1
|
Zhu S, Diao S, Liu X, Zhang Z, Liu F, Chen W, Lu X, Luo H, Cheng X, Liao Q, Li Z, Chen J. Biomaterial-based strategies: a new era in spinal cord injury treatment. Neural Regen Res 2025; 20:3476-3500. [PMID: 40095657 PMCID: PMC11974648 DOI: 10.4103/nrr.nrr-d-24-00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 12/16/2024] [Indexed: 03/19/2025] Open
Abstract
Enhancing neurological recovery and improving the prognosis of spinal cord injury have gained research attention recently. Spinal cord injury is associated with a complex molecular and cellular microenvironment. This complexity has prompted researchers to elucidate the underlying pathophysiological mechanisms and changes and to identify effective treatment strategies. Traditional approaches for spinal cord injury repair include surgery, oral or intravenous medications, and administration of neurotrophic factors; however, the efficacy of these approaches remains inconclusive, and serious adverse reactions continue to be a concern. With advancements in tissue engineering and regenerative medicine, emerging strategies for spinal cord injury repair now involve nanoparticle-based nanodelivery systems, scaffolds, and functional recovery techniques that incorporate biomaterials, bioengineering, stem cell, and growth factors as well as three-dimensional bioprinting. Ideal biomaterial scaffolds should not only provide structural support for neuron migration, adhesion, proliferation, and differentiation but also mimic the mechanical properties of natural spinal cord tissue. Additionally, these scaffolds should facilitate axon growth and neurogenesis by offering adjustable topography and a range of physical and biochemical cues. The three-dimensionally interconnected porous structure and appropriate physicochemical properties enabled by three-dimensional biomimetic printing technology can maximize the potential of biomaterials used for treating spinal cord injury. Therefore, correct selection and application of scaffolds, coupled with successful clinical translation, represent promising clinical objectives to enhance the treatment efficacy for and prognosis of spinal cord injury. This review elucidates the key mechanisms underlying the occurrence of spinal cord injury and regeneration post-injury, including neuroinflammation, oxidative stress, axon regeneration, and angiogenesis. This review also briefly discusses the critical role of nanodelivery systems used for repair and regeneration of injured spinal cord, highlighting the influence of nanoparticles and the factors that affect delivery efficiency. Finally, this review highlights tissue engineering strategies and the application of biomaterial scaffolds for the treatment of spinal cord injury. It discusses various types of scaffolds, their integrations with stem cells or growth factors, and approaches for optimization of scaffold design.
Collapse
Affiliation(s)
- Shihong Zhu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Sijun Diao
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhujun Zhang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Fujun Liu
- Department of Ophthalmology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiyue Lu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Huiyang Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiang Liao
- Department of Pharmacy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhongyu Li
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Xu C, Liu Y, Pan Y, Zhang H, Sun Y, Li J, Wu A, Bian L. Neutrophil-like Cell membrane-Coated Molybdenum-based Nanoclusters for Reduced Oxidative Stress and enhanced Neurological Recovery after Intracerebral Hemorrhage. Acta Biomater 2025:S1742-7061(25)00286-7. [PMID: 40254230 DOI: 10.1016/j.actbio.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Excessive reactive oxygen species (ROS) are detrimental to the brain that can result in neurological impairment and inhibiting neurological functionals recovery after intracerebral hemorrhage (ICH). However, there is still a lack of effective treatment for ICH, either with medicine or neurosurgery. Nanozymes with excellent superoxide dismutase and catalase properties can scavenge ROS and may provide therapeutic opportunities for ICH patients. However, the ability of nanozymes to non-invasively target cerebral hemorrhage lesions and further antioxidation effect are still unknown. Herein, neutrophile membrane-disguised molybdenum-based polyoxometalate nanozymes (POM@Mem) were developed to alleviate oxidative stress after ICH. Coating with neutrophil membrane allowed POM to target the hemorrhage sites and further inhibit ROS generation. POM@Mem can improve neuroinflammatory microenvironment and promote behavioral improvement of ICH mouse. Combining neutrophile membrane and nanozymes for targeting brain hemorrhage sites provides an effective strategy for the treatment of ICH. STATEMENT OF SIGNIFICANCE: Excessive reactive oxygen species (ROS) are detrimental to the brain and can lead to neurological impairment, hindering the recovery of neurological functions after intracerebral hemorrhage (ICH). Despite this, effective treatments for ICH, whether pharmaceuticals or neurosurgery, remain scarce. In this study, we developed neutrophil membrane-disguised molybdenum-based polyoxometalate nanozymes (POM@Mem) as a novel approach to alleviate oxidative stress following ICH. The neutrophil membrane coating enabled the POM nanozymes to specifically target hemorrhagic sites, thereby inhibiting ROS production. Additionally, POM@Mem improved the neuroinflammatory microenvironment and facilitated behavioral recovery in ICH mice. The combination of neutrophil membranes and nanozymes for targeted delivery to brain hemorrhage sites offers a promising strategy for the treatment of ICH.
Collapse
Affiliation(s)
- Canxin Xu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China; Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yikui Liu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yuanbo Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hongchi Zhang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yuhao Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China.
| | - Liuguan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| |
Collapse
|
3
|
Jang D, Choi H, Lee J, Chun Y, Heo YH, Lee LP, Ahn DJ, Shin IS, Kim DH, Seo YH, Kim S. Inflamed Tissue-Targeting Polyphenol-Condensed Antioxidant Nanoparticles with Therapeutic Potential. Adv Healthc Mater 2025; 14:e2500495. [PMID: 40033968 DOI: 10.1002/adhm.202500495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Inflammation is essential for pathogen eradication and tissue repair; However, chronic inflammation can bring on multi-organ dysfunction due to an overproduction of reactive oxygen species (ROS). Among various anti-inflammatory agents, polyphenol-based nanotherapeutics offer potential advantages, including enhanced stability, targeted delivery, multiple therapeutic functions, and personalized therapy tailored to the severity. Despite these advantages, the development of biocompatible nanomedicines capable of selective accumulation in inflamed tissues and efficient inhibition of ROS-induced inflammatory signaling pathways remains a considerable challenge. In this study, a novel anti-inflammatory nanotherapeutic is engineered through the temperature-dependent condensation of polyphenolic catechin facilitated by hydrothermal reactions. The resulting catechin-condensed nanotherapeutic (CCN150), synthesized at a relatively low temperature, retains physicochemical and functional properties akin to its precursor, catechin, but with a marked enhancement in water solubility. CCN150 protects cells from oxidative stress by eliminating intracellular ROS and augmenting antioxidant enzymes. In vivo studies reveal that intravenously administered CCN150 predominantly accumulates in inflamed tissues, with minimal distribution to healthy regions. Furthermore, CCN150 effectively reduces systemic inflammation in mouse models by disrupting the cycles of ROS instigated by a pro-inflammatory oxidative milieu. Exhibiting negligible toxicity, CCN150 holds substantial promise for extensive therapeutic applications in the treatment of various ROS-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Dohyub Jang
- Department of Biomicrosystem Technology, Korea University, Seoul, 02792, Republic of Korea
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Honghwan Choi
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Juhyang Lee
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, 66123, Saarbrücken, Germany
| | - Yousun Chun
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon-Ho Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Luke P Lee
- Harvard Institute of Medicine, Harvard Medical School Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Dong June Ahn
- Department of Biomicrosystem Technology, Korea University, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ik-Soo Shin
- Department of Chemistry, College of Natural Science, Soongsil University, 3, Seoul, 15674, Republic of Korea
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
- College of Medicine, Ewha Womans University, 25, Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
- Basic Sciences Research Institute (Priority Research Institute), Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
- Nanobio·Energy Materials Center (National Research Facilities and Equipment Center), Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Young Hun Seo
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, 66123, Saarbrücken, Germany
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Song Y, Zhang M, Chen Z, Jian M, Ling C, Zhang Q. Sustainable Pb(II) Removal and Recovery from Wastewater Using a Bioinspired Metal-Phenolic Hybrid Membrane with Efficient Regeneration. CHEMSUSCHEM 2025; 18:e202401770. [PMID: 39635921 DOI: 10.1002/cssc.202401770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/16/2024] [Indexed: 12/07/2024]
Abstract
High-performance adsorbents often require efficient selectivity in wastewater, recoverability, and ease of multiple regeneration cycles, but achieving this remains a significant challenge. We report a new strategy for the efficient removal of lead (Pb(II)) from contaminated water streams using an innovative tannic acid (TA)-Fe(III)-based metal-phenolic network (MPN) hybrid membrane (MPN-PAM). This novel membrane exploits the tunable pH-sensitive coordination structure of the MPN to achieve selective removal and recovery of Pb(II) while enabling efficient membrane regeneration by filtration. This membrane demonstrates superior selectivity for Pb(II) with a removal efficiency of up to 98 % and an adsorption capacity of approximately 117.58 mg/g, even in the presence of high salinity, as well as coexisting heavy metals. The membrane maintains high Pb(II) removal efficiency over 20 consecutive cycles and 95 % efficiency over 10 regeneration cycles. Under continuous operation, it treats approximately 85 L per m2 of membrane, reducing Pb(II) concentrations to trace levels (~40 μg/L), meeting electroplating wastewater standard (GB21900-2008). Additionally, even low concentrations of Pb(II) (<5 mg/L) are efficiently purified to below WHO drinking water standard (10 μg/L). The operational cost for treating Pb(II)-contaminated wastewater is about $0.13 per ton, highlighting the cost-effectiveness and potential for large-scale application in wastewater treatment.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Manyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Zichang Chen
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Meili Jian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Chen Ling
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
5
|
Vazirizadeh-Mahabadi M, Azimi A, Yarahmadi M, Zarei H, Tahmasbi F, Zarrin A, Yousefifard M, Rahimi-Movaghar V. Metformin's therapeutic potential in spinal cord injury: a systematic review and meta-analysis on locomotor recovery, neuropathic pain alleviation, and modulation of secondary injury mechanisms. Acta Neurochir (Wien) 2025; 167:87. [PMID: 40126598 PMCID: PMC11933159 DOI: 10.1007/s00701-025-06487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE To evaluate metformin's efficacy in locomotion recovery, alleviating neuropathic pain, and modulating underlying molecular mechanisms in Spinal Cord Injury (SCI) rodent models through a systematic review and meta-analysis. METHODS We conducted a comprehensive literature search across Medline, Embase, Scopus, and Web of Science from inception to May 2024. We included studies that utilized rodent models of traumatic SCI treated with metformin versus untreated controls. Data on locomotor recovery, neuropathic pain, and molecular mechanisms related to secondary injury were extracted. Standardized mean differences (SMDs) were synthesized as the pooled effect sizes. RESULTS Twenty-three studies comprising 1,567 animals met the inclusion criteria. Metformin significantly enhanced locomotor function (SMD = 2.23, 95% CI: 1.74, 2.73, p < 0.001) and improved both mechanical allodynia (SMD = 1.18; 95% CI, 0.35 to 2.00; p = 0.005) and thermal hyperalgesia (SMD = 2.40; 95% CI, 1.65 to 3.16; p < 0.001). It reduces inflammation, oxidative stress, microglial activation, and astrogliosis and promotes myelination and autophagy flux via activating the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. This resulted in decreased apoptosis and lesion size and increased tissue preservation and neuronal survival. Subgroup analyses indicated greater locomotor improvements when metformin was administered in the acute (< 3 days of injury) phase of the injury (meta-regression coefficient = 1.65; 95% CI, 0.37 to 2.93; p = 0.011). CONCLUSION Metformin shows significant therapeutic benefits for SCI in rodent models, promoting locomotor recovery and alleviating neuropathic pain. These results underscore its translational potential for clinical SCI management.
Collapse
Affiliation(s)
| | - Amir Azimi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Yarahmadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Zarei
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Tahmasbi
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirali Zarrin
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zeng Y, Liu J, Kong Z, Han G, Xiong Y, Luo T, Chu L, Zhang P, Ma D, Lan J, Liu G, Liu J, Zhang J, Tan Y. Catechin-Based Polyphenol Nanoparticles Ameliorated Ferroptosis to Alleviate Brain Injury after Intracerebral Hemorrhage. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7424-7437. [PMID: 39849318 DOI: 10.1021/acsami.4c19513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Spontaneous intracerebral hemorrhagic stroke (ICH) is a highly aggressive disease, with a high incidence and mortality rate. Iron deposition following ICH leads to oxidative damage and motor dysfunction, significantly impacting the overall quality of life for those affected. Here, a polyphenolic nanomedicine, catechin-based polyphenol nanoparticles surface-modified by thiol-terminated poly(ethylene glycol) (CNPs@PEG), was developed through the oxidative polymerization and self-assembly of catechin, a natural compound in tea. Due to its potent antioxidant and metal-chelating properties, CNPs@PEG effectively maintained blood-brain barrier integrity, reduced brain edema, significantly increased the survival rate of mice with cerebral hemorrhage and markedly improved neurological deficits after ICH. Mechanistically, CNPs@PEG accomplishes this by chelating iron, enhancing tissue antioxidant capacity, reducing oxidative stress, and inhibiting iron deposition. This approach holds promise as a targeted therapeutic strategy for addressing cerebral hemorrhage and other conditions associated with iron overload.
Collapse
Affiliation(s)
- Yu Zeng
- Medical College of Guizhou University, Guiyang 550000, China
| | - Jian Liu
- Graduate School of Zunyi Medical University, Zunyi 563000, China
| | - Zhuo Kong
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang 550000, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Yunbiao Xiong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Tao Luo
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Liangzhao Chu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Peng Zhang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Dongxu Ma
- Department of Neurosurgery, Sansui People's Hospital, Qiandongnan Miao and Dong Autonomous Prefecture 556000, China
| | - Jinhai Lan
- Department of the Second Surgery, Ziyun People's Hospital, Anshun 550800, China
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Jian Liu
- Medical College of Guizhou University, Guiyang 550000, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China
| |
Collapse
|
7
|
Sun Z, Wang T, Chen E, Xu L, Ding Y, Gu Z, Xiao S. Two birds with one stone: natural polyphenols boosted periodontitis treatment of chlorhexidine via reducing toxicity and regulating microenvironments. MATERIALS HORIZONS 2025; 12:608-622. [PMID: 39508113 DOI: 10.1039/d4mh01137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Chlorhexidine (CHX) is considered the gold standard for controlling periodontal plaque and has been extensively used as a topical agent in treating periodontitis. Nevertheless, the practical clinical application of CHX is still constrained by the inherent limitations of its properties, including toxicity, inadequate biofilm scavenging capacity, and single biological effect. In this study, polyphenolic epigallocatechin gallate (EGCG) has been employed to integrate with CHX to form an EGCG-CHX nanoplatform via a facile one-pot method. Due to the dynamic bonding between EGCG and CHX, the EGCG-CHX nanoparticles (NPs) show reduced toxicity and excellent response release behavior. Moreover, a series of in vitro and in vivo studies demonstrated that the EGCG-CHX NPs significantly enhanced the antibiofilm, antioxidative, anti-inflammatory, and autophagic flux activation effects of CHX, ultimately achieving an improved therapeutic effect on periodontitis. This study successfully developed a strategy boosting the efficiency of CHX for periodontitis treatment.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Enni Chen
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Lingyi Xu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Yi Ding
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| |
Collapse
|
8
|
Ding Q, Wang Y, Wang T, Zhang C, Yang S, Mao L, Cheng Y, Li Y, Lin K. A natural polyphenolic nanoparticle--knotted hydrogel scavenger for osteoarthritis therapy. Bioact Mater 2025; 43:550-563. [PMID: 40115875 PMCID: PMC11923377 DOI: 10.1016/j.bioactmat.2024.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 03/23/2025] Open
Abstract
Exploring highly efficient and cost-effective biomaterials for osteoarthritis (OA) treatment remains challenging, as current therapeutic strategies are difficult to eradicate the excessive reactive oxygen species (ROS) and nitric oxide (NO) at damaged sites. Tea polyphenol (TP) nanoparticles (NPs), a nature-inspired antioxidant in combination with 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a NO scavenger, could provide maximized positive therapeutic effects on OA by eradicating both ROS and NO. Notably, this combination not only improves the half-life of the TP monomer and the drug loading efficiency of carboxy-PTIO but also prevents nitrite from being harmful to tissue. Moreover, the protonation ability of carboxy-PTIO allows smart acid-responsive release in response to environmental pH, which provides conditioned treatment strategies for OA. In in vitro experiments, TP/PTIO NPs downregulated proinflammatory cytokine release via synergistic removal of ROS and NO and suppression of ROS/NF-κB and iNOS/NO/Caspase-3 signaling. For in vivo experiments, NPs were cross-linked with 4-arm-PEG-SH to form an injectable hydrogel system. The release of TP and carboxy-PTIO from the system efficiently prevents cartilage inflammation and damage via similar signaling pathways. Overall, the proposed system provides an efficient approach for OA therapy.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chengyao Zhang
- Department of Thyroid Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lu Mao
- Department of Spine Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yiyun Cheng
- School of Life Science, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
9
|
Zhang T, Zhang T, Yu H, Chi L. Isosteviol Sodium Promotes Neurological Function Recovery in a Model of Spinal Cord Injury in Rats. Immun Inflamm Dis 2025; 13:e70110. [PMID: 39783228 PMCID: PMC11712643 DOI: 10.1002/iid3.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is an incurable condition that is the largest cause of disability. In previous studies, Isosteviol sodium (STVNa) has been shown to protect rats against acute focal cerebral ischemia; however, the effects of STVNa on SCI recovery in rats remain unknown. METHODS STVNa was given intraperitoneally after SCI to see if it had any neuroprotective benefits. On Days 7, 14, 21, and 28 post-SCI, functional recovery was measured using the Basso, Beattie, and Bresnahan (BBB) scoring system along with the oblique plate test. Following these evaluations, spinal cord tissues were harvested for analysis. All behavioral testing occurred between 8 a.m. and 3 p.m. RESULTS We found that STVNa improved spinal cord functional recovery in rats, as evidenced by enhanced BBB locomotor rating scale, angle of inclination, decreased cavity of spinal cord damage, and neuron death in vivo. In addition, STVNa reduced inflammation in rats following SCI, as demonstrated by a reduction in proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and interleukin (IL)-1β. STVNa also reduced oxidative damage in SCI rats by lowering ROS while raising SOD levels. CONCLUSION These findings suggest that STVNa protects SCI rats through a variety of pathways. STVNa, in particular, may benefit the recovery of SCI by reducing oxidative stress and inflammation, leading to enhanced locomotor activity in rats with SCI.
Collapse
Affiliation(s)
- Tongxia Zhang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of NeurologyQilu Hospital of Shandong UniversityJinanShandongPeople's Republic of China
- School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
| | - Tao Zhang
- Shandong Qidu Pharmaceutical Co. Ltd. and Shandong Provincial Key Laboratory of Neuroprotective DrugsZiboShandongPeople's Republic of China
| | - Han Yu
- School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
| | - Lingyi Chi
- School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Qidu Pharmaceutical Co. Ltd. and Shandong Provincial Key Laboratory of Neuroprotective DrugsZiboShandongPeople's Republic of China
- Department of NeurosurgeryQilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongPeople's Republic of China
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongPeople's Republic of China
| |
Collapse
|
10
|
Zhao X, Su S, Wu C, Deng Y, Chen Y, Yu T, Li C, Zhang Y, Wang X, Zhou Y, Zhang X. High-throughput screening-based design of multifunctional natural polyphenol nano-vesicles to accelerate diabetic wound healing. J Nanobiotechnology 2024; 22:725. [PMID: 39574119 PMCID: PMC11580636 DOI: 10.1186/s12951-024-02950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 11/25/2024] Open
Abstract
Oxidative stress is a major pathological factor that impedes the diabetic wound healing process. Procyanidins (PC) form nanoparticle-vesicles (PPNs) through hydrogen bonding and exhibit good drug delivery capability; however, their application in diabetic wounds is unsatisfactory. To meet the antioxidant needs for treating, high-throughput screening in the natural product library (NPL) under in vitro oxidative stress conditions was conducted to enhance the antioxidant activity of PPNs. HUVECs treated with tert-Butyl Hydroperoxide (TBHP) were established as screening model in vitro. Baicalein (BAI) was identified from over 600 products in the library as the most effective one to combat oxidative stress. Further study showed that PC and BAI may react in equal proportions to synthesize new vesicles, named BAI-PC Polyphenolic nanovesicles (BPPNs), which possess reactive oxygen species (ROS) responsive and antioxidant effects. Network pharmacology indicated that in diabetic wounds, the target genes of PC are mainly enriched in the vascular endothelial growth factor (VEGF)-related pathways, while BAI primarily regulates tyrosine phosphorylation. The complementarity between the two has been validated in both in vitro and in vivo experiments. In summary, the antioxidant drug BAI, identified through high-throughput screening of NPL, could optimize the biological function of PPNs; the newly-synthesized BPPNs may accelerate diabetic wound healing through dual mechanisms of promoting angiogenesis and combating oxidative stress.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shenkai Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuxin Deng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tanxin Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yekai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Li G, Shi S, Tan J, He L, Liu Q, Fang F, Fu H, Zhong M, Mai Z, Sun R, Liu K, Feng Z, Liang P, Yu Z, Wang X. Highly Efficient Synergistic Chemotherapy and Magnetic Resonance Imaging for Targeted Ovarian Cancer Therapy Using Hyaluronic Acid-Coated Coordination Polymer Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309464. [PMID: 39287149 PMCID: PMC11538696 DOI: 10.1002/advs.202309464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/24/2024] [Indexed: 09/19/2024]
Abstract
The diagnosis and treatment of ovarian cancer (OC) are still a grand challenge, more than 70% of patients are diagnosed at an advanced stage with a dismal prognosis. Magnetic resonance imaging (MRI) has shown superior results to other examinations in preoperative assessment, while cisplatin-based chemotherapy is the first-line treatment for OC. However, few previous studies have brought together the two rapidly expanding fields. Here a technique is presented using cisplatin prodrug (Pt-COOH), Fe3+, and natural polyphenols (Gossypol) to construct the nanoparticles (HA@PFG NPs) that have a stable structure, controllable drug release behavior, and high drug loading capacity. The acidic pH values in tumor sites facilitate the release of Fe3+, Pt-COOH, and Gossypol from HA@PFG NPs. Pt-COOH with GSH consumption and cisplatin-based chemotherapy plus Gossypol with pro-apoptotic effects displays a synergistic effect for killing tumor cells. Furthermore, the release of Fe3+ at the tumor sites promotes ferroptosis and enables MRI imaging of OC. In the patient-derived tumor xenograft (PDX) model, HA@PFG NPs alleviate the tumor activity. RNA sequencing analysis reveals that HA@PFG NPs ameliorate OC symptoms mainly through IL-6 signal pathways. This work combines MRI imaging with cisplatin-based chemotherapy, which holds great promise for OC diagnosis and synergistic therapy.
Collapse
Affiliation(s)
- Guang Li
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
- Department of Gynecological Oncology and Cervical LesionsHunan Provincial Maternal and Child Health Care HospitalChangsha410013China
| | - Shengying Shi
- Department of NursingNanfang HospitalSouthern Medical UniversityGuangzhou510000China
| | - Jingxiu Tan
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Lijuan He
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Qiwen Liu
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Feng Fang
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Huijiao Fu
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Min Zhong
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Ziyi Mai
- Department of PharmacyThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhen518035China
| | - Rui Sun
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Kun Liu
- School of PharmacyGuangdong Medical UniversityDongguan523808China
| | - Zhenzhen Feng
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Peiqin Liang
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Zhiqiang Yu
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Xuefeng Wang
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| |
Collapse
|
12
|
Yuan T, Liu W, Wang T, Ye F, Zhang J, Gu Z, Xu J, Li Y. Natural Polyphenol Delivered Methylprednisolone Achieve Targeted Enrichment for Acute Spinal Cord Injury Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404815. [PMID: 39105462 DOI: 10.1002/smll.202404815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Indexed: 08/07/2024]
Abstract
The strong anti-inflammatory effect of methylprednisolone (MP) is a necessary treatment for various severe cases including acute spinal cord injury (SCI). However, concerns have been raised regarding adverse effects from MP, which also severely limits its clinical application. Natural polyphenols, due to their rich phenolic hydroxyl chemical properties, can form dynamic structures without additional modification, achieving targeted enrichment and drug release at the disease lesion, making them a highly promising carrier. Considering the clinical application challenges of MP, a natural polyphenolic platform is employed for targeted and efficient delivery of MP, reducing its systemic side effects. Both in vitro and SCI models demonstrated polyphenols have multiple advantages as carriers for delivering MP: (1) Achieved maximum enrichment at the injured site in 2 h post-administration, which met the desires of early treatment for diseases; (2) Traceless release of MP; (3) Reducing its side effects; (4) Endowed treatment system with new antioxidative properties, which is also an aspect that needs to be addressed for diseases treatment. This study highlighted a promising prospect of the robust delivery system based on natural polyphenols can successfully overcome the barrier of MP treatment, providing the possibility for its widespread clinical application.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weijie Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Feng Ye
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Xiong Y, Mi BB, Shahbazi MA, Xia T, Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil Med Res 2024; 11:69. [PMID: 39434177 PMCID: PMC11492517 DOI: 10.1186/s40779-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Zheng X, Wang T, Gong J, Yang P, Zhang Y, Zhang Y, Cao N, Zhou K, Li Y, Hua Y, Zhang D, Gu Z, Li Y. Biogenic derived nanoparticles modulate mitochondrial function in cardiomyocytes. MATERIALS HORIZONS 2024; 11:4998-5016. [PMID: 39082084 DOI: 10.1039/d4mh00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Preservation of mitochondrial functionality is essential for heart hemostasis and cardiovascular diseases treatment. However, the current nanomedicines including liposomes, polymers and inorganic nanomaterials are severely hindered by poor stability, high manufacturing costs and potential biotoxicity. In this research, we present novel polyphenolic nanoparticles (NPs) derived from naturally occurring pomegranate peel (PP, labelled as PPP NPs), which exhibit potent antioxidative and anti-inflammatory properties, serving as a modulator of mitochondrial function. PPP NPs have been identified to improve survival rates in models of mitochondrial depletion through enhancement of cardiomyocyte proliferation and the reduction of DNA damage. Moreover, PPP NPs can effectively inhibit the production of reactive oxygen species and inflammatory mediators in lipopolysaccharide (LPS)-induced mitochondrial damage. Utilizing human engineered heart tissue and mice models, PPP NPs were found to significantly improve contractile function and alleviate inflammation activities after LPS treatment. Mechanically, PPP NPs regulated inflammatory responses via a m6A dependent manner, as determined using RNA-seq and MeRIP-seq analyses. Collectively, these insights underscore the potential of PPP NPs as a novel therapeutic approach for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Jixing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science Hubei University, Wuhan 430062, China.
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science Hubei University, Wuhan 430062, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| |
Collapse
|
15
|
Zhang N, Hu J, Liu W, Cai W, Xu Y, Wang X, Li S, Ru B. Advances in Novel Biomaterial-Based Strategies for Spinal Cord Injury Treatment. Mol Pharm 2024; 21:4764-4785. [PMID: 39235393 DOI: 10.1021/acs.molpharmaceut.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spinal cord injury (SCI) is a highly disabling neurological disorder. Its pathological process comprises an initial acute injury phase (primary injury) and a secondary injury phase (subsequent chronic injury). Although surgical, drug, and cell therapies have made some progress in treating SCI, there is no exact therapeutic strategy for treating SCI and promoting nerve regeneration due to the complexity of the pathological SCI process. The development of novel drug delivery systems to treat SCI is expected to significantly impact the individualized treatment of SCI due to its unique and excellent properties, such as active targeting and controlled release. In this review, we first describe the pathological progression of the SCI response, including primary and secondary injuries. Next, we provide a concise overview of newly developed nanoplatforms and their potential application in regulating and treating different pathological processes of SCI. Then, we introduce the existing potential problems and future clinical application perspectives of biomedical engineering-based therapies for SCI.
Collapse
Affiliation(s)
- Nannan Zhang
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Jiaqi Hu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Wenlong Liu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Wenjun Cai
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Yun Xu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shun Li
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Bin Ru
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| |
Collapse
|
16
|
Zhang Y, Wu Z, Wu J, Li T, Jiang F, Yang B. Current multi-scale biomaterials for tissue regeneration following spinal cord injury. Neurochem Int 2024; 178:105801. [PMID: 38971503 DOI: 10.1016/j.neuint.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Spinal cord injury (SCI) may cause loss of motor and sensory function, autonomic dysfunction, and thus disrupt the quality of life of patients, leading to severe disability and significant psychological, social, and economic burden. At present, existing therapy for SCI have limited ability to promote neural function recovery, and there is an urgent need to develop innovative regenerative approaches to repair SCI. Biomaterials have become a promising strategy to promote the regeneration and repair of damaged nerve tissue after SCI. Biomaterials can provide support for nerve tissue by filling cavities, and improve local inflammatory responses and reshape extracellular matrix structures through unique biochemical properties to create the optimal microenvironment at the SCI site, thereby promoting neurogenesis and reconnecting damaged spinal cord tissue. Considering the importance of biomaterials in repairing SCI, this article reviews the latest progress of multi-scale biomaterials in SCI treatment and tissue regeneration, and evaluates the relevant technologies for manufacturing biomaterials.
Collapse
Affiliation(s)
- Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Zhonghuan Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Junfeng Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Tingdong Li
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Fugui Jiang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Biao Yang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China.
| |
Collapse
|
17
|
Pu M, Cao H, Zhang H, Wang T, Li Y, Xiao S, Gu Z. ROS-responsive hydrogels: from design and additive manufacturing to biomedical applications. MATERIALS HORIZONS 2024; 11:3721-3746. [PMID: 38894682 DOI: 10.1039/d4mh00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.
Collapse
Affiliation(s)
- Minju Pu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| |
Collapse
|
18
|
Xing C, Liu S, Wang L, Ma H, Zhou M, Zhong H, Zhu S, Wu Q, Ning G. Metformin enhances endogenous neural stem cells proliferation, neuronal differentiation, and inhibits ferroptosis through activating AMPK pathway after spinal cord injury. J Transl Med 2024; 22:723. [PMID: 39103875 PMCID: PMC11302024 DOI: 10.1186/s12967-024-05436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Inadequate nerve regeneration and an inhibitory local microenvironment are major obstacles to the repair of spinal cord injury (SCI). The activation and differentiation fate regulation of endogenous neural stem cells (NSCs) represent one of the most promising repair approaches. Metformin has been extensively studied for its antioxidative, anti-inflammatory, anti-aging, and autophagy-regulating properties in central nervous system diseases. However, the effects of metformin on endogenous NSCs remains to be elucidated. METHODS The proliferation and differentiation abilities of NSCs were evaluated using CCK-8 assay, EdU/Ki67 staining and immunofluorescence staining. Changes in the expression of key proteins related to ferroptosis in NSCs were detected using Western Blot and immunofluorescence staining. The levels of reactive oxygen species, glutathione and tissue iron were measured using corresponding assay kits. Changes in mitochondrial morphology and membrane potential were observed using transmission electron microscopy and JC-1 fluorescence probe. Locomotor function recovery after SCI in rats was assessed through BBB score, LSS score, CatWalk gait analysis, and electrophysiological testing. The expression of the AMPK pathway was examined using Western Blot. RESULTS Metformin promoted the proliferation and neuronal differentiation of NSCs both in vitro and in vivo. Furthermore, a ferroptosis model of NSCs using erastin treatment was established in vitro, and metformin treatment could reverse the changes in the expression of key ferroptosis-related proteins, increase glutathione synthesis, reduce reactive oxygen species production and improve mitochondrial membrane potential and morphology. Moreover, metformin administration improved locomotor function recovery and histological outcomes following SCI in rats. Notably, all the above beneficial effects of metformin were completely abolished upon addition of compound C, a specific inhibitor of AMP-activated protein kinase (AMPK). CONCLUSION Metformin, driven by canonical AMPK-dependent regulation, promotes proliferation and neuronal differentiation of endogenous NSCs while inhibiting ferroptosis, thereby facilitating recovery of locomotor function following SCI. Our study further elucidates the protective mechanism of metformin in SCI, providing new mechanistic insights for its candidacy as a therapeutic agent for SCI.
Collapse
Affiliation(s)
- Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Mi Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hao Zhong
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shibo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China.
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.
| |
Collapse
|
19
|
Wang T, Zhang J, Chen Z, Zhang R, Duan G, Wang Z, Chen X, Gu Z, Li Y. Sonochemical Synthesis of Natural Polyphenolic Nanoparticles for Modulating Oxidative Stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401731. [PMID: 38682736 DOI: 10.1002/smll.202401731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Natural polyphenolic compounds play a vital role in nature and are widely utilized as building blocks in the fabrication of emerging functional nanomaterials. Although diverse fabrication methodologies are developed in recent years, the challenges of purification, uncontrollable reaction processes and additional additives persist. Herein, a modular and facile methodology is reported toward the fabrication of natural polyphenolic nanoparticles. By utilizing low frequency ultrasound (40 kHz), the assembly of various natural polyphenolic building blocks is successfully induced, allowing for precise control over the particle formation process. The resulting natural polyphenolic nanoparticles possessed excellent in vitro antioxidative abilities and in vivo therapeutic effects in typical oxidative stress models including wound healing and acute kidney injury. This study opens new avenues for the fabrication of functional materials from naturally occurring building blocks, offering promising prospects for future advancements in this field.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xianchun Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
20
|
Meganathan MK, Ramalingam S. Green Nanoengineered Fabrics: Waste-Derived Polyphenol-Zinc@ Silica Core-Shell Reactive Janus Nanoparticles for Functional Fabrics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40004-40017. [PMID: 39023009 DOI: 10.1021/acsami.4c08268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Fabricating Janus nanoparticle-functionalized fabrics with UV protection, strength enhancement, self-cleaning properties, and wash durability, with a biocompatible nature, is crucial in modern functional fabrics engineering. Particularly, tailoring multifunctional nanoparticles capable of exhibiting several distinct properties, utilizing low-cost raw materials, and adhering to green chemistry principles is pivotal. A fabrication strategy for developing multifunctional reactive Janus nanoparticles, utilizing waste-derived natural polyphenol (quercetin-3-glucuronide, myricetin-3-galactoside, gossypin, phlorizin, kaempferol, myricetin-3-arabinoside)-integrated zinc-silica core-shell Janus nanoparticles with UV protection, strength enhancement, and self-cleaning properties, is proposed. Polyphenols were utilized as sustainable precursors for synthesizing zinc-polyphenol complexes, which were then encapsulated within a silica shell to form a core-shell structure. Furthermore, Janus particles were created by introducing a bifunctional layer with half amine/carboxylic acid and half methyl terminals, imparting reactive hydrophilic and hydrophobic properties. Janus-coated textiles and leather exhibited significant attenuation of harmful UV radiation, with water contact angle measurements confirming improved water repellency. The coexistence of natural phenols and bifunctional groups within a material bolstered textile strength, fostering superior adhesion and markedly enhancing wash durability. This eco-friendly approach, utilizing waste-derived materials, presents a promising solution for sustainable textile engineering with enhanced performance in UV protection and water resistance, thereby contributing to the advancement of green nanotechnology in textile applications.
Collapse
Affiliation(s)
- Madhan Kumar Meganathan
- Leather Processing Technology Department, Council of Scientific and Industrial Research, Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, India
| | - Sathya Ramalingam
- Leather Processing Technology Department, Council of Scientific and Industrial Research, Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Wang Q, Ge L, Guo J, Zhang H, Chen T, Lian F, Li L, Xu Y, Xu J, Chen N, Zhang Y, Ruan Z, Xiao J, Zhang H, Yang L. Acid Neutralization by Composite Lysine Nanoparticles for Spinal Cord Injury Recovery through Mitigating Mitochondrial Dysfunction. ACS Biomater Sci Eng 2024; 10:4480-4495. [PMID: 38885615 DOI: 10.1021/acsbiomaterials.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
After spinal cord injury (SCI), significant alterations in the tissue microenvironment lead to mitochondrial dysfunction, inducing apoptosis and inhibiting the remodeling of neural circuits, thereby impeding recovery. Although previous studies have demonstrated a marked decrease in pH at the injury site, creating an acidic microenvironment, the impact of improving this acidic microenvironment on SCI recovery has not been investigated. This study prepared a lysine@hollow mesoporous silica nanoparticle/gelatin methacrylate (GelMA) (L@H/G) composite hydrogel. The L@H/G composite hydrogel was demonstrated to release lysine and efficiently improve the acidic microenvironment slowly. Significantly, the composite hydrogel reduced cell apoptosis, promoted nerve regeneration, inhibited glial scar formation, and ultimately enhanced motor function recovery in mice with SCI. Mechanistically, the L@H/G hydrogel improved the mitochondrial tricarboxylic acid (TCA) cycle and fatty acid metabolism, restoring energy supply and facilitating mitochondrial function recovery. To the best of our knowledge, this is the first report confirming that improving the acidic microenvironment could promote SCI repair, providing a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Qiuchen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| | - Lu Ge
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiali Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haijuan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tianling Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Feifei Lian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lei Li
- Science and Teaching Affairs Section, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, China
| | - Yun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinyu Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nuo Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhanwei Ruan
- Department of Emergency, The Third Affiliated Hospital, Wenzhou Medical University, No. 108 Wansong Road, Ruian, Wenzhou, Zhejiang 325200, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
- Central Laboratory, Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| |
Collapse
|
22
|
Gao Q, Chu X, Yang J, Guo Y, Guo H, Qian S, Yang Y, Wang B. An Antibiotic Nanobomb Constructed from pH-Responsive Chemical Bonds in Metal-Phenolic Network Nanoparticles for Biofilm Eradication and Corneal Ulcer Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309086. [PMID: 38488341 PMCID: PMC11165475 DOI: 10.1002/advs.202309086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/13/2024] [Indexed: 06/12/2024]
Abstract
In the treatment of refractory corneal ulcers caused by Pseudomonas aeruginosa, antibacterial drugs delivery faces the drawbacks of low permeability and short ocular surface retention time. Hence, novel positively-charged modular nanoparticles (NPs) are developed to load tobramycin (TOB) through a one-step self-assembly method based on metal-phenolic network and Schiff base reaction using 3,4,5-trihydroxybenzaldehyde (THBA), ε-poly-ʟ-lysine (EPL), and Cu2+ as matrix components. In vitro antibacterial test demonstrates that THBA-Cu-TOB NPs exhibit efficient instantaneous sterilization owing to the rapid pH responsiveness to bacterial infections. Notably, only 2.6 µg mL-1 TOP is needed to eradicate P. aeruginosa biofilm in the nano-formed THBA-Cu-TOB owing to the greatly enhanced penetration, which is only 1.6% the concentration of free TOB (160 µg mL-1). In animal experiments, THBA-Cu-TOB NPs show significant advantages in ocular surface retention, corneal permeability, rapid sterilization, and inflammation elimination. Based on molecular biology analysis, the toll-like receptor 4 and nuclear factor kappa B signaling pathways are greatly downregulated as well as the reduction of inflammatory cytokines secretions. Such a simple and modular strategy in constructing nano-drug delivery platform offers a new idea for toxicity reduction, physiological barrier penetration, and intelligent drug delivery.
Collapse
Affiliation(s)
- Qiang Gao
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual ScienceWenzhou Medical UniversityWenzhou325027P. R. China
| | - Xiaoying Chu
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Jie Yang
- School of Life SciencesJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Yishun Guo
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Hanwen Guo
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Siyuan Qian
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Ying‐Wei Yang
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Bailiang Wang
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual ScienceWenzhou Medical UniversityWenzhou325027P. R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic DiseasesWenzhou325027P. R. China
| |
Collapse
|
23
|
Chen E, Wang T, Sun Z, Gu Z, Xiao S, Ding Y. Polyphenols-based intelligent oral barrier membranes for periodontal bone defect reconstruction. Regen Biomater 2024; 11:rbae058. [PMID: 38854682 PMCID: PMC11157154 DOI: 10.1093/rb/rbae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Periodontitis-induced periodontal bone defects significantly impact patients' daily lives. The guided tissue regeneration and guided bone regeneration techniques, which are based on barrier membranes, have brought hope for the regeneration of periodontal bone defects. However, traditional barrier membranes lack antimicrobial properties and cannot effectively regulate the complex oxidative stress microenvironment in periodontal bone defect areas, leading to unsatisfactory outcomes in promoting periodontal bone regeneration. To address these issues, our study selected the collagen barrier membrane as the substrate material and synthesized a novel barrier membrane (PO/4-BPBA/Mino@COL, PBMC) with an intelligent antimicrobial coating through a simple layer-by-layer assembly method, incorporating reactive oxygen species (ROS)-scavenging components, commercial dual-functional linkers and antimicrobial building blocks. Experimental results indicated that PBMC exhibited good degradability, hydrophilicity and ROS-responsiveness, allowing for the slow and controlled release of antimicrobial drugs. The outstanding antibacterial, antioxidant and biocompatibility properties of PBMC contributed to resistance to periodontal pathogen infection and regulation of the oxidative balance, while enhancing the migration and osteogenic differentiation of human periodontal ligament stem cells. Finally, using a rat periodontal bone defect model, the therapeutic effect of PBMC in promoting periodontal bone regeneration under infection conditions was confirmed. In summary, the novel barrier membranes designed in this study have significant potential for clinical application and provide a reference for the design of future periodontal regenerative functional materials.
Collapse
Affiliation(s)
- Enni Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiyuan Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Liao W, Lu Z, Wang C, Zhu X, Yang Y, Zhou Y, Gong P. Application and advances of biomimetic membrane materials in central nervous system disorders. J Nanobiotechnology 2024; 22:280. [PMID: 38783302 PMCID: PMC11112845 DOI: 10.1186/s12951-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Central nervous system (CNS) diseases encompass spinal cord injuries, brain tumors, neurodegenerative diseases, and ischemic strokes. Recently, there has been a growing global recognition of CNS disorders as a leading cause of disability and death in humans and the second most common cause of death worldwide. The global burdens and treatment challenges posed by CNS disorders are particularly significant in the context of a rapidly expanding global population and aging demographics. The blood-brain barrier (BBB) presents a challenge for effective drug delivery in CNS disorders, as conventional drugs often have limited penetration into the brain. Advances in biomimetic membrane nanomaterials technology have shown promise in enhancing drug delivery for various CNS disorders, leveraging properties such as natural biological surfaces, high biocompatibility and biosafety. This review discusses recent developments in biomimetic membrane materials, summarizes the types and preparation methods of these materials, analyzes their applications in treating CNS injuries, and provides insights into the future prospects and limitations of biomimetic membrane materials.
Collapse
Affiliation(s)
- Weiquan Liao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Zhichao Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Chenxing Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xingjia Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu, 226001, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Peipei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
- Jiangsu Medical Innovation Center, Neurological Disease Diagnosis and Treatment Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
25
|
Yuan T, Wang T, Zhang J, Ye F, Gu Z, Li Y, Xu J. Functional Polyphenol-Based Nanoparticles Boosted the Neuroprotective Effect of Riluzole for Acute Spinal Cord Injury. Biomacromolecules 2024; 25:2607-2620. [PMID: 38530873 DOI: 10.1021/acs.biomac.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Ye
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Wang T, Guo L, Wu S, Xu Y, Song J, Yang Y, Zhang H, Li D, Li Y, Jiang X, Gu Z. Polyphenolic Platform Ameliorated Sanshool for Skin Photoprotection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310012. [PMID: 38359060 DOI: 10.1002/advs.202310012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Natural evolution has nurtured a series of active molecules that play vital roles in physiological systems, but their further applications have been severely limited by rapid deactivation, short cycle time, and potential toxicity after isolation. For instance, the instability of structures and properties has greatly descended when sanshool is derived from Zanthoxylum xanthoxylum. Herein, natural polyphenols are employed to boost the key properties of sanshool by fabricating a series of nanoparticles (NPs). The intracellular evaluation and in vivo animal model are conducted to demonstrate the decreased photodamage score and skin-fold thickness of prepared NPs, which can be attributed to the better biocompatibility, improved free radical scavenging, down-regulated apoptosis ratios, and reduced DNA double-strand breaks compared to naked sanshool. This work proposes a novel strategy to boost the key properties of naturally occurring active molecules with the assistance of natural polyphenol-based platforms.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuwei Wu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanyuan Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junmei Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou, 511434, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
27
|
Lin S, Cui J, Li X, Chen S, Gao K, Mei X. Modified ZIF-8 Nanoparticles for Targeted Metabolic Treatment of Acute Spinal Cord Injury. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38499046 DOI: 10.1021/acsami.3c13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The activation of proinflammatory M1-type macrophages in the injured lesion accelerates the progression of a spinal cord injury (SCI). However, adverse side effects during systemic treatments targeting M1 macrophages have limited their applications. Nanoplatforms are novel carriers of traditional Chinese medicine because of their great efficiency to deliver and accumulation in the lesion. Herein, we synthesized a modified zeolitic imidazolate framework-8 (ZIF-8) nanoplatform for internalization and accumulation in the injured spinal cord and effective administration for SCI. In vitro and in vivo experiments suggested that Prussian blue and Schisandrin B modified ZIF-8 effectively accumulated in M1 macrophages, inhibited reactive oxygen species (ROS), and polarized the macrophage from proinflammatory M1 to anti-inflammatory M2 for rapid tissue infiltration by reprogramming the metabolic macrophages phenotype. This nanoplatform achieves a synergistic therapeutic effect of immunomodulation and neuroprotection, thereby shedding new light on the application of ZIF-8, and provides great potential for SCI.
Collapse
Affiliation(s)
- Sen Lin
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121002, P. R. China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou 010, P. R. China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou 010, P. R. China
| | - Jingwen Cui
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou 010, P. R. China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou 010, P. R. China
| | - Xiang Li
- Harbin Medical University, Harbin 150086, P. R. China
| | - Shurui Chen
- Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou 510317, P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou 510317, P. R. China
| | - Kai Gao
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining 272111, P. R. China
| | - Xifan Mei
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121002, P. R. China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou 010, P. R. China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou 010, P. R. China
| |
Collapse
|
28
|
Liu Y, Lin F, Wu C, Liu W, Wang H, Xiao C, Chen X. In Situ Reaction-Generated Aldehyde-Scavenging Polypeptides-Curcumin Conjugate Nanoassemblies for Combined Treatment of Spinal Cord Injury. ACS NANO 2024; 18:7346-7362. [PMID: 38416031 DOI: 10.1021/acsnano.3c08662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The microenvironment after traumatic spinal cord injury (SCI) involves complex pathological processes, including elevated oxidative stress, accumulated reactive aldehydes from lipid peroxidation, excessive immune cell infiltration, etc. Unfortunately, most of current neuroprotection therapies cannot cope with the intricate pathophysiology of SCI, leading to scant treatment efficacies. Here, we developed a facile in situ reaction-induced self-assembly method to prepare aldehyde-scavenging polypeptides (PAH)-curcumin conjugate nanoassemblies (named as PFCN) for combined neuroprotection in SCI. The prepared PFCN could release PAH and curcumin in response to oxidative and acidic SCI microenvironment. Subsequently, PFCN exhibited an effectively neuroprotective effect through scavenging toxic aldehydes as well as reactive nitrogen and oxygen species in neurons, modulating microglial M1/M2 polarization, and down-regulating the expression of inflammation-related cytokines to inhibit neuroinflammation. The intravenous administration of PFCN could significantly ameliorate the malignant microenvironment of injured spinal cord, protect the neurons, and promote the motor function recovery in the contusive SCI rat model.
Collapse
Affiliation(s)
- Yixuan Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Feng Lin
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Cheng Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
29
|
Yang X, Tang X, Jia G, Wang Y, Yang L, Li Y, Wu M, Zhang Z, Yu Y, Xiao Y, Zhu X, Li S. Multifunctional Carbon Quantum Dots: Iron Clearance and Antioxidation for Neuroprotection in Intracerebral Hemorrhage Mice. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038958 DOI: 10.1021/acsami.3c13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Iron overload and oxidative stress are pivotal in the pathogenesis of brain injury secondary to intracerebral hemorrhage (ICH). There is a compelling need for agents that can chelate iron and scavenge free radicals, particularly those that demonstrate substantial brain penetration, to mitigate ICH-related damage. In this study, we have engineered an amine-functionalized aspirin-derived carbon quantum dot (NACQD) with a nominal diameter of 6-13 nm. The NACQD possesses robust iron-binding and antioxidative capacities. Through intrathecal administration, NACQD therapy substantially reduced iron deposition and oxidative stress in brain tissue, alleviated meningeal inflammatory responses, and improved the recovery of neurological function in a murine ICH model. As a proof of concept, the intrathecal injection of NACQD is a promising therapeutic strategy to ameliorate the ICH injury.
Collapse
Affiliation(s)
- Xinyu Yang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Xiaolong Tang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Guangyu Jia
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Ye Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Li Yang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
| | - Yuanyuan Li
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Zhe Zhang
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Yamei Yu
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Yao Xiao
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Xingen Zhu
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Shiyong Li
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330036, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| |
Collapse
|