1
|
Zhou TY, Guo YY, Jing QQ, Wei MY, Xu WF, Gu YC, Shao CL. Semisynthesis and biological evaluation of 17-hydroxybrevianamide N derivatives as anti-inflammatory agents by mediating NF-κB and MAPK signaling pathways. Eur J Med Chem 2025; 290:117541. [PMID: 40174263 DOI: 10.1016/j.ejmech.2025.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Chronic inflammation is a trigger for many diseases that affect approximately 10-20 % of the population around the world. Herein, (±)-17-hydroxybrevianamide N (1) was isolated from the fungus Aspergillus sp. (CHNSCLM-0151) and exhibited strong inhibitory activity against nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW264.7 cell. A series of new derivatives (±)-3-(±)-29 was semisynthesized by structural modification of the imide, phenolic hydroxyl, and carbonyl groups from the natural product (±)-1. The results of anti-inflammatory activity demonstrated that (±)-4, (±)-6, (±)-9, (±)-22, (±)-23, and (±)-24 exhibited obviously NO inhibitory (P < 0.0001) in LPS-stimulated RAW264.7 cells. To further investigate the relationship between chirality and activity, the enantiomers of the above six compounds were obtained by chiral resolution. As expected, the bioactivity results indicated stereoselectivity in the anti-inflammatory effect among the different isomers. In particular, compound (+)-4S-23 inhibited NO concentration with an IC50 value of 0.5 μM, demonstrating 3-fold greater potency compared to its (R)-enantiomer, and achieving 40-fold superior potency over the positive control NG-monomethyl-l-arginine (L-NMMA). This compound demonstrated suppression of TNF-α (25.7 ± 1.5 %), IL-6 (54.5 ± 3.9 %) and IL-1β (92.9 ± 4.1 %) production at 2 μM. More importantly, mechanistic investigations revealed that (+)-4S-23 (0.2 μM) modulates the MAPK signaling pathway, specifically downregulating phosphorylation of p38, ERK, and JNK. Furthermore, (+)-4S-23 also exhibited potent inhibitory activity against the NF-κB pathway by suppressing the phosphorylation of IκB-α and blocking nuclear translocation of phosphorylated p65. Notably, these findings position (+)-4S-23 as a promising candidate for development as a novel anti-inflammatory therapeutic targeting both MAPK and NF-κB signaling nodes.
Collapse
Affiliation(s)
- Tian-Yi Zhou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Yang-Yang Guo
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qian-Qian Jing
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Wei-Feng Xu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
2
|
Wu G, Zhu J, Huang R, Zhang X, Li Z, Wu X, Gao F, Chen H. Photodriven PtPdCo-TiO 2 heterostructure modified with hyaluronic acid and folic acid enhances antioxidative stress through efficient hydrogen/oxygen delivery and thermal effects in rheumatoid arthritis therapy. Int J Biol Macromol 2025; 307:142014. [PMID: 40081706 DOI: 10.1016/j.ijbiomac.2025.142014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis and progressive joint damage, primarily caused by oxidative injury from reactive oxygen species (ROS) and hypoxia in immune cells. Hydrogen (H2) has demonstrated potential in scavenging excess ROS and correcting redox imbalances, while oxygen supplementation can alleviate hypoxia, promoting inflammatory remission. This study introduces a novel FA-HA-PtPdCo-TiO2 (F-HPPCT) nano-system for targeted RA therapy. Comprising TiO2 quantum dots on PtPdCo polyhedra, decorated with folate-hyaluronic acid (FA-HA), F-HPPCT selectively targets inflammatory cells. Its metal-semiconductor heterostructure forms Schottky junctions that enhance electron transfer, enabling efficient hydrogen evolution and a photothermal effect under near-infrared light. Additionally, F-HPPCT mimics catalase activity, decomposing overexpressed H2O2 to relieve hypoxia and oxidative stress. The system synergistically scavenges ROS and replenishes oxygen, effectively reducing inflammation and oxidative damage. Both in vitro and in vivo experiments in arthritis models confirmed its efficacy, highlighting F-HPPCT's potential as a groundbreaking nanocatalyst for gas therapy in RA treatment.
Collapse
Affiliation(s)
- Guoquan Wu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, China
| | - Jun Zhu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Ruqi Huang
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, China
| | - Xing Zhang
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China; Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Zheng Li
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, China
| | - Xiunan Wu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, China.
| | - Hongliang Chen
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, China.
| |
Collapse
|
3
|
Yang F, Lv J, Huang Y, Ma W, Yang Z. A supramolecular assembly strategy for the treatment of rheumatoid arthritis with ultrasound-augmented inflammatory microenvironment reprograming. Biomaterials 2025; 316:123006. [PMID: 39675142 DOI: 10.1016/j.biomaterials.2024.123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
As regulators and promotors of joint erosion, pro-inflammatory M1-like macrophages play pivotal roles in the pathogenesis of rheumatoid arthritis (RA). Here, we develop a supramolecular self-assembly (PCSN@MTX) of molybdenum (Mo) based polyoxometalate (POM), β-cyclodextrin (β-CD), and methotrexate (MTX), in which the MTX is loaded by host-guest interaction. PCSN@MTX shows inhibition of synovial M1-like macrophages polarization to alleviate RA. PCSN@MTX has demonstrated ultrasound (US) augmented catalytic behavior in consuming ROS and generating oxygen (O2) with accelerated conversion of Mo5+ to Mo6+ in the POM. In the collagen-induced arthritis mouse model, after systemical administration, the pH-responsive PCSN@MTX shows enhanced accumulation in the acidic joints by in-situ self-assembly. The host-guest complexation between MTX and β-CD is broken via US, achieving an on-demand burst release of MTX. The released MTX and ROS-scavenging synergistically facilitate the M1-to-M2 macrophage phenotype switching, which effectively alleviates RA disease progress under US irradiation. This study provides a paradigm for RA therapy with a promising US-augmented strategy.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China
| | - Yanli Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China.
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
4
|
Su Y, Chen R, Wang B, Wang T, Tao J, Diao Q, Jiang T, Zhao X. Erythrocyte membrane camouflaged celastrol and bilirubin self-assembly for rheumatoid arthritis immunotherapy based on STING inhibition and RONS clearance. J Nanobiotechnology 2025; 23:318. [PMID: 40287703 PMCID: PMC12032812 DOI: 10.1186/s12951-025-03389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Activation of cGAS-STING signaling pathway and accumulation of reactive oxygen and nitrogen species (RONS) are important issues facing the treatment of rheumatoid arthritis (RA). Here, we report a biomimetic nano-Chinese medicine (HA-RM-Cel-BR) for RA immunotherapy based on STING inhibition of celastrol (Cel) and RONS clearance of bilirubin (BR). HA-RM-Cel-BR is constructed by the carrier-free self-assembly of active ingredients Cel and BR from traditional Chinese medicine, and then camouflaged by hyaluronic acid (HA)-modified red blood cell membranes (RM). HA-RM-Cel-BR prolongs circulation time through RM camouflage, targets inflamed joints by HA modification, and remodels the joint immune microenvironment by STING inhibition and RONS clearance. More importantly, HA-RM-Cel-BR shows excellent therapeutic effects on RA rat model, and significantly reduces hepatotoxicity associated with Cel. Our work provides a new strategy for RA immunotherapy with traditional Chinese medicine ingredients.
Collapse
Affiliation(s)
- Yanguo Su
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Rui Chen
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qijie Diao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
5
|
Li H, Jin X, Chu B, Zhang K, Qin X, Pan S, Zhao Y, Shi H, Zhang J, Wang H, Wen Z, He Y, Sun X. Inflammation Targeting and Responsive Multifunctional Drug-Delivery Nanoplatforms for Combined Therapy of Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500113. [PMID: 40277325 DOI: 10.1002/smll.202500113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent inflammation, joint swelling, pain, and progressive joint destruction. Methotrexate (MTX) is the standard first-line treatment for RA, but its clinical application is hindered by poor water solubility and non-specific delivery. In this work, a multifunctional drug-delivery nanoplatform that targets both macrophages and tumor necrosis factor α (TNFα) is developed to enhance the therapeutic efficacy of MTX in RA. The nanoplatform consists of folic acid (FA, for macrophage targeting) and a TNFα-specific Aptamer (TNFα-Apt), facilitating a dual-targeting strategy that significantly improves the accumulation of MTX at the sites of RA lesions (≈3.5-fold). Moreover, the manganese dioxide (MnO₂) and polydopamine (PDA) coatings on the nanoplatform effectively scavenge reactive oxygen species (ROS), generate oxygen, and promote the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2 macrophages. This shift in macrophage polarization restores the expression of key inflammatory cytokines, improving the local inflammatory microenvironment. Ultimately, the nanoplatform significantly ameliorates the inflammation and joint damage in a collagen-induced arthritis (CIA) model, suggesting that this multi-target combination therapy holds considerable potential for the treatment of RA in vivo.
Collapse
Affiliation(s)
- Hongyang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Xiangbowen Jin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Kai Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xuan Qin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Sheng Pan
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, Suzhou, 215000, China
| | - Yadan Zhao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Haoliang Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Jiawei Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Houyu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Zhen Wen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Xuhui Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Chen C, Li Q, Wang B, Liu Q, Wang Z, Zhang B, Wang L, Zou Y, Mou Z, Ren C, You Z, Wang B, Xu Z, Qian H. Dual delivery of agmatine and microRNA-126b using agmatine-mediated DNA nanotube assemblies for acute lung injury therapy. Acta Biomater 2025:S1742-7061(25)00299-5. [PMID: 40286892 DOI: 10.1016/j.actbio.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Acute lung injury (ALI) is characterized by widespread inflammation and oxidative stress, leading to impaired gas exchange and significant morbidity. In this study, we propose a potential approach using a magnesium-free DNA self-assembly strategy to assemble a DNA nanotube that carries agmatine and microRNA-126b mimics (NTAGM-126). Agmatine not only reduces electrostatic repulsion between DNA helices, thereby facilitating the folding of the DNA nanotube, but also serves as a drug that inhibits iNOS signaling. The microRNA-126b mimics restore the downregulated microRNA-126b in macrophages and suppress inflammation by targeting high mobility group box 1 (HMGB1). Preliminary results indicated that agmatine can effectively facilitate the assembly of the DNA nanotube, improve serum stability, and enhance the cellular uptake efficiency of NTAGM-126. Further in vitro and in vivo results demonstrate that NTAGM-126 effectively reduces oxidative stress and inflammation by downregulating iNOS and HMGB1, providing a combined therapeutic effect in ALI. This study highlights the potential of agmatine-facilitated DNA nanostructures as a versatile drug delivery platform for treating inflammatory diseases, broadening the application of DNA nanotechnology in biomedical research. STATEMENT OF SIGNIFICANCE: This study introduces a promising therapeutic approach using a magnesium-free DNA self-assembly strategy to create a DNA nanotube (NTAGM-126) that carries agmatine and microRNA-126b mimics. The agmatine not only aids in the assembly and stability of the DNA nanotube but also inhibits iNOS signaling, while the microRNA-126b mimics restore downregulated microRNA-126b in macrophages and suppress inflammation by targeting HMGB1. Preliminary and further results demonstrate that NTAGM-126 effectively reduces oxidative stress and inflammation, providing a combined therapeutic effect in ALI. This study underscores the potential of agmatine-facilitated DNA nanostructures as a versatile drug delivery platform, broadening the application of DNA nanotechnology in the treatment of inflammatory diseases and advancing biomedical research.
Collapse
Affiliation(s)
- Chunfa Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Quan Li
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China; Yu-Yue Pathology Scientific Research Center, Chongqing 401329, China
| | - Beinuo Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Liu
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Zi Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Bihang Zhang
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Lu Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Yujuan Zou
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Ziye Mou
- Department of General Practice, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Chengshan Ren
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Zaichun You
- Department of General Practice, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bin Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China.
| | - Zhi Xu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China; Yu-Yue Pathology Scientific Research Center, Chongqing 401329, China.
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China; Yu-Yue Pathology Scientific Research Center, Chongqing 401329, China.
| |
Collapse
|
7
|
Park J, Wu Y, Le QV, Kim JS, Xu E, Lee J, Oh YK. Self-disassembling nanoparticles as oral nanotherapeutics targeting intestinal microenvironment. Nat Commun 2025; 16:3365. [PMID: 40204740 PMCID: PMC11982569 DOI: 10.1038/s41467-025-58513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Inspired by the survival strategies of pyomelanin-producing microbes, we synthesize pyomelanin nanoparticles (PMNPs) from homogentisic acid- γ-lactone via auto-oxidation and investigate their biomedical potential. PMNPs possess distinct physicochemical properties, including reactive oxygen species scavenging and microenvironment-responsive self-disassembly. Under intestinal conditions, PMNPs self-disassemble and penetrate the nanoscale pores of the mucin layer. In an inflammatory bowel disease model, orally administered PMNPs withstand gastric acidity and, in their solubilized form, interact with macrophages and epithelial cells. They significantly reduce reactive oxygen species levels, exert anti-inflammatory effects, and restore gut microbiota composition. Compared to conventional nanoparticles and 5-aminosalicylic acid, PMNPs exhibit greater therapeutic efficacy. Clinical symptoms and intestinal inflammation are alleviated, and the gut microbiota is restored to near-normal levels. These findings underscore the therapeutic potential of PMNPs for inflammatory bowel disease treatment and suggest broader biomedical applications.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Enzhen Xu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Zhao Y, Zhao Y, Ling Y, Chen Z, Wu X, Lu X, He Y, Wang H, Dong F. A Dual-Response DNA Origami Platform for Imaging and Treatment of Sepsis-Associated Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416330. [PMID: 40019357 PMCID: PMC12021062 DOI: 10.1002/advs.202416330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Current diagnostics for sepsis-associated acute kidney injury (SA-AKI) detect kidney damage only at advanced stages, limiting opportunities for timely intervention. A DNA origami-based nanoplatform is developed for the early diagnosis and treatment of SA-AKI. Modified with a fluorophore (Cy5) and quencher (BHQ3), the DNA origami remains nonfluorescent under normal conditions. During SA-AKI, elevated microRNA-21 triggers a strand displacement reaction that restores the fluorescence signal, enabling real-time detection. Additionally, the photoacoustic changes of BHQ3, driven by different excretion rates of the nanostructure and released DNA strands, enable dual-mode imaging, enhancing diagnostic accuracy. Therapeutically, DNA origami scavenges reactive oxygen species and, when conjugated with the antimicrobial peptide Leucine-Leucine-37 (LL-37), exhibits bactericidal effects. This combination boosts survival rates by 80% in SA-AKI models. This dual-response nanoplatform integrates precise imaging and targeted therapy, offering a powerful strategy for SA-AKI management and advancing applications of DNA origami in precision nanomedicine.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Ultrasoundthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Yadan Zhao
- Suzhou Key Laboratory of Nanotechnology and BiomedicineInstitute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Yufan Ling
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Zhiming Chen
- Department of UltrasoundChildren‘s Hospital of Soochow UniversitySuzhouJiangsu215000China
| | - Xiaofeng Wu
- Department of Ultrasoundthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and BiomedicineInstitute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and BiomedicineInstitute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
- Macao Translational Medicine CenterMacau University of Science and TechnologyTaipaMacau SAR999078China
- Macao Institute of Materials Science and EngineeringMacau University of Science and TechnologyTaipaMacau SAR999078China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and BiomedicineInstitute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Fenglin Dong
- Department of Ultrasoundthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
9
|
Zhu M, Zhang H, Zhou Q, Sheng S, Gao Q, Geng Z, Chen X, Lai Y, Jing Y, Xu K, Bai L, Wang G, Wang J, Jiang Y, Su J. Dynamic GelMA/DNA Dual-Network Hydrogels Promote Woven Bone Organoid Formation and Enhance Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501254. [PMID: 40123197 DOI: 10.1002/adma.202501254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Bone organoids, in vitro models mimicking native bone structure and function, rely on 3D stem cell culture for self-organization, differentiation, ECM secretion, and biomineralization, ultimately forming mineralized collagen hierarchies. However, their development is often limited by the lack of suitable matrices with optimal mechanical properties for sustained cell growth and differentiation. To address this, a dynamic DNA/Gelatin methacryloyl (GelMA) hydrogel (CGDE) is developed to recapitulate key biochemical and mechanical features of the bone ECM, providing a supportive microenvironment for bone organoid formation. This dual-network hydrogel is engineered through hydrogen bonding between DNA and GelMA, combined with GelMA network crosslinking, resulting in appropriate mechanical strength and enhanced viscoelasticity. During a 21-day 3D culture, the CGDE hydrogel facilitates cellular migration and self-organization, promoting woven bone organoid (WBO) formation via intramembranous ossification. These WBOs exhibit spatiotemporal architectures supporting dynamic mineralization and tissue remodeling. In vivo studies demonstrate that CGDE-derived WBOs exhibit self-adaptive properties, enabling rapid osseointegration within 4 weeks. This work highlights the CGDE hydrogel as a robust and scalable platform for bone organoid development, offering new insights into bone biology and innovative strategies for bone tissue regeneration.
Collapse
Affiliation(s)
- Mengru Zhu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Qirong Zhou
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Qianmin Gao
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhen Geng
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yingying Jing
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Ke Xu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jianhua Wang
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yingying Jiang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
10
|
Zhang Y, Sun Y, Liao H, Shi S. Multifunctional DNA nanomaterials: a new frontier in rheumatoid arthritis diagnosis and treatment. NANOSCALE 2025; 17:4974-4999. [PMID: 39745199 DOI: 10.1039/d4nr04013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Rheumatoid arthritis (RA) remains a challenging autoimmune disease due to its complex and heterogeneous pathophysiology, which complicates therapeutic and diagnostic efforts. Advances in DNA nanotechnology have introduced DNA nanomaterials as promising tools to overcome these barriers. This review focuses on three primary categories of DNA nanomaterials applied in RA: DNA nanostructures, DNA aptamers, and DNA-modified nanoparticles. DNA nanostructures, such as tetrahedral framework nucleic acids (tFNAs) and DNA origami, demonstrate anti-inflammatory properties and facilitate precise, controlled drug delivery. DNA aptamers, functioning as molecular recognition ligands, surpass traditional antibodies with their high specificity, low immunogenicity, and thermal stability, offering significant potential in biomarker detection and therapeutic interventions. While DNA-modified nanoparticles, which integrate DNA with materials like gold or lipids, have shown significant progress in bioimaging and drug delivery in other fields, their application in RA remains limited and warrants further exploration. Furthermore, advancements in stimulus-responsive systems are being explored to enable controlled drug release, which could significantly improve the specificity and efficiency of DNA nanomaterials in therapeutic applications. Despite their immense potential, challenges such as stability under physiological conditions, safety concerns, and clinical regulatory complexities persist. Overcoming these limitations is essential. This review highlights how DNA nanomaterials, beyond serving as delivery platforms, are poised to redefine RA treatment and diagnosis, opening the door to more personalized and effective approaches.
Collapse
Affiliation(s)
- Yiyi Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yue Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Hang Liao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610015, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Chen X, Zhang J, Lin T, Zhou F, Li F, Xue T, Zhong Q, Lee W, Chen G, Wang H, Ju E, Li M, Tao Y. Bioactive Decellularized Extracellular Matrix Platform Integrating Multifunctional Nanozymes and Cell-Laden Microgels for Acute Liver Failure Treatment. ACS NANO 2025; 19:6890-6910. [PMID: 39950852 DOI: 10.1021/acsnano.4c13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a promising alternative approach for treating acute liver failure (ALF) while confronting the shortage of low efficiency and poor engraftment within a hostile liver milieu. In this study, we establish a bioactive decellularized extracellular matrix (dECM) platform that incorporates dihydrolipoic acid (DHLA)-protected Pt nanoclusters doped with Cu (PtCu-DHLA) nanozymes and cell-laden microgels. The PtCu-DHLA nanozymes, selected for their versatility, function as antioxidant, anti-inflammatory, pro-proliferative, and pro-angiogenic agents, enhancing ALF alleviation and providing an optimal microenvironment for MSC transplantation. Additionally, a methacrylic anhydride (MA)-modified porcine liver-derived decellularized extracellular matrix (PLdECM) hydrogel (PLdECMMA) has been developed for the construction of microgels via microfluidic devices. Interferon γ (IFNγ) preconditioned MSCs encapsulated in PLdECMMA microgels exhibit enhanced immunomodulating activity and prolonged survival. PtCu-DHLA nanozymes and cell-laden microgels are codelivered by leveraging the PLdECM hydrogel for orthotopic transplantation. The transplanted dECM platform enables an efficient and successful rescue of CCl4-induced ALF by counteracting oxidative stress, suppressing inflammatory storms, and promoting cellular regeneration. Overall, this study highlights a synergistic and reinforced strategy that combines biomimetic nanozymes with MSC therapy, offering significant potential for ALF treatment and broader applications in regenerative medicine.
Collapse
Affiliation(s)
- Xiaodie Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tong Lin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Feng Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Weijen Lee
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guipan Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
12
|
Gu J, Liang J, Tian T, Lin Y. Current Understanding and Translational Prospects of Tetrahedral Framework Nucleic Acids. JACS AU 2025; 5:486-520. [PMID: 40017737 PMCID: PMC11862954 DOI: 10.1021/jacsau.4c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Tetrahedral framework nucleic acids (tFNAs) represent a promising advancement in nucleic acid nanotechnology due to their unique structural properties, high biocompatibility, and multifaceted biomedical applications. Constructed through a one-pot annealing method, four single-stranded DNAs self-assemble into stable, three-dimensional tetrahedral nanostructures with enhanced mechanical robustness and physiological stability, resisting enzymatic degradation. Their ability to permeate mammalian cells without transfection agents, coupled with modifiable surfaces, positions tFNAs as versatile carriers for drug and gene delivery systems. The tFNA-based platforms exhibit superior therapeutic efficacy, including antioxidative and anti-inflammatory effects, alongside efficient cellular uptake and tissue penetration. These features underpin their role in precision medicine, enabling targeted delivery of diverse therapeutic agents such as synthetic compounds, peptides, and nucleic acids. Additionally, tFNAs demonstrate significant potential in regenerative medicine, immune modulation, antibacterial strategies, and oncology. By addressing challenges in translational integration, tFNAs stand poised to accelerate the development of biomedical research and clinical applications, fostering novel therapies and enhancing therapeutic outcomes across a wide spectrum of diseases. This Perspective thoroughly details the unique attributes and diverse applications of tFNAs and critically evaluates tFNAs' clinical translational potential, outlining inherent implementation challenges and exploring potential solutions to these obstacles.
Collapse
Affiliation(s)
- Junjie Gu
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Jiale Liang
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Taoran Tian
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunfeng Lin
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Sichuan
Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
13
|
Sun Z, Sun Y, Wang S, Li M, Guo H, Xu Z, Gao M. Mini Review On: The Roles of DNA Nanomaterials in Phototherapy. Int J Nanomedicine 2025; 20:2021-2041. [PMID: 39975417 PMCID: PMC11835777 DOI: 10.2147/ijn.s501471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
DNA-based functional nanomaterials are distinguished by their structural designability and functional controllability, making them particularly attractive in the biomedical field. Using DNA nanomaterials for cancer treatment through synergistic approaches combining photodynamic therapy and photothermal therapy has garnered significant attention. This growing interest has driven the active development of various DNA nanomaterials tailored for integrated strategies targeting cancer, including phototherapy, chemotherapy, etc. This review provides an overview of DNA nanoplatforms employed in phototherapy and synergistic therapy for cancer treatment. It highlights recent advances in DNA nanoplatforms that leverage multifaceted synergy to enhance phototherapeutic efficacy. It also offers a new perspectives and clinical application potential of DNA nanomaterials in synergistic phototherapy for malignant tumors, focusing on developments in recent years and potential directions for future research and applications.
Collapse
Affiliation(s)
- Zeqing Sun
- Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Yilai Sun
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, People’s Republic of China
| | - Shuo Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Mengyao Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Haoran Guo
- Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ming Gao
- Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Xi W, Wu W, Zhou L, Zhang Q, Yang S, Huang L, Lu Y, Wang J, Chi X, Kang Y. Multifunctional nanoparticles confers both multiple inflammatory mediators scavenging and macrophage polarization for sepsis therapy. Mater Today Bio 2025; 30:101421. [PMID: 39811612 PMCID: PMC11732566 DOI: 10.1016/j.mtbio.2024.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis. Here we designed and constructed a polydopamine-based multifunctional nanoparticle for the treatment of sepsis. These nanoparticles (NPs) are composed of polydopamine (PDA) grafted with cationic polyethyleneimine (PEI). On the one hand, the NPs can utilize the electrostatic interaction to effectively adsorb cfDNA in blood, then effectively inhibiting the activation of toll like receptors (TLRs) and nuclear factor kappa B (NF-κB) pathways induced by cfDNA. On the other hand, the NPs have an immunomodulatory function, which can effectively convert pro-inflammatory macrophage (M1) into anti-inflammatory macrophage (M2), thus reduce the release of inflammatory cytokines and slow down the inflammatory storm of sepsis. In addition, the NPs possess good reactive oxygen species (ROS) scavenging ability. Briefly, the effective treatment of sepsis can be achieved by multiple strategies of effectively capturing the inflammatory triggering factor cfDNA, modulating the polarization of M1 macrophage to M2 macrophage and scavenging ROS, which has a promising clinical application.
Collapse
Affiliation(s)
- Wenjie Xi
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Weijie Wu
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lili Zhou
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qi Zhang
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shushu Yang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lihong Huang
- Department of Orthopaedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Yijun Lu
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jing Wang
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinjin Chi
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
15
|
Ye X, Chen T, Du Y, Zhao R, Chen L, Wu D, Hu J. Folic acid-based hydrogels co-assembled with protocatechuic acid for enhanced treatment of inflammatory bowel disease. Colloids Surf B Biointerfaces 2025; 246:114367. [PMID: 39541908 DOI: 10.1016/j.colsurfb.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Inflammatory bowel disease (IBD) presents a significant therapeutic challenge due to the need for oral drug delivery systems that withstand acidic environment of stomach while effectively targeting intestinal inflammation. To address this issue, we created a novel hydrogel system based on a folic acid (FA)-dopamine (DA) conjugate, co-assembled with protocatechuic acid (PCA), to form F-DP hydrogels. These hydrogels demonstrated robust anti-gastric acid, mucosal adhesive, and injectable properties, enhancing their efficacy for targeted delivery. In DSS-induced colitis mouse models, treatment with F-DP hydrogels resulted in significant therapeutic improvements, including increased body weight, reduced disease activity index (DAI), and maintained colon length. Biochemical assays revealed that F-DP hydrogels significantly enhanced antioxidant enzyme activities (GSH and SOD) and reduced oxidative stress markers (NO and MDA). Histological assessments confirmed effective repair of the colonic mucosal barrier, restoration of tight junction protein ZO-1, and reduction of inflammatory lesions. Furthermore, immunofluorescence staining indicated that F-DP hydrogels facilitated macrophages polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, thereby reducing inflammation and promoting tissue repair. Our study demonstrates that F-DP hydrogels show significant potential for improving IBD treatment through enhanced gastric resistance, intestinal adhesion, and synergistic anti-inflammatory effects, warranting further investigation for clinical applications.
Collapse
Affiliation(s)
- Ximei Ye
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
16
|
Li Z, Fan X, Liu Y, Yue M, Wu T, Wang X, Jiang W, Fan K. Engineering Mild-Photothermal Responsive and NO Donor Prussian Blue Nanozymes Using Mild Synthesis for Inflammation Regulation and Bacterial Eradication in Periodontal Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409840. [PMID: 39690880 DOI: 10.1002/adma.202409840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Periodontitis, an infectious disease of periodontal tissues caused by oral bacterial biofilms, is characterized by reactive oxygen species (ROS) accumulation and immune microenvironment imbalance. Multifunctional nanozymes, leveraging their physiochemical properties and enzymatic activities, offer promising antibacterial and anti-inflammatory strategies for managing periodontitis. In particular, Prussian blue nanozymes (PBzymes) exhibit exceptional ROS control due to their robust catalytic activity, diverse antioxidant functions, and high biocompatibility. However, the practical application of traditional high-temperature synthesis methods is limited. This study introduces a class of metal-engineered PBzymes synthesized at room temperature, identified for their potent antioxidative activity and excellent photothermal performance at mild temperatures. Nitric oxide (NO) gas therapy offers promising strategies for targeting deep infections in periodontal tissues. Thus, sodium nitroprusside is introduced into PBzyme to create SPBzyme via an in situ loading method. NO release by SPBzyme enhances antibacterial effects and overcomes resistance linked to bacterial biofilms, resulting in mild-photothermal antibacterial properties and synergistic antioxidant effects. In vitro antibacterial assays demonstrate the superior efficacy of SPBzyme under mild temperature conditions and near-infrared light exposure. Furthermore, SPBzyme effectively reduces inflammation and has positive therapeutic effects in periodontal animal models. Overall, mild-temperature photothermal NO release nanozyme therapy represents a novel approach for treating periodontitis.
Collapse
Affiliation(s)
- Zheng Li
- Department of Prosthodontics, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, Haidian District, 100081, P. R. China
| | - Xiaowan Fan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, P. R. China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, P. R. China
| | - Ying Liu
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Muxin Yue
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Beijing, Haidian District, 100191, P. R. China
| | - Tingting Wu
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, P. R. China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, P. R. China
| |
Collapse
|
17
|
Zhang R, Lin X, Lin R, Chen Z, Miao C, Wang Y, Deng X, Lin J, Lin S, Weng S, Chen M. Effectively alleviate rheumatoid arthritis via maintaining redox balance, inducing macrophage repolarization and restoring homeostasis of fibroblast-like synoviocytes by metformin-derived carbon dots. J Nanobiotechnology 2025; 23:58. [PMID: 39881361 PMCID: PMC11776225 DOI: 10.1186/s12951-025-03159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA. In this study, we successfully synthesized metformin-derived carbon dots (MCDs), and investigated the antirheumatic effect in vivo and in vitro. Designed MCDs could target inflamed cells and accumulate at the inflammatory joints of collagen-induced arthritis (CIA) rats. In vivo therapeutic investigation suggested that MCDs reduced synovial inflammation and hyperplasia, ultimately prevented cartilage destruction, bone erosion, and synovial fibrosis in CIA rats. In addition, MCDs eliminated the cellular ROS in M1 phenotype macrophages in RA microenvironment through the enzyme-like catalytic activity as well as inhibiting NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, effectively polarizing them into the M2 phenotype to realize the anti-inflammatory effect. Furthermore, MCDs could inhibit the proliferation, migration, and fibrosis of inflamed FLSs. Mechanistically, MCDs restored the homeostasis of FLSs while reducing the level of synovial inflammation by blocking IL-6/gp130 signaling pathway. Combined with preferable biocompatibility, MCDs offer a prospective treatment approach for RA.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xingyu Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhenbin Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jianlong Lin
- Department of Orthopedic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Shishui Lin
- Department of Orthopedic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
18
|
Yao L, Zhang G, Wang Y, Liu Z, Liang J, Sun J, Li S, Tian T, Lin Y. Development of an Inhalable DNA Tetrahedron MicroRNA Sponge. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414336. [PMID: 39578322 DOI: 10.1002/adma.202414336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/10/2024] [Indexed: 11/24/2024]
Abstract
In designing aerosolized drugs, the challenge lies in achieving optimal penetration and retention. Existing delivery systems prioritize larger particles for prolonged intrapulmonary retention, compromising penetration speed. Conversely, smaller nanoparticles face rapid clearance and limited retention. RNA sponges featuring multiple microRNA binding sites exhibit promising potential for gene expression regulation. However, the complex structure of the frequently utilized cyclic RNA sponge impedes rapid penetration and cellular uptake, restricting its application. This study proposes an innovative approach using a compact tetrahedral framework of nucleic acid to construct an inhalable microRNA sponge. Distinguished by its simplified structure, this microRNA sponge ensures effective microRNA inhibition, rapid tissue penetration, and prolonged residency through prompt endocytosis. Validated in acute lung inflammation models, the approach demonstrates swift restoration of local immune homeostasis. This design addresses the critical need for aerosol vehicles that balance efficient penetration and sustained retention, offering a promising solution for effective gene expression regulation.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Libotte M, Zuccheri G. Synthesis and Characterization of DNA Nanostructures and Their Cellular Uptake. Methods Mol Biol 2025; 2901:1-12. [PMID: 40175863 DOI: 10.1007/978-1-0716-4394-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The nature of DNA allows building highly predictable nanostructures that have been applied in a wide range of areas like chemical sensing, material science, molecular data storage, and nanoelectronics. In the field of nanomedicine, DNA nanostructures proved a useful tool for diagnostic and therapeutic purposes. This chapter provides the protocols for the synthesis of self-assembled DNA nanostructures such as the DNA tetrahedron and the characterization of its assembly. Moreover, it also gives the protocols for the characterization of the internalization in mammalian cells both qualitatively and quantitatively.
Collapse
Affiliation(s)
- Manon Libotte
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum Università di Bologna, Bologna, Italy.
- Interdepartmental Center for Industrial Research on Life Science and Health Technologies, Alma Mater Studiorum Università di Bologna, Bologna, Italy.
- S3 Center of the Institute of Nanoscience of the National Research Council, Bologna, Italy.
| |
Collapse
|
20
|
Ci Z, Wang H, Luo J, Wei C, Chen J, Wang D, Zhou Y. Application of Nanomaterials Targeting Immune Cells in the Treatment of Chronic Inflammation. Int J Nanomedicine 2024; 19:13925-13946. [PMID: 39735324 PMCID: PMC11682674 DOI: 10.2147/ijn.s497590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Chronic inflammation is a common characteristic of all kinds of diseases, including autoimmune diseases, metabolic diseases, and tumors. It is distinguished by the presence of low concentrations of inflammatory factors stimulating the body for an extended period, resulting in a persistent state of infection. This condition is manifested by the aggregation and infiltration of mononuclear cells, lymphocytes, and other immune cells, leading to tissue hyperplasia and lesions. Although various anti-inflammatory medications, including glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs), have shown strong therapeutic effects, they lack specificity and targeting ability, and require high dosages, which can lead to severe adverse reactions. Nanoparticle drug delivery mechanisms possess the capacity to minimize the effect on healthy cells or tissues due to their targeting capabilities and sustained drug release properties. However, most nanosystems can only target the inflammatory sites rather than specific types of immune cells, leaving room for further improvement in the therapeutic effects of nanomaterials. This article reviews the current research progress on the role of diverse immune cells in inflammation, focusing on the functions of neutrophils and macrophages during inflammation. It provides an overview of the domestic and international applications of nanomaterials in targeted therapy for inflammation, aiming to establish a conceptual foundation for the utilization of nanomaterials targeting immune cells in the treatment of chronic inflammation and offer new perspectives for the avoidance and management of inflammation.
Collapse
Affiliation(s)
- Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingxia Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Biology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
21
|
Tanwar S, Date S, Goel L, Wu L, Chatterjee A, Barman I. Raman Imaging of Targeted Drug Delivery with DNA-Based Nano-Optical Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402631. [PMID: 39707677 DOI: 10.1002/smll.202402631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/15/2024] [Indexed: 12/23/2024]
Abstract
Raman spectroscopy (RS) has emerged as a novel optical imaging modality by identifying molecular species through their bond vibrations, offering high specificity and sensitivity in molecule detection. However, its application in intracellular molecular probing has been limited due to challenges in combining vibrational tags with functional probes. DNA nanostructures, known for their high programmability, have been instrumental in fields like biomedicine and nanofabrication. So far, their ability to customize Raman signals remains largely untapped. In this study, a new class of Raman active DNA origami-based hybrid nanodevice (ND) for targeted cancer cell drug delivery and imaging is engineered. The ND is specifically engineered for metastatic prostate cancer treatment, featuring a legumain enzyme-responsive sequence for the controlled release of the chemotherapeutic agent doxorubicin. Integrating RS with precise targeting, the ND enables imaging of aggressive cancer cells and efficient drug delivery with minimal off-target effects. The developed device offers stimuli-responsive behavior, enhanced stability, exceptional tunability, and potent targeting abilities, positioning it as a highly promising strategy for advancing precision cancer imaging and therapy.
Collapse
Affiliation(s)
- Swati Tanwar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Siddhi Date
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Linika Goel
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Arnab Chatterjee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
| |
Collapse
|
22
|
Ye W, Xu S, Liu Y, Ye Z. Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data. Rev Neurosci 2024; 35:839-853. [PMID: 39034663 DOI: 10.1515/revneuro-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/22/2024] [Indexed: 07/23/2024]
Abstract
Central nervous system (CNS) diseases, such as stroke, traumatic brain injury, dementia, and demyelinating diseases, are generally characterized by high morbidity and mortality, which impose a heavy economic burden on patients and their caregivers throughout their lives as well as on public health. The occurrence and development of CNS diseases are closely associated with a series of pathophysiological changes including inflammation, blood-brain barrier disruption, and abnormal coagulation. Endothelial glycocalyx (EG) plays a key role in these changes, making it a novel intervention target for CNS diseases. Herein, we review the current understanding of the role of EG in common CNS diseases, from the perspective of individual pathways/cytokines in pathophysiological and systematic processes. Furthermore, we emphasize the recent developments in therapeutic agents targeted toward protection or restoration of EG. Some of these treatments have yielded unexpected pharmacological results, as previously unknown mechanisms underlying the degradation and destruction of EG has been brought to light. Furthermore, the anti-inflammatory, anticoagulative, and antioxidation effects of EG and its protective role exerted via the blood-brain barrier have been recognized.
Collapse
Affiliation(s)
- Weihao Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shang Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying Liu
- Department of Rehabilitation Medicine, 117742The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ziming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
23
|
Jin X, Li H, Pan S, Song B, Jiang Y, Shi H, Zhang J, Chu B, Wang H, He Y. DNA Nanopatch-Specific Modification of Probiotics for Ultrasound-Triggered Inflammatory Bowel Disease Therapy. J Am Chem Soc 2024; 146:33817-33831. [PMID: 39508560 DOI: 10.1021/jacs.4c12139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Probiotics offer promising results for treating inflammatory bowel disease, yet precision therapy remains challenging, particularly in manipulating probiotics spatially and temporally and shielding them from oxidative stress. To address these limitations, herein we synthesized bacteria-specific DNA nanopatches to modify ultrasound-triggered engineered Escherichia coli Nissle 1917. These probiotics produced the anti-inflammatory cytokine interleukin-10 when stimulated by ultrasound and were fortified with DNPs for oxidative stress resistance. The DNPs were composed of rectangular DNA origami nanosheets with reactive oxygen species' scavenging ability and bacterial targeting ligands of maltodextrin molecules. We systematically demonstrated that the DNPs could selectively attach to bacterial surface but not mammalian cell surface via the maltodextrin transporter pathway. To further enhance the bioavailability of engineered probiotics in the gastrointestinal tract, we employed a self-assembly strategy to encapsulate them using chitosan and sodium alginate. In a murine model of ulcerative colitis, this system significantly improved the gut barrier integrity and reduced inflammation. Our results indicate that this DNA nanopatch-bacteria system holds substantial promise for mitigating oxidative stress, correcting microbiota dysbiosis, and enhancing the intestinal barrier function in colitis.
Collapse
Affiliation(s)
- Xiangbowen Jin
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Hongyang Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Sheng Pan
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, Suzhou 215000, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yanping Jiang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Jiawei Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
24
|
Young OJ, Dembele H, Rajwar A, Kwon IC, Ryu JH, Shih WM, Zeng YC. Cargo Quantification of Functionalized DNA Origami for Therapeutic Application. SMALL METHODS 2024:e2401376. [PMID: 39651835 DOI: 10.1002/smtd.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Indexed: 12/18/2024]
Abstract
In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics. This growing interest creates the need for effective methods to quantify cargo on DNA origami nanoparticles. The study consolidates several previously validated methods focusing on gel-based and fluorescence-based techniques, including multiplexed quantification of protein, peptide, and nucleic acid cargo on these nanoparticles. In this work, how gel band intensity and nanodrop fluorescence readings can be used to quantify protein, peptide, and RNA cargo on a DNA origami nanoparticle is demonstrated. This work may serve as a valuable resource for groups of researchers keen on utilizing DNA origami-based nanoparticles in therapeutic applications.
Collapse
Affiliation(s)
- Olivia J Young
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hawa Dembele
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anjali Rajwar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - William M Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang C Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
25
|
Wang Y, Tian R, Li Z, Ma S, Wu Y, Liu F, Han Q, Li J, Zhao RC, Jiang Q, Ding B. Mesenchymal Stem Cells Engineered by Multicomponent Coassembled DNA Nanofibers for Enhanced Wound Healing. NANO LETTERS 2024; 24:13955-13964. [PMID: 39445643 DOI: 10.1021/acs.nanolett.4c03144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A major challenge for stem cell therapies, such as using mesenchymal stem cells to treat skin injuries, is the stable engraftment of exogenous cells and the maintenance of their regenerative capacities in the wound areas. DNA-based self-assembly strategies can be used for artificial and multifunctional cell surface engineering to stabilize and enhance their functions for therapeutic applications. Here, we developed DNA nanofiber-decorated stem cells, in which DNA-based, multivalent fiber-like structures were self-assembled in situ on the cell surfaces. These engineered stem cells have demonstrated robust reactive oxygen species (ROS) scavenging effects, specific adhesion to damaged vascular endothelial cells, and the ability to enhance angiogenesis, which were effective and safe for acute or chronic wound healing in a mouse model with excisional skin injury. This DNA nanostructure-engineered stem cell provides a novel therapeutic platform for the treatment of tissue damage.
Collapse
Affiliation(s)
- Yiming Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing 100005, China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoting Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing 100005, China
| | - Shuaijing Ma
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing 100005, China
| | - Yushuai Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing 100005, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing 100005, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing 100005, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Zhang Y, Liu D, Chen W, Tao Y, Li W, Qi J. Microenvironment-Activatable Probe for Precise NIR-II Monitoring and Synergistic Immunotherapy in Rheumatoid Arthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409661. [PMID: 39370578 DOI: 10.1002/adma.202409661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/14/2024] [Indexed: 10/08/2024]
Abstract
Rheumatoid arthritis (RA) represents an insidious autoimmune inflammatory disorder that severely lowers the life quality by progressively destructing joint functions and eventually causing permanent disability, posing a serious public health problem. Here, an advanced theranostic probe is introduced that integrates activatable second near-infrared (NIR-II) fluorescence imaging for precise RA diagnosis with multi-pronged RA treatments. A novel molecular probe comprising a long-wavelength aggregation-induced emission unit and a manganese carbonyl cage motif is synthesized, which enables NIR-II fluorescence activation and concurrently releasing therapeutic carbon monoxide (CO) gas in inflamed joint microenvironment. This molecular probe self-assembles into a biocompatible nanoprobe, which is subsequently conjugated with anti-IL-6R antibody to afford active-targeting ability of RA. The nanoprobe exhibits significant turn-on NIR-II fluorescence signal at the RA lesion, enabling highly sensitive RA diagnosis and real-time therapeutic monitoring. The combination of ROS scavenging, on-demand CO gas release, and IL-6 signaling blockade results in potent therapeutic effect and synergistic immunomodulation impact, significantly alleviating the RA symptoms and preventing joint destruction. This research introduces a novel paradigm for the development of high-performance, activatable theranostic strategies to facilitate precise detection and enhanced treatment of RA-related diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dongfang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenwen Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongyou Tao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
27
|
Ge S, Wang X, Zhao X, Yuan L, Bao X, Sun C, Gong Z, Guo J, Yuan S, Hu D, Yang J, Yuan B, Zhang G. Responsive Multi-Arm PEG-Modified COF Nanocomposites: Dynamic Photothermal, pH/ROS Dual-Responsive, Targeted Carriers for Rheumatoid Arthritis Treatment. Adv Healthc Mater 2024; 13:e2401744. [PMID: 38885286 DOI: 10.1002/adhm.202401744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic immune disease characterized by the infiltration of immune cells and the proliferation of fibroblast-like synoviocytes (FLS) at the joint site, leading to inflammation and joint destruction. However, the available treatment options targeting both inflammatory and proliferative FLS are limited. Herein, this work presents three covalent organic frameworks (COFs) photothermal composite systems modified with multi-armed polyethylene glycols (PEG) for the treatment of RA. These systems exhibit a dual response under low pH and high reactive oxygen species (ROS) conditions at the site of inflammation, with a specific focus on delivering the protein drug ribonuclease A (RNase A). Notably, molecular docking studies reveal the interaction between RNase A and NF-κB p65 protein, and Western blotting confirm its inhibitory effect on NF-κB activity. In vitro and in vivo experiments verify the significant reduction in joint swelling and deformities in adjuvant-induced arthritis (AIA) rats after treatment with RNase A delivered by multi-armed PEG-modified COF ligands, restoring joint morphology to normal. These findings underscore the promising therapeutic potential of COFs for the treatment of RA, highlighting their unique capabilities in addressing both inflammatory and proliferative aspects of the disease and expanding the scope of biomedical applications for COFs.
Collapse
MESH Headings
- Animals
- Polyethylene Glycols/chemistry
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/therapy
- Rats
- Reactive Oxygen Species/metabolism
- Nanocomposites/chemistry
- Nanocomposites/therapeutic use
- Hydrogen-Ion Concentration
- Metal-Organic Frameworks/chemistry
- Metal-Organic Frameworks/pharmacology
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/chemistry
- Arthritis, Experimental/pathology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/therapy
- Arthritis, Experimental/metabolism
- Humans
- Drug Carriers/chemistry
- Male
- Molecular Docking Simulation
- Synoviocytes/metabolism
- Synoviocytes/drug effects
Collapse
Affiliation(s)
- Saisai Ge
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinru Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lingling Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xuewei Bao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Caidie Sun
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zehua Gong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Danyou Hu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
28
|
Zhu J, Lin Y, Li G, He Y, Su Z, Tang Y, Zhang Y, Xu Q, Yao Z, Zhou H, Liu B, Cai X. Dual-targeted halofuginone hydrobromide nanocomplexes for promotion of macrophage repolarization and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes in adjuvant-induced arthritis in rats. J Pharm Anal 2024; 14:100981. [PMID: 39703571 PMCID: PMC11656085 DOI: 10.1016/j.jpha.2024.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 12/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by chronic inflammation and excessive proliferation of the synovium. Currently, treatment options focus on either reducing inflammation or inhibiting synovial hyperplasia. However, these modalities are unsatisfactory in achieving the desired therapeutic outcomes. Halofuginone hydrobromide (HF), an herbal active ingredient, has demonstrated pharmacological effects of both anti-inflammation and inhibition of synovial hyperplasia proliferation. However, HF's medical efficacy is limited due to its poor water solubility, short half-life (t 1/2), and non-target toxicity. In the current study, by using the advantages of nanotechnology, we presented a novel dual-targeted nanocomplex, termed HA-M@P@HF NPs, which consisted of a hyaluronic acid (HA)-modified hybrid membrane (M)-camouflaged poly lactic-co-glycolic acid (PLGA) nanosystem for HF delivery. These nanocomplexes not only overcame the limitations of HF but also achieved simultaneous targeting of inflammatory macrophages and human fibroblast-like synoviocytes-RA (HFLS-RA). In vivo experiments demonstrated that these nanocomplexes effectively suppressed immune-mediated inflammation and synovial hyperplasia, safeguarding against bone destruction in rats with adjuvant-induced arthritis (AIA). Remarkable anti-arthritic effects of these nanocomplexes were accomplished through promoting repolarization of M1-to-M2 macrophages and apoptosis of HFLS-RA, thereby offering a promising therapeutic strategy for RA.
Collapse
Affiliation(s)
- Junping Zhu
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhaoli Su
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ye Zhang
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qian Xu
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhongliu Yao
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
29
|
Chao M, Huang Y, Zhou P, Wu G, Ren Y, Yan H, Dong S, Yan X, Chen H, Gao F. Au/Ag@ZnS yolk-shell photocatalysts enhanced with noble metals and hyaluronic acid for efficient hydrogen production in rheumatoid arthritis therapy. Int J Biol Macromol 2024; 280:135929. [PMID: 39322151 DOI: 10.1016/j.ijbiomac.2024.135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Rheumatoid arthritis, characterized by the abnormal proliferation of synovial cells and extensive macrophage infiltration, is a chronic inflammatory disease. Molecular hydrogen, known for its antioxidant properties, has shown promise in eliminating reactive oxygen species. However, the low solubility and bioavailability of hydrogen limit the effectiveness of this therapy. To overcome these issues, we developed a novel yolk-shell heterostructure, H-AAZS (Au/Ag@ZnS modified hyaluronic acid), utilizing a hydrothermal cation exchange process. Through ion doping, semiconductor hybridization, and Schottky barriers in H-AAZS, photocatalysis for hydrogen generation has been successfully implemented using 660 nm laser irradiation. Additionally, the H-AAZS demonstrate the capacity for mild photothermal therapy, inducing apoptosis in synovial cells with Au's hot electrons with 660 nm laser irradiation. This strategy not only improves the abnormal proliferation of synovial cells but also avoids the exacerbation of inflammation caused by thermal stimulation. Both in vitro and in vivo experiments validate the synergistic effects of hydrogen production mediated anti-inflammatory responses, macrophage polarization and photothermal therapy. Therefore, this work represents a significant advancement as it ingeniously harnesses photocatalysis to modulate the synovial microenvironment while mitigating the side effects associated with photothermal therapy. This nanocrystal provides new and valuable insights into the potential treatment of Rheumatoid arthritis.
Collapse
Affiliation(s)
- Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China; Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China; Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Yuqi Huang
- Department of Dermatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215000, Jiangsu, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Guoquan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China; Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Xiang Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Hongliang Chen
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
30
|
Cao X, Gao T, Lv F, Wang Y, Li B, Wang X. ROS-triggered and macrophage-targeted micelles modulate mitochondria function and polarization in obesity. NANOTECHNOLOGY 2024; 35:475707. [PMID: 39240071 DOI: 10.1088/1361-6528/ad7034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024]
Abstract
Inflammation involving adipose macrophages is an important inducer of obesity. Regulating macrophages polarization and improving the inflammatory microenvironment of adipose tissue is a new strategy for the treatment of obesity. An amphiphilic chondroitin sulfate phenylborate derivative (CS-PBE) was obtained by modifying the main chain of chondroitin sulfate with the hydrophobic small molecule phenylborate. Using CS-PBE self-assembly, macrophage targeting, reactive oxygen species (ROS) release and celastrol (CLT) encapsulation were achieved. The cytotoxicity, cellular uptake, internalization pathways and transmembrane transport efficiency of CS-PBE micelles were studied in Caco-2 and RAW264.7 cells. Hemolysis and organotoxicity tests were performed to assess the safety of the platform, while its therapeutic efficacy was investigated in high-fat diet-induced obese mice. Multifunctional micelles with macrophage targeting and ROS clearance capabilities were developed to improve the efficacy of CLT in treating obesity.In vitrostudies indicated that CS-PBE micelles had better ability to target M1 macrophages, better protective effects on mitochondrial function, better ability to reduce the number of LPS-stimulated M1 macrophages, better ability to reduce the number of M2 macrophages, and better ability to scavenge ROS in inflammatory macrophages.In vivostudies have shown that CS-PBE micelles improve inflammation and significantly reduce toxicity of CLT in the treatment of obesity. In summary, CS-PBE micelles could significantly improve the ability to target inflammatory macrophages and scavenge ROS in adipose tissue to alleviate inflammation, suggesting that CS-PBE micelles are a highly promising approach for the treatment of obesity.
Collapse
Affiliation(s)
- Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Tingting Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Fengwen Lv
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Yongchun Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Bo Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Xiaohua Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| |
Collapse
|
31
|
Nah Y, Kim J, Lee S, Koh WG, Kim WJ. Tailored small molecule for inflammation treatment: Dual scavenger targeting nitric oxide and reactive oxygen species. J Control Release 2024; 374:525-537. [PMID: 39173954 DOI: 10.1016/j.jconrel.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Inflammation-related diseases are often marked by elevated levels of nitric oxide (NO) and reactive oxygen species (ROS), which play important roles in the modulation of inflammation. However, the development of organic materials effective in managing NO/ROS levels has remained a challenge. This study introduces a novel organic compound, NmeGA, engineered to scavenge both NO and ROS. NmeGA ingeniously integrates N-methyl-1,2,-phenylenediamine (Nme), a NO scavenger, with gallic acid (GA), a ROS scavenger, through an amide bond, endowing it with enhanced scavenging capabilities over its individual component. This compound exhibits reduced toxicity and increased lipophilicity value, underlining its increased biological applicability and highlighting its potential as an inflammation management tool. Through in vitro studies on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, NmeGA displayed remarkable scavenging efficiency for NO and ROS, coupled with significant anti-inflammatory effects. In an LPS-induced peritonitis model, administration of NmeGA substantially decreased mortality rates, NO and ROS levels, and inflammatory cytokine concentrations. These findings highlight NmeGA's versatility as a therapeutic agent against various inflammatory diseases.
Collapse
Affiliation(s)
- Yunyoung Nah
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
| | - Jaekwang Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| | - Seohee Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; OmniaMed Co., Ltd, Pohang 37666, Republic of Korea.
| |
Collapse
|
32
|
Young OJ, Dembele H, Rajwar A, Kwon IC, Ryu JH, Shih WM, Zeng YC. Cargo quantification of functionalized DNA origami for therapeutic application. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609963. [PMID: 39253502 PMCID: PMC11383041 DOI: 10.1101/2024.08.27.609963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics. This growing interest creates the need for effective methods to quantify cargo on DNA origami nanoparticles. Our study consolidates several previously validated methods focusing on gel-based and fluorescence-based techniques, including multiplexed quantification of protein, peptide, and nucleic acid cargo on these nanoparticles. This work may serve as a valuable resource for groups researchers keen on utilizing DNA origami-based nanoparticles in therapeutic applications.
Collapse
Affiliation(s)
- Olivia J. Young
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hawa Dembele
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anjali Rajwar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - William M. Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang C. Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Wu Y, Qin X, Lu X, Ji C, Ling Y, Zhang J, Shi H, Chu B, Song B, Wang H, He Y. Enzyme-Responsive DNA Origami-Antibody Conjugates for Targeted and Combined Therapy of Choroidal Neovascularization. ACS NANO 2024; 18:22194-22207. [PMID: 39116033 DOI: 10.1021/acsnano.4c05635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Monotherapy, especially the use of antibodies targeting vascular endothelial growth factor (VEGF), has shown limitations in treating choroidal neovascularization (CNV) since reactive oxygen species (ROS) also exacerbate CNV formation. Herein, we developed a combination therapy based on a DNA origami platform targeting multiple components of ocular neovascularization. Our study demonstrated that ocular neovascularization was markedly suppressed by intravitreal injection of a rectangular DNA origami sheet modified with VEGF aptamers (Ap) conjugated to an anti-VEGF antibody (aV) via matrix metalloproteinase (MMP)-cleavable peptide linkers in a mouse model of CNV. Typically, the DNA origami-based therapeutic platform selectively accumulates in neovascularization lesions owing to the dual-targeting ability of the aV and Ap, followed by the cleavage of the peptide linker by MMPs to release the antibody. Together, the released antibody and Ap inhibited VEGF activity. Moreover, the residual bare DNA origami could effectively scavenge ROS, reducing oxidative stress at CNV sites and thus maximizing the synergistic effects of inhibiting neovascularization.
Collapse
Affiliation(s)
- Yuqi Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Xuan Qin
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Chen Ji
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yufan Ling
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiawei Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, 999078 Macau SAR, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078 Macau SAR, China
| |
Collapse
|
34
|
Andres Garcia-Diosa J, Grundmeier G, Keller A. Highly Efficient Quenching of Singlet Oxygen by DNA Origami Nanostructures. Chemistry 2024; 30:e202402057. [PMID: 38842532 DOI: 10.1002/chem.202402057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
DNA origami nanostructures (DONs) are able to scavenge reactive oxygen species (ROS) and their scavenging efficiency toward ROS radicals was shown to be comparable to that of genomic DNA. Herein, we demonstrate that DONs are highly efficient singlet oxygen quenchers outperforming double-stranded (ds) DNA by several orders of magnitude. To this end, a ROS mixture rich in singlet oxygen is generated by light irradiation of the photosensitizer methylene blue and its cytotoxic effect on Escherichia coli cells is quantified in the presence and absence of DONs. DONs are found to be vastly superior to dsDNA in protecting the bacteria from ROS-induced damage and even surpass established ROS scavengers. At a concentration of 15 nM, DONs are about 50 000 times more efficient ROS scavengers than dsDNA at an equivalent concentration. This is attributed to the dominant role of singlet oxygen, which has a long diffusion length and reacts specifically with guanine. The dense packing of the available guanines into the small volume of the DON increases the overall quenching probability compared to a linear dsDNA with the same number of base pairs. DONs thus have great potential to alleviate oxidative stress caused by singlet oxygen in diverse therapeutic settings.
Collapse
Affiliation(s)
- Jaime Andres Garcia-Diosa
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| |
Collapse
|
35
|
Li Z, Wang Y, Wang H, Wang H, Shang Y, Wang S, Han Q, Li J, Zhao RC, Jiang Q, Ding B. Self-Assembled DNA Composite-Engineered Mesenchymal Stem Cells for Improved Skin-Wound Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310241. [PMID: 38441385 DOI: 10.1002/smll.202310241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Indexed: 08/02/2024]
Abstract
The direct use of mesenchymal stem cells (MSCs) as therapeutics for skin injuries is a promising approach, yet it still faces several obstacles, including limited adhesion, retention, and engraftment of stem cells in the wound area, as well as impaired regenerative and healing functions. Here, DNA-based self-assembled composites are reported that can aid the adhesion of MSCs in skin wounds, enhance MSC viability, and accelerate wound closure and re-epithelialization. Rolling-circle amplification (RCA)-derived DNA flowers, equipped with multiple copies of cyclic Arg-Gly-Asp (cRGD) peptides and anti-von Willebrand factor (vWF) aptamers, act as robust scavengers of reactive oxygen species (ROS) and enable synergistic recognition and adhesion to stem cells and damaged vascular endothelial cells. These DNA structure-aided stem cells are retained at localized wound sites, maintain repair function, and promote angiogenesis and growth factor secretion. In both normal and diabetes-prone db/db mice models with excisional skin injuries, facile topical administration of DNA flower-MSCs elicits rapid blood vessel formation and enhances the sealing of the wound edges in a single dose. DNA composite-engineered stem cells warrant further exploration as a new strategy for the treatment of skin and tissue damage.
Collapse
Affiliation(s)
- Zhuoting Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Yiming Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Hong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Haiyan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
36
|
Fan Y, Wang C, Dai W, Zhou Y, Lu G, Li W, Li L, Lin T. DNA Origami Enhanced Cytokine Immunotherapy for Alleviating Renal Ischemia-Reperfusion Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38979-38988. [PMID: 39029244 DOI: 10.1021/acsami.4c06110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is a major contributing factor to the development of acute kidney injury (AKI) and has resulted in considerable morbidity and mortality. Persistent inflammatory responses and excessive reactive oxygen species (ROS) in the kidney following IRI can severely delay tissue repair, making it challenging to effectively promote IRI regeneration. Herein, we report an approach to enhance immunotherapy using interleukin-10 (IL-10) to promote IRI regeneration by loading IL-10 onto rectangular DNA origami nanostructures (rDON). rDON can significantly enhance the renal accumulation and retention time of IL-10, enabling it to effectively polarize type 1 macrophages into type 2 macrophages, thereby significantly reducing proinflammatory factors and increasing anti-inflammatory factors. In addition, DNA origami helps mitigate the harmful effects of ROS during renal IRI. The administration of IL-10-loaded DNA origami effectively improves kidney function, resulting in a notable reduction in blood urea nitrogen, serum uric acid, and serum creatinine levels. Our study demonstrates that the integration of anti-inflammatory cytokines within DNA origami holds promise as a strategic approach for cytokine immunotherapy in patients with AKI and other renal disorders.
Collapse
Affiliation(s)
- Yu Fan
- Department of Urology, Institute of Urology and Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshu Dai
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaojia Zhou
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gonggong Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Lin
- Department of Urology, Institute of Urology and Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
37
|
Liu Y, Luo H, Liu B, Zhou T, Zhang Z, Liu Z. Biomimetic NO Scavenging Hyaluronic Acid Nanoparticles Enable Targeted Delivery of MTX and Integrated Management of Rheumatoid Arthritis. Biomacromolecules 2024; 25:4557-4568. [PMID: 38899740 DOI: 10.1021/acs.biomac.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a complicated chronic disorder of the immune system, featured with severe inflammatory joints, synovium hyperplasia, articular cartilage, and bone damage. In the RA microenvironment, RA-involved cells, overproduced nitric oxide (NO), and pro-inflammatory cytokines are highly interplayed and mutually reinforced, which form a vicious circle and play crucial roles in the formation and progression of RA. To comprehensively break the vicious circle and obtain the maximum benefits, we have developed neutrophil membrane-camouflaged NO scavenging nanoparticles based on an NO-responsive hyaluronic acid derivative for delivery of MTX. These multifunctional nanoparticles (NNO-NPs/MTX), by inheriting the membrane functions of the source cells, possess prolonged circulation and specific localization at the inflamed sites when administrated in the body. Remarkably, NNO-NPs/MTX can neutralize the pro-inflammatory cytokines via the outer membrane receptors, scavenge NO, and be responsively disassociated to release MTX for RA-involved cell regulation and HA for lubrication in the RA sites. In a collagen-induced arthritis mouse model, NNO-NPs/MTX exhibits a significant anti-inflammation effect and effectively alleviates the characteristic RA symptoms such as synovial hyperplasia and cartilage destruction, realizing the synergistic and boosted therapeutic outcome against intractable RA. Thus, NNO-NPs/MTX provides a promising and potent platform to integrately treat RA.
Collapse
Affiliation(s)
- Yilin Liu
- Electrocardiogram Room, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| | - Huajun Luo
- Xingguo County Maternal and Child Health Hospital, Xingguo 342400, P.R. China
| | - Bingbing Liu
- Department of Orthopedics, Gao'an People's Hospital, Gao'an 330800, P.R. China
| | - Ting Zhou
- Department of Ultrasound Medicine, Xingguo County People's Hospital, Xingguo 342400, P.R. China
| | - Zhipeng Zhang
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437100, P.R. China
| | - Zhijian Liu
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, P.R. China
| |
Collapse
|
38
|
Deng Y, Zheng H, Li B, Huang F, Qiu Y, Yang Y, Sheng W, Peng C, Tian X, Wang W, Yu H. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J Control Release 2024; 371:498-515. [PMID: 38849090 DOI: 10.1016/j.jconrel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.
Collapse
Affiliation(s)
- Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
39
|
Liu X, Diao N, Song S, Wang W, Cao M, Yang W, Guo C, Chen D. Inflammatory macrophage reprogramming strategy of fucoidan microneedles-mediated ROS-responsive polymers for rheumatoid arthritis. Int J Biol Macromol 2024; 271:132442. [PMID: 38761903 DOI: 10.1016/j.ijbiomac.2024.132442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
During the pathogenesis of rheumatoid arthritis, inflammatory cells usually infiltrate synovial tissues, notably, M1-type macrophages, whose redox imbalance leads to the degradation of joint structures and deterioration of function. Natural active products play a vital role in immune modulation and antioxidants. In this study, we constructed a ROS-responsive nanoparticle called FTL@SIN, which consists of fucoidan (Fuc) and luteolin (Lut) connected by a ROS-responsive bond, Thioketal (TK), and encapsulated with an anti-rheumatic drug, Sinomenine (SIN), for synergistic anti-inflammatory effects. The FTL@SIN is then dispersed in high molecular weight Fuc-fabricated dissolvable microneedles (FTL@SIN MNs) for local administration. Therapy of FTL@SIN MNs afforded a significant decrease in macrophage inflammation while decreasing key pro-inflammatory cytokines and repolarizing M1 type to M2 type, thereby ameliorating synovial inflammation, and promoting cartilage repair. Additionally, our investigations have revealed that Fucoidan (Fuc) demonstrates synergistic effects, exhibiting superior mechanical strength and enhanced physical stability when compared to microneedles formulated solely with hyaluronic acid. This study combines nanomedicine with traditional Chinese medicine, a novel drug delivery strategy that presents a promising avenue for therapeutic intervention in rheumatoid arthritis.
Collapse
Affiliation(s)
- Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shiqing Song
- Rehabilitation Department, Yantai Yuhuangding Hospital, Yantai 264005, China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
40
|
Xu M, Zhang C, Yan J, Lu Z, Shi L, Zhang Y, Lin J, Cao Y, Pei R. A responsive nanoplatform with molecular and structural imaging capacity for assisting accurate diagnosis of early rheumatoid arthritis. Int J Biol Macromol 2024; 271:132514. [PMID: 38768917 DOI: 10.1016/j.ijbiomac.2024.132514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Accurate early diagnosis of rheumatoid arthritis (RA) and prompt implementation of appropriate treatment approaches are crucial. In the clinic, magnetic resonance imaging (MRI) has been recommended for implementation to aid in the precise and early diagnosis of RA. However, they are still limited by issues regarding specificity and their ability to capture comprehensive information about the pathological features. Herein, a responsive multifunctional nanoplatform with targeting capabilities (hMnO2-IR@BSA-PEG-FA) is constructed through integrating a RA microenvironment-responsive MRI contrast agent with activatable near-infrared (NIR) fluorescence imaging, aiming to simultaneously acquire comprehensive pathological features of RA from both structural and molecular imaging perspectives. Moreover, taking advantage of its targeting function to synovial microphages, hMnO2-IR@BSA-PEG-FA demonstrated a remarkable capability to accumulate effectively at the synovial tissue. Additionally, hMnO2 responded to the mild acidity and reactive oxygen species (ROS) in the RA microenvironment, leading to the controlled release of Mn2+ ions and IR780, which separately caused special MRI contrast enhancement of synovial tissues and sensitively demonstrated the presence of ROS and weakly acid microenvironment by NIR imaging. Consequently, hMnO2-IR@BSA-PEG-FA is expected to serve as a promising nanoplatform, offering valuable assistance in the precise diagnosis of early-stage RA by specially providing comprehensive information about the pathological features.
Collapse
Affiliation(s)
- Mingsheng Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenhui Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou 215001, China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Shi
- Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, China
| | - Yuehu Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou 215001, China.
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Jiangxi Institute of Nanotechnology, Nanchang 330200, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
41
|
Wang H, Jiao Y, Ma S, Li Z, Gong J, Jiang Q, Shang Y, Li H, Li J, Li N, Zhao RC, Ding B. Nebulized Inhalation of Peptide-Modified DNA Origami To Alleviate Acute Lung Injury. NANO LETTERS 2024; 24:6102-6111. [PMID: 38739578 DOI: 10.1021/acs.nanolett.4c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.
Collapse
Affiliation(s)
- Haiyan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Yunfei Jiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shuaijing Ma
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Zhuoting Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Jintao Gong
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Li X, Gao J, Wu C, Wang C, Zhang R, He J, Xia ZJ, Joshi N, Karp JM, Kuai R. Precise modulation and use of reactive oxygen species for immunotherapy. SCIENCE ADVANCES 2024; 10:eadl0479. [PMID: 38748805 PMCID: PMC11095489 DOI: 10.1126/sciadv.adl0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Reactive oxygen species (ROS) play an important role in regulating the immune system by affecting pathogens, cancer cells, and immune cells. Recent advances in biomaterials have leveraged this mechanism to precisely modulate ROS levels in target tissues for improving the effectiveness of immunotherapies in infectious diseases, cancer, and autoimmune diseases. Moreover, ROS-responsive biomaterials can trigger the release of immunotherapeutics and provide tunable release kinetics, which can further boost their efficacy. This review will discuss the latest biomaterial-based approaches for both precise modulation of ROS levels and using ROS as a stimulus to control the release kinetics of immunotherapeutics. Finally, we will discuss the existing challenges and potential solutions for clinical translation of ROS-modulating and ROS-responsive approaches for immunotherapy, and provide an outlook for future research.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jingjing Gao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Engineering, Material Science and Engineering Graduate Program and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziting Judy Xia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nitin Joshi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
43
|
Stevanović M, Filipović N. A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years. Pharmaceutics 2024; 16:670. [PMID: 38794332 PMCID: PMC11125366 DOI: 10.3390/pharmaceutics16050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, biopolymer-based nano-drug delivery systems with antioxidative properties have gained significant attention in the field of pharmaceutical research. These systems offer promising strategies for targeted and controlled drug delivery while also providing antioxidant effects that can mitigate oxidative stress-related diseases. Generally, the healthcare landscape is constantly evolving, necessitating the continual development of innovative therapeutic approaches and drug delivery systems (DDSs). DDSs play a pivotal role in enhancing treatment efficacy, minimizing adverse effects, and optimizing patient compliance. Among these, nanotechnology-driven delivery approaches have garnered significant attention due to their unique properties, such as improved solubility, controlled release, and targeted delivery. Nanomaterials, including nanoparticles, nanocapsules, nanotubes, etc., offer versatile platforms for drug delivery and tissue engineering applications. Additionally, biopolymer-based DDSs hold immense promise, leveraging natural or synthetic biopolymers to encapsulate drugs and enable targeted and controlled release. These systems offer numerous advantages, including biocompatibility, biodegradability, and low immunogenicity. The utilization of polysaccharides, polynucleotides, proteins, and polyesters as biopolymer matrices further enhances the versatility and applicability of DDSs. Moreover, substances with antioxidative properties have emerged as key players in combating oxidative stress-related diseases, offering protection against cellular damage and chronic illnesses. The development of biopolymer-based nanoformulations with antioxidative properties represents a burgeoning research area, with a substantial increase in publications in recent years. This review provides a comprehensive overview of the recent developments within this area over the past five years. It discusses various biopolymer materials, fabrication techniques, stabilizers, factors influencing degradation, and drug release. Additionally, it highlights emerging trends, challenges, and prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | | |
Collapse
|
44
|
Tang Z, Meng S, Yang X, Xiao Y, Wang W, Liu Y, Wu K, Zhang X, Guo H, Zhu YZ, Wang X. Neutrophil-Mimetic, ROS Responsive, and Oxygen Generating Nanovesicles for Targeted Interventions of Refractory Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307379. [PMID: 38084463 DOI: 10.1002/smll.202307379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Indexed: 05/18/2024]
Abstract
Rheumatoid arthritis (RA) is the most prevalent inflammatory joint disease worldwide, leading to irreversible disability and even mortality. Unfortunately, current treatment regimens fail to cure RA due to low therapeutic responses and off-target side effects. Herein, a neutrophil membrane-cloaked, natural anti-arthritic agent leonurine (Leo), and catalase (CAT) co-loaded nanoliposomal system (Leo@CAT@NM-Lipo) is constructed to remodel the hostile microenvironment for RA remission. Due to the inflammation tropism inherited from neutrophils, Leo@CAT@NM-Lipo can target and accumulate in the inflamed joint cavity where high-level ROS can be catalyzed into oxygen by CAT to simultaneously accelerate the drug release and alleviate hypoxia at the lesion site. Besides, the neutrophil membrane camouflaging also enhances the anti-inflammatory potentials of Leo@CAT@NM-Lipo by robustly absorbing pro-arthritogenic cytokines and chemokines. Consequently, Leo@CAT@NM-Lipo successfully alleviated paw swelling, reduced arthritis score, mitigated bone and cartilage damage, and reversed multiple organ dysfunctions in adjuvant-induced arthritis rats (AIA) rats by synergistic effects of macrophage polarization, inflammation resolution, ROS scavenging, and hypoxia relief. Furthermore, Leo@CAT@NM-Lipo manifested excellent biocompatibility both at the cellular and animal levels. Taken together, the study provided a neutrophil-mimetic and ROS responsive nanoplatform for targeted RA therapy and represented a promising paradigm for the treatment of a variety of inflammation-dominated diseases.
Collapse
Affiliation(s)
- Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Shiyu Meng
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xiaoxue Yang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Yi Xiao
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Wentao Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Yonghang Liu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Kefan Wu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xican Zhang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| |
Collapse
|
45
|
Luo R, Su J, Zhang W, Huang W, Zhou Q, Sun P, Zhao Y. Targeted delivery of NO donor and ROS scavenger for synergistic treatment of rheumatoid arthritis. Biomed Pharmacother 2024; 174:116540. [PMID: 38579400 DOI: 10.1016/j.biopha.2024.116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
Rheumatoid arthritis (RA) is characterized by high level of reactive oxygen species (ROS) and proinflammatory cytokines, which facilitate the activation of the inflammatory signaling such as NF-κB pathway and exacerbate the development of inflammation. Herein, we designed a nanodrug by encapsulating the NO donor S-nitrosoglutathione (GSNO) into an emulsion and coating the surface with a polydopamine (PDA) layer to yield GSNO@PDA, which simultaneously scavenged the extra ROS and suppressed NF-κB signaling for potent RA treatment. To enhance the cellular uptake and NO generation efficiency, dextran sulfate (DS) and Cu2+ were anchored on the surface of GSNO@PDA to obtain the final formulation GSNO@PDA@DS. Our results demonstrated that GSNO@PDA@DS were successfully prepared and the modification of DS effectively boosted the cellular uptake of GSNO@PDA@DS. Moreover, GSNO@PDA@DS lowered cellular ROS and elevated intracellular NO, resulting in a decrease of M1 phenotype, inhibition of NF-κB pathway and down-regulation of proinflammatory cytokine tumor necrosis factor-α (TNF-α). Further in vivo studies confirmed that GSNO@PDA@DS significantly relieved symptoms and bone erosion by regulating the microenvironment of RA, highlighting the potential of GSNO@PDA@DS for RA therapy through ROS scavenging and NO-mediated suppression of inflammatory signaling.
Collapse
Affiliation(s)
- Rongrong Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jingjing Su
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenying Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenguang Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qianqian Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Pengchao Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Yongxing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
46
|
Tu YC, Wang YM, Yao LJ. Macrophage-Targeting DNA Nanomaterials: A Future Direction of Biological Therapy. Int J Nanomedicine 2024; 19:3641-3655. [PMID: 38681094 PMCID: PMC11055528 DOI: 10.2147/ijn.s459288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
DNA can be used for precise construction of complex and flexible micro-nanostructures, including DNA origami, frame nucleic acids, and DNA hydrogels. DNA nanomaterials have good biocompatibility and can enter macrophages via scavenger receptor-mediated endocytosis. DNA nanomaterials can be uniquely and flexibly designed to ensure efficient uptake by macrophages, which represents a novel strategy to regulate macrophage function. With the development of nanotechnology, major advances have been made in the design and manufacturing of DNA nanomaterials for clinical therapy. In diseases accompanied by macrophage disturbances including tumor, infectious diseases, arthritis, fibrosis, acute lung injury, and atherosclerosis, DNA nanomaterials received considerable attention as potential treatments. However, we lack sufficient information to guarantee precise targeting of macrophages by DNA nanomaterials, which precludes their therapeutic applications. In this review, we summarize recent studies of macrophage-targeting DNA nanomaterials and discuss the limitations and challenges of this approach with regard to its potential use as a biological therapy.
Collapse
Affiliation(s)
- Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
47
|
Zhu Y, Shi R, Lu W, Shi S, Chen Y. Framework nucleic acids as promising reactive oxygen species scavengers for anti-inflammatory therapy. NANOSCALE 2024; 16:7363-7377. [PMID: 38411498 DOI: 10.1039/d3nr05844a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Reactive oxygen species (ROS) are an array of derivatives of molecular oxygen that participate in multiple physiological processes under the control of redox homeostasis. However, under pathological conditions, the over-production of ROS often leads to oxidative stress and inflammatory reactions, indicating a potential therapeutic target. With the rapid development of nucleic acid nanotechnology, scientists have exploited various DNA nanostructures with remarkable biocompatibility, programmability, and structural stability. Among these novel organic nanomaterials, a group of skeleton-like framework nucleic acid (FNA) nanostructures attracts the most interest due to their outstanding self-assembly, cellular endocytosis, addressability, and functionality. Surprisingly, different FNAs manifest similarly satisfactory antioxidative and anti-inflammatory effects during their biomedical application process. First, they are intrinsically endowed with the ability to neutralize ROS due to their DNA nature. Therefore, they are extensively involved in the complicated inflammatory signaling network. Moreover, the outstanding editability of FNAs also allows for flexible modifications with nucleic acids, aptamers, peptides, antibodies, low-molecular-weight drugs, and so on, thus further strengthening the targeting and therapeutic ability. This review focuses on the ROS-scavenging potential of three representative FNAs, including tetrahedral framework nucleic acids (tFNAs), DNA origami, and DNA hydrogels, to summarize the recent advances in their anti-inflammatory therapy applications. Although FNAs exhibit great potential in treating inflammatory diseases as promising ROS scavengers, massive efforts still need to be made to overcome the emerging challenges in their clinical translation.
Collapse
Affiliation(s)
- Yujie Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ruijianghan Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weitong Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
48
|
Garcia-Diosa JA, Grundmeier G, Keller A. Effect of DNA Origami Nanostructures on Bacterial Growth. Chembiochem 2024; 25:e202400091. [PMID: 38299762 DOI: 10.1002/cbic.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
DNA origami nanostructures are a powerful tool in biomedicine and can be used to combat drug-resistant bacterial infections. However, the effect of unmodified DNA origami nanostructures on bacteria is yet to be elucidated. With the aim to obtain a better understanding of this phenomenon, the effect of three DNA origami shapes, i.e., DNA origami triangles, six-helix bundles (6HBs), and 24-helix bundles (24HBs), on the growth of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis is investigated. The results reveal that while triangles and 24HBs can be used as a source of nutrients by E. coli and thereby promote population growth, their effect is much smaller than that of genomic single- and double-stranded DNA. However, no effect on E. coli population growth is observed for the 6HBs. On the other hand, B. subtilis does not show any significant changes in population growth when cultured with the different DNA origami shapes or genomic DNA. The detailed effect of DNA origami nanostructures on bacterial growth thus depends on the competence signals and uptake mechanism of each bacterial species, as well as the DNA origami shape. This should be considered in the development of antimicrobial DNA origami nanostructures.
Collapse
Affiliation(s)
- Jaime Andres Garcia-Diosa
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
49
|
Zhou X, Zhou Q, He Z, Xiao Y, Liu Y, Huang Z, Sun Y, Wang J, Zhao Z, Liu X, Zhou B, Ren L, Sun Y, Chen Z, Zhang X. ROS Balance Autoregulating Core-Shell CeO 2@ZIF-8/Au Nanoplatform for Wound Repair. NANO-MICRO LETTERS 2024; 16:156. [PMID: 38512388 PMCID: PMC10957853 DOI: 10.1007/s40820-024-01353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Reactive oxygen species (ROS) plays important roles in living organisms. While ROS is a double-edged sword, which can eliminate drug-resistant bacteria, but excessive levels can cause oxidative damage to cells. A core-shell nanozyme, CeO2@ZIF-8/Au, has been crafted, spontaneously activating both ROS generating and scavenging functions, achieving the multi-faceted functions of eliminating bacteria, reducing inflammation, and promoting wound healing. The Au Nanoparticles (NPs) on the shell exhibit high-efficiency peroxidase-like activity, producing ROS to kill bacteria. Meanwhile, the encapsulation of CeO2 core within ZIF-8 provides a seal for temporarily limiting the superoxide dismutase and catalase-like activities of CeO2 nanoparticles. Subsequently, as the ZIF-8 structure decomposes in the acidic microenvironment, the CeO2 core is gradually released, exerting its ROS scavenging activity to eliminate excess ROS produced by the Au NPs. These two functions automatically and continuously regulate the balance of ROS levels, ultimately achieving the function of killing bacteria, reducing inflammation, and promoting wound healing. Such innovative ROS spontaneous regulators hold immense potential for revolutionizing the field of antibacterial agents and therapies.
Collapse
Affiliation(s)
- Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Quan Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhaozhi He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yi Xiao
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yan Liu
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Zhuohang Huang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yaoji Sun
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jiawei Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Bin Zhou
- NO.1 Middle School Affiliated to Central China Normal University, Wuhan, 430223, People's Republic of China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Zhiwei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
50
|
Li R, Li W, Zhou Y, Liao G, Peng G, Zhou Y, Gou L, Zhu X, Hu L, Zheng X, Wang C, Tong N. A DNA-based and bifunctional nanomedicine for alleviating multi-organ injury in sepsis under diabetic conditions. Acta Biomater 2024; 177:377-387. [PMID: 38307477 DOI: 10.1016/j.actbio.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Sepsis, defined as a life-threatening organ dysfunction, is associated with increased mortality in individuals with diabetes mellitus. In sepsis under diabetic conditions (SUDC), the superimposed inflammatory response and excessive production of reactive oxygen species (ROS) can cause severe damage to the kidney and liver, making it challenging to effectively repair multi-organ injury. In this study, we report the development of a DNA-based bifunctional nanomedicine, termed IL10-rDON, generated by assembling interleukin 10 (IL10) with rectangular DNA origami nanostructures (rDON) to address multi-organ dysfunction in SUDC. IL10-rDON was shown to predominantly accumulate in the kidney and liver of diabetic mice in vivo and effectively alleviate inflammatory responses through its anti-inflammatory IL10 component. In addition, the consumption of rDON itself significantly reduced excessive ROS in the liver and kidney. Serum and histological examinations further confirmed that IL10-rDON treatment could effectively improve liver and kidney function, as well as the survival of mice with SUDC. This study demonstrates an attractive antioxidant and anti-inflammatory nanomedicine for addressing acute liver and renal failure. The integration of rDON with therapeutic agents using DNA nanotechnology is a promising strategy for generating multifunctional nanomedicine to treat multi-organ dysfunction and other complicated diseases. STATEMENT OF SIGNIFICANCE: Sepsis under diabetic conditions (SUDC) leads to high mortality due to multiple organ failure such as acute liver and kidney injury. The anti-inflammatory cytokine interleukin 10 (IL10) holds great potential to treat SUDC, while disadvantages of IL-10 such as short half-life, non-specific distribution and lack of antioxidant activities limit its wide clinical applications. In this study, we developed a DNA-based, bifunctional nanomedicine (IL10-rDON) by assembling IL10 with rectangular DNA origami nanostructures (rDON). We found that IL10-rDON preferentially accumulated and sufficiently attenuated the increased levels of ROS and inflammation in the kidney and liver injury sites, and eventually improved the survival rate of mice with SUDC. Our finding provides new insights into the application of DNA-based nanomedicine in treating multi-organ failure.
Collapse
Affiliation(s)
- Ruoqing Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China; Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yaojia Zhou
- Animal Experimental Center of West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Experimental Center of West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|