1
|
Yi J, Chen YS. How can nanotechnology be leveraged to produce multifunctional contrast agents to improve imaging and diagnostics? Nanomedicine (Lond) 2025:1-4. [PMID: 40337948 DOI: 10.1080/17435889.2025.2501515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Affiliation(s)
- Junxi Yi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yun-Sheng Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Mechanical Science & Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Li B, Li Q, Qi Z, Li Z, Yan X, Chen Y, Xu X, Pan Q, Chen Y, Huang F, Ping Y. Supramolecular Genome Editing: Targeted Delivery and Endogenous Activation of CRISPR/Cas9 by Dynamic Host-Guest Recognition. Angew Chem Int Ed Engl 2024; 63:e202316323. [PMID: 38317057 DOI: 10.1002/anie.202316323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
We synthesize supramolecular poly(disulfide) (CPS) containing covalently attached cucurbit[7]uril (CB[7]), which is exploited not only as a carrier to deliver plasmid DNA encoding destabilized Cas9 (dsCas9), but also as a host to include trimethoprim (TMP) by CB[7] moieties through the supramolecular complexation to form TMP@CPS/dsCas9. Once the plasmid is transfected into tumor cells by CPS, the presence of polyamines can competitively trigger the decomplexation of TMP@CPS, thereby displacing and releasing TMP from CB[7] to stabilize dsCas9 that can target and edit the genomic locus of PLK1 to inhibit the growth of tumor cells. Following the systemic administration of TMP@CPS/dsCas9 decorated with hyaluronic acid (HA), tumor-specific editing of PLK1 is detected due to the elevated polyamines in tumor microenvironment, greatly minimizing off-target editing in healthy tissues and non-targeted organs. As the metabolism of polyamines is dysregulated in a wide range of disorders, this study offers a supramolecular approach to precisely control CRISPR/Cas9 functions under particular pathological contexts.
Collapse
Affiliation(s)
- Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| | - Qing Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zidan Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaojie Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuxuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| |
Collapse
|
3
|
Xiao W, He K, Yu C, Zhou Z, Xia L, Xie S, Li H, Zhang M, Zhang Z, Luo P, Wen L, Chen G. Space Station-like Composite Nanoparticles for Co-Delivery of Multiple Natural Compounds from Chinese Medicine and Hydrogen in Combating Sensorineural Hearing Loss. Mol Pharm 2023; 20:3987-4006. [PMID: 37503854 DOI: 10.1021/acs.molpharmaceut.3c00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ototoxic drugs such as aminoglycoside antibiotics and cisplatin (CDDP) can cause sensorineural hearing loss (SNHL), which is closely related to oxidative stress and the acidification of the inner ear microenvironment. Effective treatment of SNHL often requires multifaceted approach due to the complex pathology, and drug combination therapy is expected to be at the forefront of modern hearing loss treatment. Here, space-station-like composite nanoparticles (CCC@mPP NPs) with pH/oxidation dual responsiveness and multidrug simultaneous delivery capability were constructed and then loaded with various drugs including panax notoginseng saponins (PNS), tanshinone IIA (TSIIA), and ammonia borane (AB) to provide robust protection against SNHL. Molecular dynamics simulation revealed that carboxymethyl chitosan/calcium carbonate-chitosan (CCC) NPs and monomethoxy poly(ethylene glycol)-PLGA (mPP) NPs can rendezvous and dock primarily by hydrogen bonding, and electrostatic forces may be involved. Moreover, CCC@mPP NPs crossed the round window membrane (RWM) and entered the inner ear through endocytosis and paracellular pathway. The docking state was basically maintained during this process, which created favorable conditions for multidrug delivery. This nanosystem was highly sensitive to pH and reactive oxygen species (ROS) changes, as evidenced by the restricted release of payload at alkaline condition (pH 7.4) without ROS, while significantly promoting the release in acidic condition (pH 5.0 and 6.0) with ROS. TSIIA/PNS/AB-loaded CCC@mPP NPs almost completely preserved the hair cells and remained the hearing threshold shift within normal limits in aminoglycoside- or CDDP-treated guinea pigs. Further experiments demonstrated that the protective mechanisms of TSIIA/PNS/AB-loaded CCC@mPP NPs involved direct and indirect scavenging of excessive ROS, and reduced release of pro-inflammatory cytokines. Both in vitro and in vivo experiments showed the high biocompatibility of the composite NPs, even after long-term administration. Collectively, this work suggests that composite NPs is an ideal multi-drug-delivery vehicle and open new avenues for inner ear disease therapies.
Collapse
Affiliation(s)
- Wenbin Xiao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kerui He
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chong Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeming Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liye Xia
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shibao Xie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hanqi Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd., Zhongshan 528437, China
| | - Zhifeng Zhang
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
4
|
Polymeric DNA Hydrogels and Their Applications in Drug Delivery for Cancer Therapy. Gels 2023; 9:gels9030239. [PMID: 36975688 PMCID: PMC10048489 DOI: 10.3390/gels9030239] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The biomolecule deoxyribonucleic acid (DNA), which acts as the carrier of genetic information, is also regarded as a block copolymer for the construction of biomaterials. DNA hydrogels, composed of three-dimensional networks of DNA chains, have received considerable attention as a promising biomaterial due to their good biocompatibility and biodegradability. DNA hydrogels with specific functions can be prepared via assembly of various functional sequences containing DNA modules. In recent years, DNA hydrogels have been widely used for drug delivery, particularly in cancer therapy. Benefiting from the sequence programmability and molecular recognition ability of DNA molecules, DNA hydrogels prepared using functional DNA modules can achieve efficient loading of anti-cancer drugs and integration of specific DNA sequences with cancer therapeutic effects, thus achieving targeted drug delivery and controlled drug release, which are conducive to cancer therapy. In this review, we summarized the assembly strategies for the preparation of DNA hydrogels on the basis of branched DNA modules, hybrid chain reaction (HCR)-synthesized DNA networks and rolling circle amplification (RCA)-produced DNA chains, respectively. The application of DNA hydrogels as drug delivery carriers in cancer therapy has been discussed. Finally, the future development directions of DNA hydrogels in cancer therapy are prospected.
Collapse
|
5
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
6
|
Jin R, Fu X, Pu Y, Fu S, Liang H, Yang L, Nie Y, Ai H. Clinical translational barriers against nanoparticle-based imaging agents. Adv Drug Deliv Rev 2022; 191:114587. [PMID: 36309148 DOI: 10.1016/j.addr.2022.114587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Nanoparticle based imaging agents (NIAs) have been intensively explored in bench studies. Unfortunately, only a few cases have made their ways to clinical translation. In this review, clinical trials of NIAs were investigated for understanding possible barriers behind that. First, the complexity of multifunctional NIAs is considered a main barrier because it brings uncertainty to batch-to-batch fabrication, and results in sophisticated in vivo behaviors. Second, inadequate biosafety studies slow down the translational work. Third, NIA uptake at disease sites is highly heterogeneous, and often exhibits poor targeting efficiency. Focusing on the aforementioned problems, key design parameters were analyzed including NIAs' size, composition, surface characteristics, dosage, administration route, toxicity, whole-body distribution and clearance in clinical trials. Possible strategies were suggested to overcome these barriers. Besides, regulatory guidelines as well as scale-up and reproducibility during manufacturing process were covered as they are also key factors to consider during clinical translation of NIAs.
Collapse
Affiliation(s)
- Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Tang T, Huang B, Liu F, Cui R, Zhang M, Sun T. Enhanced delivery of theranostic liposomes through NO-mediated tumor microenvironment remodeling. NANOSCALE 2022; 14:7473-7479. [PMID: 35503233 DOI: 10.1039/d2nr01175a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly efficient delivery of nanoagents to the tumor region remains the primary challenge for cancer nanomedicine. Herein, we propose a NO-mediated tumor microenvironment (TME) remodeling strategy for the high-efficient delivery of nanoagents into tumor. Quantum dots (QDs) with bright fluorescence in the near-infrared IIb (NIR-IIb, 1500-1700 nm) window and high photothermal conversion efficiency were encapsulated into liposomes for the imaging-guided photothermal therapy (PTT) of tumor. The fabrication of PEG and arginine-glycine-aspartate (RGD) peptide on liposomes ensured the prolonged circulation in vivo and active targeting to tumor. Moreover, the loading of a natural NO generator L-arginine in liposomes realized the continuous generation of NO in the acidic TME. By co-localization fluorescence imaging and western blot of tumor tissue, we confirmed that the release of NO activated the expression of metalloproteinases in TME and further degraded Collagen I in the peripheral region of the tumor, thus removing the barrier for the permeation of liposomes. Attributed to the enhanced accumulation of liposomes inside the tumor, NIR IIb imaging-guided PTT was achieved with remarkable therapeutic efficacy.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Feng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
8
|
Zhang R, Nie T, Fang Y, Huang H, Wu J. Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules 2021; 23:1-19. [PMID: 34874705 DOI: 10.1021/acs.biomac.1c01210] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioresponsive polymers have been widely used in drug delivery because of their degradability. For example, poly(disulfide)s with repeating disulfide bonds in the main chain have attracted considerable research attention. The characteristics of the disulfide bonds, including their dynamic and reversible properties and their responsiveness to stimuli such as reductants, light, heat, and mechanical force, make them ideal platforms for on-demand drug delivery. This review introduces the synthesis methods and applications of poly(disulfide)s. Furthermore, the synthesis methods of poly(disulfide)s are classified on the basis of the monomers used: oxidative step-growth polymerization with dithiols, ring-opening polymerization with cyclic disulfides, and polymerization with linear disulfides. In addition, recent advances in poly(disulfide)s for the delivery of small-molecule or biomacromolecular drugs are discussed. Quantum-dot-loaded poly(disulfide) delivery systems for imaging are also included. This review provides an overview of the various design strategies employed in the construction of poly(disulfide) platforms to inspire new applications in the field of drug delivery.
Collapse
Affiliation(s)
- Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Nie
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
9
|
Wang Z, Xu FJ, Yu B. Smart Polymeric Delivery System for Antitumor and Antimicrobial Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:783354. [PMID: 34805129 PMCID: PMC8599151 DOI: 10.3389/fbioe.2021.783354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) has attracted tremendous attention in the antitumor and antimicrobial areas. To enhance the water solubility of photosensitizers and facilitate their accumulation in the tumor/infection site, polymeric materials are frequently explored as delivery systems, which are expected to show target and controllable activation of photosensitizers. This review introduces the smart polymeric delivery systems for the PDT of tumor and bacterial infections. In particular, strategies that are tumor/bacteria targeted or activatable by the tumor/bacteria microenvironment such as enzyme/pH/reactive oxygen species (ROS) are summarized. The similarities and differences of polymeric delivery systems in antitumor and antimicrobial PDT are compared. Finally, the potential challenges and perspectives of those polymeric delivery systems are discussed.
Collapse
Affiliation(s)
- Zhijia Wang
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Fu-Jian Xu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Bingran Yu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
10
|
Liu X, Li R, Zhou Y, Lv W, Liu S, Zhao Q, Huang W. An all-in-one nanoplatform with near-infrared light promoted on-demand oxygen release and deep intratumoral penetration for synergistic photothermal/photodynamic therapy. J Colloid Interface Sci 2021; 608:1543-1552. [PMID: 34742072 DOI: 10.1016/j.jcis.2021.10.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022]
Abstract
Hypoxia and high-density extracellular matrix within the tumor microenvironment (TME) strengthens tumor resistance to the oxygen-dependent cancer therapy. Herein, an on-demand oxygen released nanoplatform (MONs/IR780/PFC-O2@BSA, BMIPO) that was triggered by near-infrared (NIR) light combined with TME has been designed for achieving synergistic photothermal/photodynamic therapy with deep intratumoral penetration and oxygen self-sufficiency. Notably, the zeta potential and transmission electron microscope (TEM) results indicated that such "smart" BMIPO nanoplatform possessed good colloidal stability and on-demand TME-specific degradability. This characteristic of the BMIPO nanoplatform allows it to simultaneously achieve high tumor accumulation and deep intratumoral penetration. The results of the O2 loading and release measurements showed that the as- prepared BMIPO possessed excellent O2 reversibly bind/release performance. Furthermore, the photothermal effect of NIR dye (IR780) accelerated the dissociation of TME-responsive BMIPO, as a result, it achieved an on-demand, continuous and complete O2 release to relieve tumor hypoxia during phototherapy. In vitro and in vivo results demonstrated that the as-prepared all-in-one nanoplatform have successfully realized NIR-triggered on-demand O2 release, nanocarrier-mediated glutathione (GSH) reducing, hyperthermia-promoted deep intratumoral penetration and dual-model imaging-guided precise cancer therapy. This work would provide inspiration for the design of nanoplatforms with on-demand release and deep intratumoral penetration for achieving high-efficiency synergistic photothermal/photodynamic therapy in hypoxic tumors.
Collapse
Affiliation(s)
- Xiangmei Liu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China
| | - Ruhua Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China
| | - Yanli Zhou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China
| | - Wen Lv
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an 710072, PR China; Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China.
| |
Collapse
|
11
|
Zhang X, Jia D, Wang Y, Wen F, Zhang X. Engineering glutathione-responsive near-infrared polymeric prodrug system for fluorescence imaging in tumor therapy. Colloids Surf B Biointerfaces 2021; 206:111966. [PMID: 34293577 DOI: 10.1016/j.colsurfb.2021.111966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/14/2023]
Abstract
The release and biodistribution of drugs in the body have an important impact on tumor diagnosis and treatment. Near-infrared (NIR) fluorescent active fluorophores with good photostability are used to detect drug release and perform in vivo imaging. Here, we developed a glutathione-responsive NIR prodrug POEGMA-b-P(CPT-CyOH) (PCC) for effective cancer diagnosis and treatment, whereby the camptothecin (CPT) and NIR fluorophore CyOH in PCC are connected by disulfide bonds. In vitro experiments confirmed that PCC was quickly taken up by cells. The high concentration of tumor intracellular glutathione caused the cleavage of the PCC disulfide bonds, leading to the release of the chemotherapeutic drug CPT, indicating that PCC can promote apoptosis. Moreover, owing to the fluorescent properties of CyOH, PCC was successfully used for in vivo imaging to observe the drug penetration and enrichment capabilities in tumors. Finally, PCC successfully inhibited tumor growth, indicating that the prodrug has a good anti-tumor effect. This work provides new strategies for chemical drug delivery and precise cancer treatment.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Pediatric Research Institute, Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China
| | - Die Jia
- School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Yuxin Wang
- Pediatric Research Institute, Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China
| | - Feiqiu Wen
- Pediatric Research Institute, Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China.
| | - Xingliang Zhang
- Pediatric Research Institute, Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China.
| |
Collapse
|
12
|
Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021; 175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Dynamic nanoassembly-based drug delivery system (DNDDS) has evolved from being a mere curiosity to emerging as a promising strategy for high-performance diagnosis and/or therapy of various diseases. However, dynamic nano-bio interaction between DNDDS and biological systems remains poorly understood, which can be critical for precise spatiotemporal and functional control of DNDDS in vivo. To deepen the understanding for fine control over DNDDS, we aim to explore natural systems as the root of inspiration for researchers from various fields. This review highlights ingenious designs, nano-bio interactions, and controllable functionalities of state-of-the-art DNDDS under endogenous or exogenous stimuli, by learning from nature at the molecular, subcellular, and cellular levels. Furthermore, the assembly strategies and response mechanisms of tailor-made DNDDS based on the characteristics of various diseased microenvironments are intensively discussed. Finally, the current challenges and future perspectives of DNDDS are briefly commented.
Collapse
|
13
|
Ansteatt S, Meares A, Ptaszek M. Amphiphilic Near-IR-Emitting 3,5- Bis(2-Pyrrolylethenyl)BODIPY Derivatives: Synthesis, Characterization, and Comparison with Other (Hetero)Arylethenyl-Substituted BODIPYs. J Org Chem 2021; 86:8755-8765. [PMID: 34129326 DOI: 10.1021/acs.joc.1c00586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of 3,5-bis(hetero)arylethenyl-substituted BODIPY derivatives have been prepared by Knoevenagel-type condensation of alkyl-substituted BODIPY with the corresponding aldehydes. 2-Pyrrolylethenyl-substituted derivatives feature near-IR emission (λem > 700 nm) with a high fluorescence quantum yield. Both the emission maxima and fluorescence quantum yields are relatively insensitive to solvent polarity, contrary to the corresponding near-IR-emitting 4-(N,N-dimethylaminophenyl)ethenyl derivatives. Alkylation at the N-pyrrolic position of the ethenyl substituent allows for the installation of the hydrophilic PEG group and afforded amphiphilic BODIPY derivatives. Overall, 2-pyrrolylethenyl-substituted BODIPY derivatives appear to be versatile fluorophores with potential applications in near-IR imaging.
Collapse
Affiliation(s)
- Sara Ansteatt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore 21250, Maryland, United States
| | - Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore 21250, Maryland, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore 21250, Maryland, United States
| |
Collapse
|
14
|
Yang N, Song S, Ren J, Liu C, Li Z, Qi H, Yu C. Controlled Aggregation of a Perylene-Derived Probe for Near-Infrared Fluorescence Imaging and Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:5008-5015. [PMID: 35007049 DOI: 10.1021/acsabm.1c00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design and synthesis of water-soluble phototherapeutic agents with near-infrared (NIR) fluorescence emission is highly desirable for cancer diagnosis and treatment. Here, we report the construction of an amphiphilic perylene-derived photosensitizer, AP. AP shows NIR emission with large Stokes shift (130 nm) and high 1O2 quantum yield (22%). It can self-assemble into nanoparticles in aqueous solution with quenched fluorescence emission due to aggregation-induced quenching. Upon membrane anchoring, AP is able to disassemble into free monomer molecules and specifically "light up" the cell membrane without the usually required washing procedures. Furthermore, AP is subsequently used for the efficient photodynamic therapy against cancer cells and solid tumors. The in vitro and in vivo experiments clearly indicate that AP is suitable for biological imaging and can serve as a promising photosensitizer for tumor suppression.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jia Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhiheng Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hong Qi
- Tumor Hospital of Jilin Province, Changchun 130061, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Gao Z, Li C, Shen J, Ding D. Organic optical agents for image-guided combined cancer therapy. Biomed Mater 2021; 16. [PMID: 33873169 DOI: 10.1088/1748-605x/abf980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/19/2021] [Indexed: 01/10/2023]
Abstract
As a promising non-invasive treatment method, phototherapy has attracted extensive attention in the field of combined cancer therapy. Among various optical agents, organic ones have been considered as a promising clinical phototheranostic agent due to its high safety and non-toxic property. In addition, due to the clear structure, facile processability, organic optical agents can be easily endowed with multiple imaging and phototherapeutic functions, significantly simplifying the relatively complex system of imaging-guided combined cancer therapy. This review summarizes the recent research on organic optical agents in imaging-guided combined cancer therapy. The application of organic optical agents in a variety of combined cancer therapeutic modes guided by imaging are introduced respectively, including photodynamic and photothermal combined therapy, phototherapy-combined cancer chemotherapy, and phototherapy-combined cancer immunotherapy. Finally, the concluding remarks and the future prospects are discussed.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Dan Ding
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
16
|
Wang C, Chen S, Yu F, Lv J, Zhao R, Hu F, Yuan H. Dual-Channel Theranostic System for Quantitative Self-Indication and Low-Temperature Synergistic Therapy of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007953. [PMID: 33590704 DOI: 10.1002/smll.202007953] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
A conventional theranostic system usually employs a single fluorescence channel to show the pharmacokinetic events, which usually fails to quantitatively reveal the true cumulative drug release and with low accuracy. Herein, indocyanine green (ICG) and chlorins e6 (Ce6) are selected not only as conventional photothermal/photodynamic agents, but also to offer two independent fluorescence channels to cross validate the authenticity of pharmacokinetic events and to quantitatively reveal cumulative drug release in tumor tissues in a "turn on" manner. Employing the Ca2+ of amorphous calcium carbonate as a reversible linker, the photosensitivity and fluorescence of Ce6 are physically quenched by ICG during circulation to reduce the side effect of photodynamic therapy (PDT) while being readily restored in tumor tissue to reveal the quantitative drug release. Most importantly, the combination of photothermal therapy (PTT) and PDT allows low-temperature synergistic therapy of cancer through the controlled expression of heat shock protein in cells and mild hyperthermia enhanced reactive oxygen species diffusion/penetration among cells. This work not only develops a facile approach to fabricate a dual-channel theranostic system to precisely indicate the accumulation and quantitative drug release in tumor tissue, but also presents a unique low-temperature synergistic strategy to destroy tumor in an effective and minimally invasive manner.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Shaoqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fangying Yu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianghong Lv
- Sir Run Run Shaw Hospital School of Medicine Zhejiang University, No. 3 Qingchun East Road, Hangzhou, 310016, China
| | - Rui Zhao
- Sir Run Run Shaw Hospital School of Medicine Zhejiang University, No. 3 Qingchun East Road, Hangzhou, 310016, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
17
|
Xiao J, Cong H, Wang S, Yu B, Shen Y. Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. Biomater Sci 2021; 9:2384-2412. [PMID: 33576752 DOI: 10.1039/d0bm02013c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy is the most important treatment strategy in free radical therapy. However, tumor microenvironment hypoxia is a key obstacle in PDT. In order to overcome this obstacle, the strategy of in situ production of O2/radicals by catalytic reaction in solid tumors was proposed. In recent years, it has been found that there are many oxygen-independent carbon-based free radicals that can generate toxic active free radicals under laser irradiation and lead to tumor cell death. Based on the rational design of multifunctional nano-medicine, the active free radical nano-generator has opened up a new way for the highly developed nanotechnology and tumor cooperative therapy to improve the therapeutic effect. In this paper, the research status of active free radical nano-generators, especially reactive oxygen species, including the construction mechanism of active free radical nanomaterials, is reviewed and the application of free radical nano-generators in tumor therapy is emphasized.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | | | | | | | | |
Collapse
|
18
|
Ma T, Xia T. Nanoparticle-Based Activatable Probes for Bioimaging. Adv Biol (Weinh) 2021; 5:e2000193. [PMID: 33724732 PMCID: PMC7966733 DOI: 10.1002/adbi.202000193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
Molecular imaging can provide functional and molecular information at the cellular or subcellular level in vivo in a noninvasive manner. Activatable nanoprobes that can react to the surrounding physiological environment or biomarkers are appealing agents to improve the efficacy, specificity, and sensitivity of molecular imaging. The physiological parameters, including redox status, pH, presence of enzymes, and hypoxia, can be designed as the stimuli of the activatable probes. However, the success rate of imaging nanoprobes for clinical translation is low. Herein, the recent advances in nanoparticle-based activatable imaging probes are critically reviewed. In addition, the challenges for clinical translation of these nanoprobes are also discussed in this review.
Collapse
Affiliation(s)
- Tiancong Ma
- Division of Nanomedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1772, USA
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, California 90095-1772, USA
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1772, USA
| |
Collapse
|
19
|
Xu H, Zhang X, Li X, Zhang X, Deng J, Zou D, Yang J. Two Ru(II) compounds with aggregation induced emission as promising photosensitizers for photodynamic therapy. J Inorg Biochem 2020; 212:111233. [PMID: 33010531 DOI: 10.1016/j.jinorgbio.2020.111233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 12/29/2022]
Abstract
Design and preparation of photosensitizers (PSs) play an important role in photodynamic therapy (PDT). PDT mainly relies on the production of toxic reactive oxygen species (ROS) of the PSs. Conventional fluorophores, however, often suffer from aggregation caused quenching (ACQ), which limits the potential of PSs as fluorescent imaging agents. Molecules with aggregation-induced emission (AIE) properties maintain high fluorescence and dispersity in aqueous solutions, overcoming the ACQ effect. Ruthenium (II)-based AIE compounds are highly biocompatible molecules and can be used for response cell imaging. In the current study, two novel Ru(II)-based AIE compounds with main ligands 1,3-di(2H-tetrazol-5-yl)benzene (Hphbtz) by changing auxiliary ligand 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) have been successfully synthesized and characterized, [Ru(Hphbtz)(bipy)2][PF6] (1) and [Ru(Hphbtz)(phen)2][PF6] (2). The NPs show strong intra-cellular fluorescence and also simultaneously exhibited potent cytotoxic activity. These compounds can self-assemble to form nanoparticles (NPs) by nanoprecipitation. The compounds are found to exhibit a high AIE property with emission maxima at 353 nm and 380 nm, respectively. And the compounds have the low IC50 (half maximal inhibitory concentration) of only 15 μg/mL (1.94 μM) and 13 μg/mL (1.58 μM) on HeLa cells, respectively. Meanwhile, negligible dark toxicity has been also observed for these NPs. The results show that [Ru(Hphbtz)(bipy)2][PF6] (1) and [Ru(Hphbtz)(phen)2][PF6] (2) NPs can inhibit cell proliferation in vitro, and may be potential candidates for photodynamic therapy.
Collapse
Affiliation(s)
- Hongliang Xu
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China; Department of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xujing Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China
| | - Xinchen Li
- Department of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xiaochuan Zhang
- Department of Thoracic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, PR China
| | - Jun Deng
- Department of Thoracic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, PR China.
| | - Dengfeng Zou
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China.
| | - Jie Yang
- Department of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, PR China; College of Chemical Engineering, State Key Laboratory of Material-Oriented, Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
20
|
Cheng W, Chen H, Liu C, Ji C, Ma G, Yin M. Functional organic dyes for health‐related applications. VIEW 2020. [DOI: 10.1002/viw.20200055] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Wenyu Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Hongtao Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Chang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Chendong Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Guiping Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| |
Collapse
|
21
|
Hu Q, Huang Z, Duan Y, Fu Z, Bin Liu. Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjug Chem 2020; 31:1268-1278. [PMID: 32271563 DOI: 10.1021/acs.bioconjchem.0c00135] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment significantly influences cancer progression and therapeutic response. Reprogramming of tumor microenvironment has emerged as a strategy to assist conventional cancer treatment. In recent years, photothermal therapy has received considerable attention owing to its noninvasiveness, high temporal-spatial resolution, and minimal drug resistance. Apart from ablating cancer cells by generating heat upon light irradiation, photothermal therapy can also affect the tumor microenvironment, such as disrupting the tumor extracellular matrix and tumor vasculature. Moreover, cancer cell death by hyperthermia could potentially activate the immune system to fight against tumor. In this topical review, we focus on the recent progress of photothermal therapy based on tumor microenvironment remodeling, aiming to better guide the design of nanoparticles for cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zemin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
22
|
Liang Y, Zhang J, Tian B, Wu Z, Svirskis D, Han J. A NAG-Guided Nano-Delivery System for Redox- and pH-Triggered Intracellularly Sequential Drug Release in Cancer Cells. Int J Nanomedicine 2020; 15:841-855. [PMID: 32103941 PMCID: PMC7008180 DOI: 10.2147/ijn.s226249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Aim Sequential treatment with paclitaxel (PTXL) and gemcitabine (GEM) is considered clinically beneficial for non-small-cell lung cancer. This study aimed to investigate the effectiveness of a nano-system capable of sequential release of PTXL and GEM within cancer cells. Methods PTXL-ss-poly(6-O-methacryloyl-d-galactopyranose)-GEM (PTXL-ss-PMAGP-GEM) was designed by conjugating PMAGP with PTXL via disulfide bonds (-ss-), while GEM via succinic anhydride (PTXL:GEM=1:3). An amphiphilic block copolymer N-acetyl-d-glucosamine(NAG)-poly(styrene-alt-maleic anhydride)58-b-polystyrene130 acted as a targeting moiety and emulsifier in formation of nanostructures (NLCs). Results The PTXL-ss-PMAGP-GEM/NAG NLCs (119.6 nm) provided a sequential in vitro release of, first PTXL (redox-triggered), then GEM (pH-triggered). The redox- and pH-sensitive NLCs readily distributed homogenously in the cytoplasm. NAG augmented the uptake of NLCs by the cancer cells and tumor accumulation. PTXL-ss-PMAGP-GEM/NAG NLCs exhibited synergistic cytotoxicity in vitro and strongest antitumor effects in tumor-bearing mice compared to NLCs lacking pH/redox sensitivities or free drug combination. Conclusion This study demonstrated the abilities of PTXL-ss-PMAGP-GEM/NAG NLCs to achieve synergistic antitumor effect by targeted intracellularly sequential drug release.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Jing Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Jingtian Han
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| |
Collapse
|
23
|
Liang H, Chen X, Jin R, Ke B, Barz M, Ai H, Nie Y. Integration of Indocyanine Green Analogs as Near-Infrared Fluorescent Carrier for Precise Imaging-Guided Gene Delivery. SMALL 2020; 16:e1906538. [PMID: 32022444 DOI: 10.1002/smll.201906538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Indexed: 02/05/2023]
Abstract
Codelivery of diagnostic probes and therapeutic molecules often suffers from intrinsic complexity and premature leakage from or degradation of the nanocarrier. Inspired by the "Y" shape of indocyanine green (ICG), the dye is integrated in an amphiphilic lipopeptide (RNF). The hydrophilic segment is composed of arginine-rich dendritic peptides, while cyanine dyes are modified with two long carbon chains and employed as the hydrophobic moiety. They are linked through a disulfide linkage to improve the responsivity in the tumor microenvironment. After formulation with other lipopeptides at an optimized ratio, the theranostic system (RNS-2) forms lipid-based nanoparticles with slight positive zeta potential enabling efficient condensation of DNA. The RNS-2 displays glutathione responded gene release, activatable fluorescence recovery, and up to sevenfold higher in vitro transfection than Lipofectamine 2000. Compared with a Cy3 and Cy5 labeled fluorescence resonance energy transfer indicator for gene release, the "turn-on" indocyanine green analogs exhibit longer emission wavelength and better positive correlation with the dynamic processes of gene delivery. More importantly, the RNS-2 system enables efficient near infrared imaging guided gene transfer in tumor-bearing mice and thus provides more precise and accurate information on location of the cargo gene and synthesized carriers.
Collapse
Affiliation(s)
- Hong Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaobing Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Bowen Ke
- Laboratory of Anesthesiology and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University Chengdu, Sichuan, Chengdu, 610041, P. R. China
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099, Mainz, Germany
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
24
|
Zhang X, Yue Z, Zhang H, Liu L, Zhou X. Repeated administrations of Mn 3O 4 nanoparticles cause testis damage and fertility decrease through PPAR-signaling pathway. Nanotoxicology 2020; 14:326-340. [PMID: 31909642 DOI: 10.1080/17435390.2019.1695976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Potential health hazards of nanomaterials on male reproductive system have received raising concerns. Even though Mn3O4 nanoparticles (Mn3O4-NPs) is highly effective in clinical diagnostic and therapeutic applications of human disease, its potential toxic effect on the male reproductive system has not been reported. In this study, the testis damage and fertility decrease of male rats were conducted to testify the experimental reproductive injury induced by Mn3O4-NPs. After repeated tail vein injection with 10 mg/kg/week Mn3O4-NPs for 0, 60 and 120 days, Mn3O4-NPs accumulated in the testes resulted in oxidative stress and disorder of normal serum sex hormones. Experiments in vivo and in vitro indicated that mitochondria-mediated cell apoptosis were triggered via oxidative stress, demonstrated by the upregulation of malondialdehyde (MDA) and the depolarization of mitochondrial membrane potential. Notably, Mn3O4-NPs significantly resulted in a reduction of the quantity/quality of sperm and finally caused astonishing fertility decrease. Our preliminary result implied that the application of Mn3O4-NPs could be a double-edged sword and careful consideration should be given to the clinical uses.
Collapse
Affiliation(s)
- Xiao Zhang
- Center for Aircraft Fire and Emergency, Civil Aviation University of China, China
| | - Zongkai Yue
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| | - Haijun Zhang
- Center for Aircraft Fire and Emergency, Civil Aviation University of China, China
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| | - Xiaomeng Zhou
- Center for Aircraft Fire and Emergency, Civil Aviation University of China, China.,Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| |
Collapse
|
25
|
Liang H, Bi Q, Hu A, Chen X, Jin R, Song X, Ke B, Barz M, Nie Y. A nitroreductase and glutathione responsive nanoplatform for integration of gene delivery and near-infrared fluorescence imaging. Chem Commun (Camb) 2020; 56:6949-6952. [DOI: 10.1039/c9cc10071g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel platform rationally integrating indocyanine green analogues and an arginine-rich dendritic peptide with both nitroreductase (NTR) and glutathione (GSH) reduction responsive linkers was developed.
Collapse
Affiliation(s)
- Hong Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qunjie Bi
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ao Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaobing Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xu Song
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- Institute of Regulatory Science for Medical Devices
| | - Bowen Ke
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Matthias Barz
- Johannes Gutenberg-University Mainz
- Organic Chemistry
- MainZ
- Germany
| | - Yu Nie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
26
|
Liang R, Li Y, Huo M, Lin H, Chen Y. Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42917-42931. [PMID: 31635454 DOI: 10.1021/acsami.9b13598] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The unique characteristics of a tumor microenvironment (TME) enable the development of new tumor-therapeutic modalities with high efficiency, biosafety, and tumor specificity. In this work, we report on the construction of photothermal-enhanced and nanocatalyst-enabled sequential catalytic reaction for TME-specific cancer therapy. This conceptual advance is achieved by engineering the surface of two-dimensional Ti3C2 MXene with two separate catalysts, including natural glucose oxidase (GOD) as glucose catalysts and superparamagnetic iron oxide nanoparticles (IONPs) as Fenton-reaction nanocatalysts. A sequential catalytic reaction is triggered by using GOD for catalyzing the tumor-overtaken glucose to generate large amounts of hydrogen peroxide molecules. Subsequently IONPs can catalyze the transformation of pregenerated hydrogen peroxide into large amounts of highly toxic hydroxyl radicals to kill the cancer cells subsequently in TME-enabled acidity condition. The two-dimensional (2D) Ti3C2 MXene matrix efficiently converts the near-infrared light into thermal energy to synergistically enhance the catalytic efficiency of this sequential catalytic reaction and therefore achieve the high synergistic cancer-therapeutic outcome, accompanied with the high biocompatibility of the constructed composite nanocatalysts. Both in vitro cancer-cell evaluation and in vivo tumor xenograft on nude mice with complete tumor eradication demonstrate the high synergistic efficiency of photothermal-enhanced sequential nanocatalytic cancer therapy. Therefore, this work substantially broadens the biomedical applications of 2D MXenes to nanocatalytic cancer therapy by enhancing the Fenton reaction-based nanocatalytic therapy via converting the near-infrared light into thermal energy and subsequently elevating the local Fenton-reaction temperature.
Collapse
Affiliation(s)
- Ruijie Liang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| |
Collapse
|
27
|
Huang G, Chen Q, Wu W, Wang J, Chu PK, Bai H, Tang G. Reconstructed chitosan with alkylamine for enhanced gene delivery by promoting endosomal escape. Carbohydr Polym 2019; 227:115339. [PMID: 31590870 DOI: 10.1016/j.carbpol.2019.115339] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 11/25/2022]
Abstract
Poor buffering capacity of chitosan (CS) results in insufficient intracellular gene release which poses the major barrier in gene delivery. Herein, we reconstructed pristine CS with propylamine (PA), (diethylamino) propylamine (DEAPA), and N, N-dimethyl- dipropylenetriamine (DMAMAPA) to obtain a series of alkylamine-chitosan (AA-CS). The introduction of multiple amino groups with rational ratios functionally enhance the buffering capacity of AA-CS, among which DMAPAPA-CS showed buffering capacity of 1.58 times that of chitosan. The reconstructed AA-CS functionally enhance the ability of gene binding and endosomal escape. It was observed that the DMAPAPA-CS/pDNA complexes exhibit a notable gene delivery efficiency, which promotes the functionalization of loaded pDNA. Importantly, the in vivo delivery assay reveals that the deep penetration issue can be resolved using DMAPAPA-CS gene delivery vector. Finally, the DMAPAPA-CS is applied to deliver the therapeutic p53 gene in A549 bearing mice, showing efficient therapeutic potential for cancer.
Collapse
Affiliation(s)
- Guojun Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qi Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wangteng Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; School of Medicine, Zhejiang University, Hangzhou 310019, China
| | - Jianwei Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
28
|
Bai T, Shao D, Chen J, Li Y, Xu BB, Kong J. pH-responsive dithiomaleimide-amphiphilic block copolymer for drug delivery and cellular imaging. J Colloid Interface Sci 2019; 552:439-447. [DOI: 10.1016/j.jcis.2019.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
|
29
|
Shen J, Wang Q, Lv Y, Dong J, Xuan G, Yang J, Wu D, Zhou J, Yu G, Tang G, Li X, Huang F, Chen X. Nanomedicine Fabricated from A Boron-dipyrromethene (BODIPY)-Embedded Amphiphilic Copolymer for Photothermal-Enhanced Chemotherapy. ACS Biomater Sci Eng 2019; 5:4463-4473. [DOI: 10.1021/acsbiomaterials.9b01145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Shen
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Qiwen Wang
- Heart and Vascular Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, P. R. China
| | - Yuanyuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Jingyin Dong
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Guida Xuan
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Jie Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dan Wu
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guping Tang
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiao Li
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
- The Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
30
|
Sirbu D, Luli S, Leslie J, Oakley F, Benniston AC. Enhanced in vivo Optical Imaging of the Inflammatory Response to Acute Liver Injury in C57BL/6 Mice Using a Highly Bright Near-Infrared BODIPY Dye. ChemMedChem 2019; 14:995-999. [PMID: 30920173 DOI: 10.1002/cmdc.201900181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 03/07/2024]
Abstract
Delving deeper is possible in whole-body in vivo imaging using a super-bright membrane-targeting BODIPY dye (BD). The dye was used to monitor homing of ex vivo fluorescently labelled neutrophils to an injured liver of dark-pigmented C57BL/6 mice. In vivo imaging system (IVIS) data conclusively showed an enhanced signal intensity and a higher signal-to-noise ratio in mice receiving neutrophils labelled with the BD dye relative to those labelled with a gold standard dye at 2 h post in vivo administration of fluorescently labelled cells. Fluorescence-activated cell sorting (FACS) confirmed that BD is nontoxic, and an exceptional cell labelling dye that opens up precision deep-organ in vivo imaging of inflammation in mice routinely used for biomedical research. The origin of enhanced performance is identified with the molecular structure and the distinct localisation of the dye within cells that enable remarkable changes in its optical parameters.
Collapse
Affiliation(s)
- Dumitru Sirbu
- Molecular Photonics Laboratory, Chemistry-School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Institution of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Institution of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institution of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew C Benniston
- Molecular Photonics Laboratory, Chemistry-School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
31
|
Yang J, Xu Y, Jiang M, Zou D, Yang G, Shen L, Zou J. Photochemical property of two Ru(II) compounds based on 5-(2-pyrazinyl)tetrazole for cancer phototherapy by changing auxiliary ligand. J Inorg Biochem 2019; 193:124-129. [DOI: 10.1016/j.jinorgbio.2019.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 01/10/2023]
|
32
|
Wang Z, Guo B, Middha E, Huang Z, Hu Q, Fu Z, Liu B. Microfluidics-Prepared Uniform Conjugated Polymer Nanoparticles for Photo-Triggered Immune Microenvironment Modulation and Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11167-11176. [PMID: 30810026 DOI: 10.1021/acsami.8b22579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photothermal therapy (PTT) has shown great promise to spatiotemporally ablate cancer cells, and further understanding of the immune system response to PTT treatment would contribute to improvement in therapeutic outcomes. Herein, we utilize microfluidic technology to prepare biocompatible conjugated polymer nanoparticles (CP NPs) as PTT agents and assess the immune response triggered by CP-based PTT treatment in vitro and in vivo. Through careful control of the antisolvent, CP NPs with a uniform diameter of 52 nm were obtained. The c-RGD-functionalized CP NPs exhibit high photothermal conversion efficiency, inducing effective cancer cell death under an 808 nm laser illumination. Using macrophage cells as the model, CP NPs demonstrate effective activation of proinflammatory immune response. Furthermore, in tumor-bearing mice model, a single round of CP NP-assisted PTT could efficiently induce antitumor immunity activation and ultimately inhibit tumor growth. The study provides detailed understanding of both microfluidic technology for CP NP fabrication and photothermal-triggered antitumor immune responses.
Collapse
Affiliation(s)
- Zhe Wang
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Bing Guo
- Department of Chemical and Bio-Molecular Engineering , National University of Singapore , 117585 , Singapore
| | - Eshu Middha
- Department of Chemical and Bio-Molecular Engineering , National University of Singapore , 117585 , Singapore
| | - Zemin Huang
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Bin Liu
- Department of Chemical and Bio-Molecular Engineering , National University of Singapore , 117585 , Singapore
| |
Collapse
|
33
|
Qi J, Hu X, Dong X, Lu Y, Lu H, Zhao W, Wu W. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev 2019; 143:206-225. [PMID: 31158405 DOI: 10.1016/j.addr.2019.05.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 01/12/2023]
Abstract
One of the current challenges in the monitoring of drug nanocarriers lies in the difficulties in discriminating the carrier-bound signals from the bulk signals of probes. Environment-responsive probes that enable signal switching are making steps towards a solution to this problem. Aggregation-caused quenching (ACQ), a phenomenon generally regarded as unfavorable in bioimaging, has turned out to be a promising characteristic for achieving environment-responsiveness and eliminating free-probe interference. So-called ACQ probes emit fluorescence when dispersed molecularly within the carrier matrix but quench immediately and absolutely once they are released into the ambient aqueous environment upon the degradation of the nanocarriers. Therefore, the fluorescence observed represents integral nanocarriers. Based on this rationale, the in vivo fates of various nanocarriers have been explored using live imaging equipment, with very interesting findings revealing the role of the particles. The current applications are however restricted to nanocarriers with highly hydrophobic matrices (lipid or polyester nanoparticles) or with a hydrophobic core-hydrophilic shell structure (micelles). The ACQ-based bioimaging strategy is emerging as a promising tool to achieve more accurate bioimaging of drug nanocarriers. This review article provides an overview of the ACQ phenomenon and the rationale for and examples of applications, as well as the limitations of the ACQ-based strategy, with a focus on improving the accuracy of bioimaging of nanoparticles.
Collapse
|
34
|
Zhang E, Xing R, Liu S, Li P. Current advances in development of new docetaxel formulations. Expert Opin Drug Deliv 2019; 16:301-312. [PMID: 30773947 DOI: 10.1080/17425247.2019.1583644] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Docetaxel (DTX) is one of the most important chemotherapeutic agents and has been widely used for treatment of various types of cancers. However, the clinical chemotherapy of DTX gives many undesirable side effects due to the usage of organic solvent in the injection and its low selectivity for tumor cells. With the evolution of pharmaceutical technologies, great efforts have been paid to develop new DTX formulations to overcome these problems. AREAS COVERED This review provided an overview of the preparation and activities of new DTX formulations, which were classified by administration methods, including injection, oral, transdermal and rectal administration. Besides, up to date information of the clinical status of new DTX formulations was summarized. We also discussed the challenges and perspectives of the future development of DTX formulations. EXPERT OPINION There have been numerous studies on new DTX-based formulations in recent years, and many of them exhibited significantly enhanced anti-tumor and targeting activity compared with DTX in preclinical studies. However, only a few entered clinical trials, and none has been approved into market. The clinical translation of experimental drug faces many hurdles, including the limited knowledge of nanomedicine and oncology, safety issues, controllable and reproducible production.
Collapse
Affiliation(s)
- Enhui Zhang
- a CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences , Qingdao , PR China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory of Marine Science and Technology , Qingdao , PR China.,c Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , PR China
| | - Ronge Xing
- a CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences , Qingdao , PR China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory of Marine Science and Technology , Qingdao , PR China.,c Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , PR China
| | - Song Liu
- a CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences , Qingdao , PR China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory of Marine Science and Technology , Qingdao , PR China.,c Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , PR China
| | - Pengcheng Li
- a CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences , Qingdao , PR China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory of Marine Science and Technology , Qingdao , PR China.,c Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao , PR China
| |
Collapse
|
35
|
Momekova D, Ugrinova I, Slavkova M, Momekov G, Grancharov G, Gancheva V, Petrov PD. Superior proapoptotic activity of curcumin-loaded mixed block copolymer micelles with mitochondrial targeting properties. Biomater Sci 2019; 6:3309-3317. [PMID: 30357130 DOI: 10.1039/c8bm00644j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeting tumor cell mitochondria is a prospective strategy for highly effective anticancer therapy. Consequently, the development of potent systems for the targeted delivery of mitochondria-acting therapeutics to mitochondria has the potential to boost this sector of nanomedicine. In this study, a functional mixed micellar system based on two co-assembled triblock copolymers, poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) bearing triphenylphosphonium ligands (PDMAEMA(TPP+)20-b-PCL70-b-PDMAEMA(TPP+)20) and poly(ethylene oxide)-b-poly(ε-caprolactone)-b-poly(ethylene oxide) (PEO113-b-PCL70-b-PEO113), was assessed for the mitochondria targeted delivery of curcumin. The high proapoptotic activity of the system and the sub-cellular mechanisms of cytotoxicity were demonstrated using a chemosensitive HL-60 cell line and its resistant alternative HL-60/DOX. Next, the successful localization of nanocarriers in mitochondria was proved by fluorescence microscopy with the aid of DAPI (4',6-diamidino-2-phenylindole) as a cellular localization tracker. The in vitro experiments revealed the great potential of the functional system developed for the targeted delivery of curcumin to mitochondria, causing programmed tumor cell death.
Collapse
Affiliation(s)
- Denitsa Momekova
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
36
|
Sufi SA, Pajaniradje S, Mukherjee V, Rajagopalan R. Redox Nano-Architectures: Perspectives and Implications in Diagnosis and Treatment of Human Diseases. Antioxid Redox Signal 2019; 30:762-785. [PMID: 29334759 DOI: 10.1089/ars.2017.7412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Efficient targeted therapy with minimal side-effects is the need of the hour. Locally altered redox state is observed in several human ailments, such as inflammation, sepsis, and cancer. This has been taken advantage of in designing redox-responsive nanodrug carriers. Redox-responsive nanosystems open a door to a multitude of possibilities for the control of diseases over other drug delivery systems. Recent Advances: The first-generation nanotherapy relies on novel properties of nanomaterials to shield the drug and deliver it to the diseased tissue or organ. The second generation is based on targeting the drug or diagnostic material to the diseased cell-specific receptors, or to a particular organ to improve the efficacy of the drug. The third and the latest generation of nanocarriers, the stimuli-responsive nanocarriers exploit the disease condition or environment to specifically deliver the drug or diagnostic probe for the best diagnosis and treatment. Several different kinds of stimuli such as temperature, magnetic field, pH, and altered redox state-responsive nanosystems have educed immense promise in the field of nanomedicine and therapy. CRITICAL ISSUES We describe the evolution of nanomaterial since its inception with an emphasis on stimuli-responsive nanocarriers, especially redox-sensitive nanocarriers. Importantly, we discuss the future perspectives of redox-responsive nanocarriers and their implications. FUTURE DIRECTIONS Redox-responsive nanocarriers achieve a near-to-zero premature release of the drug, thus avoiding off-site toxicity associated with the free drug. This bears great potential for the development of more effective drug delivery with better pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Shamim Akhtar Sufi
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Victor Mukherjee
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
37
|
Yang B, Wang K, Zhang D, Ji B, Zhao D, Wang X, Zhang H, Kan Q, He Z, Sun J. Polydopamine-modified ROS-responsive prodrug nanoplatform with enhanced stability for precise treatment of breast cancer. RSC Adv 2019; 9:9260-9269. [PMID: 35517686 PMCID: PMC9062053 DOI: 10.1039/c9ra01230c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
Development of smart stimuli-responsive prodrug nanomaterials for fast drug release and efficient antitumor therapy has attracted great attention in recent years. However, the inherent instability of naked prodrugs in the blood is an important challenge limiting their biomedical applications. Although a number of strategies have been taken to prevent prodrugs from hydrolyzing due to blood composition, most of these strategies are unsatisfactory. Here, we designed an extraordinary ROS-triggered prodrug nanoplatform fabricated by using a single thioether linker to conjugate PTX with 6-maleimidocaproic acid (MAL), resulting in the PTX-S-MAL prodrug self-assembling into uniform size nanoparticles; then the prodrug nanoplatform was modified with a polydopamine coating and PEGylation to confer high solubility and stability. In in vitro experiments, the polydopamine-modified ROS-responsive prodrug nanosystem showed a high sensitivity in term of various H2O2 concentrations, and the PDA coating on the surface of the prodrug nanosystem didn't affect the drug release properties. Moreover, the excellent polydopamine-modified ROS-triggered prodrug nanoplatform selectively and rapidly releases PTX in response to the ROS overproduced in tumor cells, but showed less cytotoxicity against normal cells. In in vivo experiments, the prepared polydopamine-modified prodrug-nanosystem obviously enhances the stability and tumor accumulation of prodrug, producing a remarkably improved breast cancer treatment with minimal side effects. Our studies demonstrated that this modified nanoplatform could significantly improve chemotherapy efficiency, which will find great potential in cancer treatment. Development of smart stimuli-responsive prodrug nanomaterials for fast drug release and efficient antitumor therapy has attracted great attention in recent years.![]()
Collapse
|
38
|
Hu XY, Gao L, Mosel S, Ehlers M, Zellermann E, Jiang H, Knauer SK, Wang L, Schmuck C. From Supramolecular Vesicles to Micelles: Controllable Construction of Tumor-Targeting Nanocarriers Based on Host-Guest Interaction between a Pillar[5]arene-Based Prodrug and a RGD-Sulfonate Guest. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803952. [PMID: 30456872 DOI: 10.1002/smll.201803952] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/30/2018] [Indexed: 06/09/2023]
Abstract
The targeting ability, drug-loading capacity, and size of the drug nanocarriers are crucial for enhancing the therapeutic index for cancer therapy. Herein, the morphology and size-controllable fabrication of supramolecular tumor-targeting nanocarriers based on host-guest recognition between a novel pillar[5]arene-based prodrug WP5-DOX and a Arg-Gly-Asp (RGD)-modified sulfonate guest RGD-SG is reported. The amphiphilic WP5-DOX⊃RGD-SG complex with a molar ratio of 5:1 self-assembles into vesicles, whereas smaller-sized micelles can be obtained by changing the molar ratio to 1:3. This represents a novel strategy of controllable construction of supramolecular nanovehicles with different sizes and morphologies based on the same host-guest interactions by using different host-guest ratios. Furthermore, in vitro and in vivo studies reveal that both these prodrug nanocarriers could selectively deliver doxorubicin to RGD receptor-overexpressing cancer cells, leading to longer blood retention time, enhanced antitumor efficacy, and reduced systematic toxicity in murine tumor model, suggesting their potential application for targeted drug delivery.
Collapse
Affiliation(s)
- Xiao-Yu Hu
- Applied Chemistry Department, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Lei Gao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Stefanie Mosel
- Institute for Biology, University of Duisburg-Essen, Essen, 45117, Germany
| | - Martin Ehlers
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Elio Zellermann
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Hao Jiang
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Shirley K Knauer
- Institute for Biology, University of Duisburg-Essen, Essen, 45117, Germany
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| |
Collapse
|
39
|
Li N, Xiang MH, Liu JW, Tang H, Jiang JH. DNA Polymer Nanoparticles Programmed via Supersandwich Hybridization for Imaging and Therapy of Cancer Cells. Anal Chem 2018; 90:12951-12958. [PMID: 30303006 DOI: 10.1021/acs.analchem.8b03253] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spherical nucleic acid (SNA) constructs are promising new single entity materials, which possess significant advantages in biological applications. Current SNA-based drug delivery system typically employed single-layered ss- or ds-DNA as the drug carriers, resulting in limited drug payload capacity and disease treatment. To advance corresponding applications, we developed a novel DNA-programmed polymeric SNA, a long concatamer DNA polymer that is uniformly distributed on gold nanoparticles (AuNPs), by self-assembling from two short alternating DNA building blocks upon initiation of immobilized capture probes on AuNPs, through a supersandwich hybridization reaction. The long DNA concatamer of polymeric SNA enables to allow high-capacity loading of bioimaging and therapeutics agents. We demonstrated that both of the fluorescence signals and therapeutic efficacy were effectively inhibited in resultant polymeric SNA. By further modifying with the nucleolin-targeting aptamer AS1411, this polymeric SNA could be specifically internalized into the tumor cells through nucleolin-mediated endocytosis and then interact with endogenous ATP to cause the release of therapeutics agents from long DNA concatamer via a structure switching, leading to the activation of the fluorescence and selective synergistic chemotherapy and photodynamic therapy. This nanostructure can afford a promising targeted drug transport platform for activatable cancer theranostics.
Collapse
Affiliation(s)
- Na Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| | - Mei-Hao Xiang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| | - Jin-Wen Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| | - Hao Tang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| |
Collapse
|
40
|
Jiang Y, Pang X, Liu R, Xiao Q, Wang P, Leung AW, Luan Y, Xu C. Design of an Amphiphilic iRGD Peptide and Self-Assembling Nanovesicles for Improving Tumor Accumulation and Penetration and the Photodynamic Efficacy of the Photosensitizer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31674-31685. [PMID: 30133254 DOI: 10.1021/acsami.8b11699] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment for many diseases, including infections and tumors. Nevertheless, clinical utilization of PDT is severely restricted due to the shortcomings of the photosensitizers, especially their low water solubility and poor tumor selectivity. iRGD (internalizing RGD, CRGDKGPDC), a nine-unit cyclic peptide, was applied as an active ligand to realize tumor homing and tissue penetration. Herein, we innovatively fabricated a novel OFF-ON mode iRGD-based peptide amphiphile (PA) to self-assemble into spherical nanovesicles to enhance the tumor-targeting and tumor-penetrating efficacy of PDT. To introduce the self-assembling feature into iRGD, a hydrophilic arginine-rich sequence and hydrophobic alkyl chains were sequentially linked to the iRGD motif. A short proline sequence was selected to control the morphology of the self-assembled aggregates. Next, the photosensitizer hypocrellin B (HB) was encapsulated into PA vesicles with a high loading efficiency. The aggregation-caused quenching effect inactivated HB in the PA vesicles; however, the iRGD-peptide-based material was able to be selectively degraded in tumor cells. Thus, the HB fluorescence was recovered to achieve tumor-targeted imaging. This approach endows HB-loaded PA vesicles (HB-PA) with tumor-targeted activation, preferable tumor accumulation, and deep tumor penetration, thus leading to an excellent fluorescence-imaging-guided photodynamic efficacy both in vitro and in vivo. These amphiphilic iRGD aggregates provide a novel strategy for improving the accumulation, penetration, and imaging-guided photodynamic efficacy of photosensitizers.
Collapse
Affiliation(s)
- Yue Jiang
- School of Pharmaceutical Science , Shandong University , 44 West Wenhua Road , Jinan 250012 , Shandong , P. R. China
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Xin Pang
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Ruiling Liu
- School of Pharmaceutical Science , Shandong University , 44 West Wenhua Road , Jinan 250012 , Shandong , P. R. China
| | - Qicai Xiao
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Pan Wang
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Albert Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education , The University of Hong Kong , Hong Kong , P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science , Shandong University , 44 West Wenhua Road , Jinan 250012 , Shandong , P. R. China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| |
Collapse
|
41
|
Yuan Z, Gui L, Zheng J, Chen Y, Qu S, Shen Y, Wang F, Er M, Gu Y, Chen H. GSH-Activated Light-Up Near-Infrared Fluorescent Probe with High Affinity to α vβ 3 Integrin for Precise Early Tumor Identification. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30994-31007. [PMID: 30141897 DOI: 10.1021/acsami.8b09841] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of tumor-associated, stimuli-driven, turn-on near-infrared (NIR) fluorophores requires urgent attention because of their potential in selective and precise tumor diagnosis. Herein, we describe a NIR fluorescent probe (CyA-cRGD) comprised of a fluorescence reporting unit (a cyanine dye) linked with a GSH-responsive unit (nitroazo aryl ether group) and a tumor-targeting unit (cRGD). The NIR fluorescence of CyA-cRGD with sensitive and selective response to GSH can act as a direct off-on signal reporter for GSH monitoring. Notably, CyA-cRGD possesses improved biocompatibility compared with CyA, which is highly desirable for in vivo fluorescence tracking of cancer. Confocal fluorescence imaging confirmed the tumor-targeting capability and GSH detection ability of CyA-cRGD in tumor cells, normal cells, and coincubated tumor /normal cells and in the three-dimensional multicellular tumor spheroid. Furthermore, it was validated that CyA-cRGD could detect tumor precisely in GSH and integrin αvβ 3 high-expressed tumor-bearing mouse models. Importantly, it was confirmed that CyA-cRGD possessed high efficiency for early-stage tumor imaging in mouse models with tumor cells implanted within 72 h. This method provided significant advances toward more in-depth understanding and exploration of tumor imaging, which may potentially be applied for clinical early tumor diagnosis.
Collapse
Affiliation(s)
- Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Jinrong Zheng
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Yisha Chen
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Sisi Qu
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Yuanzhi Shen
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Fei Wang
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Murat Er
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| |
Collapse
|
42
|
Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018; 132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/21/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
The development of smart delivery systems that are robust in circulation and quickly release drugs following selective internalization into target cancer cells is a key to precision cancer therapy. Interestingly, reduction-sensitive polymeric nanomedicines showing high plasma stability and triggered cytoplasmic drug release behavior have recently emerged as one of the most exciting platforms for targeted delivery of various anticancer drugs including small chemical drugs, proteins, and nucleic acids. In vivo studies in varying tumor models reveal that these reduction-sensitive multifunctional nanomedicines outperform the currently used clinical formulations and reduction-insensitive counterparts, bringing about not only significantly enhanced tumor selectivity, accumulation and inhibition efficacy but also markedly reduced systemic toxicity and improved therapeutic index. In this review, we will highlight the cutting-edge advancement with a focus on in vivo performances as well as future perspectives on reduction-sensitive polymeric nanomedicines for targeted cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
43
|
Yun Li Q, Yong Yang Z, Ting Su W, Yu Chen D, Wen Yang G, Feng Zou D. pH-Triggered 4,4′,4′′,4′′′-(Ethene-1,1,2,2-tetrayl)tetrakis(N,N-diethylaniline) with Aggregation-Induced Emission (AIE) for Ablation of Cancer Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201702888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qiao Yun Li
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Zhan Yong Yang
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Wan Ting Su
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Dian Yu Chen
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Gao Wen Yang
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Deng Feng Zou
- School of Pharmacy; Guilin Medical University; Guilin 541004, Guangxi, P.R. China
| |
Collapse
|
44
|
Zou J, Yin Z, Wang P, Chen D, Shao J, Zhang Q, Sun L, Huang W, Dong X. Photosensitizer synergistic effects: D-A-D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy. Chem Sci 2018; 9:2188-2194. [PMID: 29719692 PMCID: PMC5903368 DOI: 10.1039/c7sc04694d] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Novel photosensitizers have been developed with high 1O2 quantum yields and strong fluorescence for cancer diagnosis and PDT.
The development of photosensitizers with high fluorescence intensity and singlet oxygen (1O2) quantum yields (QYs) is of great importance for cancer diagnosis and photodynamic therapy (PDT). Diketopyrrolopyrrole (DPP) and boron dipyrromethene (BODIPY) are two kinds of building block with great potential for PDT. Herein, a novel donor–acceptor–donor (D–A–D) structured organic photosensitizer DPPBDPI with a benzene ring as a π bridge linking DPP and BODIPY has been designed and synthesized. The results indicate that the combination of DPP with BODIPY can simultaneously increase the fluorescence QY (5.0%) and the 1O2 QY (up to 80%) significantly by the synergistic effect of the two photosensitizers. By nanoprecipitation, DPPBDPI can form uniform nanoparticles (NPs) with a diameter of less than 100 nm. The obtained NPs not only exhibit high photo-toxicity, but also present negligible dark toxicity towards HeLa cells, demonstrating their excellent photodynamic therapeutic efficacy. In vivo fluorescence imaging shows that DPPBDPI NPs can target the tumor site quickly with the enhanced permeability and retention (EPR) effect and can effectively inhibit tumor growth using photodynamic therapy even with low doses (0.5 mg kg–1). The enhanced imaging and photodynamic performance of DPPBDPI suggest that the synergistic effect of DPP and BODIPY provides a novel theranostic platform for cancer diagnosis and photodynamic therapy.
Collapse
Affiliation(s)
- Jianhua Zou
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| | - Zhihui Yin
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| | - Peng Wang
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| | - Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| | - Qi Zhang
- School of Pharmaceutical Sciences , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Liguo Sun
- Department of Radiology , Binzhou Medical University Hospital , Yantai , Shandong 264100 , China .
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China .
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| |
Collapse
|
45
|
Yang GW, Zhang X, Li GM, Yang J, Shen L, Chen DY, Li QY, Zou DF. Photochemical property of a Ru(ii) compound based on 3-(2-pyridyl)pyrazole and 2,2′-bipyridine for ablation of cancer cells. NEW J CHEM 2018. [DOI: 10.1039/c7nj05034h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ru(ii) compounds are potential candidates for photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Gao Wen Yang
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Xin Zhang
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Guang Ming Li
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Jie Yang
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Lei Shen
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Dian Yu Chen
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Qiao Yun Li
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Deng Feng Zou
- School of Pharmacy
- Guilin Medical University
- Guilin 541004
- P. R. China
| |
Collapse
|
46
|
Yang B, Wang K, Zhang D, Sun B, Ji B, Wei L, Li Z, Wang M, Zhang X, Zhang H, Kan Q, Luo C, Wang Y, He Z, Sun J. Light-activatable dual-source ROS-responsive prodrug nanoplatform for synergistic chemo-photodynamic therapy. Biomater Sci 2018; 6:2965-2975. [DOI: 10.1039/c8bm00899j] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the context of prodrug nanomedicines for cancer therapy, one of the great challenges is the slow and variable release of the parent drug in tumors.
Collapse
|
47
|
Meares A, Satraitis A, Ptaszek M. BODIPY-Bacteriochlorin Energy Transfer Arrays: Toward Near-IR Emitters with Broadly Tunable, Multiple Absorption Bands. J Org Chem 2017; 82:13068-13075. [PMID: 29119786 PMCID: PMC5873296 DOI: 10.1021/acs.joc.7b02031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of energy transfer arrays, comprising a near-IR absorbing and emitting bacteriochlorin, and BODIPY derivatives with different absorption bands in the visible region (503-668 nm) have been synthesized. Absorption band of BODIPY was tuned by installation of 0, 1, or 2 styryl substituents [2-(2,4,6-trimethoxyphenyl)ethenyl], which leads to derivatives with absorption maxima at 503, 587, and 668 nm, respectively. Efficient energy transfer (>0.90) is observed for each dyad, which is manifested by nearly exclusive emission from bacteriochlorin moiety upon BODIPY excitation. Fluorescence quantum yield of each dyad in nonpolar solvent (toluene) is comparable with that observed for corresponding bacteriochlorin monomer, and is significantly reduced in solvent of high dielectric constants (DMF), most likely by photoinduced electron transfer. Given the availability of diverse BODIPY derivatives, with absorption between 500-700 nm, BODIPY-bacteriochlorin arrays should allow for construction of near-IR emitting agents with multiple and broadly tunable absorption bands. Solvent-dielectric constant dependence of Φf in dyads gives an opportunity to construct environmentally sensitive fluorophores and probes.
Collapse
Affiliation(s)
- Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
48
|
Zou J, Yin Z, Ding K, Tang Q, Li J, Si W, Shao J, Zhang Q, Huang W, Dong X. BODIPY Derivatives for Photodynamic Therapy: Influence of Configuration versus Heavy Atom Effect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32475-32481. [PMID: 28875695 DOI: 10.1021/acsami.7b07569] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heavy atom effect and configuration are important for BODIPY derivatives to generate singlet oxygen (1O2) for photodynamic therapy. Herein, a series of BODIPY derivatives with different halogens were synthesized. 1O2 quantum yields (QYs) and MTT assay confirm that incorporation of more heavy atoms onto dimeric BODIPY cannot effectively enhance the 1O2 QYs. Rather, the dark toxicity increases. This phenomenon can be attributed to the competition of heavy atom effect and configuration of dimeric BODIPY. In addition the BODIPY derivative with two iodine atoms (BDPI) owns the highest 1O2 QYs (73%) and the lowest phototoxicity IC50 (1 μM). Furthermore, an in vivo study demonstrates that BDPI NPs can effectively inhibit tumor growth and can be used as a promising threanostic agent for photodynamic therapy in clinic.
Collapse
Affiliation(s)
- Jianhua Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Zhihui Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Kaikai Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Qianyun Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Jiewei Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
49
|
Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 2017. [DOI: 10.1039/c7py00559h] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Application of 3D multicellular tumor spheroids to the investigation of polymer nanomedicines.
Collapse
Affiliation(s)
- Gianpiero Lazzari
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| |
Collapse
|