1
|
Ganbold E, Kim NY, Kim YM, Sharma PK, Lee DN, Oh B, Kim HS, Song J, Lee B, Kim ES, Shin YK, Park JS, Kim ST. Reagentless aptamer based on the ultrasensitive and fast response electrochemical capacitive biosensor for EGFR detection in non-small cell lung cancer. Biosens Bioelectron 2025; 278:117319. [PMID: 40112520 DOI: 10.1016/j.bios.2025.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of lung cancer-related deaths globally, affecting both men and women. Mutations in the epidermal growth factor receptor (EGFR) are most common among patients with NSCLC, especially Asian patients. Here, we introduce an electrochemical capacitive biosensor for the early detection of NSCLC through specific identification of EGFR. A novel and reagentless EGFR aptamer was designed using the systematic evolution of ligands by exponential enrichment (SELEX) process and immobilized on a chromium (Cr)/gold (Au) electrode, with capacitance signals used for detection. The biosensor employs an interdigitated capacitor electrode (IDCE) functionalized with 3-mercaptopropionic acid (MPA), enhancing EGFR aptamer immobilization, while 6-mercapto-1-hexanol (MCH) was used for effective blocking to ensure robust and high-affinity binding to target analytes. The IDCE capacitive biosensor achieved real-time rapid detection within 3 s and demonstrated a detection limit of 0.005 ng/mL for the EGFR peptide, with a dynamic range of 10-11-10-7 ng/mL. Furthermore, the specific EGFR aptamer-immobilized IDCE biosensor was found to be regenerable and reusable up to five times using deionized water. This biosensor offers a rapid, label-free, and highly selective approach for early-stage EGFR detection in NSCLC. Its portability and scalability make it a promising tool for point-of-care diagnostic applications in biomedicine, potentially advancing the field of cancer diagnostics.
Collapse
Affiliation(s)
- Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Nam Young Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu Mi Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Neuroscience Research Institute, JnPharma Inc. Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu, Seongnam City, Gyeonggi-do 13605, Republic of Korea
| | - Parshant Kumar Sharma
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Do Nam Lee
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Byeolnim Oh
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hyun Soo Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Junghan Song
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Laboratory Medicine, Seoul National University Bundang Hospital, Goomi-ro, Bundanggu, Seongnam City, Gyeonggi-do 13605, Republic of Korea
| | - Byungheon Lee
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Biochemistry, School of Medicine, Kyungpook National University 680 Guckchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Young Kee Shin
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeong Su Park
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Laboratory Medicine, Seoul National University Bundang Hospital, Goomi-ro, Bundanggu, Seongnam City, Gyeonggi-do 13605, Republic of Korea
| | - Sang Tae Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Neuroscience Research Institute, JnPharma Inc. Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu, Seongnam City, Gyeonggi-do 13605, Republic of Korea.
| |
Collapse
|
2
|
Bhagat S, Yadav S, Singh S. Use of pH-sensitive microcapsules for selective delivery of nanozymes and biological enzymes in small intestine. Int J Biol Macromol 2025; 306:141347. [PMID: 40023412 DOI: 10.1016/j.ijbiomac.2025.141347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Unlike the intravenous route, oral delivery systems face challenges due to an acidic gastric environment, which can degrade or inactivate therapeutic compounds before they reach the small intestine (SI). Therefore, developing oral delivery strategies that protect cargo from acidic environments and release the content in the SI is imperative. Herein, a novel approach utilizes the pH-sensitivity of alginate-based microcapsules that degrade and release the contents at pH ≥ 7.0. The microcapsules were used to encapsulate gold nanoparticles (AuNPs, a model nanozyme) of varying sizes (2, 15, and 70 nm) and horseradish peroxidase (HRP, a model enzyme). The AuNPs- and HRP-loaded microcapsules (AuNPs-MCap and HRP-PEG MCap) were unaffected at acidic pH (2.0-6.0), as the intrinsic structure and properties of encapsulated AuNPs and HRP were intact. The microcapsules rapidly released the encapsulated AuNPs and HRP at pH ≥ 7.0. In vivo, oral administration of AuNPs-MCap and HRP-PEG MCap to Wistar rats also showed significantly enhanced absorption of AuNPs and HRP in SI, leading to higher concentrations in blood than in their corresponding unencapsulated forms. Overall, the results underscore the potential of pH-responsive microcapsules for protecting pH-sensitive nanozymes, biological enzymes and other bioactive compounds from the acidic gastric environment and for effective and targeted delivery to the SI.
Collapse
Affiliation(s)
- Stuti Bhagat
- Nanobiology and Nanozymology Lab, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Shreya Yadav
- Nanobiology and Nanozymology Lab, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India
| | - Sanjay Singh
- Nanobiology and Nanozymology Lab, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
3
|
Deriu C, Fabris L. A surface chemistry perspective on SERS: revisiting the basics to push the field forward. Chem Soc Rev 2025. [PMID: 40134302 PMCID: PMC11937889 DOI: 10.1039/d4cs01242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 03/27/2025]
Abstract
Surfaces are well known to be complex entities that are extremely difficult to study, and any phenomenon that is related to them is consequently challenging to approach. Moving from the bulk to the nanoscale adds a further layer of complexity to the problem. Because SERS relies on surfaces at the nanoscale, a rigorous understanding of the chemical phenomena that concur in the observation of the SERS signal is still limited or disorganized at best. Specifically, the lack of understanding of the chemical properties of nanoparticle surfaces has direct consequences on the development of SERS-based devices, causing a widespread belief that SERS is an inherently unreliable and fundamentally irreproducible analytical technique. Herein, we discuss old and new literature from SERS and related fields to accompany the reader through a journey that explores the chemical nature and architecture of colloidal plasmonic nanoparticles as the most popular SERS-active surfaces. By examining the chemistry of the surface landscape of the most common SERS colloids and the thermodynamic equilibria that characterize it, we aim to paint a chemically realistic picture of what a SERS analyst deals with on a daily basis. Thus, our goal for this review is to provide a centralized compilation of key, state-of-the-art surface chemistry information that can guide the rational development of analytical protocols and contribute an additional path through which our community can continue to advance SERS as a reliable and robust analytical tool.
Collapse
Affiliation(s)
- Chiara Deriu
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy.
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy.
| |
Collapse
|
4
|
Medvedeva XV, Medvedev JJ, Zhao X, Smith E, Klinkova A. The fate of nanoparticle surface chemistry during reductive electrosynthesis in aprotic media. NANOSCALE 2025; 17:6804-6814. [PMID: 39964028 DOI: 10.1039/d4nr04135f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of -1.5 V vs. Ag/Ag+ with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC.
Collapse
Affiliation(s)
- Xenia V Medvedeva
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Jury J Medvedev
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Xingya Zhao
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Elena Smith
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Anna Klinkova
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
5
|
Ritzert P, Striegel A, von Klitzing R. Ion-Specific Stability of Gold Nanoparticle Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3787-3802. [PMID: 39918286 DOI: 10.1021/acs.langmuir.4c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
This study addresses the aging of three AuNP suspensions after the addition of various sodium salts along the well-known Hofmeister series (NaF, NaCl, NaBr, NaI, NaSCN) at different salt concentrations between 10 mM and 100 mM. The AuNP types differ in size (5 nm vs 11 nm in diameter) and the capping type (physisorbed citrate vs covalently bound mercaptopropionic acid (MPA)). We monitor the aggregation of the AuNPs and the suspension stability optically (absorption spectroscopy and photography) and by electron microscopy. The large range of salt concentrations results in a large variety of colloidal stability, i.e., from stable suspensions to fast destabilization followed by sedimentation, due to the impact of the anions on the interaction between the negatively charged AuNPs. At intermediate and high salt concentrations, strong ion-specific effects emerge that are nonmonotonous with respect to the Hofmeister series. In particular, the chaotropic salts, NaI and NaSCN, strongly alter the absorption spectra very differently. NaI fuses AuNPs together, influencing the primary absorption, while NaSCN retains the AuNP structure during aggregation much stronger than the remaining sodium halides, resulting in a secondary absorption peak. Although decreasing the size of AuNPs leads to more stable suspensions, the ion-specific effects are even more pronounced due to the increase in the total available surface. Even the covalently bound MPA capping cannot stabilize AuNPs against particle fusion by NaI, although it delays the process. Despite the complex interplay between different effects of ions on the stability of colloidal dispersions, this study disentangles the different effects from electrostatic screening, via adsorption at the interface and bridging of AuNPs, to the competition between ions and the capping agent of the AuNPs. These findings are crucial for the fabrication of inorganic/organic composites by the targeted assembly of AuNPs in a preexisting matrix controlled by the presence of salt.
Collapse
Affiliation(s)
- Philipp Ritzert
- Soft Matter at Interfaces, Department of Physics, Technical University Darmstadt, Hochschulstraße 8, Darmstadt 64289, Germany
| | - Alexandra Striegel
- Soft Matter at Interfaces, Department of Physics, Technical University Darmstadt, Hochschulstraße 8, Darmstadt 64289, Germany
| | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technical University Darmstadt, Hochschulstraße 8, Darmstadt 64289, Germany
| |
Collapse
|
6
|
Hosseini F, Dadmehr M, Hosseini M. Fluorescence-based detection of Let-7a miRNA through HCR-based approach upon the in situ interaction of AuNPs@CdS QDs and FRET mechanism. Mikrochim Acta 2025; 192:153. [PMID: 39937314 DOI: 10.1007/s00604-025-07018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
A novel strategy is presented based on integration of nanostructures and molecular amplification was developed for detection of Let-7a miRNA as the carcinogenic cancer marker. Hybridization chain reaction (HCR) was triggered through the presence of Let-7a as the initiator target. This reaction resulted to the formation of AuNPs@CdS QDs assembly due to thiol bonding and following FRET occurred between free AuNPs and CdS QDs. Characterization and morphology of AuNPs@CdS QDs showed in situ accumulation of CdS QDs and afterward optical changes in fluorescence emission. The quenching of fluorescence emission was observed which corresponded to Let-7a concentration in the linear range 10-45 pM with LOD of 2 pM. The sensitivity and selectivity of the performed study confirmed the efficiency of the proposed strategy. Additionally, it demonstrated a high level of specificity and detection performance in real-sample analysis.
Collapse
Affiliation(s)
- Farid Hosseini
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Kim GH, Son J, Nam JM. Advances, Challenges, and Opportunities in Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. ACS NANO 2025; 19:2992-3007. [PMID: 39812822 DOI: 10.1021/acsnano.4c14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications. Despite its potential, several challenges still remain for NERS to be widely useful in real-world applications. This Perspective introduces various plasmonic nanogap configurations with nanoparticles, discusses key advances and critical challenges while addressing possible misunderstandings in this field, and provides future directions for NERS to generate stronger, more uniform, and stable signals over a large number of structures for practical applications.
Collapse
Affiliation(s)
- Gyeong-Hwan Kim
- The Research Institute of Basic Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
8
|
Pan SQ, Luo P, Huang Q, Xue J, Tian XD, Xu B, Wu J, Chen J, Xie J, Yang N, Zhang XG, Tian ZQ, Liu GK. Spontaneous Catalytic Reaction of a Surfactant in the Interfacial Microenvironment of Colloidal Gold Nanoparticles. J Am Chem Soc 2025; 147:2206-2215. [PMID: 39764761 DOI: 10.1021/jacs.4c16796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The performance of nanomaterials is significantly determined by the interfacial microenvironment, in which a surfactant plays an essential role as the adsorbent, but its involvement in the interfacial reaction is often overlooked. Here, it was discovered that citrate and ascorbic acid, the two primarily used surfactants for colloidal gold nanoparticles (Au NPs), can spontaneously undergo catalytic reaction with trace-level nitrogenous residue under ambient environment to form oxime, which is subsequently cleaved to generate CN- or a compound containing the -CN group. Such a catalytic reaction shows wide universality in both reactants, including various carbonaceous and nitrogenous sources, and metal catalysts, including Au, Ag, Fe, Cu, Ni, Pt, and Pd NPs. Furthermore, with the removal of this reaction, adsorbed CO with diverse adsorption configurations was observed via surface-enhanced Raman spectroscopy under ambient conditions without an applied potential. Our work highlights the non-negligible significance of surfactants in interfacial microenvironments and provides crucial insights into the fundamental understanding of interfacial chemical reactions.
Collapse
Affiliation(s)
- Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ping Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuting Huang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jinjuan Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiang-Dong Tian
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Na Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
9
|
Xu Y, Aljuhani W, Zhang Y, Ye Z, Li C, Bell SEJ. A practical approach to quantitative analytical surface-enhanced Raman spectroscopy. Chem Soc Rev 2025; 54:62-84. [PMID: 39569575 DOI: 10.1039/d4cs00861h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Many of the features of SERS, such as its high sensitivity, molecular specificity and speed of analysis make it attractive as an analytical technique. However, SERS currently remains a specialist technique which has not yet entered the mainstream of analytical chemistry. Therefore, this review draws out the underlying principles for analytical SERS and provides practical tips and tricks for SERS quantitation. The aim is to show the readers how to rationally design their SERS experiments to improve quantitation performance. We begin by introducing the three core components in SERS analysis: (1) the enhancing substrate material, (2) the Raman instrument and (3) the processed data that is used to establish a calibration curve. This is followed by discussion of the analytical figures of merit relevant to SERS. In the following sections each of the three essential components in SERS quantitation and how they affect the quality of the analysis are described in more detail using examples from the literature. Finally, we highlight the current challenges in applying SERS to the analysis of complex real-life samples and briefly introduce the state-of-the-art developments on multifunctional substrates, digital SERS and AI-assisted data processing, which will help SERS rise to the challenge of moving out into routine real-world analysis.
Collapse
Affiliation(s)
- Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China.
| | - Wafaa Aljuhani
- School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| | - Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| | - Ziwei Ye
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China.
| | - Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, 516 Jungong Road, 200093, Shanghai, P. R. China.
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| |
Collapse
|
10
|
Kowalska O, Piergies N, Barbasz A, Niemiec P, Gnacek P, Duraczyńska D, Oćwieja M. Spectroscopic Properties and Biological Activity of Fluphenazine Conjugates with Gold Nanoparticles. Molecules 2024; 29:5948. [PMID: 39770038 PMCID: PMC11676885 DOI: 10.3390/molecules29245948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Fluphenazine (FPZ) is a well-known neuroleptic that has attracted considerable scientific interest due to its biocidal, virucidal, and antitumor properties. Although methods for encapsulating and delivering FPZ to enhance its activity and reduce side effects have been developed, there is still limited knowledge about its conjugates with gold nanoparticles (AuNPs). Therefore, the aim of this research was to develop a preparation method for stable FPZ-AuNP conjugates and to investigate their physicochemical and biological properties. FPZ-AuNP conjugates were synthesized via a ligand exchange process on the surface of gold nanoparticles (AuNPs) with an average size of 17 ± 5 nm. Electrokinetic measurements revealed that the zeta potential of FPZ-AuNPs is affected by both their composition and pH. The FPZ-AuNPs exhibited an isoelectric point due to the acid-base properties of FPZ. Surface-enhanced Raman spectroscopy (SERS), combined with density functional theory (DFT), was used to determine the adsorption structure of FPZ after conjugation. Studies with human neuroblastoma cells (SH-SY5Y) revealed that FPZ-AuNP conjugates more effectively reduced cell viability compared to citrate-stabilized AuNPs alone or free FPZ molecules. The reduction in SH-SY5Y cell viability was found to be dependent on the FPZ-AuNP concentration.
Collapse
Affiliation(s)
- Oliwia Kowalska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| | - Natalia Piergies
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorazych 2, PL-30084 Krakow, Poland;
| | - Piotr Niemiec
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Applied Sciences in Tarnow, Mickiewicza 8, PL-33100 Tarnow, Poland;
| | - Patrycja Gnacek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| |
Collapse
|
11
|
Imbir G, Wach A, Czapla-Masztafiak J, Wójcik A, Sá J, Szlachetko J. Probing electronic-structure pH-dependency of Au nanoparticles through X-ray Absorption Spectroscopy. Sci Rep 2024; 14:30059. [PMID: 39627326 PMCID: PMC11615364 DOI: 10.1038/s41598-024-81580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Research on gold nanoparticles (Au NPs) remains a field of intense activity due to their broad range of applications in diverse fields like catalysis, renewable energy, environmental science, and medicine. Herein, the morphological and electronic structures investigation of Au NPs prepared at different pH values is reported. The dependence of the localized surface plasmon resonance wavelength and electronic structure with size was determined by combining transmission electron microscopy, and various spectroscopic methods led by X-ray absorption spectroscopy. The X-ray absorption experiments evidenced that the citrate-stabilized Au NPs bulk electronic structure remains intact over a broad range of pHs, and changes were detected resulting from differences in NPs surface terminations.
Collapse
Affiliation(s)
- Gabriela Imbir
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Anna Wach
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30 392, Krakow, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland
| | - Joanna Czapla-Masztafiak
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Anna Wójcik
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059, Krakow, Poland
| | - Jacinto Sá
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland
- Physical Chemistry Division, Department of Chemistry, Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30 392, Krakow, Poland.
| |
Collapse
|
12
|
Romain M, Elie-Caille C, Ben Elkadhi D, Heintz O, Herbst M, Maurizi L, Boireau W, Millot N. Multiplex Evaluation of Biointerface-Targeting Abilities and Affinity of Synthetized Nanoparticles-A Step Towards Improved Nanoplatforms for Biomedical Applications. Molecules 2024; 29:5270. [PMID: 39598659 PMCID: PMC11596608 DOI: 10.3390/molecules29225270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
To obtain versatile nanoplatforms comparable for various bio-applications, synthesis and functionalization of two inorganic nanoparticles (NPs), i.e., gold (AuNPs) and iron oxide (SPIONs), are described for different NP diameters. Chosen ligands have adapted chemical function to graft to the surfaces of the NPs (thiols and phosphonates, respectively) and the identical frequently used external carboxyl group for comparison of the NPs' material effect on their final behavior. To further evaluate molecular length effect, AuNPs are functionalized by different ligands. Numerous characterizations highlight the colloidal stability when grafting organic molecules on NPs. The potentiality of the functionalized NPs to react efficiently with a protein monolayer is finally evaluated by grafting them on a protein covered chip, characterized by atomic force microscopy. Comparison of the NPs' surface densities and measured heights enable observation of different NPs' reactivity and infer the influence of the inorganic core material, as well as the NPs' size and ligand length. AuNPs have higher affinities to biomolecules, especially when covered by shorter ligands. NP ligands should be chosen not only based on their length but also on their chemical chain, which affects proteic layer interactions. This original multiplex comparison method using AFM is of great interest to screen the effects of used NP materials and functionalization when developing theranostic nanoplatforms.
Collapse
Affiliation(s)
- Mélanie Romain
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Céline Elie-Caille
- Institut FEMTO-ST, UMR 6174 CNRS—Université de Franche-Comté, 25030 Besançon, France;
| | - Dorra Ben Elkadhi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Olivier Heintz
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Michaële Herbst
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| | - Wilfrid Boireau
- Institut FEMTO-ST, UMR 6174 CNRS—Université de Franche-Comté, 25030 Besançon, France;
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne, 21078 Dijon, France; (M.R.); (D.B.E.); (O.H.); (M.H.); (L.M.)
| |
Collapse
|
13
|
Chen Y, Zhang Z, Wu Y, Wu Y, Wang J, Liu M, Chen L. Surfactant-Free Method to Prevent Gold Nanoparticle Aggregation and Its Surface-Enhanced Raman Scattering Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21832-21841. [PMID: 39356478 DOI: 10.1021/acs.langmuir.4c03096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The introduction of surfactants to stabilize colloidal citrate-reduced gold nanoparticles (prevent aggregation) is usually used in surface-enhanced Raman scattering (SERS) applications. However, the surfactants have many drawbacks for SERS applications, such as increasing the SERS background and blocking surface active sites. Here, we develop a surfactant-free method to stabilize colloidal cit-AuNPs based on alkali regulation, and this method can prevent gold nanoparticle aggregation under different harsh treatments, including ligand modification, centrifugation-based washing/enrichment, and salt addition. The SERS spectra, density functional theory simulation, and ζ potentials of cit-AuNPs indicate that the stability of enhanced cit-AuNPs under alkaline conditions is attributed to both the increased negative charge density (by ∼6 times from pH 7 to 12) and the molecular configuration on the metal surface. Compared with surfactant-based methods, this method can well maintain the inherent optical and interface properties of nanoparticles, avoid the SERS background, and avoid blocking of the surface active site due to the presence of surfactants. This method will enable AuNPs to have a wide range of applications in areas such as highly sensitive SERS sensors.
Collapse
Affiliation(s)
- Yan Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai 264003, China
| | - Yanzhou Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meichun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai 264003, China
| |
Collapse
|
14
|
Li KK, Hao M, Kinoshita S, Xia Y. Facile Synthesis and Characterization of Uniform Au Nanospheres Capped by Citrate for Biomedical Applications. Chemistry 2024; 30:e202401144. [PMID: 38924574 DOI: 10.1002/chem.202401144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
We report a simple and versatile method for effectively replacing the toxic ligands, such as cetyltrimethylammonium bromide (CTAB) and cetyltrimethylammonium chloride (CTAC), on the surface of Au nanospheres with different sizes by citrate. The method involves the deposition of an ultrathin shell of fresh Au in the presence of sodium citrate at an adequate concentration. After the ligand exchange process, multiple techniques are used to confirm that the surface of the resultant Au nanospheres is covered by citrate while there is no sign of aggregation. We also demonstrate the mitigation of cell toxicity after exchanging the surface-bound CTAB/CTAC with citrate, opening the door to a range of biomedical applications.
Collapse
Affiliation(s)
- Kei Kwan Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, United States
| | - Seth Kinoshita
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, United States
| |
Collapse
|
15
|
Snopok BA, Nizamov SN, Snopok TV, Mirsky VM. Agglomeration compaction promotes corrosion of gold nanoparticles. NANOSCALE ADVANCES 2024; 6:3865-3877. [PMID: 39050952 PMCID: PMC11265584 DOI: 10.1039/d4na00109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Engineered nanoparticles are increasingly being used in various areas of human activity. However, the degradation mechanism of nanobodies in harsh environments is still a puzzle for theory and experiment. We report here the results of optical spectroscopy and nanoparticle tracking analysis, quantifying agglomeration and sizing of 50 nm citrate stabilized gold nanoparticles (GNPs) in HCl solutions containing H2O2. The mechanism of a consecutive corrosion reaction of GNPs is discussed within the framework of the near-field approach. We found that the disappearance of single nanoparticles from a suspension does not occur due to their dissolution per se, but is a consequence of the formation of aggregates. The neutralization of electrostatic shielding at high ionic strength allows gold nanoparticles to approach the subnanometer distance within the region of capping defects, at which the Casimir and van der Waals attractive forces dominate. It is suggested that electric field fluctuations in the confined space between highly conductive gold nanoparticles cause complexant-stimulated loss of metal from the core in the contact area. Going beyond the charge screening limitations by constraining the reaction space and reducing the double electrical layer thickness allows for chemical processes flow along otherwise not accessible reaction pathways.
Collapse
Affiliation(s)
- Borys A Snopok
- VE Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine 41 pr. Nauki Kyiv 03028 Ukraine
| | - Shavkat N Nizamov
- Nanobiotechnology - Institute of Biotechnology, Brandenburg Technical University, Cottbus-Senftenberg Universitätsplatz 1 Senftenberg 01968 Germany
| | - Tetiana V Snopok
- VE Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine 41 pr. Nauki Kyiv 03028 Ukraine
| | - Vladimir M Mirsky
- Nanobiotechnology - Institute of Biotechnology, Brandenburg Technical University, Cottbus-Senftenberg Universitätsplatz 1 Senftenberg 01968 Germany
| |
Collapse
|
16
|
Ma H, Pan SQ, Wang WL, Yue X, Xi XH, Yan S, Wu DY, Wang X, Liu G, Ren B. Surface-Enhanced Raman Spectroscopy: Current Understanding, Challenges, and Opportunities. ACS NANO 2024; 18:14000-14019. [PMID: 38764194 DOI: 10.1021/acsnano.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
While surface-enhanced Raman spectroscopy (SERS) has experienced substantial advancements since its discovery in the 1970s, it is an opportunity to celebrate achievements, consider ongoing endeavors, and anticipate the future trajectory of SERS. In this perspective, we encapsulate the latest breakthroughs in comprehending the electromagnetic enhancement mechanisms of SERS, and revisit CT mechanisms of semiconductors. We then summarize the strategies to improve sensitivity, selectivity, and reliability. After addressing experimental advancements, we comprehensively survey the progress on spectrum-structure correlation of SERS showcasing their important role in promoting SERS development. Finally, we anticipate forthcoming directions and opportunities, especially in deepening our insights into chemical or biological processes and establishing a clear spectrum-structure correlation.
Collapse
Affiliation(s)
- Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Xiaxia Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Backhaus A, Albrecht J, Alzhanova G, Long A, Arnold W, Lee J, Tse HY, Su TT, Cruz-Gomez S, Lee SSS, Menges F, Parent LR, Ratjen L, Burtness B, Fortner JD, Zimmerman JB. Multiplexable and Scalable Aqueous Synthesis Platform for Oleate-Based, Bilayer-Coated Gold Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309919. [PMID: 38377304 DOI: 10.1002/smll.202309919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Despite gold-based nanomaterials having a unique role in nanomedicine, among other fields, synthesis limitations relating to reaction scale-up and control result in prohibitively high gold nanoparticle costs. In this work, a new preparation procedure for lipid bilayer-coated gold nanoparticles in water is presented, using sodium oleate as reductant and capping agent. The seed-free synthesis not only allows for size precision (8-30 nm) but also remarkable particle concentration (10 mm Au). These reaction efficiencies allow for multiplexing and reaction standardization in 96-well plates using conventional thermocyclers, in addition to simple particle purification via microcentrifugation. Such a multiplexing approach also enables detailed spectroscopic investigation of the nonlinear growth process and dynamic sodium oleate/oleic acid self-assembly. In addition to scalability (at gram-level), resulting gold nanoparticles are stable at physiological pH, in common cell culture media, and are autoclavable. To demonstrate the versatility and applicability of the reported method, a robust ligand exchange with thiolated polyethylene glycol analogues is also presented.
Collapse
Affiliation(s)
- Andreas Backhaus
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, Rm 530, New Haven, CT, 06511, USA
| | - Jillian Albrecht
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, Rm 530, New Haven, CT, 06511, USA
| | - Gaukhar Alzhanova
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, Rm 530, New Haven, CT, 06511, USA
| | - Avery Long
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, Rm 530, New Haven, CT, 06511, USA
| | - Wyatt Arnold
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, Rm 530, New Haven, CT, 06511, USA
| | - Junseok Lee
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, Rm 530, New Haven, CT, 06511, USA
| | - Ho-Yin Tse
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - Tina T Su
- Department of Immunology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Sebastian Cruz-Gomez
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Seung Soo S Lee
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, Rm 530, New Haven, CT, 06511, USA
| | - Fabian Menges
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Lucas R Parent
- Innovation Partnership Building, University of Connecticut, Storrs, CT, 06269, USA
| | - Lars Ratjen
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - Barbara Burtness
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, Rm 530, New Haven, CT, 06511, USA
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, Rm 530, New Haven, CT, 06511, USA
| |
Collapse
|
18
|
Gentry NE, Kurimoto A, Cui K, Cleron JL, Xiang CM, Hammes-Schiffer S, Mayer JM. Hydrogen on Colloidal Gold Nanoparticles. J Am Chem Soc 2024; 146:14505-14520. [PMID: 38743444 DOI: 10.1021/jacs.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Colloidal gold nanoparticles (AuNPs) have myriad scientific and technological applications, but their fundamental redox chemistry is underexplored. Reported here are titration studies of oxidation and reduction reactions of aqueous AuNP colloids, which show that the AuNPs bind substantial hydrogen (electrons + protons) under mild conditions. The 5 nm AuNPs are reduced to a similar extent with reductants from borohydrides to H2 and are reoxidized back essentially to their original state by oxidants, including O2. The reactions were monitored via surface plasmon resonance (SPR) optical absorption, which was shown to be much more sensitive to surface H than to changes in solution conditions. Reductions with H2 occurred without pH changes, demonstrating that hydrogenation forms surface H rather than releasing H+. Computational studies suggested that an SPR blueshift was expected for H atom addition, while just electron addition likely would have caused a redshift. Titrations consistently showed a maximum redox change of the 5 nm NPs, independent of the reagent, corresponding to 9% of the total gold or ∼30% hydrogen surface coverage (∼370 H per AuNP). Larger AuNPs showed smaller maximum fractional surface coverages. We conclude that H binds to the edge, corner, and defect sites of the AuNPs, which explains the stoichiometric limitation and the size effect. The finding of substantial and stable hydrogen on the AuNP surface under mild reducing conditions has potential implications for various applications of AuNPs in reducing environments, from catalysis to biomedicine. This finding contrasts with the behavior of bulk gold and with the typical electron-focused perspective in this field.
Collapse
Affiliation(s)
- Noreen E Gentry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Aiko Kurimoto
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kai Cui
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Jamie L Cleron
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Claire M Xiang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
19
|
Keerthana L, Dharmalingam G. Chemically engineered plasmonic Au-gallium oxide nanocomposites for harsh environment applications: an investigation into thermal and chemical robustness. Phys Chem Chem Phys 2024; 26:15018-15031. [PMID: 38742899 DOI: 10.1039/d3cp05831j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Enhanced thermal, chemical, and mechanical properties of different metal nanoparticle morphologies integrated with metal oxides have been reported in multiple instances. The chemical and material robustness of metal nanoparticles incorporated surficially and into the bulk of distinct as well as spontaneously formed morphologies of metal oxides through solution-based and microwave-based approaches are investigated in this study. These composites were tested for their chemical and material robustness by exposing films formed on quartz substrates to high temperatures (800 °C) in an air ambient as well as to extreme conditions of pH, often encountered in harsh environment applications such as sensing and catalysis. The changes in the optical properties and crystallinity have been studied using in situ absorption and ex situ X-ray diffraction analyses and electron microscopy. The trends observed with respect to the changes in the plasmonic absorbance were validated theoretically and found to be in reasonable agreement with the experimental data. Confirmations of the phenomena occurring in different morphologies and architectures were thereby corroborated through careful interpretations from experiments and predictions from theoretical models. We, therefore, report a simple solution-based process for achieving engineered harsh environment-compatible nanocomposites through studies specifically tailored for such applications such as catalysis, sensing, energy storage, and enhanced luminescence.
Collapse
Affiliation(s)
- L Keerthana
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004, India.
| | | |
Collapse
|
20
|
Peixoto LPDF, Pandey SD, Barbosa MB, Fantini CL, da Silva MT, Fontes RA, Sacorague LA, de Carvalho RM, Lopes IMF. Gold nanoparticles for surface-enhanced Raman scattering detection of benzyldimethyldodecylammonium chloride at low concentration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123752. [PMID: 38134659 DOI: 10.1016/j.saa.2023.123752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
The oil and gas industry plays a vital role in the global economy. The production process has several critical conditions and can expose metals to corrosion. Surfactants like the quaternary ammonium salt Benzyldimethyldodecylammonium Bromide (BDAC) are currently used to prevent corrosions; classical methods for determining these surfactants have problems in saline samples and usually present high costs. In this context, spectroscopic techniques become an excellent alternative for quaternary ammonium salts detection. Here, a SERS (surface-enhanced Raman scattering) sensor based on gold nanoparticles (AuNPs) synthesized through chemical reduction was used as an alternative method for BDAC detection. We detected BDAC at low concentrations in water solutions: at 5 to 30 ppm (1.47 × 10-5 mol L-1 to 8.82 × 10-5 mol L-1); and had the vibration attempt attribute analyzed. A new study of quaternary ammonium compounds using AuNPs and SERS with a different, easy, and repeatable approach to spectra acquisition is presented and shows to be a promising method applied in quaternary ammonium salt compounds detection for the oil and gas industry.
Collapse
Affiliation(s)
- Linus Pauling de Faria Peixoto
- Instituto SENAI de Inovação em Engenharia de Superfícies - Centro de Inovação e Tecnologia CIT SENAI, Horto, Belo Horizonte/MG, Brazil; Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Sugandha Dogra Pandey
- Instituto SENAI de Inovação em Engenharia de Superfícies - Centro de Inovação e Tecnologia CIT SENAI, Horto, Belo Horizonte/MG, Brazil
| | - Mariana Botelho Barbosa
- Instituto SENAI de Inovação em Engenharia de Superfícies - Centro de Inovação e Tecnologia CIT SENAI, Horto, Belo Horizonte/MG, Brazil
| | | | - Monica Teixeira da Silva
- Centro de Pesquisas, Desenvolvimento e Inovação Leopoldo Américo Miguez de Mello - Cenpes/Petrobras, Ilha do Fundão, Rio de Janeiro, RJ 21941-915, Brazil
| | - Rosane Alves Fontes
- Centro de Pesquisas, Desenvolvimento e Inovação Leopoldo Américo Miguez de Mello - Cenpes/Petrobras, Ilha do Fundão, Rio de Janeiro, RJ 21941-915, Brazil
| | - Luiz Alexandre Sacorague
- Centro de Pesquisas, Desenvolvimento e Inovação Leopoldo Américo Miguez de Mello - Cenpes/Petrobras, Ilha do Fundão, Rio de Janeiro, RJ 21941-915, Brazil
| | - Rogério Mesquita de Carvalho
- Centro de Pesquisas, Desenvolvimento e Inovação Leopoldo Américo Miguez de Mello - Cenpes/Petrobras, Ilha do Fundão, Rio de Janeiro, RJ 21941-915, Brazil
| | - Isabela Maria Ferreira Lopes
- Instituto SENAI de Inovação em Engenharia de Superfícies - Centro de Inovação e Tecnologia CIT SENAI, Horto, Belo Horizonte/MG, Brazil.
| |
Collapse
|
21
|
Lyu Y, Becerril LM, Vanzan M, Corni S, Cattelan M, Granozzi G, Frasconi M, Rajak P, Banerjee P, Ciancio R, Mancin F, Scrimin P. The Interaction of Amines with Gold Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211624. [PMID: 36952309 DOI: 10.1002/adma.202211624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Understanding the interactions between amines and the surface of gold nanoparticles is important because of their role in the stabilization of the nanosystems, in the formation of the protein corona, and in the preparation of semisynthetic nanozymes. By using fluorescence spectroscopy, electrochemistry, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and molecular simulation, a detailed picture of these interactions is obtained. Herein, it is shown that amines interact with surface Au(0) atoms of the nanoparticles with their lone electron pair with a strength linearly correlating with their basicity corrected for steric hindrance. The kinetics of binding depends on the position of the gold atoms (flat surfaces or edges) while the mode of binding involves a single Au(0) with nitrogen sitting on top of it. A small fraction of surface Au(I) atoms, still present, is reduced by the amines yielding a much stronger Au(0)-RN.+ (RN. , after the loss of a proton) interaction. In this case, the mode of binding involves two Au(0) atoms with a bridging nitrogen placed between them. Stable Au nanoparticles, as those required for robust semisynthetic nanozymes preparation, are better obtained when the protein is involved (at least in part) in the reduction of the gold ions.
Collapse
Affiliation(s)
- Yanchao Lyu
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | | | - Mirko Vanzan
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Mattia Cattelan
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Piu Rajak
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Abdus Salam International Centre for Theoretical Physics, Via Beirut, 6, Trieste, 34151, Italy
| | - Pritam Banerjee
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Abdus Salam International Centre for Theoretical Physics, Via Beirut, 6, Trieste, 34151, Italy
| | - Regina Ciancio
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Area Science Park, Padriciano 99, Trieste, 34149, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| |
Collapse
|
22
|
Yokoyama K, Barbour E, Hirschkind R, Martinez Hernandez B, Hausrath K, Lam T. Protein Corona Formation and Aggregation of Amyloid β 1-40-Coated Gold Nanocolloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1728-1746. [PMID: 38194428 DOI: 10.1021/acs.langmuir.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Amyloid fibrillogenesis is a pathogenic protein aggregation process that occurs through a highly ordered process of protein-protein interactions. To better understand the protein-protein interactions involved in amyloid fibril formation, we formed nanogold colloid aggregates by stepwise additions of ∼2 nmol of amyloid β 1-40 peptide (Aβ1-40) at pH ∼3.7 and ∼25 °C. The processes of protein corona formation and building of gold colloid [diameters (d) of 20 and 80 nm] aggregates were confirmed by a red-shift of the surface plasmon resonance (SPR) band, λpeak, as the number of Aβ1-40 peptides [N(Aβ1-40)] increased. The normalized red-shift of λpeak, Δλ, was correlated with the degree of protein aggregation, and this process was approximated as the adsorption isotherm explained by the Langmuir-Freundlich model. As the coverage fraction (θ) was analyzed as a function of ϕ, which is the N(Aβ1-40) per total surface area of nanogold colloids available for adsorption, the parameters for explaining the Langmuir-Freundlich model were in good agreement for both 20 and 80 nm gold, indicating that ϕ could define the stage of the aggregation process. Surface-enhanced Raman scattering (SERS) imaging was conducted at designated values of ϕ and suggested that a protein-gold surface interaction during the initial adsorption stage may be dependent on the nanosize. The 20 nm gold case seems to prefer a relatively smaller contacting section, such as a -C-N or C═C bond, but a plane of the benzene ring may play a significant role for 80 nm gold. Regardless of the size of the particles, the β-sheet and random coil conformations were considered to be used to form gold colloid aggregates. The methodology developed in this study allows for new insights into protein-protein interactions at distinct stages of aggregation.
Collapse
Affiliation(s)
- Kazushige Yokoyama
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Eli Barbour
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Rachel Hirschkind
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Bryan Martinez Hernandez
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Kaylee Hausrath
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Theresa Lam
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| |
Collapse
|
23
|
Xiong Y, Chikkaraddy R, Readman C, Hu S, Xiong K, Peng J, Lin Q, Baumberg JJ. Metal to insulator transition for conducting polymers in plasmonic nanogaps. LIGHT, SCIENCE & APPLICATIONS 2024; 13:3. [PMID: 38161207 PMCID: PMC10757999 DOI: 10.1038/s41377-023-01344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Conjugated polymers are promising material candidates for many future applications in flexible displays, organic circuits, and sensors. Their performance is strongly affected by their structural conformation including both electrical and optical anisotropy. Particularly for thin layers or close to crucial interfaces, there are few methods to track their organization and functional behaviors. Here we present a platform based on plasmonic nanogaps that can assess the chemical structure and orientation of conjugated polymers down to sub-10 nm thickness using light. We focus on a representative conjugated polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), of varying thickness (2-20 nm) while it undergoes redox in situ. This allows dynamic switching of the plasmonic gap spacer through a metal-insulator transition. Both dark-field (DF) and surface-enhanced Raman scattering (SERS) spectra track the optical anisotropy and orientation of polymer chains close to a metallic interface. Moreover, we demonstrate how this influences both optical and redox switching for nanothick PEDOT devices.
Collapse
Affiliation(s)
- Yuling Xiong
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Rohit Chikkaraddy
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Charlie Readman
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shu Hu
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Kunli Xiong
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jialong Peng
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- College of Advanced Interdisciplinary Studies and Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, China
| | - Qianqi Lin
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
24
|
Ma T, Chang S, He J, Liang F. Emerging sensing platforms based on Cucurbit[ n]uril functionalized gold nanoparticles and electrodes. Chem Commun (Camb) 2023; 60:150-167. [PMID: 38054368 DOI: 10.1039/d3cc04851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cucurbit[n]urils (CB[n]s, n = 5-8, 10, and 14), synthetic macrocycles with unique host-guest properties, have triggered increasing research interest in recent years. Gold nanoparticles (Au NPs) and electrodes stand out as exceptional substrates for sensing due to their remarkable physicochemical characteristics. Coupling the CB[n]s with Au NPs and electrodes has enabled the development of emerging sensing platforms for various promising applications. However, monitoring the behavior of analytes at the single-molecule level is currently one of the most challenging topics in the field of CB[n]-based sensing. Constructing supramolecular junctions in a sensing platform provides an ideal structure for single-molecule analysis, which can provide insights for a fundamental understanding of supramolecular interactions and chemical reactions and guide the design of sensing applications. This feature article outlines the progress in the preparation of the CB[n] functionalized Au NPs and Au electrodes, as well as the construction and application of supramolecular junctions in sensing platforms, based on the methods of recognition tunneling (RT), surface-enhanced Raman spectroscopy (SERS), single-molecule force spectroscopy (SMFS), and electrochemical sensing (ECS). A brief perspective on the future development of and challenges in CB[n] mediated sensing platforms is also covered.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, USA.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
25
|
Díaz-García V, Haensgen A, Inostroza L, Contreras-Trigo B, Oyarzun P. Novel Microsynthesis of High-Yield Gold Nanoparticles to Accelerate Research in Biosensing and Other Bioapplications. BIOSENSORS 2023; 13:992. [PMID: 38131752 PMCID: PMC10742281 DOI: 10.3390/bios13120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit unique properties that make them appealing for applications in biosensing and other emerging fields. Despite the availability of numerous synthesis methods, important questions remain to be addressed regarding the volume effect on the synthesis yield and quality of AuNPs in the light of biosensing research. The present study addresses these issues by developing a novel microvolumetric citrate-reduction method to improve the synthesis of AuNPs, which were characterized by electronic microscopy, energy dispersive spectroscopy, zeta potential and colorimetric analysis. A comparison of the novel microsynthesis method with the standard Turkevich method demonstrated its superior performance in terms of yield, monodispersity, rapidity (in one step), reproducibility, and stability. The analytical behavior of AuNPs-based aptasensors prepared by microsynthesis was investigated using kanamycin detection and showed higher reproducibility and improved detection limits (3.4 times) compared to those of Turkevich AuNPs. Finally, the effect of pH was studied to demonstrate the suitability of the method for the screening of AuNP synthesis parameters that are of direct interest in biosensing research; the results showed an optimal pH range between 5.0 and 5.5. In summary, the approach described herein has the potential to improve research capabilities in biosensing, with the added benefits of lowering costs and minimizing waste generation in line with current trends in green nanotechnology.
Collapse
Affiliation(s)
- Víctor Díaz-García
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| | | | | | | | - Patricio Oyarzun
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| |
Collapse
|
26
|
Huang Z, Krishnakumar H, Denomme R, Liu J. TMB +-mediated etching of urchin-like gold nanostructures for colorimetric sensing. NANOTECHNOLOGY 2023; 35:045501. [PMID: 37852225 DOI: 10.1088/1361-6528/ad0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The morphology-dependent localized surface plasmon resonance of gold nanostructures has been widely utilized for designing sensors. One method relies on the color change of gold nanoparticles upon etching. In previous work, TMB2+oxidized from 3,3',5,5'-tetramethylbenzidine (TMB) was found to etch gold nanorods (AuNRs), leading to a spectrum of different colors. However, the preparation of TMB2+needs the addition of a strong acid and other harsh conditions. Herein, a new colorimetric biosensing platform was developed using urchin-like gold nanoparticles (AuNUs). Compared with AuNRs, the etching of AuNUs can happen under mild conditions by TMB+at pH 6, protecting enzymes and proteins from denaturation. The role of CTAB surfactant was dissected, and its bromide ions were found to be involved in the etching process. Based on these observations, a one-step colorimetric detection of H2O2was realized by using horseradish peroxidase and H2O2to oxidize TMB. Within 30 min, this system achieved a detection limit of 80 nM H2O2. This work offered fundamental insights into the etching of anisotropic gold nanostructures and optimized the etching conditions. These advancements hold promise for broader applications in biosensing and analytical chemistry.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Harish Krishnakumar
- Nicoya Lifesciences Inc. 283 Duke St W Suite 226, Kitchener, N2H 3X7, Canada
| | - Ryan Denomme
- Nicoya Lifesciences Inc. 283 Duke St W Suite 226, Kitchener, N2H 3X7, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
27
|
Niihori M, Földes T, Readman CA, Arul R, Grys DB, Nijs BD, Rosta E, Baumberg JJ. SERS Sensing of Dopamine with Fe(III)-Sensitized Nanogaps in Recleanable AuNP Monolayer Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302531. [PMID: 37605460 DOI: 10.1002/smll.202302531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Indexed: 08/23/2023]
Abstract
Sensing of neurotransmitters (NTs) down to nm concentrations is demonstrated by utilizing self-assembled monolayers of plasmonic 60 nm Au nanoparticles in close-packed arrays immobilized onto glass substrates. Multiplicative surface-enhanced Raman spectroscopy enhancements are achieved by integrating Fe(III) sensitizers into the precisely-defined <1 nm nanogaps, to target dopamine (DA) sensing. The transparent glass substrates allow for efficient access from both sides of the monolayer aggregate films by fluid and light, allowing repeated sensing in different analytes. Repeated reusability after analyte sensing is shown through oxygen plasma cleaning protocols, which restore pristine conditions for the nanogaps. Examining binding competition in multiplexed sensing of two catecholamine NTs, DA and epinephrine, reveals their bidentate binding and their interactions. These systems are promising for widespread microfluidic integration enabling a wide range of continuous biofluid monitoring for applications in precision health.
Collapse
Affiliation(s)
- Marika Niihori
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - Tamás Földes
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Charlie A Readman
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - Rakesh Arul
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - David-Benjamin Grys
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - Bart de Nijs
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Jeremy J Baumberg
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| |
Collapse
|
28
|
Romain M, Roman P, Saviot L, Millot N, Boireau W. Inferring the Interfacial Reactivity of Gold Nanoparticles by Surface Plasmon Resonance Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13058-13067. [PMID: 37674412 DOI: 10.1021/acs.langmuir.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Gold nanoparticles (GNPs) require a functionalization step in most cases to be suitable for applications. Optimizing this step in order to maintain both the stability and the plasmonic properties of the GNPs is a demanding process. Indeed, multiple analyses are required to get sufficient information on the grafting rate and the stability of the obtained suspension, leading to material and time waste. In this study, we propose to investigate ligand reactivity on a gold surface with surface plasmon resonance (SPR) measurements as a way to simulate the reactivity in GNP suspensions. We consider two thiolated ligands in this work: thioglycolic acid (TA) and 6-mercaptohexanoic acid (MHA). These thiols are grafted using different conditions on GNPs (monitored by optical absorption) and on a gold surface (monitored by SPR) and the grafting efficiency and stability are compared. The same conclusions are reached in both cases regarding the best protocol to implement, namely, the thiol molecules should be introduced in a water solution at a low concentration. This demonstrates the suitability of SPR to predict the reactivity on a GNP surface.
Collapse
Affiliation(s)
- Mélanie Romain
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Phoölan Roman
- Université de Franche-Comté, CNRS, Institut Femto-ST, Besançon F-25030, France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université de Bourgogne, BP 47870, Dijon 21078, France
| | - Wilfrid Boireau
- Université de Franche-Comté, CNRS, Institut Femto-ST, Besançon F-25030, France
| |
Collapse
|
29
|
Fu Y, Zhao S, Fan Y, Ho YYL, Wang Y, Lei D, Gu P, Russell TP, Chai Y. Using Aggregation to Chaperone Nanoparticles Across Fluid Interfaces. Angew Chem Int Ed Engl 2023; 62:e202308853. [PMID: 37503554 DOI: 10.1002/anie.202308853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
Nanoparticles (NPs) transfer is usually induced by adding ligands to modify NP surfaces, but aggregation of NPs oftentimes hampers the transfer. Here, we show that aggregation during NP phase transfer does not necessarily result in transfer failure. Using a model system comprising gold NPs and amphiphilic polymers, we demonstrate an unusual mechanism by which NPs can undergo phase transfer from the aqueous phase to the organic phase via a single-aggregation-single pathway. Our discovery challenges the conventional idea that aggregation inhibits NP transfer and provides an unexpected pathway for transferring larger-sized NPs (>20 nm). The charged amphiphilic polymers effectively act as chaperons for the NP transfer and offer a unique way to manipulate the dispersion and distribution of NPs in two immiscible liquids. Moreover, by intentionally jamming the NP-polymer assembly at the liquid/liquid interface, the transfer process can be inhibited.
Collapse
Affiliation(s)
- Yuchen Fu
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Sai Zhao
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Yulong Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yannis Yan Lum Ho
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Yu Chai
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| |
Collapse
|
30
|
Pan SQ, Luo P, Chen J, Wu T, Xu B, Chen F, Wu DY, Ren B, Liu GK, Xie J, Xu P, Tian ZQ. Seeing Is Not Necessarily Believing: Is the Surface-Enhanced Raman Spectroscopy Signal Really from the Target? Anal Chem 2023; 95:13346-13352. [PMID: 37611317 DOI: 10.1021/acs.analchem.3c02683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Reagent purity is crucial to experimental research, considering that the ignorance of ultratrace impurities may induce wrong conclusions in either revealing the reaction nature or qualifying the target. Specifically, in the field of surface science, the strong interaction between the impurity and the surface will bring a non-negligible negative effect. Surface-enhanced Raman spectroscopy (SERS) is a highly surface-sensitive technique, providing fingerprint identification and near-single molecule sensitivity. In the SERS analysis of trace chloromethyl diethyl phosphate (DECMP), we figured out that the SERS performance of DECMP is significantly distorted by the trace impurities from DECMP. With the aid of gas chromatography-based techniques, one strongly interfering impurity (2,2-dichloro-N,N-dimethylacetamide), the byproduct during the synthesis of DECMP, was confirmed. Furthermore, the nonignorable interference of impurities on the SERS measurement of NaBr, NaI, or sulfadiazine was also observed. The generality ignited us to refresh and consolidate the guideline for the reliable SERS qualitative analysis, by which the potential misleading brought by ultratrace impurities, especially those strongly adsorbed on Au or Ag surfaces, could be well excluded.
Collapse
Affiliation(s)
- Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ping Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Tairui Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Fushan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Pengxiang Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
31
|
Veloso SRS, Marta ES, Rodrigues PV, Moura C, Amorim CO, Amaral VS, Correa-Duarte MA, Castanheira EMS. Chitosan/Alginate Nanogels Containing Multicore Magnetic Nanoparticles for Delivery of Doxorubicin. Pharmaceutics 2023; 15:2194. [PMID: 37765164 PMCID: PMC10538132 DOI: 10.3390/pharmaceutics15092194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, multicore-like iron oxide (Fe3O4) and manganese ferrite (MnFe2O4) nanoparticles were synthesized and combined with nanogels based on chitosan and alginate to obtain a multimodal drug delivery system. The nanoparticles exhibited crystalline structures and displayed sizes of 20 ± 3 nm (Fe3O4) and 11 ± 2 nm (MnFe2O4). The Fe3O4 nanoparticles showed a higher saturation magnetization and heating efficiency compared with the MnFe2O4 nanoparticles. Functionalization with citrate and bovine serum albumin was found to improve the stability and modified surface properties. The nanoparticles were encapsulated in nanogels, and provided high drug encapsulation efficiencies (~70%) using doxorubicin as a model drug. The nanogels exhibited sustained drug release, with enhanced release under near-infrared (NIR) laser irradiation and acidic pH. The nanogels containing BSA-functionalized nanoparticles displayed improved sustained drug release at physiological pH, and the release kinetics followed a diffusion-controlled mechanism. These results demonstrate the potential of synthesized nanoparticles and nanogels for controlled drug delivery, offering opportunities for targeted and on-demand release in biomedical applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Eva S. Marta
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Pedro V. Rodrigues
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, 4804-533 Guimarães, Portugal
| | - Cacilda Moura
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Vítor S. Amaral
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Miguel A. Correa-Duarte
- Centro de Investigación en Nanomateriais e Biomedicina (CINBIO), Universidad de Vigo, 36310 Vigo, Spain
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
32
|
Grys DB, Niihori M, Arul R, Sibug-Torres SM, Wyatt EW, de Nijs B, Baumberg JJ. Controlling Atomic-Scale Restructuring and Cleaning of Gold Nanogap Multilayers for Surface-Enhanced Raman Scattering Sensing. ACS Sens 2023; 8:2879-2888. [PMID: 37411019 PMCID: PMC10391707 DOI: 10.1021/acssensors.3c00967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
We demonstrate the reliable creation of multiple layers of Au nanoparticles in random close-packed arrays with sub-nm gaps as a sensitive surface-enhanced Raman scattering substrate. Using oxygen plasma etching, all the original molecules creating the nanogaps can be removed and replaced with scaffolding ligands that deliver extremely consistent gap sizes below 1 nm. This allows precision tailoring of the chemical environment of the nanogaps which is crucial for practical Raman sensing applications. Because the resulting aggregate layers are easily accessible from opposite sides by fluids and by light, high-performance fluidic sensing cells are enabled. The ability to cyclically clean off analytes and reuse these films is shown, exemplified by sensing of toluene, volatile organic compounds, and paracetamol, among others.
Collapse
Affiliation(s)
- David-Benjamin Grys
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Marika Niihori
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Rakesh Arul
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Sarah May Sibug-Torres
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Elle W. Wyatt
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
33
|
Guo ZY, Zhang C, Chen LM, Zeng MH, Yao QH, Ye TX, Luo HZ, Chen XM, Chen X. Design of competition nanoreactor with shell-isolated colloidal plasmonic nanomaterials for quantitative sensor platform. Talanta 2023; 265:124861. [PMID: 37429252 DOI: 10.1016/j.talanta.2023.124861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Shell-isolated colloid plasmonic nanomaterials-based nanoreactor is a well-established platform widely applied in catalyst or Surface Enhanced Raman Scattering (SERS) sensors. The potentials versatility of nanoreactor platform is mainly implemented by the well-defined and tailorable structure of colloid plasmonic nanomaterials. Currently, a competitive conjugative-mediated nanoreactor is introduced to determine glucose with SERS. Glucose-conjugating nanoreactor, as convertors of the sensors, are constructed by coordinated deposition colloidal gold nanoparticles with sodium nitroprusside framework (Au@SNF) and covalently bonded 4-mercaptopyridine (4-Mpy) with self-assembly strategy. The nanoreactor contained the signal-amplifier Au@SNF NPs, conjugative-mediated signal receiver 4-Mpy, and signal internal standard molecular CN-. In addition to well-defined morphology and functionality, conjugative-mediated and internal standards method are also employed to benefit the nanoreactor. The two-parameter strategy significantly improves the signal indication and correction. Using this proposed platform, the competitive-mediated nanoreactor provides a quantitative SERS detection of glucose, and extends the applicability of SERS in more complicated and reproducibility analysis. Meanwhile, the nanoreactor based sensors also exhibited better properties to detect glucose in various food samples and bio-samples which provided strongly appliance for glucose sensors.
Collapse
Affiliation(s)
- Zhi-Yong Guo
- Institute of Analytical Technology and Smart Instruments and Colleague of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, 361024, China; Xiamen Environmental Monitoring Engineering Technology Research Center, China
| | - Chen Zhang
- Institute of Analytical Technology and Smart Instruments and Colleague of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, 361024, China; Xiamen Environmental Monitoring Engineering Technology Research Center, China
| | - Lin-Min Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Mei-Huang Zeng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Qiu-Hong Yao
- Institute of Analytical Technology and Smart Instruments and Colleague of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, 361024, China
| | - Ting-Xiu Ye
- College of Pharmacy, Xiamen Medicine College, Xiamen, 361005, China
| | - He-Zhou Luo
- SEPL Quality Inspection Technology Service Co., Ltd., Fujian, Fuzhou, 350000, China
| | - Xiao-Mei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
34
|
Selmani A, Jeitler R, Auinger M, Tetyczka C, Banzer P, Kantor B, Leitinger G, Roblegg E. Investigation of the Influence of Wound-Treatment-Relevant Buffer Systems on the Colloidal and Optical Properties of Gold Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1878. [PMID: 37368307 DOI: 10.3390/nano13121878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Biocompatible gold nanoparticles (AuNPs) are used in wound healing due to their radical scavenging activity. They shorten wound healing time by, for example, improving re-epithelialization and promoting the formation of new connective tissue. Another approach that promotes wound healing through cell proliferation while inhibiting bacterial growth is an acidic microenvironment, which can be achieved with acid-forming buffers. Accordingly, a combination of these two approaches appears promising and is the focus of the present study. Here, 18 nm and 56 nm gold NP (Au) were prepared with Turkevich reduction synthesis using design-of-experiments methodology, and the influence of pH and ionic strength on their behaviour was investigated. The citrate buffer had a pronounced effect on the stability of AuNPs due to the more complex intermolecular interactions, which was also confirmed by the changes in optical properties. In contrast, AuNPs dispersed in lactate and phosphate buffer were stable at therapeutically relevant ionic strength, regardless of their size. Simulation of the local pH distribution near the particle surface also showed a steep pH gradient for particles smaller than 100 nm. This suggests that the healing potential is further enhanced by a more acidic environment at the particle surface, making this strategy a promising approach.
Collapse
Affiliation(s)
- Atiđa Selmani
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Ramona Jeitler
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Michael Auinger
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Carolin Tetyczka
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Peter Banzer
- Institute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
| | - Brian Kantor
- Institute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| | - Eva Roblegg
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
35
|
Yokoyama K, Thomas J, Ardner W, Kieft M, Neuwirth LS, Liu W. An Approach for In-Situ Detection of Gold Colloid Aggregates Amyloid Formations Within The Hippocampus of The Cohen's Alzheimer's Disease Rat Model By Surface Enhanced Raman Scattering Methods. J Neurosci Methods 2023; 393:109892. [PMID: 37230258 DOI: 10.1016/j.jneumeth.2023.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Amyloid beta (Aβ) peptides, such as Aβ1-40 or Aβ1-42 are regarded as hallmark neuropathological biomarkers associated with Alzheimer's disease (AD). The formation of an aggregates by Aβ1-40 or Aβ1-42-coated gold nano-particles are hypothesized to contain conformation of Aβ oligomers, which could exist only at an initial stage of fibrillogenesis. NEW METHOD The attempt of in-situ detection of externally initiated gold colloid (ca. 80nm diameter) aggregates in the middle section of the hippocampus of the Long Evans Cohen's Alzheimer's disease rat model was conducted through the Surface Enhanced Raman Scattering (SERS) method. RESULTS The SERS spectral features contained modes associated with β-sheet interactions and a significant number of modes that were previously reported in SERS shifts for Alzheimer diseased rodent and human brain tissues; thereby, strongly implying a containment of amyloid fibrils. The spectral patterns were further examined and compared with those collected from in-vitro gold colloid aggregates which were formed from Aβ1-40 - or Aβ1-42 -coated 80nm gold colloid under pH ~4, pH ~7, and pH ~10, and the best matched datasets were found with that of the aggregates of Aβ1-42 -coated 80nm gold colloid at ~pH 4.0. The morphology and physical size of this specific gold colloid aggregate was clearly different from those found in-vitro. COMPARISON WITH EXISTING METHOD(S) The amyloid fibril with a β-sheet conformation identified in previously reported in AD mouse/human brain tissues was involved in a formation of the gold colloid aggregates. However, to our surprise, best explanation for the observed SERS spectral features was possible with those in vitro Aβ1-42 -coated 80nm gold colloid under pH ~4. CONCLUSIONS A formation of gold colloid aggregates was confirmed in the AD rat hippocampal brain section with unique physical morphology compared to those observed in in-vitro Aβ1-42 or Aβ1-40 mediated gold colloid aggregates. It was concluded that a β-sheet conformation identified in previously reported in AD mouse/human brain tissues was in volved in a formation of the gold colloid aggregates.
Collapse
Affiliation(s)
- Kazushige Yokoyama
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Joshua Thomas
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Windsor Ardner
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Madison Kieft
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Lorenz S Neuwirth
- Department of Psychology, The State University of New York Old Westbury, Old Westbury, NY, USA; SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Wei Liu
- WITec Instruments Corp, Knoxville, TN, USA
| |
Collapse
|
36
|
Kim YC, Composto RJ, Winey KI. pH-Mediated Size-Selective Adsorption of Gold Nanoparticles on Diblock Copolymer Brushes. ACS NANO 2023; 17:9224-9234. [PMID: 37134256 DOI: 10.1021/acsnano.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Precise control of nanoparticles at interfaces can be achieved by designing stimuli-responsive surfaces that have tunable interactions with nanoparticles. In this study, we demonstrate that a polymer brush can selectively adsorb nanoparticles according to size by tuning the pH of the buffer solution. Specifically, we developed a facile polymer brush preparation method using a symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer deposited on a grafted polystyrene layer. This method is based on the assembly of a PS-b-P2VP thin film oriented with parallel lamellae that remains after exfoliation of the top PS-b-P2VP layer. We characterized the P2VP brush using X-ray reflectivity and atomic force microscopy. The buffer pH is used to tailor interactions between citrate-coated gold nanoparticles (AuNPs) and the top P2VP block that behaves like a polymer brush. At low pH (∼4.0) the P2VP brushes are strongly stretched and display a high density of attractive sites, whereas at neutral pH (∼6.5) the P2VP brushes are only slightly stretched and have fewer attractive sites. A quartz crystal microbalance with dissipation monitored the adsorption thermodynamics as a function of AuNP diameter (11 and 21 nm) and pH of the buffer. Neutral pH provides limited penetration depth for nanoparticles and promotes size selectivity for 11 nm AuNP adsorption. As a proof of concept, the P2VP brushes were exposed to various mixtures of large and small AuNPs to demonstrate selective capture of the smaller AuNPs. This study shows the potential of creating devices for nanoparticle size separations using pH-sensitive polymer brushes.
Collapse
Affiliation(s)
- Ye Chan Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
Huang P, Lee C, Lee L, Huang H, Huang Y, Lan J, Lee C. Surface-enhanced Raman scattering (SERS) by gold nanoparticle characterizes dermal thickening by collagen in bleomycin-treated skin ex vivo. Skin Res Technol 2023; 29:e13334. [PMID: 37231930 PMCID: PMC10316472 DOI: 10.1111/srt.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/10/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE Current skin imaging modalities, including optical, electron, and confocal microscopy, mostly require tissue fixations that could damage proteins and biological molecules. Live tissue or cell imaging such as ultrasonography and optical coherent microscope may not adequately measure the dynamic spectroscopical changes. Raman spectroscopy has been adopted for skin imaging in vivo, mostly for skin cancer imaging. However, whether the epidermal and dermal thickening in skin could be measured and distinguished by conventional Ramen spectroscopy or the surface-enhanced Raman scattering (SERS), a rapid and label-free method for noninvasive measurement remains unknown. METHODS Human skin sections from patients of atopic dermatitis and keloid, which represent epidermal and dermal thickening, respectively, were measured by conventional Ramen spectroscopy. In mice, skin sections from imiquimod (IMQ)- and bleomycin (BLE)-treated mice, which reflect the epidermal and dermal thickening, respectively, were measured by SERS, that incorporates gold nanoparticles to generate surface plasma and enhance Raman signals. RESULTS Conventional Ramen spectroscopy failed to consistently show the Raman shift in human samples among the different groups. SERS successfully revealed a prominent peak around 1300 cm-1 in the IMQ-treated skin; and two significant peaks around 1100 and 1300 cm-1 in BLE-treated group. Further quantitative analysis showed 1100 cm-1 peak was significantly accentuated in the BLE-treated skin than that in control skin. SERS identified in vitro a similar 1100 cm-1 peak in solutions of collagen, the major dermal biological molecules. CONCLUSION SERS distinguishes the epidermal or dermal thickening in mouse skin with rapid and label-free measures. A prominent 1100 cm-1 SERS peak in the BLE-treated skin may result from collagen. SERS might help precision diagnosis in the future.
Collapse
Affiliation(s)
- Po‐Jung Huang
- Institute of Environmental EngineeringNational Sun Yat‐sen UniversityKaohsiungTaiwan
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
| | - Chao‐Kuei Lee
- Department of PhotonicsNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Ling‐Hau Lee
- Department of DermatologyKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of DermatologyChang Gung University College of MedicineTaoyuanTaiwan
| | - Hsiang‐Fu Huang
- Department of PhotonicsNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Yi‐Hsuan Huang
- Department of PhotonicsNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Jia‐Chi Lan
- Department of PhotonicsNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Chih‐Hung Lee
- Department of DermatologyKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of DermatologyChang Gung University College of MedicineTaoyuanTaiwan
| |
Collapse
|
38
|
Chen WH, Wang W, Lin Q, Grys DB, Niihori M, Huang J, Hu S, de Nijs B, Scherman OA, Baumberg JJ. Plasmonic Sensing Assay for Long-Term Monitoring (PSALM) of Neurotransmitters in Urine. ACS NANOSCIENCE AU 2023; 3:161-171. [PMID: 37096231 PMCID: PMC10119978 DOI: 10.1021/acsnanoscienceau.2c00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 04/26/2023]
Abstract
A liquid-based surface-enhanced Raman spectroscopy assay termed PSALM is developed for the selective sensing of neurotransmitters (NTs) with a limit of detection below the physiological range of NT concentrations in urine. This assay is formed by quick and simple nanoparticle (NP) "mix-and-measure" protocols, in which FeIII bridges NTs and gold NPs inside the sensing hotspots. Detection limits of NTs from PreNP PSALM are significantly lower than those of PostNP PSALM, when urine is pretreated by affinity separation. Optimized PSALM enables the long-term monitoring of NT variation in urine in conventional settings for the first time, allowing the development of NTs as predictive or correlative biomarkers for clinical diagnosis.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Wenting Wang
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
- Melville
Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Qianqi Lin
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - David-Benjamin Grys
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Marika Niihori
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Shu Hu
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Bart de Nijs
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Oren A. Scherman
- Melville
Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
- JJB,
| |
Collapse
|
39
|
Symonowicz J, Polyushkin D, Mueller T, Di Martino G. Fully Optical in Operando Investigation of Ambient Condition Electrical Switching in MoS 2 Nanodevices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209968. [PMID: 36539947 DOI: 10.1002/adma.202209968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
MoS2 nanoswitches have shown superb ultralow switching energies without excessive leakage currents. However, the debate about the origin and volatility of electrical switching is unresolved due to the lack of adequate nanoimaging of devices in operando. Here, three optical techniques are combined to perform the first noninvasive in situ characterization of nanosized MoS2 devices. This study reveals volatile threshold resistive switching due to the intercalation of metallic atoms from electrodes directly between Mo and S atoms, without the assistance of sulfur vacancies. A "semi-memristive" effect driven by an organic adlayer adjacent to MoS2 is observed, which suggests that nonvolatility can be achieved by careful interface engineering. These findings provide a crucial understanding of nanoprocess in vertically biased MoS2 nanosheets, which opens new routes to conscious engineering and optimization of 2D electronics.
Collapse
Affiliation(s)
- Joanna Symonowicz
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK
| | - Dmitry Polyushkin
- Vienna University of Technology, Institute of Photonics, Gusshausstrasse 27-29 / 387, Vienna, 1040, Austria
| | - Thomas Mueller
- Vienna University of Technology, Institute of Photonics, Gusshausstrasse 27-29 / 387, Vienna, 1040, Austria
| | - Giuliana Di Martino
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK
| |
Collapse
|
40
|
Liu L, Zhang T, Wu Z, Zhang F, Wang Y, Wang X, Zhang Z, Li C, Lv X, Chen D, Jiao S, Wu J, Li Y. Universal Method for Label-Free Detection of Pathogens and Biomolecules by Surface-Enhanced Raman Spectroscopy Based on Gold Nanoparticles. Anal Chem 2023; 95:4050-4058. [PMID: 36780544 DOI: 10.1021/acs.analchem.2c04525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The detection of biomolecules is the key to basic molecular research, diagnostics, drug screening, and other biomedical applications. However, the existing detection techniques can only detect single classes of biomolecules, which warrant the development of a versatile biomolecule detection platform. Here, we developed a universal method for label-free detection of biomolecules via surface-enhanced Raman spectroscopy (SERS) by using sulfhydryl-modified gold nanoparticles as the substrate. The biomolecules can be adsorbed on the surface of gold nanoparticles cleaned by bromide ions to obtain initially enhanced Raman signals, and the aggregator (calcium ion) was further added to form a "hot spot", which enhanced the biomolecular signal again. Through the "two-step enhancement method", we were able to obtain fingerprints of DNA, RNA, amino acids, peptides, proteins, viruses, bacteria, and lipid molecules. This low-toxic, highly sensitive, and widely applicable technique has potential applications in biomedical research, clinical testing, and disease diagnosis and lays the foundation for the development of SERS technology in various fields.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Ting Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Zheng Wu
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Fenghai Zhang
- Institute of Physics, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province 550025, P.R. China
| | - Yunpeng Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Zhe Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Chengming Li
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Xinpeng Lv
- Department of Emergency Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P.R. China
| | - Deqiang Chen
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Songyan Jiao
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China
| | - Jing Wu
- School of Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Yang Li
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, P.R. China.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| |
Collapse
|
41
|
Ulloa-Gomez AM, Agredo A, Lucas A, Somvanshi SB, Stanciu L. Smartphone-based colorimetric detection of cardiac troponin T via label-free aptasensing. Biosens Bioelectron 2023; 222:114938. [PMID: 36462432 DOI: 10.1016/j.bios.2022.114938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
We report an aptasensing platform for the detection of cardiac troponin T (cTnT) in the immediate and early phases of acute myocardial infarction (AMI). High-flow filter paper was used to fabricate a microfluidic paper-based analytical device (μ-PAD), which was further modified with gold-decorated polystyrene microparticles functionalized with a highly specific cTnT aptamer. Herein, cTnT detection is presented in two linear ranges (0.01-0.8 μg/ml and 6.25-50 μg/ml) with an LoD of 3.9X10-4 μg/ml, which is in agreement with reference values determined by the American Heart Association. The proposed platform showed remarkable selectivity against AMI-associated cardiac biomarkers such as TNF-alpha, interleukin-6, cardiac troponin I, and reactive protein-C. This aptasensor is a label-free assay that relies only on smartphone-based image analysis and takes less processing time in comparison with traditional methods like ELISA. Furthermore, it exhibits outstanding stability over 23 days when devices are stored at 4 °C. The reported platform is a stable and cost-effective method for the on-site and user-friendly detection of cTnT in normal saline buffer and diluted human serum.
Collapse
Affiliation(s)
- Ana M Ulloa-Gomez
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 7907, USA
| | - Alejandra Agredo
- Department of Biological Sciences, West Lafayette, IN, 47907, USA; Purdue Life Sciences Interdisciplinary Program (PULSe), West Lafayette, IN, 47907, USA
| | - Alec Lucas
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 7907, USA
| | - Sandeep B Somvanshi
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 7907, USA
| | - Lia Stanciu
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 7907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
42
|
Stein F, Kohsakowski S, Martinez-Hincapie R, Reichenberger S, Rehbock C, Colic V, Guay D, Barcikowski S. Disproportional surface segregation in ligand-free gold-silver alloy solid solution nanoparticles, and its implication for catalysis and biomedicine. Faraday Discuss 2023; 242:301-325. [PMID: 36222171 DOI: 10.1039/d2fd00092j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Catalytic activity and toxicity of mixed-metal nanoparticles have been shown to correlate and are known to be dependent on surface composition. The surface chemistry of the fully inorganic, ligand-free silver-gold alloy nanoparticle molar fraction series, is highly interesting for applications in heterogeneous catalysis, which is determined by active surface sites which are also relevant for understanding their dissolution behavior in biomedically-relevant ion-release scenarios. However, such information has never been systematically obtained for colloidal nanoparticles without organic surface ligands and has to date, not been analyzed in a surface-normalized manner to exclude density effects. For this, we used detailed electrochemical measurements based on cyclic voltammetry to systematically analyze the redox chemistry of particle-surface-normalized gold-silver alloy nanoparticles with varying gold molar fractions. The study addressed a broad range of gold molar fractions (Ag90Au10, Ag80Au20, Ag70Au30, Ag50Au50, Ag40Au60, and Ag20Au80) as well as monometallic Ag and Au nanoparticle controls. Oxygen reduction reaction (ORR) measurements in O2 saturated 0.1 M KOH revealed a linear reduction of the overpotential with increasing gold content on the surface, probably attributed to the higher ORR activity of gold over silver, verified by monometallic Ag and Au controls. These findings were complemented by detailed XPS studies revealing an accumulation of the minor constituent of the alloy on the surface, e.g., silver surface enrichment in gold-rich particles. Furthermore, highly oxidized Ag surface site enrichment was detected after the ORR reaction, most pronounced in gold-rich alloys. Further, detailed CV studies at acidic pH, analyzing the position, onset potential, and peak integrals of silver oxidation and silver reduction peaks revealed particularly low reactivity and high chemical stability of the equimolar Au50Ag50 composition, a phenomenon attributed to the outstanding thermodynamic, entropically driven, stabilization arising at this composition.
Collapse
Affiliation(s)
- Frederic Stein
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | | | | | - Sven Reichenberger
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | - Christoph Rehbock
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | - Viktor Colic
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Guay
- Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, J3X 1P7, Canada
| | - Stephan Barcikowski
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| |
Collapse
|
43
|
Ding Y, Huang PJJ, Zandieh M, Wang J, Liu J. Gold Nanoparticles Synthesized Using Various Reducing Agents and the Effect of Aging for DNA Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:256-264. [PMID: 36577094 DOI: 10.1021/acs.langmuir.2c02458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gold nanoparticles (AuNPs) are one of the most commonly used reagents in colloidal science and biosensor technology. In this work, we first compared AuNPs prepared using four different reducing agents including citrate, glucose, ascorbate, and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). At the same absorbance at the surface plasmon peak of 520-530 nm, citrate-AuNPs and glucose-AuNPs adsorbed more DNA and achieved higher affinity to the adsorbed DNA. In addition, citrate-AuNPs had better sensitivity than glucose-AuNPs for label-free DNA detection. Then, using citrate-AuNPs, the effect of aging was studied by incubation of the AuNPs at 22 °C (room temperature) and at 4 °C for up to 6 months. During aging, the colloidal stability and DNA adsorption efficiency gradually decreased. In addition, the DNA sensing sensitivity using a label-free method also dropped around 4-fold after 6 months. Heating at boiling temperature of the aged citrate-AuNPs could not rejuvenate the sensing performance. This study shows that while citrate-AuNPs are initially better than the other three AuNPs in their colloid properties and sensing properties, this edge in performance might gradually decrease due to constantly changing surface properties caused from the aging effect.
Collapse
Affiliation(s)
- Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Jinghan Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
44
|
Waitkus J, Chang Y, Liu L, Puttaswamy SV, Chung T, Vargas AMM, Dollery SJ, O'Connell MR, Cai H, Tobin GJ, Bhalla N, Du K. Gold Nanoparticle Enabled Localized Surface Plasmon Resonance on Unique Gold Nanomushroom Structures for On-Chip CRISPR-Cas13a Sensing. ADVANCED MATERIALS INTERFACES 2023; 10:2201261. [PMID: 37091050 PMCID: PMC10121183 DOI: 10.1002/admi.202201261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 05/03/2023]
Abstract
A novel localized surface plasmon resonance (LSPR) system based on the coupling of gold nanomushrooms (AuNMs) and gold nanoparticles (AuNPs) is developed to enable a significant plasmonic resonant shift. The AuNP size, surface chemistry, and concentration are characterized to maximize the LSPR effect. A 31 nm redshift is achieved when the AuNMs are saturated by the AuNPs. This giant redshift also increases the full width of the spectrum and is explained by the 3D finite-difference time-domain (FDTD) calculation. In addition, this LSPR substrate is packaged in a microfluidic cell and integrated with a CRISPR-Cas13a RNA detection assay for the detection of the SARS-CoV-2 RNA targets. Once activated by the target, the AuNPs are cleaved from linker probes and randomly deposited on the AuNM substrate, demonstrating a large redshift. The novel LSPR chip using AuNP as an indicator is simple, specific, isothermal, and label-free; and thus, provides a new opportunity to achieve the next generation multiplexing and sensitive molecular diagnostic system.
Collapse
Affiliation(s)
- Jacob Waitkus
- University of California, Riverside, Riverside, CA, USA
| | - Yu Chang
- University of California, Riverside, Riverside, CA, USA
| | - Li Liu
- University of California, Riverside, Riverside, CA, USA
| | - Srinivasu Valagerahally Puttaswamy
- NIBEC School of Engineering, Ulster University, Belfast, UK
- Healthcare Technology Hub, School of Engineering, Ulster University, Belfast, UK
| | - Taerin Chung
- Tech4Health Institute and Department of Radiology, New York University Langone Health New York, USA
| | | | | | | | - Haogang Cai
- Tech4Health Institute and Department of Radiology, New York University Langone Health New York, USA
| | | | - Nikhil Bhalla
- NIBEC School of Engineering, Ulster University, Belfast, UK
- Healthcare Technology Hub, School of Engineering, Ulster University, Belfast, UK
| | - Ke Du
- University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
45
|
Diyana Jamaluddin N, Ibrahim N, Yuziana Mohd Yusof N, Ta Goh C, Ling Tan L. Optical reflectometric measurement of SARS-CoV-2 (COVID-19) RNA based on cationic cysteamine-capped gold nanoparticles. OPTICS AND LASER TECHNOLOGY 2023; 157:108763. [PMID: 36212170 PMCID: PMC9533675 DOI: 10.1016/j.optlastec.2022.108763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 05/31/2023]
Abstract
The coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a major public health outbreak in late 2019 and was proclaimed a global pandemic in March 2020. A reflectometric-based RNA biosensor was developed by using cysteamine-stabilized gold nanoparticles (cysAuNPs) as the colorimetric probe for bioassay of COVID-19 RNA (SARS-CoV-2 RNA) sequence. The cysAuNPs aggregated in the presence of DNA probes via cationic and anionic electrostatic attraction between the positively charged cysteamine ligands and the negatively charged sugar-phosphate backbone of DNA, whilst in the presence of target RNAs, the specific recognition between DNA probes and targets depleted the electrostatic interaction between the DNA probes and cysAuNPs signal probe, leading to dispersed particles. This has rendered a remarkable shifting in the surface plasmon resonance (SPR) on the basis of visual color change of the RNA biosensor from red to purplish hue at the wavelength of 765 nm. Optical evaluation of SARS-CoV-2 RNA by means on reflectance transduction of the RNA biosensor based on cysAuNPs optical sensing probes demonstrated rapid response time of 30 min with high sensitivity, good linearity and high reproducibility across a COVID-19 RNA concentration range of 25 nM to 200 nM, and limit of detection (LOD) at 0.12 nM. qPCR amplification of SARS-CoV-2 viral RNA showed good agreement with the proposed RNA biosensor by using spiked RNA samples of the oropharyngeal swab from COVID-19 patients. Therefore, this assay is useful for rapid and early diagnosis of COVID-19 disease including asymptomatic carriers with low viral load even in the presence of co-infection with other viruses that manifest similar respiratory symptoms.
Collapse
Affiliation(s)
- Nur Diyana Jamaluddin
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Nadiah Ibrahim
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Choo Ta Goh
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
46
|
Oliveira de Souza D, Girardon JS, Hoffmann DJ, Berrier E. Dynamics of Citrate Coordination on Gold Nanoparticles Under Low Specific Power Laser-Induced Heating. Chemphyschem 2022; 24:e202200744. [PMID: 36495221 DOI: 10.1002/cphc.202200744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
SERS evolution recorded over a drop-coated coffee-ring pattern of citrate-capped gold colloids was investigated as a function of time under low-specific laser power. Spectral changes caused by plasmon-induced reaction could not be detected, but a long-term transient original spectral profile showing additional lines was observed. We performed deep qualitative and quantitative SERS intensity variation analysis based on the complementary use of extreme deviation and cross-correlation statistics, which provided further insights on the behavior of citrate-capping layers of gold nanoparticles upon laser illumination. More precisely, the cross-correlation analysis made possible to follow the so-called individual events denoting particular resonance structures, in which groups of modes were assigned to an evolution of citrate coordination on gold surface driven by photo-activation. As a consequence, the detection limit was increased and new lines were related to the presence of a very low amount of dicarboxy-acetone (DCA), which was already present in the system.
Collapse
Affiliation(s)
| | | | - David J Hoffmann
- Electrical Engineering Department, Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
| | - Elise Berrier
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois - UCCS, Lille, France
| |
Collapse
|
47
|
Chen L, Zeng M, Jin J, Yao Q, Ye T, You L, Chen X, Chen X, Guo Z. Nanoenzyme Reactor-Based Oxidation-Induced Reaction for Quantitative SERS Analysis of Food Antiseptics. BIOSENSORS 2022; 12:988. [PMID: 36354497 PMCID: PMC9688296 DOI: 10.3390/bios12110988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Nanoenzyme reactors based on shell-isolated colloidal plasmonic nanomaterials are well-established and widely applied in catalysis and surface-enhanced Raman scattering (SERS) sensing. In this study, a "double wing with one body" strategy was developed to establish a reduced food antiseptic sensing method using shell-isolated colloidal plasmonic nanomaterials. Gold nano particles (Au NPs) were used to synthesize the colloidal plasmonic nanomaterials, which was achieved by attaching ferrous ions (Fe2+), ferric ions (Fe3+), nitroso (NO-) group, cyanogen (CN-) group, and dopamine (DA) via coordinative interactions. The oxidation-induced reaction was utilized to generate •OH following the Fe2+-mediated Fenton reaction with the shell-isolated colloidal plasmonic nanomaterials. The •OH generated in the cascade reactor had a high oxidative capacity toward acid preservatives. Importantly, with the introduction of the signal molecule DA, the cascade reactor exhibited also induced a Raman signal change by reaction with the oxidation product (malondialdehyde) which improved the sensitivity of the analysis. In addition, the stable shell-isolated structure was effective in realizing a reproducible and quantitative SERS analysis method, which overcomes previous limitations and could extend the use of nanoenzymes to various complex sensing applications.
Collapse
Affiliation(s)
- Linmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Meihuang Zeng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingwen Jin
- Institute of Analytical Technology and Smart Instruments, College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Qiuhong Yao
- Institute of Analytical Technology and Smart Instruments, College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Tingxiu Ye
- College of Pharmacy, Xiamen Medicine College, Xiamen 361005, China
| | - Longjie You
- National Quality Supervision and Inspection Center for Incense Products (Fujian), Quanzhou 362600, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhiyong Guo
- Institute of Analytical Technology and Smart Instruments, College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
- Xiamen Environmental Monitoring Engineering Technology Research Center, Xiamen 361024, China
| |
Collapse
|
48
|
Kariuki R, Penman R, Bryant SJ, Orrell-Trigg R, Meftahi N, Crawford RJ, McConville CF, Bryant G, Voïtchovsky K, Conn CE, Christofferson AJ, Elbourne A. Behavior of Citrate-Capped Ultrasmall Gold Nanoparticles on a Supported Lipid Bilayer Interface at Atomic Resolution. ACS NANO 2022; 16:17179-17196. [PMID: 36121776 DOI: 10.1021/acsnano.2c07751] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials have the potential to transform biological and biomedical research, with applications ranging from drug delivery and diagnostics to targeted interference of specific biological processes. Most existing research is aimed at developing nanomaterials for specific tasks such as enhanced biocellular internalization. However, fundamental aspects of the interactions between nanomaterials and biological systems, in particular, membranes, remain poorly understood. In this study, we provide detailed insights into the molecular mechanisms governing the interaction and evolution of one of the most common synthetic nanomaterials in contact with model phospholipid membranes. Using a combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we elucidate the precise mechanisms by which citrate-capped 5 nm gold nanoparticles (AuNPs) interact with supported lipid bilayers (SLBs) of pure fluid (DOPC) and pure gel-phase (DPPC) phospholipids. On fluid-phase DOPC membranes, the AuNPs adsorb and are progressively internalized as the citrate capping of the NPs is displaced by the surrounding lipids. AuNPs also interact with gel-phase DPPC membranes where they partially embed into the outer leaflet, locally disturbing the lipid organization. In both systems, the AuNPs cause holistic perturbations throughout the bilayers. AFM shows that the lateral diffusion of the particles is several orders of magnitude smaller than that of the lipid molecules, which creates some temporary scarring of the membrane surface. Our results reveal how functionalized AuNPs interact with differing biological membranes with mechanisms that could also have implications for cooperative membrane effects with other molecules.
Collapse
Affiliation(s)
- Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rebecca Orrell-Trigg
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chris F McConville
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Deakin University, Geelong, VIC 3220, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Kislon Voïtchovsky
- University of Durham, Physics Department, Durham DH1 3LE, United Kingdom
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
49
|
Saha S, Dutta B, Ghosh M, Chowdhury J. Adsorption of 4-Mercapto Pyridine with Gold Nanoparticles Embedded in the Langmuir-Blodgett Film Matrix of Stearic Acid: SERS, XPS Studies Aided by Born-Oppenheimer on the Fly Dynamics, Time-Resolved Wavelet Transform Theory, and DFT. ACS OMEGA 2022; 7:27818-27830. [PMID: 35990435 PMCID: PMC9386704 DOI: 10.1021/acsomega.1c07321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper reports the adsorptive behavior of the 4-mercaptopyridine (4MPy) molecule soaked in gold nanoparticles (AuNPs) that remain embedded in the bilayer Langmuir-Blodgett (LB) film matrix of stearic acid (SA) for various soaking times (STs). The as-fabricated substrate proved to be an efficient SERS sensing platform that can sense the analyte 4MPy molecules at trace concentrations of ∼1.0 × 10-9 M. The XPS study not only reveals the adsorption of 4Mpy molecules with AuNPs via a sulfur atom but also suggests partial degradation of the analyte molecule upon adsorption. This observation is further substantiated from the SERS spectral profile, which shows unusual broadening of the enhanced Raman bands of the molecule at higher STs. The experimental observations are supported by Born-Oppenheimer on-the-fly molecular dynamics (BO-OF-MD), time-resolved wavelet transform theory (WT), and the DFT calculations based on adcluster models. Selective enhancements of Raman bands in the SERS spectra further suggest the involvement of charge transfer (CT) interaction to the overall enhancements of Raman bands of the analyte molecule. The molecule → CT contribution has been estimated from electron density difference calculations and the corresponding CT distance; the amount of CT is also envisaged.
Collapse
Affiliation(s)
- Somsubhra Saha
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata 700032, India
| | - Bipan Dutta
- Department of Physics, Sammilani Mahavidyalaya, Baghajatin Station, E. M. Bypass, Kolkata 700094, India
| | - Manash Ghosh
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Joydeep Chowdhury
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata 700032, India
| |
Collapse
|
50
|
Shin TH, Lee DY, Jang YE, Kwon DH, Hwang JS, Kim SG, Seo C, Paik MJ, Lee JY, Kim JY, Park S, Choi SE, Basith S, Kim MO, Lee G. Reduction in the Migration Activity of Microglia Treated with Silica-Coated Magnetic Nanoparticles and their Recovery Using Citrate. Cells 2022; 11:2393. [PMID: 35954236 PMCID: PMC9368468 DOI: 10.3390/cells11152393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023] Open
Abstract
Nanoparticles have garnered significant interest in neurological research in recent years owing to their efficient penetration of the blood-brain barrier (BBB). However, significant concerns are associated with their harmful effects, including those related to the immune response mediated by microglia, the resident immune cells in the brain, which are exposed to nanoparticles. We analysed the cytotoxic effects of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] in a BV2 microglial cell line using systems toxicological analysis. We performed the invasion assay and the exocytosis assay and transcriptomics, proteomics, metabolomics, and integrated triple-omics analysis, generating a single network using a machine learning algorithm. The results highlight alteration in the mechanisms of the nanotoxic effects of nanoparticles using integrated omics analysis.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Yong Eun Jang
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Do Hyeon Kwon
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Korea; (J.S.H.); (S.G.K.)
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Korea; (J.S.H.); (S.G.K.)
| | - Chan Seo
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Korea; (C.S.); (M.J.P.)
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Korea; (C.S.); (M.J.P.)
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongju 28119, Korea; (J.Y.L.); (J.Y.K.)
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongju 28119, Korea; (J.Y.L.); (J.Y.K.)
| | - Seokho Park
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Korea;
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Korea;
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Korea; (J.S.H.); (S.G.K.)
| |
Collapse
|