggravating AMR.
Collapse
Affiliation(s)
| | | | - Hamad Abdel Hadi
- Infectious Disease Division, Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | | | | | | | - Nahla O. Eltai
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
37
|
Hydroxychloroquine and azithromycin used alone or combined are not effective against SARS-CoV-2 ex vivo and in a hamster model. Antiviral Res 2021; 197:105212. [PMID: 34838583 PMCID: PMC8611861 DOI: 10.1016/j.antiviral.2021.105212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
Drug repositioning has been used extensively since the beginning of the COVID-19 pandemic in an attempt to identify antiviral molecules for use in human therapeutics. Hydroxychloroquine and azithromycin have shown inhibitory activity against SARS-CoV-2 replication in different cell lines. Based on such in vitro data and despite the weakness of preclinical assessment, many clinical trials were set up using these molecules. In the present study, we show that hydroxychloroquine and azithromycin alone or combined does not block SARS-CoV-2 replication in human bronchial airway epithelia. When tested in a Syrian hamster model, hydroxychloroquine and azithromycin administrated alone or combined displayed no significant effect on viral replication, clinical course of the disease and lung impairments, even at high doses. Hydroxychloroquine quantification in lung tissues confirmed strong exposure to the drug, above in vitro inhibitory concentrations. Overall, this study does not support the use of hydroxychloroquine and azithromycin as antiviral drugs for the treatment of SARS-CoV-2 infections.
Collapse
|
38
|
Davis J, Umeh U, Saba R. Treatment of SARS-CoV-2 (COVID-19): A safety perspective. World J Pharmacol 2021; 10:1-32. [DOI: 10.5497/wjp.v10.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/22/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The goal of this review is to report a balanced perspective of current evidence for efficacy of treatments for coronavirus disease 2019 (COVID-19) against the historical safety of these treatments as of May 2021. We preselected therapies of interest for COVID-19 based on national guidelines and modified over time. We searched PubMed and Medline for these specific COVID-19 treatments and data related to their efficacy. We also searched for prior randomized controlled trials of each therapy to assess adverse effects, and we obtained the Food and Drug Administration Approval label for this information. Several drugs have been approved for the treatment of COVID-19, and many more are under study. This includes dexamethasone, remdesivir, hydroxychloroquine/chloroquine, lopinvir/ritonavir, interferon or interleukin inhibitors, convalescent plasma and several vitamins and minerals. The strongest evidence for benefit is mortality benefit with dexamethasone in patients with COVID-19 and hypoxemia, although there is a signal of harm if this is started too early. There are several other promising therapies, like interleukin inhibitors and ivermectin. Hydroxychloroquine/chloroquine, lopinvir/ritonavir, and convalescent plasma do not have enough evidence of benefit to outweigh the known risks of these drugs.
Collapse
Affiliation(s)
- Joshua Davis
- Department of Emergency Medicine, Vituity, Wichita, KS 67214, United States
| | - Ugochukwu Umeh
- College of Medicine, Medical University of Lublin, Lublin 20-093, Poland
| | - Rand Saba
- Department of Surgery, Ascension Providence Hospital, Southfield, MI 48075, United States
| |
Collapse
|
39
|
Dubois A, Féral A, Pain JB, Michot J, Fansi Ndengoue D, Benomar A, Clou E, Debrix I. [Treatments for SARS-CoV2 infection: a retrospective study of drug-drug interactions and safety]. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:531-542. [PMID: 34748737 PMCID: PMC8570435 DOI: 10.1016/j.pharma.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
Objectifs Réaliser un état des lieux des associations à risque d’interactions médicamenteuses (IAM) rencontrées et des événements indésirables (EI) médicamenteux survenus chez les patients traités pour une infection à SARS-CoV-2 lors de la première vague épidémique au Centre Hospitalier Universitaire de Tenon. Méthodes Une analyse rétrospective de l’ensemble des patients ayant reçu un médicament utilisé dans le SARS-CoV-2 (Azithromycine, Hydroxychloroquine et/ou Lopinavir/ritonavir) a été conduite sur la période du 15 mars 2020 au 17 avril 2020. Pour chaque patient, la recherche d’associations médicamenteuses à risque d’IAM en lien avec les médicaments utilisés dans le SARS-CoV-2 et la survenue d’EI a été faite rétrospectivement dans les dossiers médicaux. Chaque événement indésirable identifié a été analysé par le Centre régional de pharmacovigilance (CRPV) afin de déterminer l’imputabilité des médicaments. Résultats L’analyse des prescriptions de 312 patients a retrouvé 157 associations à risque d’IAM chez 110 patients, soit 35,3 % des patients de la cohorte. De plus, 26 événements indésirables ont été observés chez ces patients. Après analyse de l’imputabilité médicamenteuse, le CRPV a identifié 10 EI liés aux médicaments, soit un taux d’iatrogénie de 3,2 %. Seuls 2 de ces cas impliquaient une IAM avec les médicaments utilisés dans le SARS-CoV-2. Conclusions Notre étude a montré un taux faible d’EI liés aux médicaments utilisés dans le SARS-CoV-2. Malgré un nombre important d’associations à risque d’IAM identifiées, seul 0,6 % des patients ont présenté un EI lié à une IAM.
Collapse
Affiliation(s)
- A Dubois
- Service pharmacie, CHU de l'hôpital Tenon, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France.
| | - A Féral
- Service pharmacie, CHU de l'hôpital Tenon, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - J-B Pain
- Service pharmacie, CHU de l'hôpital Tenon, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - J Michot
- Centre régional de pharmacovigilance, sites Pitié Salpétrière et Saint-Antoine, Sorbonne université, AP-HP, 75012 Paris, France
| | - D Fansi Ndengoue
- Centre régional de pharmacovigilance, sites Pitié Salpétrière et Saint-Antoine, Sorbonne université, AP-HP, 75012 Paris, France
| | - A Benomar
- Service pharmacie, CHU de l'hôpital Tenon, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - E Clou
- Service pharmacie, CHU de l'hôpital Tenon, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - I Debrix
- Service pharmacie, CHU de l'hôpital Tenon, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France
| |
Collapse
|
40
|
Jahanshahlou F, Hosseini MS. Antibiotic resistance: A disregarded concern for misuse of azithromycin in COVID-19 treatment. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:101. [PMID: 34899939 PMCID: PMC8607170 DOI: 10.4103/jrms.jrms_1124_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/28/2021] [Accepted: 04/14/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Farid Jahanshahlou
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Salar Hosseini
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Evidence - Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Lane TR, Ekins S. Defending Antiviral Cationic Amphiphilic Drugs That May Cause Drug-Induced Phospholipidosis. J Chem Inf Model 2021; 61:4125-4130. [PMID: 34516123 DOI: 10.1021/acs.jcim.1c00903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recent publication in Science has proposed that cationic amphiphilic drugs repurposed for COVID-19 typically use phosholipidosis as their antiviral mechanism of action in cells but will have no in vivo efficacy. On the contrary, our viewpoint, supported by additional experimental data for similar cationic amphiphilic drugs, indicates that many of these molecules have both in vitro and in vivo efficacy with no reported phospholipidosis, and therefore, this class of compounds should not be avoided but further explored, as we continue the search for broad spectrum antivirals.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
42
|
Hasan M, Parvez MSA, Azim KF, Imran MAS, Raihan T, Gulshan A, Muhit S, Akhand RN, Ahmed SSU, Uddin MB. Main protease inhibitors and drug surface hotspots for the treatment of COVID-19: A drug repurposing and molecular docking approach. Biomed Pharmacother 2021; 140:111742. [PMID: 34052565 PMCID: PMC8130501 DOI: 10.1016/j.biopha.2021.111742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Here, drug repurposing and molecular docking were employed to screen approved MPP inhibitors and their derivatives to suggest a specific therapeutic agent for the treatment of COVID-19. The approved MPP inhibitors against HIV and HCV were prioritized, while RNA dependent RNA Polymerase (RdRp) inhibitor remdesivir including Favipiravir, alpha-ketoamide were studied as control groups. The target drug surface hotspot was also investigated through the molecular docking technique. Molecular dynamics was performed to determine the binding stability of docked complexes. Absorption, distribution, metabolism, and excretion analysis was conducted to understand the pharmacokinetics and drug-likeness of the screened MPP inhibitors. The results of the study revealed that Paritaprevir (-10.9 kcal/mol) and its analog (CID 131982844) (-16.3 kcal/mol) showed better binding affinity than the approved MPP inhibitors compared in this study, including remdesivir, Favipiravir, and alpha-ketoamide. A comparative study among the screened putative MPP inhibitors revealed that the amino acids T25, T26, H41, M49, L141, N142, G143, C145, H164, M165, E166, D187, R188, and Q189 are at potentially critical positions for being surface hotspots in the MPP of SARS-CoV-2. The top 5 predicted drugs (Paritaprevir, Glecaprevir, Nelfinavir, and Lopinavir) and the topmost analog showed conformational stability in the active site of the SARS-CoV-2 MP protein. The study also suggested that Paritaprevir and its analog (CID 131982844) might be effective against SARS-CoV-2. The current findings are limited to in silico analysis and lack in vivo efficacy testing; thus, we strongly recommend a quick assessment of Paritaprevir and its analog (CID 131982844) in a clinical trial.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Sorwer Alam Parvez
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Abdus Shukur Imran
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Airin Gulshan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Samuel Muhit
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Rubaiat Nazneen Akhand
- Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Md Bashir Uddin
- Department of Medicine, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| |
Collapse
|
43
|
Yang L, Pei RJ, Li H, Ma XN, Zhou Y, Zhu FH, He PL, Tang W, Zhang YC, Xiong J, Xiao SQ, Tong XK, Zhang B, Zuo JP. Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol Sin 2021; 42:1347-1353. [PMID: 33116249 PMCID: PMC7594953 DOI: 10.1038/s41401-020-00556-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
To discover effective drugs for COVID-19 treatment amongst already clinically approved drugs, we developed a high throughput screening assay for SARS-CoV-2 virus entry inhibitors using SARS2-S pseudotyped virus. An approved drug library of 1800 small molecular drugs was screened for SARS2 entry inhibitors and 15 active drugs were identified as specific SARS2-S pseudovirus entry inhibitors. Antiviral tests using native SARS-CoV-2 virus in Vero E6 cells confirmed that 7 of these drugs (clemastine, amiodarone, trimeprazine, bosutinib, toremifene, flupenthixol, and azelastine) significantly inhibited SARS2 replication, reducing supernatant viral RNA load with a promising level of activity. Three of the drugs were classified as histamine receptor antagonists with clemastine showing the strongest anti-SARS2 activity (EC50 = 0.95 ± 0.83 µM). Our work suggests that these 7 drugs could enter into further in vivo studies and clinical investigations for COVID-19 treatment.
Collapse
|
44
|
Tummino TA, Rezelj VV, Fischer B, Fischer A, O'Meara MJ, Monel B, Vallet T, White KM, Zhang Z, Alon A, Schadt H, O'Donnell HR, Lyu J, Rosales R, McGovern BL, Rathnasinghe R, Jangra S, Schotsaert M, Galarneau JR, Krogan NJ, Urban L, Shokat KM, Kruse AC, García-Sastre A, Schwartz O, Moretti F, Vignuzzi M, Pognan F, Shoichet BK. Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science 2021; 373:541-547. [PMID: 34326236 PMCID: PMC8501941 DOI: 10.1126/science.abi4708] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023]
Abstract
Repurposing drugs as treatments for COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention. Beginning with sigma receptor ligands and expanding to other drugs from screening in the field, we became concerned that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials, phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the physicochemical properties of drugs and does not reflect specific target-based activities-rather, it may be considered a toxic confound in early drug discovery. Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential.
Collapse
Affiliation(s)
- Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Veronica V Rezelj
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Audrey Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Blandine Monel
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ziyang Zhang
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Heiko Schadt
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Henry R O'Donnell
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-René Galarneau
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Laszlo Urban
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Kevan M Shokat
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Schwartz
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Francesca Moretti
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France.
| | - Francois Pognan
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| |
Collapse
|
45
|
Sharma D, Kunamneni A. Recent progress in the repurposing of drugs/molecules for the management of COVID-19. Expert Rev Anti Infect Ther 2021; 19:889-897. [PMID: 33270490 DOI: 10.1080/14787210.2021.1860020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022]
Abstract
Introduction: In the current scenario, COVID-19 is a clinical and public health problem globally. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains the causative agent, emerged in China and continuously spreading across the globe. Until now, no efficient therapeutics have been approved, which combat COVID-19. FDA approved broad-spectrum drugs/molecules could be repurposed against the COVID-19 and are under clinical trials, if the outcome of these trials proves positive, it could be used to manage COVID-19 pandemic.Areas covered: This article reviews the FDA approved drugs/molecules which could be repurposed in the combination or single to combat the COVID-19.Expert opinion: In this focused review, we suggested the repurposing of the pathogen-centric, host-centric, dual sword (act as pathogen-centric as well as host-centric), and the combinatorial (pathogen and host-centric) drugs against COVID-19 patients. These drugs singly or in combination could be effective for the management of COVID-19.
Collapse
Affiliation(s)
- Divakar Sharma
- CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology, Delhi, India
| | | |
Collapse
|
46
|
Dar-Odeh N, Elsayed S, Babkair H, Abu-Hammad S, Althagafi N, Bahabri R, Eldeen YS, Aljohani W, Abu-Hammad O. What the dental practitioner needs to know about pharmaco-therapeutic modalities of COVID-19 treatment: A review. J Dent Sci 2021; 16:806-816. [PMID: 33230404 PMCID: PMC7674127 DOI: 10.1016/j.jds.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/PURPOSE Several pharmacotherapeutic methods have been used for the treatment of COVID-19 with varying degrees of success. No definitive treatment or vaccine has been officially approved to-date. This review aimed to highlight COVID-19 pharmacotherapeutic agents that are relevant to dental practice in terms of their clinical indications in COVID-19 and dental practice, as well as their adverse effects as they impact the dental patient. MATERIAL AND METHODS Systematic search was performed using the following keywords combinations: Pharmacotherapy AND COVID-19 OR Pharmacotherapy AND SARS-CoV-2 OR Treatment AND COVID-19. Studies were categorized according to the type of pharmacotherapy used. Pharmacotherapeutic agents were extracted and only those relevant to dental practice were included for review. RESULTS For analysis, a total of 79 clinical trials research articles were included that included COVID-19 pharmacotherapeutic agents relevant to dental practice. Those were analgesics (paracetamol; non-steroidal anti-inflammatory agents); antibiotics (azithromycin, doxycycline, metronidazole); antivirals (penciclovir); and immunomodulatory agents (hydroxychloroquine, corticosteroids). While some COVID-19 drugs are less relevant to dental practice, as antivirals and hydroxychloroquine, their association with long-term adverse effects requires adequate knowledge among dental practitioners. CONCLUSION Many of COVID-19 pharmacotherapeutic agents are used to treat oral diseases particularly orofacial pain and inflammatory conditions. Furthermore, some of these drugs may induce adverse effects that complicate dental treatment. Thorough knowledge of COVID-19 therapy and its dental implications is essential for dental practitioners, and is expected to contribute to a better understanding and effective utilization of these therapeutic agents.
Collapse
Affiliation(s)
- Najla Dar-Odeh
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
- School of Dentistry, University of Jordan, Amman, Jordan
| | - Shadia Elsayed
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
- Faculty of Dental Medicine for Girls, Al-Azhar, University, Cairo, Egypt
| | - Hamzah Babkair
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
| | | | - Nebras Althagafi
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
| | - Rayan Bahabri
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
| | | | - Wejdan Aljohani
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
| | - Osama Abu-Hammad
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
- School of Dentistry, University of Jordan, Amman, Jordan
| |
Collapse
|
47
|
Screening and Identification of Lujo Virus Inhibitors Using a Recombinant Reporter Virus Platform. Viruses 2021; 13:v13071255. [PMID: 34203149 PMCID: PMC8310135 DOI: 10.3390/v13071255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Lujo virus (LUJV), a highly pathogenic arenavirus, was first identified in 2008 in Zambia. To aid the identification of effective therapeutics for LUJV, we developed a recombinant reporter virus system, confirming reporter LUJV comparability with wild-type virus and its utility in high-throughput antiviral screening assays. Using this system, we evaluated compounds with known and unknown efficacy against related arenaviruses, with the aim of identifying LUJV-specific and potential new pan-arenavirus antivirals. We identified six compounds demonstrating robust anti-LUJV activity, including several compounds with previously reported activity against other arenaviruses. These data provide critical evidence for developing broad-spectrum antivirals against high-consequence arenaviruses.
Collapse
|
48
|
Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Sinha BN, Rajak H. Synthetic and Semi-synthetic Drugs as a Promising Therapeutic Option for the Treatment of COVID-19. Mini Rev Med Chem 2021; 21:1004-1016. [PMID: 33280595 DOI: 10.2174/1389557520666201204162103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/23/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
The novel coronavirus disease-19 (COVID-19) is a global pandemic that emerged from Wuhan, China, and has spread all around the world, affecting 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 updates of August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine exists. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID- 19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in clinical uses or studies on COVID-19 and also focuses on the mode of action of drugs being repositioned against COVID-19.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur 495 009, C.G., India
| | - Preeti Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur 495 009, C.G., India
| | - Vijay K Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur 495 009, C.G., India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Prabodh C Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136 119, Haryana, India
| | - Barij N Sinha
- Department of Pharmacy, Birla Institute of Technology, Mesra - Ranchi-835 215, Jharkhand, India
| | - Harish Rajak
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur 495 009, C.G., India
| |
Collapse
|
49
|
Giri A, Srinivasan A, Sundar IK. COVID-19: Sleep, Circadian Rhythms and Immunity - Repurposing Drugs and Chronotherapeutics for SARS-CoV-2. Front Neurosci 2021; 15:674204. [PMID: 34220430 PMCID: PMC8249936 DOI: 10.3389/fnins.2021.674204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected nearly 28 million people in the United States and has caused more than five hundred thousand deaths as of February 21, 2021. As the novel coronavirus continues to take its toll in the United States and all across the globe, particularly among the elderly (>65 years), clinicians and translational researchers are taking a closer look at the nexus of sleep, circadian rhythms and immunity that may contribute toward a more severe coronavirus disease-19 (COVID-19). SARS-CoV-2-induced multi-organ failure affects both central and peripheral organs, causing increased mortality in the elderly. However, whether differences in sleep, circadian rhythms, and immunity between older and younger individuals contribute to the age-related differences in systemic dysregulation of target organs observed in SARS-CoV-2 infection remain largely unknown. Current literature demonstrates the emerging role of sleep, circadian rhythms, and immunity in the development of chronic pulmonary diseases and respiratory infections in human and mouse models. The exact mechanism underlying acute respiratory distress syndrome (ARDS) and other cardiopulmonary complications in elderly patients in combination with associated comorbidities remain unclear. Nevertheless, understanding the critical role of sleep, circadian clock dysfunction in target organs, and immune status of patients with SARS-CoV-2 may provide novel insights into possible therapies. Chronotherapy is an emerging concept that is gaining attention in sleep medicine. Accumulating evidence suggests that nearly half of all physiological functions follow a strict daily rhythm. However, healthcare professionals rarely take implementing timed-administration of drugs into consideration. In this review, we summarize recent findings directly relating to the contributing roles of sleep, circadian rhythms and immune response in modulating infectious disease processes, and integrate chronotherapy in the discussion of the potential drugs that can be repurposed to improve the treatment and management of COVID-19.
Collapse
Affiliation(s)
| | | | - Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
50
|
Dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr Med Chem 2021; 28:2887-2942. [PMID: 32787752 DOI: 10.2174/0929867327666200812215852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.
Collapse
|