1
|
Yuan Y, Tang X, Zhang L, Zhang Q, Ma F, Li P. Multi-mode probe based on dual colorimetric and photothermal later flow immunoassay for the ultrasensitive determination of benzo[a]pyrene in vegetable oils. Food Chem 2025; 482:144080. [PMID: 40209368 DOI: 10.1016/j.foodchem.2025.144080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
Lateral flow immunoassays (LFIA) have been acknowledged as the promising on-site screening method for food survey. Monoclonal antibodies against benzo[a]pyrene (BaP) conjugated with enzyme-mimetic probes, a multi mode LIFA strips were systemically constructed and evaluated. The PBNPs@mAbs based LFIA could conduct triple measurement in 14 min. This assay had good limit of detections (LODs of 0.057, 0.035, and 0.106 μg kg-1), ultra calibration ranges (0.23-500, 0.076-56, 0.69-167 μg kg-1), and the recoveries ranging from 86 % to 105 % with the precision less than 12 %. Compared with the reported methods, the LODs were 175-, 285- and 94- folds enhanced, and dynamic linear ranges were greatly expanded. Finally, this novel PBNPs@mAbs LFIA assay with simplicity, rapidity, and sensitivity was successfully utilized for the determination of BaP in vegetable oils, which could be used as a superior enzyme-mimetic on-site analytic platform in food safety.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fei Ma
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| |
Collapse
|
2
|
Zhang Y, He Z, Sun Z, Zhang S, Liu X. Genetic engineering-powered dual-mode lateral flow immunosensor for colorimetric and fluorescent detection of ochratoxin A in pepper. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137636. [PMID: 39970642 DOI: 10.1016/j.jhazmat.2025.137636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Ochratoxin A (OTA) poses significant risks to both environment and human health, necessitating the development of rapid and sensitive detection methods. Lateral flow immunosensors (LFIs) typically use monoclonal antibodies and artificial antigens for mycotoxin detection; however, the preparation of these components is time-intensive, laborious, costly, and environmentally harmful. Herein, we developed an innovative genetic engineering-powered colorimetric/fluorescent dual-mode LFI (CM/FL-dLFI) using nanobodies and the mimotope peptide (MP) of OTA. Initially, a heptameric bifunctional fusion (sfGFP-C4bpα-Y4) containing the superfolder green fluorescent protein, the C4-binding protein α-chain, and the MP Y4 was constructed. The fusion was subsequently labeled on gold nanoflowers (AuNFs) to create the AuNFs@sfGFP-C4bpα-Y4 probe, which can be captured by the nanobody heptamer (Nb-C4bpα) and provides colorimetric/fluorescent signals. The optimized CM/FL-dLFI achieved a colorimetric limit of detection (LOD) of 0.01 ng/mL and a fluorescent LOD of 0.05 ng/mL. It exhibited high selectivity for OTA, good recovery rates of 82.85-102.81 % with relative standard deviations not exceeding 14 %, and excellent long-term stability. Moreover, it showed strong correlation with high-performance liquid chromatography in the analysis of 11 real pepper samples. Therefore, this study highlights the promising application potential of nanobodies and MPs in developing an economical and eco-friendly LFI for OTA detection in pepper.
Collapse
Affiliation(s)
- Yongli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Sun Q, Chen X, Ran X, Yin Y, Lei X, Li J, Le T. From traditional to modern: Nanotechnology-driven innovation in mycotoxin sensing for Chinese herbal medicines. Talanta 2025; 288:127681. [PMID: 39938420 DOI: 10.1016/j.talanta.2025.127681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
Mycotoxin contamination in Chinese herbal medicines (CHMs) is a pressing concern that jeopardizes their quality and safety, despite their widespread therapeutic use. Conventional detection methods are often limited by complexity, cost, and sensitivity, particularly in resource-limited settings. This gap in effective and efficient mycotoxin detection necessitates a comprehensive review that explores innovative solutions to enhance the safety and efficacy of CHMs. Advancements in nanomaterials and related advanced sensing techniques have emerged as a beacon of hope. Therefore, this review aims to fill the knowledge gap by providing a comprehensive overview of the latest developments in mycotoxin detection in CHMs, spotlighting the transformative role of nanomaterials and advanced sensing techniques. This review stands out for its in-depth exploration of functional nanomaterials across dimensions and their innovative applications in mycotoxin detection. Its innovation stems from a holistic approach that not only surveys current technologies but also charts a forward-looking path, emphasizing novel nanomaterial development, refined pretreatment, and advanced biosensing for on-site detection. It delves into the integration of nanomaterials with advanced sensing technologies, discussing the advantages and limitations of these approaches. A significant innovation of this review lies in the nuanced integration of nanomaterials with machine learning and artificial intelligence, revealing untapped potential for accuracy enhancement. Through this synthesis of knowledge, we hope to inspire further research and development in this critical area, ensuring the continued safe use of CHMs in traditional medicine practices.
Collapse
Affiliation(s)
- Qi Sun
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Xiang Chen
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Xueyan Ran
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Yin
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Xianlu Lei
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Jianmei Li
- Institute of Intelligent Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Tao Le
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| |
Collapse
|
4
|
Wang C, Xiang C, Zhang H, Zhang G, Zhang Q, Li P, Tang X. Multifunctional metal-organic frameworks-mediated colorimetric/photothermal immunosensor for highly sensitivity detection of dibutyl phthalate. Food Chem 2025; 472:142928. [PMID: 39827561 DOI: 10.1016/j.foodchem.2025.142928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Dibutyl phthalate (DBP), a priority pollutant among phthalic acid esters (PAEs) exhibits significant reproductive and respiratory toxicity. In this study, a multifunctional metal-organic frameworks-mediated colorimetric/photothermal immunosensor was established for the quantitative detection of DBP. Firstly, a highly sensitive and specific monoclonal antibody (mAb), designated 3A5, was prepared with a sensitivity IC50 value of 16.29 ng/mL. Secondly, a metal-organic framework material (ZrO₂@C) was synthesized via a two-step pyrolysis process of UiO-66. Subsequently, a multifunctional immunoprobe was prepared for the detection of DBP. Using ZrO₂@C-based colorimetric and photothermal dual-signal immunosensor ensured the accuracy of the detection results, as the multiple of these signals effectively guaranteed the reliability of the results. The limit of detection (LOD) for the dual signal was 0.766 ng/mL (colorimetric signal) and 0.465 ng/mL (photothermal signal). In conclusion, this work presented a novel and feasible approach for the development of multifunctional nanomaterials for the fabrication of immunosensors.
Collapse
Affiliation(s)
- Chen Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chengyan Xiang
- Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haoran Zhang
- Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Gao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhang
- Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peiwu Li
- Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoqian Tang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China.
| |
Collapse
|
5
|
Li W, Wang X, Zhu M, Huang X, Umutoni PH, Chen TH, Lu J, Chen SC, Tan G, Yan BP, Khoo BL. Multimodal triple-mode probe with colorimetric-fluorescence-SERS (CFSERS) for sensitive and quantitative detection of C-reactive protein in clinical diagnostics. Talanta 2025; 293:128100. [PMID: 40245796 DOI: 10.1016/j.talanta.2025.128100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
Chronic inflammation remains a major global health concern, necessitating the development of advanced tools for continuous, precise monitoring. This study introduces a novel, clinically impactful triple-mode probe that integrates colorimetric, fluorescence, and surface-enhanced Raman scattering (SERS) signals, offering unparalleled multimodal detection capabilities. The probe's design leverages europium chelate-doped polystyrene nanoparticles (ECNPs), ensuring minimal signal cross-interference through a long Stokes shift. A key innovation is the development of a multimodal mapping algorithm that seamlessly integrates these optical signals, providing a sensitive and robust platform for biomarker detection with broad dynamic ranges. The probe's clinical relevance is demonstrated by its application in lateral flow assays (LFAs) for detecting C-reactive protein (CRP) levels, achieving a detection limit of 6.31 ng/mL and dynamic ranges from 23.13 to 2000 ng/mL, significantly outperforming single-mode detection methods. In clinical validation using urine samples from 31 patients, the triple-mode LFA showed excellent correlation (0.9377) and agreement (93.55 %) with gold standard enzyme-linked immunosorbent assay (ELISA) results. This demonstrates that the proposed multimodal platform offers a highly sensitive, cost-effective, and versatile tool for monitoring inflammation and other disease biomarkers, with substantial potential for clinical applications in diagnostics and disease management.
Collapse
Affiliation(s)
- Wei Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Xinrui Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Mingze Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Xin Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Pacifique Hirwa Umutoni
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Jian Lu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Shih-Chi Chen
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Guangming Tan
- Division of Cardiology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Bryan P Yan
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China; Division of Cardiology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China; City University of Hong Kong Shenzhen Research Institute (CityUSRI), Shenzhen, China.
| |
Collapse
|
6
|
Pang J, Guo M, Wang Y, Bi C, Xu Z, Shen Y, Xiao Z, Wen P, Yang J, Wang H. Determination of parathion by time-resolved fluorescence immunochromatographic assay based on nanobody: Aiming at improving strip sensitivity. Talanta 2025; 285:127359. [PMID: 39673983 DOI: 10.1016/j.talanta.2024.127359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
The label probe plays a crucial role in enhancing the sensitivity of immunochromatographic assay. Time-resolved fluorescent microspheres (TRFMs) have provided accurate and reliable results for fast and immediate detection. In this study, parathion was used as a model molecule in the time-resolved fluorescence immunochromatographic assay (TRFICA) strip establishment using recognition element of anti-parathion nanobody (VHH9). Under the optimal conditions, this TRFICA demonstrated good analytical performance for the detection of parathion with a cut-off value of 30 ng/mL and the limit of detection (LOD) of 0.016 ng/mL. Meanwhile, the sensitivity of the nanobody-based TRFICA was 10-fold and 480-fold higher than that of the VHH9 based colloidal gold ICA (CGICA) and commercial mAb-ICA. Moreover, this method exhibited good recoveries for the detection of cabbage, cucumber, and orange samples with no obvious cross-reactions with the other analogs observed and showed strong correlation with UPLC-MS/MS results in spiked samples. In summary, the proposed method is feasible, rapid, and could serve as a highly sensitive platform to meet practical samples detection for parathion.
Collapse
Affiliation(s)
- Jiarui Pang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Mingwei Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou, 510080, China
| | - Chaohui Bi
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhili Xiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Shao Y, Tao Q, Shao L, Bi J, Wang Q, Wang Z, Sun X. Defective UIO66 metal-organic framework nanoparticles assisted by cascade isothermal amplification technology for the detection of aflatoxin B1. Talanta 2025; 285:127411. [PMID: 39706032 DOI: 10.1016/j.talanta.2024.127411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Aflatoxin B1 (AFB1) exhibits significant toxicity and pose a serious threat to food safety, environmental hygiene, and public health even in trace amounts. Hence, the development of a rapid, accurate, and sensitive detection technology has become a pivotal aspect of ensuring control standards. In this study, we introduce the UIO66 and two defective dichloroacetic acid@UIO66 (DCA@UIO66, DU) metal-organic framework nanoparticles, named DU1 and DU2, characterized by different defect levels. It is noteworthy that DU1 exhibits superior DNA sensing capability compared to UIO66 and DU2. With a fluorescence quenching efficiency of 92.66 % and a recovery efficiency of 1256.75 %, DU1 demonstrates the substantial potential in the detection field. Furthermore, we employ cascade isothermal amplification to assist DU1-mediated fluorescence sensors in detecting AFB1. AFB1 is efficiently identified through an aptamer competition process facilitated by magnetic nanoparticles, which initiates the exponential amplification triggered rolling circle amplification reaction, and converts trace amounts of toxin signal into a large number of long single-stranded DNA molecules. Upon recognition of the amplification product by the fluorescent probe on DU1, a more stable double-stranded DNA is formed and leaves the surface of DU1, leading to a significant change in fluorescence intensity. This method exhibits acceptable sensitivity, with a detection limit of 0.09 pg mL-1 and a wide detection range spanning from 0.2 pg mL-1 to 20 pg mL-1. Additionally, this assay exhibits satisfactory specificity and high accuracy in practical sample applications. Our proposed method offers a solid theoretical framework and technical backing, thereby facilitating the establishment of a new generation of mycotoxin detection standards.
Collapse
Affiliation(s)
- Yanyan Shao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qian Tao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Luyao Shao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Jing Bi
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Qian Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Zhigang Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Xuan Sun
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430061, China.
| |
Collapse
|
8
|
Yuan B, Li Z, Li P, Zhang Q, Yang Q, Tang X. Genetically engineered integrated aflatoxin B 1 and deoxynivalenol bispecific nanobody as surrogate antigens for constructed time-resolved immunoassay dual detection methods. Biosens Bioelectron 2025; 273:117137. [PMID: 39808992 DOI: 10.1016/j.bios.2025.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
There is a phenomenon of combined contamination of fungal toxins, of which aflatoxin B1 (AFB1) is the most toxic, and deoxynivalenol (DON) contamination is common. The use of antigens for double or multiple testing of mycotoxins is easy to cause environmental pollution, and surrogate antigens have become necessary. The small molecule and susceptibility to genetic modification of nanobodies can be used to develop alternative antigens for mycotoxins. In this study, using the nanobody gene sequences of the heavy chain recognition regions of anti-aflatoxin and deoxynivalenol monoclonal antibodies, recombinant plasmids were successfully constructed by one-step cloning, and low-temperature-induced bispecific nanobodies against AFB1-DON were obtained, which can be used as alternative antigens to reduce the pollution of the environment from mycotoxin detection. Enzyme-linked immunosorbent assay validated the bispecific nanobody, and the semi-inhibitory concentration (IC50) of the bispecific nanobody were 0.47 μg/L and 149 μg/L for AFB1 and DON, respectively. Finally, a time-resolved fluorescent dual-detection test strip was constructed by this bispecific nanobody as a surrogate antigen for AFB1 and DON, which was capable of detecting AFB1 and DON at the same time, and the limits of detection (LOD) for the two toxins were 0.0254 μg/L and 21.4 μg/L, respectively. This method has satisfactory sensitivity and does not require antigen, which reduces the toxicity of using antigen.
Collapse
Affiliation(s)
- Bei Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China.
| |
Collapse
|
9
|
Li W, Xu Z, He Q, Pan J, Zhang Y, El-Sheikh ESA, Hammock BD, Li D. Nanobody-Based Immunoassays for the Detection of Food Hazards-A Review. BIOSENSORS 2025; 15:183. [PMID: 40136980 PMCID: PMC11939871 DOI: 10.3390/bios15030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Food safety remains a significant global challenge that affects human health. Various hazards, including microbiological and chemical threats, can compromise food safety throughout the supply chain. To address food safety issues and ensure public health, it is necessary to adopt rapid, accurate, and highly specific detection methods. Immunoassays are considered to be an effective method for the detection of highly sensitive biochemical indicators and provide an efficient platform for the identification of food hazards. In immunoassays, antibodies function as the primary recognition elements. Nanobodies have significant potential as valuable biomolecules in diagnostic applications. Their distinctive physicochemical and structural characteristics make them excellent candidates for the development of reliable diagnostic assays, and as promising alternatives to monoclonal and polyclonal antibodies. Herein, we summarize a comprehensive overview of the status and prospects of nanobody-based immunoassays in ensuring food safety. First, we begin with a historical perspective on the development of nanobodies and their unique characteristics. Subsequently, we explore the definitions and boundaries of immunoassays and immunosensors, before discussing the potential applications of nanobody-based immunoassays in food safety testing that have emerged over the past five years, and follow the different immunoassays, highlighting their advantages over traditional detection methods. Finally, the directions and challenges of nanobody-based immunoassays in food safety are discussed. Due to their remarkable sensitivity, specificity and versatility, nanobody-based immunoassays hold great promise in revolutionizing food safety testing and ensuring public health and well-being.
Collapse
Affiliation(s)
- Wenkai Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Zhihao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Qiyi He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Junkang Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Yijia Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | | | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Dongyang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
10
|
Shan J, Wang S, Yin X, Gong W, Liu S, Shi L, Zhuo J, Sun J, Zhang D, Cheng J, Wang J. Phase engineered amorphous-crystalline MIL-101(CuFe)@AuNPs with enhanced photothermal activity for sensitive immunochromatographic bimodal detection of streptomycin. Biosens Bioelectron 2025; 271:117002. [PMID: 39615222 DOI: 10.1016/j.bios.2024.117002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025]
Abstract
Phase engineering-assisted tuning of the plasma resonance properties of multifunctional nanocomposites provides an excellent opportunity to improve analytical performance. It is anticipated to break the dominating bottleneck of insufficient signal brightness in identifying imperceptible variation of the target concentration and further enhance the sensitive immunochromatographic assays (ICAs) analysis. Herein, by simply assembling isolated gold nanoparticles (AuNPs) on the surface of MIL-101(CuFe) (named MCF) with a tunable size and crystal phase, we synthesized amorphous-crystalline MCF@AuNPs nanocomposites as immuno signal tracers. For the first time, we utilized phase transformation to assist in realizing the effective regulation of the plasma resonance properties of MCF@AuNPs. It exhibits extraordinary colorimetric intensity, photothermal conversion efficiency (59.1%), stability, and dispersion, all of which facilitate the construction of sensitive and accurate bimodal complementary ICA. With a proof-of-concept for streptomycin, the MCF@AuNPs-ICA showed the limit of detection (LOD) at 0.14 ng mL-1 with remarkable university in different samples. This work demonstrates the importance of the rational design of phase-transformation-assisted tuning plasma resonance properties to improve analytical performance with terrific potential for point-of-care (POC) diagnostic applications.
Collapse
Affiliation(s)
- Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Weijie Gong
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, People's Republic of China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, People's Republic of China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
11
|
Wang X, Yang H, Sun T, Zhang J, Wang L, Zhang Y, Zhou N. A fluorescence and SERS dual-mode biosensor for quantification and imaging of Mucin1 in living cells. Biosens Bioelectron 2025; 270:116964. [PMID: 39579679 DOI: 10.1016/j.bios.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Mucin1 (MUC1) is a cell surface transmembrane protein overexpressed in multiple types of tumor cells, which is generally considered as a tumor-associated biomarker. Thus, quantifying and imaging of MUC1 in tumor cells is of great significance for the diagnosis and biological therapy of tumors. Herein, a fluorescence (FL) and surface-enhanced Raman scattering (SERS) dual-mode biosensor was developed for sensitive detection and imaging of MUC1 in living cells. The FL-SERS biosensor was based on self-assembled satellite structures mediated by the competition of MUC1 and complementary DNA modified on Au nanostars (AuNS-cDNA-PEG) with aptamer modified on quantum dots (QD-PDDA-Apt). This biosensor achieved dual-mode quantification and imaging of MUC1 by quenching the FL signal of QD and significantly enhancing the SERS signal of PDDA through the metal FL quenching effect and hotspot effect of AuNS, respectively. The dual-mode biosensor exhibited high sensitivity to MUC1, with a detection limit of 1.19 fg/mL under FL mode and 1.16 fg/mL under SERS mode. Moreover, this biosensor displayed good selectivity, nice biological stability and low cytotoxicity. Importantly, this biosensor possessed an excellent MUC1 dual-mode imaging capability with high specificity in different tumor cells, providing a new idea for clinical diagnosis of tumors.
Collapse
Affiliation(s)
- Xiaoli Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Huiru Yang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Tao Sun
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jiale Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lixuan Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yuting Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| | - Nandi Zhou
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Yang M, Xu Q, Gu K, Wen R, Zhou C, Zhao Y, Guo B, Xu W, Zhang Y, Li C, Lei C, Wang H. Development of a nanobody-horseradish peroxidase fusion-based competitive ELISA to rapidly and sensitively detect Enrofloxacin residues in animal-derived foods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125309. [PMID: 39490174 DOI: 10.1016/j.saa.2024.125309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
The ability to reliably detect enrofloxacin in animal-derived food products has important health implications. In the present study, a nanobody-horseradish peroxidase fusion specific for ENR was generated to enable a sensitive and rapid competitive ELISA suitable for detecting enrofloxacin in samples of milk and animal tissue. An enrofloxacin hapten generated via the glutaraldehyde method was initially used to immunize an adult Bactrian camel as a means of constructing a phage library. Enrofloxacin-specific nanobodies were then selected through three rounds of biopanning, and HRP-fused versions of these nanobodies were then expressed. Lastly, these nanobodies were used to develop a sensitive cELISA for enrofloxacin detection in milk and animal tissues, with the resultant assay exhibiting an IC50 of 37.41 ng/mL and a linear detection range (IC20-IC80) of 10.89 to 244.34 ng/mL. The limit of detection for this cELISA was 6.48 ng/mL, with 4.66 % cross-reactivity with ciprofloxacin, and recovery rates that ranged from84.99 % to 107.72 % together with an RSD below 10.70 %.
Collapse
Affiliation(s)
- Ming Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Kui Gu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wei Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Zhao Y, Wang Q, Li Y, Liu M, Qin X, Shen Z, Li J, Yao Z. Supramolecular Coassembly Activated Dual-Excitation Fluorescent Sensing Platform for Precise Detection of Aflatoxin B 1. Anal Chem 2025; 97:1357-1365. [PMID: 39763089 DOI: 10.1021/acs.analchem.4c05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The development of a sensory signal amplification approach is very crucial for rapid and precise detection of aflatoxin B1 (AFB1). However, such approaches remain scarce due to the weak interactions between AFB1 and the sensing probes. Herein, the first example of a dual-excitation fluorescent platform for antibody-free AFB1 detection is reported, which is assembled by an ordered π-π stack of cationic perylene derivative (PTHA) and tris(2,2'-bipyridine)ruthenium(II) [Ru(bpy3)2+]. Taking advantage of stepwise assembly and multiple binding sites of the nanoprobe, its ability for capturing AFB1 is significantly improved driven by multiple noncovalent interactions. Interestingly, dual-excitation fluorescent sensing mode with signal superposition and self-calibration is activated in the supramolecular coassembly process. Under excitation of 365 nm and 440 nm, the platform exhibits specific recognition toward AFB1 and the limit of detection is determined to be 0.12 ng mL-1. Notably, the dual-excitation platform demonstrates exceptional sensitivity enhancements of 106-fold, revealing that the self-calibrated reference improves the sensitivity and accuracy of analytical method significantly. The applications of our platform not only crack the problem of precise AFB1 detection via supramolecular coassembly strategy but also provide a universal sensitization strategy for ultrasensitive analysis in complex environments.
Collapse
Affiliation(s)
- Yijian Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiuyue Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yani Li
- Research and Development Quality Control Laboratory, Beijing Institute of Biological Products Co., Ltd., No. 6, Bo Xing 2nd Road, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Meiyi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochen Qin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhaoyue Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jvzhe Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyi Yao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
14
|
Li G, Liu C, Guo X, Chen Y, Cao L, Wang K, Lin H, Sui J. Rapid transformation of nanobodies affinity based on AlphaFold2's high-accuracy predictions and interaction analysis for enrofloxacin detection in coastal fish. Biosens Bioelectron 2025; 267:116785. [PMID: 39305821 DOI: 10.1016/j.bios.2024.116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 11/08/2024]
Abstract
High-affinity antibodies are crucial in biosensors, disease diagnostics, therapeutic drug development, and immunological analysis, making the enhancement of antibody affinity a key research focus within the field. Computer-aided design is recognized as a time-saving and labor-efficient method for nanobodies in vitro affinity maturation. Compared to experimental mutagenesis techniques, it is advantageous due to the elimination of the need for laborious library construction and screening processes. However, these approaches are constrained by structural prediction since inaccuracy in structure could readily result in maturation failures. Herein, a novel nanobodies modification method for in vitro affinity maturation, utilizing the high accuracy prediction of AlphaFold2, was employed to rapidly transform a low affinity nanobody against enrofloxacin (ENR) into one with high affinity. The molecular docking results revealed a 1.5- to 2.5-fold increase in the number of noncovalent interactions of modified nanobodies, accompanied by a reduction in binding free energy ranging from 14.1 to 62.6%. The evaluation results from ELISA and BLI indicated that the affinity of the modified nanobodies had been enhanced by 6.2-91.6 times compared to the template nanobody. Furthermore, the modified nanobodies were employed for the detection of ENR-spiked coastal fish samples. In summary, this research proposed a nanobodies modification method from a new perspective, endowing its great application potential in biosensors, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Guoqiang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Chang Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Xinping Guo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yuan Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Limin Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Kaiqiang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Jianxin Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China.
| |
Collapse
|
15
|
Yang S, Hu W, Wang S, Li X, Lei L, Wei X, Lin H. Development of immunochromatographic and homogeneous assay based on quantum dot-functionalized polystyrene nanoprobes for the qualitative and quantitative screening of respiratory viruses. Biosens Bioelectron 2025; 267:116716. [PMID: 39316867 DOI: 10.1016/j.bios.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Accurately differentiating respiratory diseases caused by viruses is challenging because of the similarity in their early or clinical symptoms. Moreover, different infection sources require different treatments. However, the current diagnostic methods have limited differentiating efficiency and sensitivity. We developed a dual-system immunosensor with a bilayer fluorescent label as a signal amplifier for the on-site, sensitive, and accurate identification of multiple respiratory viruses (RVs). The nanomaterial, comprising a polystyrene (PS) nanosphere core encapsulated by two layers of CdSe@ZnS-COOH quantum dots (QDs), outperforms the conventional color and fluorescent labels in RV detection. The dual-system detection platform, comprising a PS@DQD-based lateral flow immunoassay (LFIA) and a PS@DQD-based homogeneous sensor, enables qualitative and quantitative screening of multiple respiratory viruses within 10 and 30 min, respectively, depending on the specific detection requirements for different application scenarios. This remarkable method provides 51.2 to 1000 times sensitivity improvement over commercial antigen detection kits and greater than 12.5 to 100 times improvement over QD-based immunosensors. Furthermore, we comprehensively evaluated the specificity, reproducibility, and stability of the integrated dual-system detection platform, demonstrating its reliability. Remarkably, the respiratory viral testing was validated using biological samples, thus illustrating its promise and convenience in the detection of respiratory viruses.
Collapse
Affiliation(s)
- Shixiang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Shengyang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Xiaxia Wei
- School of Medicine, Nankai University, Tianjin, 300350, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
16
|
Zhang Y, Liu D, Tian Y, Li M, Li Y, Zhou T, Zhao Q, Zhang M, Yu Y, Pan H, Dai Y, Dawa Z, Zheng W, Wang X. Bifunctional nanobody facilitates a colorimetric and fluorescent dual-mode immunoassay of Staphylococcal enterotoxin A. Food Chem 2024; 467:142362. [PMID: 39662243 DOI: 10.1016/j.foodchem.2024.142362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Immunoassay is a diagnostic tool based on the specific binding of antibodies and antigens with widespread applications. Nonetheless, several research obstacles, like poor specific antibodies, the poisonous reagents and unstable results, still remain challenges. Herein, we innovatively reported a colorimetric and fluorescent dual-mode immunoassay based on the bifunctional nanobody for SEA detection. Benefiting from the advantages of nanobodies, the bifunctional protein with both recognition and catalysis was built to identify and catalyze with efficiency to generate the first colorimetric signal. Meanwhile, the introduction of quinine as the natural source of the second fluorescent signal greatly improved the stability and safety of detection. In addition, the proposed method was successfully applied to detecting SEA in food samples with high accuracy and stability. This study integrated the bifunctional nanobody with eco-friendly fluorescent product to provide a specific and green platform for the detection of foodborne toxins.
Collapse
Affiliation(s)
- Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Di Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yudong Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Min Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yuhuan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Qin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Ying Yu
- Key Laboratory of Agricultural Animal Genetics and Breeding, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hu Pan
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, Tibet, People's Republic of China
| | - Yanna Dai
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, Tibet, People's Republic of China
| | - Zhuoma Dawa
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, Tibet, People's Republic of China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an 710065, Shaanxi, People's Republic of China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Xuan C, Cao Y, Wu H, Wang Y, Xi J, Ma K, Feng Q, Sun B, Yan H, Wang L. Bioinspired Core-shell nanospheres integrated in multi-signal immunochromatographic sensor for high throughput sensitive detection of Bongkrekic acid in food. Food Chem 2024; 460:140565. [PMID: 39068800 DOI: 10.1016/j.foodchem.2024.140565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Nowadays, notable progress has been achieved in detecting foodborne toxins by employing nanoenzyme-based lateral flow immunoassay (NLFIA) sensors in point-of-care testing (POCT). It continues to be a major challenge to maximize the enzyme-like performance of nanozymes for educe any potential uncertainties in catalytic process. In this study, we employed a facile and efficient self-assembly approach to fabricate nucleoid-shell structured biomimetic nanospheres CuS@Au-Pt (CAP), which demonstrates enhanced brightness of the colorimetric signal, excellent affinity, and excellent peroxidase activity. The integration of CAP with a competitive-assay NLFIA platform enabled sensitive immunochromatographic detection of bongkrekic acid (BA), with LOD as low as 0.66 ng/mL. After signal amplification through enzyme-like reaction, the detection range was extended around 1-fold. Additionally, CAP-NLFIA effectively detected BA with a recovery rate of 80.96-119.36% for real samples. The study proposes using CAP as a signal reporter in a dual-readout LFIA, which can establish a high throughput sensitive detection platform.
Collapse
Affiliation(s)
- Chenyu Xuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haiyu Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kaixuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinlin Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Boyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huiqi Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, China.
| |
Collapse
|
18
|
Pradanas-González F, Cortés MG, Glahn-Martínez B, Del Barrio M, Purohit P, Benito-Peña E, Orellana G. Biosensing strategies using recombinant luminescent proteins and their use for food and environmental analysis. Anal Bioanal Chem 2024; 416:7205-7224. [PMID: 39325139 DOI: 10.1007/s00216-024-05552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Progress in synthetic biology and nanotechnology plays at present a major role in the fabrication of sophisticated and miniaturized analytical devices that provide the means to tackle the need for new tools and methods for environmental and food safety. Significant research efforts have led to biosensing experiments experiencing a remarkable growth with the development and application of recombinant luminescent proteins (RLPs) being at the core of this boost. Integrating RLPs into biosensors has resulted in highly versatile detection platforms. These platforms include luminescent enzyme-linked immunosorbent assays (ELISAs), bioluminescence resonance energy transfer (BRET)-based sensors, and genetically encoded luminescent biosensors. Increased signal-to-noise ratios, rapid response times, and the ability to monitor dynamic biological processes in live cells are advantages inherent to the approaches mentioned above. Furthermore, novel fusion proteins and optimized expression systems to improve their stability, brightness, and spectral properties have enhanced the performance and pertinence of luminescent biosensors in diverse fields. This review highlights recent progress in RLP-based biosensing, showcasing their implementation for monitoring different contaminants commonly found in food and environmental samples. Future perspectives and potential challenges in these two areas of interest are also addressed, providing a comprehensive overview of the current state and a forecast of the biosensing strategies using recombinant luminescent proteins to come.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Marta García Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Melisa Del Barrio
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Pablo Purohit
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| |
Collapse
|
19
|
Huang X, Zhang Q, Lu B, Tang X, Li P. Time-resolved fluorescence/visual dual-readout nanobiosensors for the detection of aflatoxin B 1, benzo(α)pyrene and capsaicin in edible oils using a miniaturized paper analytical device. Food Chem 2024; 467:142233. [PMID: 39637672 DOI: 10.1016/j.foodchem.2024.142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Edible oil safety impacts food safety and consumer health. The typical pollutants-aflatoxin B1 (AFB1) and benzo(α)pyrene (BaP), and kitchen waste oil-are significant hazards in edible oil consumption. Herein, we developed a dual-readout lateral flow immunoassay (tdLFIA) for the multi-quantitative detection of AFB1, BaP and capsaicin (CAP). A novel monoclonal antibody against BaP was developed with a sensitivity of 1.92 ng/mL. Subsequently, gold nanoparticles and Eu3+ labelled fluorescent nanospheres were synthesized as colorimetric and fluorescent sensors. A rapid synchronous pretreatment method based on immunomagnetic beads(IMAB)combined with a molecularly imprinted solid phase extraction (MISPE) was developed. The tdLFIA enabled a rapid response of 7 min for AFB1, BaP and CAP detection, with quantitative limits of detection of 0.003, 0.6, and 0.01 ng/mL, respectively. The proposed strategy indicated reliability and has been applied in real samples, providing useful products for evaluating edible oil quality and safety.
Collapse
Affiliation(s)
- Xiaorong Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China.
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xianghu Laboratory, Hangzhou 311231, China.
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xianghu Laboratory, Hangzhou 311231, China.
| | - Peiwu Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xianghu Laboratory, Hangzhou 311231, China.
| |
Collapse
|
20
|
Shen XA, Zhou H, Chen X, Wu J, Su Y, Huang X, Xiong Y. Janus plasmonic-aggregation induced emission nanobeads as high-performance colorimetric-fluorescent probe of immunochromatographic assay for the ultrasensitive detection of staphylococcal enterotoxin B in milk. Biosens Bioelectron 2024; 261:116458. [PMID: 38852321 DOI: 10.1016/j.bios.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Herein, a colorimetric-fluorescent hybrid bifunctional nanobead with Janus structure (J-cf-HBN) was synthesized via one-pot microemulsification. Oleylamine-coated AuNPs and aggregation-induced emission luminogens (AIEgens) were suggested as building blocks to obtain high-performance colorimetric-fluorescent signals. The as-prepared J-cf-HBNs were used as a signal amplification probe to construct an immunochromatographic assay (J-cf-HBNs-ICA) platform for the ultrasensitive detection of staphylococcal enterotoxin B (SEB) in milk samples. Owing to the rational spatial distribution of AuNPs and AIEgens, the J-cf-HBNs present a highly retained photoluminescence and enhanced colorimetric signals. Combined with a pair of highly affinitive anti-SEB antibodies, the J-cf-HBN-ICA platform enabled the fast naked-eye visualization and fluorescent quantitative detection of SEB in various milk matrices. Given the advantages of the dual-mode high-performance J-cf-HBNs, the proposed strip achieved a high sensitivity for SEB qualitative determination with a visual limit of detection (LOD) of 1.56 ng mL-1 and exhibited ultrasensitivity for SEB quantitative detection with a LOD of 0.09 ng mL-1, which is 139-fold lower than that of ELISA using same antibodies. In conclusion, this work provides new insights into the construction of multimode immunochromatographic methods for food safety detection in the field.
Collapse
Affiliation(s)
- Xuan-Ang Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Haoxiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Jingyu Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
21
|
Ma X, Ge Y, Xia N. Overview of the Design and Application of Dual-Signal Immunoassays. Molecules 2024; 29:4551. [PMID: 39407482 PMCID: PMC11477509 DOI: 10.3390/molecules29194551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Immunoassays have been widely used for the determination of various analytes in the fields of disease diagnosis, food safety, and environmental monitoring. Dual-signal immunoassays are now advanced and integrated detection technologies with excellent self-correction and self-validation capabilities. In this work, we summarize the recent advances in the development of optical and electrochemical dual-signal immunoassays, including colorimetric, fluorescence, surface-enhanced Raman spectroscopy (SERS), electrochemical, electrochemiluminescence, and photoelectrochemical methods. This review particularly emphasizes the working principle of diverse dual-signal immunoassays and the utilization of dual-functional molecules and nanomaterials. It also outlines the challenges and prospects of future research on dual-signal immunoassays.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Physical and Healthy Education, Nanchang Vocational University, Nanchang 330000, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yijing Ge
- Department of Physical and Healthy Education, Nanchang Vocational University, Nanchang 330000, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
22
|
Du A, Lu Z, Hua L. Decentralized food safety and authentication on cellulose paper-based analytical platform: A review. Compr Rev Food Sci Food Saf 2024; 23:e13421. [PMID: 39136976 DOI: 10.1111/1541-4337.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Food safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on-site assessments. Consequently, cellulose paper-based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi-mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost-effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on-site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.
Collapse
Affiliation(s)
- An Du
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Li Hua
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, P. R. China
| |
Collapse
|
23
|
Jing X, Liu JM, Wang S. Emerging Nano/Microporous Architectures for Food Hazards: New Strategies for Precise Inspection and New Principles for Controllable Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18794-18808. [PMID: 39160142 DOI: 10.1021/acs.jafc.4c05300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The big progress of materials science along with chemical engineering and biotechnology has significantly promoted interdisciplinary development, achieving advanced analytical methodologies, improved inspection performance, as well as promising regulation principles for food safety. The very recent progress on nano/microporous architectures for agri-food science, including new strategies for precise inspection and new principles for controllable regulation of food hazards, are summarized and discussed. Major attention is paid to the newly emerged porous architectures with their derivative nano/microstructures contributing to food safety through their instinctive advantages including special material surface, extraordinary porous structure, ease-of-modification, and excellent diversity and variability. This review clearly and logically displays the research road maps and development trends for current food safety issues and give suggestive directions for future outlook as well as the bottleneck problems to be solved, not only smart inspection and analysis but also elimination and control of ever-emerging food hazards.
Collapse
Affiliation(s)
- Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, Peoples R China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, Peoples R China
| | - Shuo Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, Peoples R China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, Peoples R China
| |
Collapse
|
24
|
Lin X, Zhou P, Li Q, Pang Y. "Three-in-One" Plasmonic Au@PtOs Nanocluster Driven Lateral Flow Assay for Multimodal Cancer Exosome Biosensing. Anal Chem 2024; 96:10686-10695. [PMID: 38885608 DOI: 10.1021/acs.analchem.4c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Exploiting the multiple properties of nanozymes for the multimode lateral flow assay (LFA) is urgently required to improve the accuracy and versatility. Herein, we developed a novel plasmonic Au nanostar@PtOs nanocluster (Au@PtOs) as a multimode signal tag for LFA detection. Based on the PtOs bimetallic nanocluster doping strategy, Au@PtOs can indicate both excellent SERS enhancement and nanozyme catalytic activity. Meanwhile, Au@PtOs displays a better photothermal effect than that of Au nanostars. Therefore, catalytic colorimetric/SERS/temperature three-mode signals can be read out based on the Au@PtOs nanocomposite. The Au@PtOs was combined with LFA and applied for breast cancer exosome detection. The detection limit for the colorimetric/SERS/temperature mode was 2.6 × 103/4.1 × 101/4.6 × 102 exosomes/μL, respectively, which was much superior to the common Au nanoparticles LFA (∼105 exosomes/μL). Moreover, based on the fingerprint molecular recognition ability of the SERS mode, exosome phenotypes derived from different breast cancer cell lines can be discriminated easily. Based on the convenient visual colorimetric mode and sensitive SERS/temperature quantitative modes, Au@PtOs driven LFA can satisfy the requirements of accurate and flexible multimodal sensing in different application scenarios.
Collapse
Affiliation(s)
- Xiaorui Lin
- Capital Medical University, Department of Toxicology, No. 10 Xitoutiao, You An Men, Beijing 100069, P. R. China
| | - Pengyou Zhou
- Capital Medical University, Department of Toxicology, No. 10 Xitoutiao, You An Men, Beijing 100069, P. R. China
| | - Qing Li
- Capital Medical University, Department of Toxicology, No. 10 Xitoutiao, You An Men, Beijing 100069, P. R. China
| | - Yuanfeng Pang
- Capital Medical University, Department of Toxicology, No. 10 Xitoutiao, You An Men, Beijing 100069, P. R. China
| |
Collapse
|
25
|
Guo M, Pang J, Wang Y, Bi C, Xu Z, Shen Y, Yang J, Wang H, Sun Y. Nanobodies-based colloidal gold immunochromatographic assay for specific detection of parathion. Anal Chim Acta 2024; 1310:342717. [PMID: 38811143 DOI: 10.1016/j.aca.2024.342717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Parathion is one of organophosphorus pesticide, which has been prohibited in agricultural products due to its high toxicity to human beings. However, there are still abuse cases for profit in agricultural production. Hence, we established nanobodies-based colloidal gold immunochromatographic assay (GICA) in which nanobodies (Nbs) as an excellent recognition element, greatly improving the stability and sensitivity of ICA. Under the optimal conditions, the developed Nbs-based GICA showed a cut-off value of 50 ng/mL for visual judgment and a half-inhibitory concentration (IC50) of 2.39 ng/mL for quantitative detection. The limit of detection (LOD) was as low as 0.15 ng/mL which was significantly 50-fold higher sensitivity than the commercial mAb-ICA. Additionally, this method exhibited good recoveries for the detection of cabbage, cucumber, and orange samples and excellent correlation with the UPLC-MS/MS method. The results showed that this method developed in this work based on nanobody can be used in practical detection of parathion in foods and nanobody is novel prospective antibody resource for immunoassays of chemical contaminants.
Collapse
Affiliation(s)
- Mingwei Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou, 510642, China
| | - Jiarui Pang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou, 510642, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou, 510080, China
| | - Chaohui Bi
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou, 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou, 510642, China
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou, 510642, China
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou, 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou, 510642, China.
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
26
|
Zhao Y, He B, Li D, Gao L, Ren W. Nanobody and CuS Nanoflower-Au-Based Lateral Flow Immunoassay Strip to Enhance the Detection of Aflatoxin B 1. Foods 2024; 13:1845. [PMID: 38928787 PMCID: PMC11203097 DOI: 10.3390/foods13121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
In the realm of analysis, the lateral flow immunoassay (LFIA) is frequently utilized due to its capability to be fast and immediate. However, the biggest challenge of the LFIA is its low detection sensitivity and tolerance to matrix interference, making it impossible to enable accurate, qualitative analyses. In this study, we developed a new LFIA with higher affinity and sensitivity, based on a nanobody (G8-DIG) and CuS nanoflowers-Au (CuS NFs-Au), for the detection of aflatoxin B1 (AFB1) in maize. We synthesized the immunoprobe G8-DIG@CuS NFs-Au, stimulated the in situ development of Au nanoparticles (Au NPs) on Cu NFs by electrical displacement, and obtained Cu NFs-Au for fixing the G8-DIG. G8-DIG@CuS NFs-Au probe-based LFIAs may, in ideal circumstances, use a strip chromatography reader to accomplish sensitive quantitative detection and qualitative visualization. AFB1 has a detection range of 2.82-89.56 µg/L and a detection limit of 0.87 µg/L. When compared with an LFIA based on CuS NFs, this sensitivity is increased by 2.76 times. The practical application of this method in corn flour demonstrated a recovery rate of 81.7% to 117%. Therefore, CuS NFs-Au show great potential for detecting analytes.
Collapse
Affiliation(s)
| | | | | | | | - Wenjie Ren
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (B.H.); (D.L.); (L.G.)
| |
Collapse
|
27
|
Wu Q, Xi J, Li L, Li X, Yang M, Wang L. "Cave Effect" Induces Self-Assembled Bimetallic Hollow Structure for Three-in-One Lateral Flow Immunoassay. NANO LETTERS 2024; 24:5993-6001. [PMID: 38655913 DOI: 10.1021/acs.nanolett.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bimetallic hollow structures have attracted much attention due to their unique properties, but they still face the problems of nonuniform alloys and excessive etching leading to structural collapse. Here, uniform bimetallic hollow nanospheres are constructed by pore engineering and then highly loaded with hemin (Hemin@MOF). Interestingly, in the presence of polydopamine (PDA), the competitive coordination between anionic polymer (γ-PGA) and dimethylimidazole does not lead to the collapse of the external framework but self-assembly into a hollow structure. By constructing the Hemin@MOF immune platform and using E. coli O157:H7 as the detection object, we find that the visual detection limits can reach 10, 3, and 3 CFU/mL in colorimetric, photothermal, and catalytic modes, which is 4 orders of magnitude lower than the traditional gold standard. This study provides a new idea for the morphological modification of the metal-organic skeleton and multifunctional immunochromatography detection.
Collapse
Affiliation(s)
- Qiushuang Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingran Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
28
|
Liu P, Jiang L, Zhao Y, Wang Y, Ye Y, Xue F, Hammock BD, Zhang C. Fluorescent and Colorimetric Dual-Readout Immunochromatographic Assay for the Detection of Phenamacril Residues in Agricultural Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11241-11250. [PMID: 38709728 PMCID: PMC11838921 DOI: 10.1021/acs.jafc.3c07859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The fungicide phenamacril has been employed to manage Fusarium and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs). Additionally, gold nanoparticles coated with a polydopamine shell were synthesized and conjugated with mAbs, inducing fluorescence quenching in quantum dots. Moreover, a dual-readout immunochromatographic assay that combines the positive signal from fluorescence with the negative signal from colorimetry was developed to enable sensitive and precise detection of phenamacril within 10 min, achieving detection limits of 5 ng/mL. The method's reliability was affirmed by using spiked wheat flour samples, achieving a limit of quantitation of 0.05 mg/kg. This analytical platform demonstrates high sensitivity, outstanding accuracy, and robust tolerance to matrix effects, making it suitable for the rapid, onsite, quantitative screening of phenamacril residues.
Collapse
Affiliation(s)
- Pengyan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lan Jiang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulong Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuhui Ye
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Feng Xue
- Joint International Research Laboratory of Animal Health and Food Safety of the Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and the UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Cunzheng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Liu S, Zhao C, Shu R, Dou L, Luo X, Luo L, Sun J, Wang Y, Ji Y, Wang J. Fortified Dual-Spectral Overlap with Enhanced Colorimetric/Fluorescence Dual-Response Immunochromatography for On-Site Bimodal-Type Gentamicin Monitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38624165 DOI: 10.1021/acs.jafc.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Immunochromatography (ICA) remains untapped toward enhanced sensitivity and applicability for fulfilling the nuts and bolts of on-site food safety surveillance. Herein, we report a fortified dual-spectral overlap with enhanced colorimetric/fluorescence dual-response ICA for on-site bimodal-type gentamicin (Gen) monitoring by employing polydopamine (PDA)-coated AuNPs (APDA) simultaneously serving as a colorimetric reporter and a fluorescence quencher. Availing of the enhanced colorimetric response that originated from the PDA layer, the resultant APDA exhibits less required antibody and immunoprobes in a single immunoassay, which facilitates improved antibody utilization efficiency and immuno-recognition in APDA-ICA. Further integrated with the advantageous features of fortified excitation and emission dual-spectral overlap for the Arg/ATT-AuNCs, this APDA-ICA with a "turn on/off" pattern achieves the visual limits of detection of 1.0 and 0.5 ng mL-1 for colorimetric and fluorescence patterns (25- and 50-fold lower than standard AuNPs-ICA). Moreover, the excellent self-calibration and satisfactory recovery of 79.03-118.04% were shown in the on-site visual colorimetric-fluorescence analysis for Gen in real environmental media (including real river water, an urban aquaculture water body, an aquatic product, and an animal byproduct). This work provides the feasibility of exploiting fortified dual-spectral overlap with an enhanced colorimetric/fluorescence dual response for safeguarding food safety and public health.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Wang L, Zhang Y, Zeng DP, Zhu Y, Ling Z, Wang Y, Yang J, Wang H, Xu ZL, Tian Y, Sun Y, Shen YD. Development of an Open Droplet Microchannel-Based Magnetosensor for Immunofluorometric Assay of Trimethoprim in Chicken and Pork Samples with a Wide Linear Range. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6772-6780. [PMID: 38478886 DOI: 10.1021/acs.jafc.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Trimethoprim (TMP), functioning as a synergistic antibacterial agent, is utilized in diagnosing and treating diseases affecting livestock and poultry. Human consumption of the medication indirectly may lead to its drug accumulation in the body and increase drug resistance due to its prolonged metabolic duration in livestock and poultry, presenting significant health hazards. Most reported immunoassay techniques, such as ELISA and immunochromatographic assay (ICA), find it challenging to achieve the dual advantages of high sensitivity, simplicity of operation, and a wide detection range. Consequently, an open droplet microchannel-based magnetosensor for immunofluorometric assay (OMM-IFA) of trimethoprim was created, featuring a gel imager to provide a signal output derived from the highly specific antibody (Ab) targeting trimethoprim. The method exhibited high sensitivity in chicken and pork samples, with LODs of 0.300 and 0.017 ng/mL, respectively, and a wide linear range, covering trimethoprim's total maximum residue limits (MRLs). Additionally, the spiked recoveries in chicken and pork specimens varied between 81.6% and 107.9%, maintaining an acceptable variation coefficient below 15%, aligning well with the findings from the ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique. The developed method achieved a much wider linear range of about 5 orders of magnitude of 10-2-103 levels with grayscale signals as the output signal, which exhibited high sensitivity, excellent applicability and simple operability based on magnetic automation.
Collapse
Affiliation(s)
- Lei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongyi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Dao-Ping Zeng
- Wens Institute, Wens Foodstuff Groups Co., Ltd., Yunfu 527499, China
| | - Yuxian Zhu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhizhou Ling
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou 510410, China
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|