1
|
Liu X, Tan S, Månsson LK, Gunnarsson L, Andersson JM, Wacklin-Knecht H, Crassous JJ, Sparr E. Encapsulation of single vesicles and single cells in a crosslinked microgel cage. J Colloid Interface Sci 2025; 690:137339. [PMID: 40112525 DOI: 10.1016/j.jcis.2025.137339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/05/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Cell encapsulation provides an efficient strategy to enhance cell durability against harsh external conditions, that offers new possibilities for single-cell applications, such as, tissue engineering and regenerative medicine. Cell encapsulations in hydrogels is developed through various approaches. Still, it remains challenging to achieve single-cell encapsulation where the individual cells are surrounded by a hydrogel layer of well-defined thickness. In this study, temperature-responsive poly(N-isopropylacrylamide)-co-allylamine microgel particles are first assembled into a monolayer at the surface of giant unilamellar lipid vesicles and then inter-microgel crosslinked leading to single-vesicle encapsulation with a pre-defined hydrogel thickness. The same strategy is then extended to yeast cells. The successful encapsulation process is evidenced by the response of the encapsulated lipid vesicles/cells to osmotic gradient, the addition of detergent or salt, as well as changes in temperature. Moreover, cell viability tests show that the hydrogel cage can efficiently protect the cell against external harsh conditions, including elevated temperature, ultraviolet irradiation and osmotic stress. Furthermore, it is demonstrated that the microgel adsorption and interfacial assembly are significantly affected by membrane charge and structural heterogeneity of cell membrane, providing insight into rational design of single-cell encapsulation approach by regulating microgel adsorption on cell membranes with complex composition.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062 Xi'an, China; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden.
| | - Shuwen Tan
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062 Xi'an, China
| | - Linda K Månsson
- Division of Computational Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Linnéa Gunnarsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Jenny Marie Andersson
- Division of Computational Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden; European Spallation Source ERIC, 22100 Lund, Sweden
| | - Hanna Wacklin-Knecht
- Division of Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden; European Spallation Source ERIC, 22100 Lund, Sweden
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Emma Sparr
- Division of Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| |
Collapse
|
2
|
Sahu AK, Malik R, Midya J. Wrapping nonspherical vesicles at bio-membranes. SOFT MATTER 2025; 21:4275-4287. [PMID: 40341340 DOI: 10.1039/d5sm00150a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The wrapping of particles and vesicles by lipid bilayer membranes is a fundamental process in cellular transport and targeted drug delivery. Here, we investigate the wrapping behavior of nonspherical vesicles, such as ellipsoidal, prolate, oblate, and stomatocytes, by systematically varying the bending rigidity of the vesicle membrane and the tension of the initially planar membrane. Using the Helfrich Hamiltonian, triangulated membrane models, and energy minimization techniques, we predict multiple stable-wrapped states and identify the conditions for their coexistence. Our results demonstrate that softer vesicles bind more easily to initially planar membranes; however, complete wrapping requires significantly higher adhesion strength than rigid vesicles. As membrane tension increases, deep-wrapped states disappear at a triple point where shallow-wrapped, deep-wrapped, and complete-wrapped states coexist. The coordinates of the triple point are highly sensitive to the vesicle shape and stiffness. For stomatocytes, increasing stiffness shifts the triple point to higher adhesion strengths and membrane tensions, while for oblates, it shifts to lower values, influenced by shape changes during wrapping. Oblate shapes are preferred in shallow-wrapped states and stomatocytes in deep-wrapped states. In contrast to hard particles, where optimal adhesion strength for complete wrapping occurs at tensionless membranes, complete wrapping of soft vesicles requires finite membrane tension for optimal adhesion strength. These findings provide insights into the interplay between vesicle deformability, shape, and membrane properties, advancing our understanding of endocytosis and the design of advanced biomimetic delivery systems.
Collapse
Affiliation(s)
- Ajit Kumar Sahu
- Department of Physics, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Odisha-752050, India.
| | - Rajkumar Malik
- Department of Physics, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Odisha-752050, India.
| | - Jiarul Midya
- Department of Physics, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Odisha-752050, India.
| |
Collapse
|
3
|
Kumar D, Tiwari S. Bile Salts Trigger Deformability in Liposomal Vesicles through Edge-Activating Action. Mol Pharm 2025. [PMID: 40404576 DOI: 10.1021/acs.molpharmaceut.5c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
This study investigates how bile-salt-based edge activators (EAs) (sodium cholate, NaC; sodium deoxycholate, NaDC; and sodium taurocholate, NaTC) can influence the mechanical properties and deformability of liposomal vesicles. We have elucidated their effect on liposomes composed of l-α-phosphatidylcholine (SPC). Liposomes were formulated using thin-film hydration and characterized using scattering, spectroscopic, and atomic force microscopic (AFM) techniques. Our data show that bile salts can alter the hydrodynamic diameter (Dh), morphology, and mechanical characteristics of vesicles. Their effect on the deformability and Young's modulus of vesicles followed the order NaDC ≥ NaC > NaTC. Breakthrough events were noticed in the vesicles at specific depth levels during force-deformation and force-indentation experiments. Based on the lack of hysteresis in the approach-retract curve, we inferred that the vesicles attained elasticity at lower concentrations of NaDC. Hydrophobic interactions between phospholipids and bile salts were verified from Fourier-transformed infrared spectrophotometer (FTIR) experiments. Increase in bile salt concentration was accompanied by a red shift of the acyl chain (asymmetric stretching CH2 and symmetric stretching CH3) and phosphate groups. This shift suggests enhanced hydrogen bonding between liposomes and bile salts. The affinity of bile salts for the SPC molecule correlated with their relative hydrophobicity. We conclude that NaDC can indeed improve the mechanical properties of liposomes and their ability to penetrate biological barriers.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, (Uttar Pradesh) 226002, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, (Uttar Pradesh) 226002, India
| |
Collapse
|
4
|
Wang S, Han K, Yang F. Unraveling the mysteries of extracellular vesicles with atomic force microscopy: a cutting-edge tool for insights into the microcosm. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40387260 DOI: 10.1039/d5ay00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
This review comprehensively explores the remarkable progress in the application of atomic force microscopy (AFM) in extracellular vesicle (EV) research. AFM, with its unique capacity for high-resolution imaging and sensitive force measurement, has arisen as a potent method for studying the nanoscale environment. EVs, a mixed group of membrane vesicles produced by cells, are crucial in facilitating intercellular communication and disease progression. Here, we elucidate the fundamental principles of AFM and the characteristics of EVs. We then delve into the significant findings enabled by the combination of AFM with EV research, including the visualization of EV morphology, the measurement of mechanical properties, and the investigation of interactions with other molecules and cells. Additionally, we discuss the challenges and future directions in this burgeoning field. This review not only highlights the current state-of-the-art but also provides insights into the potential of AFM to further our understanding of EVs and their implications in biology and medicine.
Collapse
Affiliation(s)
- Shuwei Wang
- Affiliated Hospital of Jilin Medical University, Jilin 132000, China.
| | - Kang Han
- Affiliated Hospital of Jilin Medical University, Jilin 132000, China.
| | - Fan Yang
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| |
Collapse
|
5
|
Zeng L, Shi W, Chen K, Wang K, Dai Y, Cheng X, Lu S, Gao D, Sun W, Zhang X, Zhang J, Chen J. Indocyanine Green Aggregation-Induced Hypotonic Stress to Remodel Aloe Exosome-like Vesicles for Enhanced Tumor Penetration and Phototherapy. ACS NANO 2025; 19:15425-15443. [PMID: 40243994 DOI: 10.1021/acsnano.4c15440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
As ubiquitous transport nanovesicles in cell biology, plant exosome-like vesicles (PELVs) have enormous potential to deliver drugs safely and effectively. Drug encapsulation and mechanical stability of vesicles are key limitations influencing their delivery efficiency. However, common methods (i.e., ultrasound, electroporation) for drug loading inevitably affect the inherent vesicle characteristics, which influence their stability, leakproof nature, cellular internalization, and tumor penetration. Herein, in order to balance this contradiction, we put forward a strategy to skillfully remodel aloe exosome-like vesicles (AELVs) through indocyanine green (ICG)-induced hypotonic stress during endogenous drug loading. We observe that the rigidity of AELVs is enhanced with the accumulation of long hydrocarbon chain lipids under ICG-induced hypotonic stress. Synchronously, ICG is also loaded into AELVs (ICG/AELVs, IAs), which effectively prevents secondary damage during drug loading. More interestingly, we find that hypotonic stress promotes IA secretion with less intravesicular protein, which is beneficial to enlarge their inner space for more drug loading. The IAs show great storage stability, leakproof, and antidegradation performance. Compared with control AELVs, IAs with higher rigidity are more liable to penetrate into the tumor. IAs further modifying with the AS1411 aptamer (AS1411-IAs, AIAs) exhibit high tumor targeting in vivo. After intravenous administration, the 4T1 tumor is obviously inhibited by AIAs plus NIR irradiation, which effectively improves the survival rate of tumor-bearing mice. Overall, we systematically explore the effects of drug-induced osmotic stress on PELVs during endogenous drug loading and achieve efficient tumor therapy. This work simplifies the process of drug loading in PELVs and enhances their plasticity, which provides a promising perspective for PELV-based drug delivery and clinical application.
Collapse
Affiliation(s)
- Lupeng Zeng
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Wanhua Shi
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Kewen Chen
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, P. R. China
| | - Kun Wang
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Yaping Dai
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Xin Cheng
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Shi Lu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Dandan Gao
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Weiming Sun
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Xi Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Jing Zhang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, P. R. China
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| |
Collapse
|
6
|
Stridfeldt F, Pandey V, Kylhammar H, Talebian Gevari M, Metem P, Agrawal V, Görgens A, Mamand DR, Gilbert J, Palmgren L, Holme MN, Gustafsson O, El Andaloussi S, Mitra D, Dev A. Force spectroscopy reveals membrane fluctuations and surface adhesion of extracellular nanovesicles impact their elastic behavior. Proc Natl Acad Sci U S A 2025; 122:e2414174122. [PMID: 40249788 PMCID: PMC12037009 DOI: 10.1073/pnas.2414174122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/07/2025] [Indexed: 04/20/2025] Open
Abstract
The elastic properties of nanoscale extracellular vesicles (EVs) are believed to influence their cellular interactions, thus having a profound implication in intercellular communication. However, accurate quantification of their elastic modulus is challenging due to their nanoscale dimensions and their fluid-like lipid bilayer. We show that the previous attempts to develop atomic force microscopy-based protocol are flawed as they lack theoretical underpinning as well as ignore important contributions arising from the surface adhesion forces and membrane fluctuations. We develop a protocol comprising a theoretical framework, experimental technique, and statistical approach to accurately quantify the bending and elastic modulus of EVs. The method reveals that membrane fluctuations play a dominant role even for a single EV. The method is then applied to EVs derived from human embryonic kidney cells and their genetically engineered classes altering the tetraspanin expression. The data show a large spread; the area modulus is in the range of 4 to 19 mN/m and the bending modulus is in the range of 15 to 33 [Formula: see text], respectively. Surprisingly, data for a single EV, revealed by repeated measurements, also show a spread that is attributed to their compositionally heterogeneous fluid membrane and thermal effects. Our protocol uncovers the influence of membrane protein alterations on the elastic modulus of EVs.
Collapse
Affiliation(s)
- Fredrik Stridfeldt
- Department of Applied Physics, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
| | - Vikash Pandey
- Nordita, Kungliga Tekniska Högskolan Royal Institute of Technology and Stockholm University, Stockholm11419, Sweden
| | - Hanna Kylhammar
- Department of Applied Physics, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
| | | | - Prattakorn Metem
- Division of Applied Electrochemistry, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
| | - Vipin Agrawal
- Nordita, Kungliga Tekniska Högskolan Royal Institute of Technology and Stockholm University, Stockholm11419, Sweden
- Department of Physics, Stockholm University, Stockholm11419, Sweden
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
| | - André Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm17177, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen45147, Germany
| | - Doste R. Mamand
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm75105, Sweden
- Karolinska Advanced Therapy Medicinal Products Center, ANA Futura, Huddinge17177, Sweden
| | - Jennifer Gilbert
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg41296, Sweden
| | - Lukas Palmgren
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg41296, Sweden
| | - Margaret N. Holme
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg41296, Sweden
| | - Oskar Gustafsson
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm17177, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm17177, Sweden
| | - Dhrubaditya Mitra
- Nordita, Kungliga Tekniska Högskolan Royal Institute of Technology and Stockholm University, Stockholm11419, Sweden
| | - Apurba Dev
- Department of Applied Physics, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
- Department of Electrical Engineering, Uppsala University, Uppsala75237, Sweden
| |
Collapse
|
7
|
Yang Y, Metem P, Khaksaran MH, Sahu SS, Stridfeldt F, Görgens A, Zhang SL, Dev A. Plasmon-Enhanced Fluorescence of Single Extracellular Vesicles Captured in Arrayed Aluminum Nanoholes. ACS OMEGA 2024; 9:51022-51030. [PMID: 39758645 PMCID: PMC11696387 DOI: 10.1021/acsomega.4c05492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
Extracellular vesicles (EVs) are nanoparticles encapsulated with a lipid bilayer, and they constitute an excellent source of biomarkers for multiple diseases. However, the heterogeneity in their molecular compositions constitutes a major challenge for their recognition and profiling, thereby limiting their application as an effective biomarker. A single-EV analysis technique is crucial to both the discovery and the detection of EV subpopulations that carry disease-specific signatures. Herein, a plasmonic nanohole array is designed for capturing single EVs and subsequently performing fluorescence detection of their membrane proteins by exploiting plasmonic amplification of the fluorescence signal. Unlike other reported methods, our design relies on an exclusive detection of single EVs captured inside nanoholes, thus allowing us to study only plasmonic effects and avoid other metal-induced phenomena while leveraging on the proximity of emitters to the plasmonic hotspots. The method is optimized through numerical simulations and verified by a combination of atomic force, scanning electron microscopy, and fluorescence microscopy. Fluorescence enhancement is then estimated by measuring the CD9 expression of small EVs derived from the human embryonic kidney (HEK293) cell line and carefully considering the spatial distribution of emission and excitation intensities. Fluorescence intensities of immunostained EVs show a moderate overall enhancement of intensity and follow the intensity trend predicted by simulation for nanohole arrays with different nanohole periods. Moreover, the number of observed EVs in the best-performing nanohole array increases by more than 12 times compared with EVs immobilized on a reference substrate, uncovering a vast amount of weakly fluorescent EVs that would remain undetected with the regular fluorescent method. Our nanohole array provides a basis for a future platform of single-EV analyses, also promising to capture the signature arising from low-expressing proteins.
Collapse
Affiliation(s)
- Yupeng Yang
- Division
of Solid-State Electronics, Department of Electrical Engineering,
The Ångström Laboratory, Uppsala
University, SE-751 03 Uppsala, Sweden
| | - Prattakorn Metem
- Division
of Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mohammad Hadi Khaksaran
- Division
of Solid-State Electronics, Department of Electrical Engineering,
The Ångström Laboratory, Uppsala
University, SE-751 03 Uppsala, Sweden
| | - Siddharth Sourabh Sahu
- Division
of Solid-State Electronics, Department of Electrical Engineering,
The Ångström Laboratory, Uppsala
University, SE-751 03 Uppsala, Sweden
| | - Fredrik Stridfeldt
- Bio-Opto-Nano
Physics, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - André Görgens
- Department
of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department
of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska
Comprehensive Cancer Center, 113 51 Stockholm, Sweden
- Institute
for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Shi-Li Zhang
- Division
of Solid-State Electronics, Department of Electrical Engineering,
The Ångström Laboratory, Uppsala
University, SE-751 03 Uppsala, Sweden
| | - Apurba Dev
- Division
of Solid-State Electronics, Department of Electrical Engineering,
The Ångström Laboratory, Uppsala
University, SE-751 03 Uppsala, Sweden
- Bio-Opto-Nano
Physics, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
8
|
Li M. Atomic force microscopy as a nanomechanical tool for cancer liquid biopsy. Biochem Biophys Res Commun 2024; 734:150637. [PMID: 39226737 DOI: 10.1016/j.bbrc.2024.150637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Liquid biopsies have been receiving tremendous attention for their potential to reshape cancer management. Though current studies of cancer liquid biopsy primarily focus on applying biochemical assays to characterize the genetic/molecular profiles of circulating tumor cells (CTCs) and their secondary products shed from tumor sites in bodily fluids, delineating the nanomechanical properties of tumor-associated materials in liquid biopsy specimens yields complementary insights into the biology of tumor dissemination and evolution. Particularly, atomic force microscopy (AFM) has become a standard and versatile toolbox for characterizing the mechanical properties of living biological systems at the micro/nanoscale, and AFM has been increasingly utilized to probe the nanomechanical properties of various tumor-derived analytes in liquid biopsies, including CTCs, tumor-associated cells, circulating tumor DNA (ctDNA) molecules, and extracellular vesicles (EVs), offering additional possibilities for understanding cancer pathogenesis from the perspective of mechanobiology. Herein, the applications of AFM in cancer liquid biopsy are summarized, and the challenges and future directions of AFM as a nanomechanical analysis tool in cancer liquid biopsy towards clinical utility are discussed and envisioned.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
9
|
García‐Arribas AB, Ibáñez‐Freire P, Carlero D, Palacios‐Alonso P, Cantero‐Reviejo M, Ares P, López‐Polín G, Yan H, Wang Y, Sarkar S, Chhowalla M, Oksanen HM, Martín‐Benito J, de Pablo PJ, Delgado‐Buscalioni R. Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404186. [PMID: 39231361 PMCID: PMC11538687 DOI: 10.1002/advs.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Indexed: 09/06/2024]
Abstract
Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies.
Collapse
Affiliation(s)
- Aritz B. García‐Arribas
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ibáñez‐Freire
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Diego Carlero
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología CSICMadrid28049Spain
| | - Pablo Palacios‐Alonso
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Miguel Cantero‐Reviejo
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ares
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Guillermo López‐Polín
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Han Yan
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Yan Wang
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Soumya Sarkar
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Manish Chhowalla
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Hanna M. Oksanen
- Faculty of Biological and Environmental SciencesVijkki BiocenterUniversity of HelsinkiHelsinki00014Finland
| | - Jaime Martín‐Benito
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pedro J. de Pablo
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| | - Rafael Delgado‐Buscalioni
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
10
|
Singh PK, Sarchet P, Hord C, Casadei L, Pollock R, Prakash S. Mechanical property estimation of sarcoma-relevant extracellular vesicles using transmission electron microscopy. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e158. [PMID: 38966868 PMCID: PMC11222873 DOI: 10.1002/jex2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/18/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024]
Abstract
Analysis of single extracellular vesicles (EVs) has the potential to yield valuable label-free information on their morphological structure, biomarkers and therapeutic targets, though such analysis is hindered by the lack of reliable and quantitative measurements of the mechanical properties of these compliant nanoscale particles. The technical challenge in mechanical property measurements arises from the existing tools and methods that offer limited throughput, and the reported elastic moduli range over several orders of magnitude. Here, we report on a flow-based method complemented by transmission electron microscopy (TEM) imaging to provide a high throughput, whole EV deformation analysis for estimating the mechanical properties of liposarcoma-derived EVs as a function of their size. Our study includes extracting morphological data of EVs from a large dataset of 432 TEM images, with images containing single to multiple EVs, and implementing the thin-shell deformation theory. We estimated the elastic modulus, E = 0.16 ± 0.02 MPa (mean±SE) for small EVs (sEVs; 30-150 nm) and E = 0.17 ± 0.03 MPa (mean±SE) for large EVs (lEVs; >150 nm). To our knowledge, this is the first report on the mechanical property estimation of LPS-derived EVs and has the potential to establish a relationship between EV size and EV mechanical properties.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Patricia Sarchet
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Catherine Hord
- Center for Life Sciences EducationThe Ohio State UniversityColumbusOhioUSA
| | - Lucia Casadei
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Raphael Pollock
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Shaurya Prakash
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
11
|
Palmulli R, Couty M, Piontek MC, Ponnaiah M, Dingli F, Verweij FJ, Charrin S, Tantucci M, Sasidharan S, Rubinstein E, Kontush A, Loew D, Lhomme M, Roos WH, Raposo G, van Niel G. CD63 sorts cholesterol into endosomes for storage and distribution via exosomes. Nat Cell Biol 2024; 26:1093-1109. [PMID: 38886558 DOI: 10.1038/s41556-024-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Extracellular vesicles such as exosomes are now recognized as key players in intercellular communication. Their role is influenced by the specific repertoires of proteins and lipids, which are enriched when they are generated as intraluminal vesicles (ILVs) in multivesicular endosomes. Here we report that a key component of small extracellular vesicles, the tetraspanin CD63, sorts cholesterol to ILVs, generating a pool that can be mobilized by the NPC1/2 complex, and exported via exosomes to recipient cells. In the absence of CD63, cholesterol is retrieved from the endosomes by actin-dependent vesicular transport, placing CD63 and cholesterol at the centre of a balance between inward and outward budding of endomembranes. These results establish CD63 as a lipid-sorting mechanism within endosomes, and show that ILVs and exosomes are alternative providers of cholesterol.
Collapse
Affiliation(s)
- Roberta Palmulli
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Mickaël Couty
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
- CRCI2NA, Nantes Université, Inserm UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France
| | - Melissa C Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Maharajah Ponnaiah
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN, ICAN OMICS and ICAN I/O), F-75013, Paris, France
| | - Florent Dingli
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Frederik J Verweij
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Stéphanie Charrin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, Inserm, Paris, France
| | - Matteo Tantucci
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Sajitha Sasidharan
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, Inserm, Paris, France
| | - Anatol Kontush
- ICAN, National Institute for Health and Medical Research, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN, ICAN OMICS and ICAN I/O), F-75013, Paris, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248, Paris Cedex 05, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France.
- CRCI2NA, Nantes Université, Inserm UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France.
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| |
Collapse
|
12
|
Thakur GCN, Uday A, Cebecauer M, Roos WH, Cwiklik L, Hof M, Jurkiewicz P, Melcrová A. Charge of a transmembrane peptide alters its interaction with lipid membranes. Colloids Surf B Biointerfaces 2024; 235:113765. [PMID: 38309153 DOI: 10.1016/j.colsurfb.2024.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Transmembrane (TM) proteins interact closely with the surrounding membrane lipids. Lipids in the vicinity of TM proteins were reported to have hindered mobility, which has been associated with lipids being caught up in the rough surface of the TM domains. These reports, however, neglect one important factor that largely influences the membrane behavior - electrostatics of the TM peptides that are usually positively charged at their cytosolic end. Here, we study on the example of a neutral and a positively charged WALP peptide, how the charge of a TM peptide influences the membrane. We investigate both its dynamics and mechanics by: (i) time dependent fluorescent shift in combination with classical and FRET generalized polarization to evaluate the mobility of lipids at short and long-range distance from the peptide, (ii) atomic force microscopy to observe the mechanical stability of the peptide-containing membranes, and (iii) molecular dynamics simulations to analyze the peptide-lipid interactions. We show that both TM peptides lower lipid mobility in their closest surroundings. The peptides cause lateral heterogeneity in lipid mobility, which in turn prevents free lipid rearrangement and lowers the membrane ability to seal ruptures after mechanical indentations. Introduction of a positive charge to the peptide largely enhances these effects, affecting the whole membrane. We thus highlight that unspecific peptide-lipid interactions, especially the electrostatics, should not be overlooked as they have a great impact on the mechanics and dynamics of the whole membrane.
Collapse
Affiliation(s)
- Garima C N Thakur
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; University of Chemical and Technology, Technická 5, Dejvice, 160 00 Prague 6, Czech Republic
| | - Arunima Uday
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; University of Chemical and Technology, Technická 5, Dejvice, 160 00 Prague 6, Czech Republic
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Wouter H Roos
- Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic.
| | - Adéla Melcrová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
13
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 1148] [Impact Index Per Article: 1148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
14
|
Takechi-Haraya Y. [Atomic Force Microscopy to Measure the Mechanical Property of Nanosized Lipid Vesicles and Its Applications]. YAKUGAKU ZASSHI 2024; 144:511-519. [PMID: 38692926 DOI: 10.1248/yakushi.23-00178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Nanoparticles, including liposomes and lipid nanoparticles, have garnered global attention due to their potential applications in pharmaceuticals, vaccines, and gene therapies. These particles enable targeted delivery of new drug modalities such as highly active small molecules and nucleic acids. However, for widespread use of nanoparticle-based formulations, it is crucial to comprehensively analyze their characteristics to ensure both efficacy and safety, as well as enable consistent production. In this context, this review focuses on our research using atomic force microscopy (AFM) to study liposomes and lipid nanoparticles. Our work significantly contributes to the capability of AFM to measure various types of liposomes in an aqueous medium, providing valuable insights into the mechanical properties of these nanoparticles. We discuss the applications of this AFM technique in assessing the quality of nanoparticle-based pharmaceuticals and developing membrane-active peptides.
Collapse
|
15
|
Zarif B, Shabbir S, Shahid R, Noor T, Imran M. Proteosomes based on milk phospholipids and proteins to enhance the stability and bioaccessibility of β-carotene. Food Chem 2023; 429:136841. [PMID: 37459709 DOI: 10.1016/j.foodchem.2023.136841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
Proteosomes (P) based on milk fat globule membrane's phospholipids (MPs), whey protein isolate (WPI) and sodium caseinate (CasNa) were developed by ultrasonication to encapsulate β-carotene. Entirely milk-ingredients based proteosomes (WPI-MPs-P and CasNa-MPs-P) revealed homogenous distribution with size diameters < 250 nm. WPI-MPs-P depicted positive ζ-potential values (+15.7 ± 0.5 mV), while CasNa-MPs-P demonstrated negative (-32.5 ± 3.4 mV) values of surface charge, respectively and hydrophilic nature of proteosomes was observed by measuring contact-angle (θ). AFM and SEM exhibited spherical to oval and slightly irregular morphology of nanocarriers. For various concentrations of β-carotene, the highest encapsulation efficiency of β-carotene was 90 ± 0.2% and 92 ± 0.8% in WPI-MPs-P and CasNa-MPs-P respectively. FTIR analyses confirmed the hydrophobic and electrostatic interactions-based encapsulation of β-carotene. Beneficial antioxidant-potential of β-carotene was retained after its encapsulation in the proteosomes. Proteosomes increased the digestive-stability (>50%) and bioaccessibility (>85%) of β-carotene. Thus, milk-ingredients based proteosomes offer a novel-strategy to develop functional dairy products to overcome widespread vitamin-A-deficiency.
Collapse
Affiliation(s)
- Bina Zarif
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
16
|
Cantero M, Cvirkaite-Krupovic V, Krupovic M, de Pablo PJ. Mechanical tomography of an archaeal lemon-shaped virus reveals membrane-like fluidity of the capsid and liquid nucleoprotein cargo. Proc Natl Acad Sci U S A 2023; 120:e2307717120. [PMID: 37824526 PMCID: PMC10589707 DOI: 10.1073/pnas.2307717120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Archaeal lemon-shaped viruses have unique helical capsids composed of highly hydrophobic protein strands which can slide past each other resulting in remarkable morphological reorganization. Here, using atomic force microscopy, we explore the biomechanical properties of the lemon-shaped virions of Sulfolobus monocaudavirus 1 (SMV1), a double-stranded DNA virus which infects hyperthermophilic (~80 °C) and acidophilic (pH ~ 2) archaea. Our results reveal that SMV1 virions are extremely soft and withstand repeated extensive deformations, reaching remarkable strains of 80% during multiple cycles of consecutive mechanical assaults, yet showing scarce traces of disruption. SMV1 virions can reversibly collapse wall-to-wall, reducing their volume by ~90%. Beyond revealing the exceptional malleability of the SMV1 protein shell, our data also suggest a fluid-like nucleoprotein cargo which can flow inside the capsid, resisting and accommodating mechanical deformations without further alteration. Our experiments suggest a packing fraction of the virus core to be as low as 11%, with the amount of the accessory proteins almost four times exceeding that of the viral genome. Our findings indicate that SMV1 protein capsid displays biomechanical properties of lipid membranes, which is not found among protein capsids of other viruses. The remarkable malleability and fluidity of the SMV1 virions are likely necessary for the structural transformations during the infection and adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Miguel Cantero
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris75015, France
| | - Pedro J. de Pablo
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
- Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid28049, Spain
| |
Collapse
|
17
|
Ma SR, Xia HF, Gong P, Yu ZL. Red Blood Cell-Derived Extracellular Vesicles: An Overview of Current Research Progress, Challenges, and Opportunities. Biomedicines 2023; 11:2798. [PMID: 37893171 PMCID: PMC10604118 DOI: 10.3390/biomedicines11102798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Red blood cell-derived extracellular vesicles (RBC EVs) are small, spherical fragments released from red blood cells. These vesicles, similar to EVs derived from other cell types, are crucial for intercellular communication processes and have been implicated in various physiological and pathological processes. The diagnostic and therapeutic potential of RBC EVs has garnered increasing attention in recent years, revealing their valuable role in the field of medicine. In this review, we aim to provide a comprehensive analysis of the current research status of RBC EVs. We summarize existing studies and highlight the progress made in understanding the characteristics and functions of RBC EVs, with a particular focus on their biological roles in different diseases. We also discuss their potential utility as diagnostic and prognostic biomarkers in diseases and as vectors for drug delivery. Furthermore, we emphasize the need for further research to achieve selective purification of RBC EVs and unravel their heterogeneity, which will allow for a deeper understanding of their diverse functions and exploration of their potential applications in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
18
|
Ridolfi A, Conti L, Brucale M, Frigerio R, Cardellini J, Musicò A, Romano M, Zendrini A, Polito L, Bergamaschi G, Gori A, Montis C, Panella S, Barile L, Berti D, Radeghieri A, Bergese P, Cretich M, Valle F. Particle profiling of EV-lipoprotein mixtures by AFM nanomechanical imaging. J Extracell Vesicles 2023; 12:e12349. [PMID: 37855042 PMCID: PMC10585431 DOI: 10.1002/jev2.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/08/2023] [Indexed: 10/20/2023] Open
Abstract
The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours. The obtained diameters are in quantitative accord with those measured via cryo-electron microscopy (cryo-EM); the assignment of specific nanomechanical readout to each object enables the simultaneous discrimination of co-isolated EVs and LPs even if they have overlapping size distributions. EVs and all classes of LPs are shown to be characterised by specific combinations of diameter and stiffness, thus making it possible to estimate their relative abundance in EV/LP mixed samples in terms of stoichiometric ratio, surface area and volume. As a side finding, we show how the mechanical behaviour of specific LP classes is correlated to distinctive structural features revealed by cryo-EM. The described approach is label-free, single-step and relatively quick to perform. Importantly, it can be used to analyse samples which prove very challenging to assess with several established techniques due to ensemble-averaging, low sensibility to small particles, or both, thus providing a very useful tool for quickly assessing the purity of EV/LP isolates including plasma- and serum-derived preparations.
Collapse
Affiliation(s)
- Andrea Ridolfi
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
| | - Laura Conti
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
| | - Marco Brucale
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
| | - Roberto Frigerio
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Jacopo Cardellini
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
| | - Angelo Musicò
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Miriam Romano
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Andrea Zendrini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Laura Polito
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Greta Bergamaschi
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Alessandro Gori
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Costanza Montis
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
| | - Stefano Panella
- Istituto Cardiocentro TicinoEnte Ospedaliero CantonaleLuganoSwitzerland
| | - Lucio Barile
- Istituto Cardiocentro TicinoEnte Ospedaliero CantonaleLuganoSwitzerland
| | - Debora Berti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
| | - Annalisa Radeghieri
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Paolo Bergese
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'innovazione BiomedicaPalermoItaly
| | - Marina Cretich
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Francesco Valle
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
| |
Collapse
|
19
|
Agrawal V, Pandey V, Mitra D. Active buckling of pressurized spherical shells: Monte Carlo simulation. Phys Rev E 2023; 108:L032601. [PMID: 37849090 DOI: 10.1103/physreve.108.l032601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/06/2023] [Indexed: 10/19/2023]
Abstract
We study the buckling of pressurized spherical shells by Monte Carlo simulations in which the detailed balance is explicitly broken-thereby driving the shell to be active, out of thermal equilibrium. Such a shell typically has either higher (active) or lower (sedate) fluctuations compared to one in thermal equilibrium depending on how the detailed balance is broken. We show that, for the same set of elastic parameters, a shell that is not buckled in thermal equilibrium can be buckled if turned active. Similarly a shell that is buckled in thermal equilibrium can unbuckle if sedated. Based on this result, we suggest that it is possible to experimentally design microscopic elastic shells whose buckling can be optically controlled.
Collapse
Affiliation(s)
- Vipin Agrawal
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
- Department of Physics, Stockholm University, AlbaNova University Centre, Fysikum, 106 91 Stockholm, Sweden
| | - Vikash Pandey
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
| | - Dhrubaditya Mitra
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Montizaan D, Saunders C, Yang K, Sasidharan S, Maity S, Reker-Smit C, Stuart MCA, Montis C, Berti D, Roos WH, Salvati A. Role of Curvature-Sensing Proteins in the Uptake of Nanoparticles with Different Mechanical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303267. [PMID: 37236202 DOI: 10.1002/smll.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Nanoparticles of different properties, such as size, charge, and rigidity, are used for drug delivery. Upon interaction with the cell membrane, because of their curvature, nanoparticles can bend the lipid bilayer. Recent results show that cellular proteins capable of sensing membrane curvature are involved in nanoparticle uptake; however, no information is yet available on whether nanoparticle mechanical properties also affect their activity. Here liposomes and liposome-coated silica are used as a model system to compare uptake and cell behavior of two nanoparticles of similar size and charge, but different mechanical properties. High-sensitivity flow cytometry, cryo-TEM, and fluorescence correlation spectroscopy confirm lipid deposition on the silica. Atomic force microscopy is used to quantify the deformation of individual nanoparticles at increasing imaging forces, confirming that the two nanoparticles display distinct mechanical properties. Uptake studies in HeLa and A549 cells indicate that liposome uptake is higher than for the liposome-coated silica. RNA interference studies to silence their expression show that different curvature-sensing proteins are involved in the uptake of both nanoparticles in both cell types. These results confirm that curvature-sensing proteins have a role in nanoparticle uptake, which is not restricted to harder nanoparticles, but includes softer nanomaterials commonly used for nanomedicine applications.
Collapse
Affiliation(s)
- Daphne Montizaan
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Catherine Saunders
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Keni Yang
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Sajitha Sasidharan
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Sourav Maity
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
21
|
Debnath K, Heras KL, Rivera A, Lenzini S, Shin JW. Extracellular vesicle-matrix interactions. NATURE REVIEWS. MATERIALS 2023; 8:390-402. [PMID: 38463907 PMCID: PMC10919209 DOI: 10.1038/s41578-023-00551-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/12/2024]
Abstract
The extracellular matrix in microenvironments harbors a variety of signals to control cellular functions and the materiality of tissues. Most efforts to synthetically reconstitute the matrix by biomaterial design have focused on decoupling cell-secreted and polymer-based cues. Cells package molecules into nanoscale lipid membrane-bound extracellular vesicles and secrete them. Thus, extracellular vesicles inherently interact with the meshwork of the extracellular matrix. In this Review, we discuss various aspects of extracellular vesicle-matrix interactions. Cells receive feedback from the extracellular matrix and leverage intracellular processes to control the biogenesis of extracellular vesicles. Once secreted, various biomolecular and biophysical factors determine whether extracellular vesicles are locally incorporated into the matrix or transported out of the matrix to be taken up by other cells or deposited into tissues at a distal location. These insights can be utilized to develop engineered biomaterials where EV release and retention can be precisely controlled in host tissue to elicit various biological and therapeutic outcomes.
Collapse
Affiliation(s)
- Koushik Debnath
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kevin Las Heras
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU)
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Ambar Rivera
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Stephen Lenzini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
22
|
Jeong MH, Im H, Dahl JB. Non-contact microfluidic analysis of the stiffness of single large extracellular vesicles from IDH1-mutated glioblastoma cells. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201412. [PMID: 37649709 PMCID: PMC10465107 DOI: 10.1002/admt.202201412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 09/01/2023]
Abstract
In preparation for leveraging extracellular vesicles (EVs) for disease diagnostics and therapeutics, fundamental research is being done to understand EV biological, chemical, and physical properties. Most published studies have investigated nanoscale EVs and focused on EV biochemical content. There is much less understanding of large microscale EV characteristics and EV mechanical properties. We recently introduced a non-contact microfluidic technique that measures the stiffness of large EVs (>1 μm diameter). This pilot study probes the robustness of the microfluidic technique to distinguish between EV populations by comparing stiffness distributions of large EVs derived from glioblastoma cell lines. EVs derived from cells expressing the IDH1 mutation, a common glioblastoma mutation known to disrupt lipid metabolism, were stiffer than those expressed from wild-type cells in a statistical comparison of sample medians. A supporting lipidomics analysis showed that the IDH1 mutation increased the amount of saturated lipids in EVs. Taken together, these data encourage further investigation into the potential of high-throughput microfluidics to distinguish between large EV populations that differ in biomolecular composition. These findings contribute to the understanding of EV biomechanics, in particular for the less studied microscale EVs.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joanna B Dahl
- Engineering Department, University of Massachusetts Boston, Boston, MA 02025, USA
| |
Collapse
|
23
|
Feng Y, Liu M, Li X, Li M, Xing X, Liu L. Nanomechanical Signatures of Extracellular Vesicles from Hematologic Cancer Patients Unraveled by Atomic Force Microscopy for Liquid Biopsy. NANO LETTERS 2023; 23:1591-1599. [PMID: 36723485 DOI: 10.1021/acs.nanolett.3c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cells release extracellular vesicles (EVs) as the carriers for intercellular communications to regulate life activities. Particularly, it is increasingly apparent that mechanical forces play an essential role in biological systems. The nanomechanical properties of EVs and their dynamics in cancer development are still not fully understood. Herein, with the use of atomic force microscopy (AFM), the nanomechanical signatures of EVs from the liquid biopsies of hematologic cancer patients were unraveled. Single native EVs were probed by AFM under aqueous conditions. The elastic and viscous properties of EVs were measured and visualized to correlate EV mechanics with EV geometry. Experimental results remarkably reveal the significant differences in EV mechanics among multiple myeloma patients, lymphoma patients, and healthy volunteers. The study unveils the unique nanomechanical signatures of EVs in hematologic cancers, which will benefit the studies of liquid biopsies for cancer diagnosis and prognosis with translational significance.
Collapse
Affiliation(s)
- Yaqi Feng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Meichen Liu
- Cancer Hospital of China Medical University, Shenyang 110042, People's Republic of China
- Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Xinxin Li
- Cancer Hospital of China Medical University, Shenyang 110042, People's Republic of China
- Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaojing Xing
- Cancer Hospital of China Medical University, Shenyang 110042, People's Republic of China
- Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
24
|
Park H, Sut TN, Yoon BK, Zhdanov VP, Cho NJ, Jackman JA. Unraveling How Cholesterol Affects Multivalency-Induced Membrane Deformation of Sub-100 nm Lipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15950-15959. [PMID: 36515977 DOI: 10.1021/acs.langmuir.2c02252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cholesterol plays a critical role in modulating the lipid membrane properties of biological and biomimetic systems and recent attention has focused on its role in the functions of sub-100 nm lipid vesicles and lipid nanoparticles. These functions often rely on multivalent ligand-receptor interactions involving membrane attachment and dynamic shape transformations while the extent to which cholesterol can influence such interaction processes is largely unknown. To address this question, herein, we investigated the attachment of sub-100 nm lipid vesicles containing varying cholesterol fractions (0-45 mol %) to membrane-mimicking supported lipid bilayer (SLB) platforms. Biotinylated lipids and streptavidin proteins were used as model ligands and receptors, respectively, while the localized surface plasmon resonance sensing technique was employed to track vesicle attachment kinetics in combination with analytical modeling of vesicle shape changes. Across various conditions mimicking low and high multivalency, our findings revealed that cholesterol-containing vesicles could bind to receptor-functionalized membranes but underwent appreciably less multivalency-induced shape deformation than vesicles without cholesterol, which can be explained by a cholesterol-mediated increase in membrane bending rigidity. Interestingly, the extent of vesicle deformation that occurred in response to increasingly strong multivalent interactions was less pronounced for vesicles with greater cholesterol fraction. The latter trend was rationalized by taking into account the strong dependence of the membrane bending energy on the area of the vesicle-SLB contact region and such insights can aid the engineering of membrane-enveloped nanoparticles with tailored biophysical properties.
Collapse
Affiliation(s)
- Hyeonjin Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | | | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Vladimir P Zhdanov
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | | |
Collapse
|
25
|
Piontek MC, Roos WH. Lipoprotein particles exhibit distinct mechanical properties. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e68. [PMID: 38938600 PMCID: PMC11080718 DOI: 10.1002/jex2.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/12/2022] [Accepted: 11/23/2022] [Indexed: 06/29/2024]
Abstract
Lipoproteins (LPs) are micelle-like structures with a similar size to extracellular vesicles (EVs) and are therefore often co-isolated, as intensively discussed within the EV community. LPs from human blood plasma are of particular interest as they are responsible for the deposition of cholesterol ester and other fats in the artery, causing lesions, and eventually atherosclerosis. Plasma lipoproteins can be divided according to their size, density and composition into chylomicrons (CM), very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). Here, we use atomic force microscopy for mechanical characterization of LPs. We show that the nanoindentation approach used for EV analysis can also be used to characterize LPs, revealing specific differences between some of the particles. Comparing LPs with each other, LDL exhibit a higher bending modulus as compared to CM and VLDL, which is likely related to differences in cholesterol and apolipoproteins. Furthermore, CM typically collapse on the surface after indentation and HDL exhibit a very low height after surface adhesion both being indications for the presence of LPs in an EV sample. Our analysis provides new systematic insights into the mechanical characteristics of LPs.
Collapse
Affiliation(s)
- Melissa C. Piontek
- Moleculaire BiofysicaZernike Instituut, Rijksuniversiteit GroningenGroningenThe Netherlands
| | - Wouter H. Roos
- Moleculaire BiofysicaZernike Instituut, Rijksuniversiteit GroningenGroningenThe Netherlands
| |
Collapse
|
26
|
Martínez-Miguel M, Castellote-Borrell M, Köber M, Kyvik AR, Tomsen-Melero J, Vargas-Nadal G, Muñoz J, Pulido D, Cristóbal-Lecina E, Passemard S, Royo M, Mas-Torrent M, Veciana J, Giannotti MI, Guasch J, Ventosa N, Ratera I. Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48179-48193. [PMID: 36251059 PMCID: PMC9614722 DOI: 10.1021/acsami.2c10497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.
Collapse
Affiliation(s)
- Marc Martínez-Miguel
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | | | - Mariana Köber
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Adriana R. Kyvik
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Judit Tomsen-Melero
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Guillem Vargas-Nadal
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Jose Muñoz
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Daniel Pulido
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Unidad
de Péptidos, UB, Unidad asociada
al CSIC por el IQAC, Barcelona 08028, Spain
| | - Edgar Cristóbal-Lecina
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Unidad
de Péptidos, UB, Unidad asociada
al CSIC por el IQAC, Barcelona 08028, Spain
| | - Solène Passemard
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Miriam Royo
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Institut
de Química Avançada de Catalunya (IQAC−CSIC), Barcelona 08034, Spain
| | - Marta Mas-Torrent
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Jaume Veciana
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Marina I. Giannotti
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Nanoprobes
and Nanoswitches group, Institute for Bioengineering of Catalonia
(IBEC), The Barcelona Institute of Science
and Technology (BIST), Barcelona 08028, Spain
- Departament
de Ciència dels Materials i Química Física, Universitat de Barcelona, Barcelona 08028, Spain
| | - Judith Guasch
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Dynamic Biomimetics
for Cancer Immunotherapy, Max Planck Partner
Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Nora Ventosa
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Imma Ratera
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
27
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
28
|
Cino EA, Tieleman DP. Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models. Biophys J 2022; 121:2060-2068. [PMID: 35524412 DOI: 10.1016/j.bpj.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022] Open
Abstract
Curvature is a fundamental property of biological membranes and has essential roles in cellular function. Bending of membranes can be induced by their lipid and protein compositions, as well as peripheral proteins, such as those that make up the cytoskeleton. An important aspect of membrane function is the grouping of lipid species into microdomains, or rafts, which serve as platforms for specific biochemical processes. The fluid mosaic model of membranes has evolved to recognize the importance of curvature and leaflet asymmetry, and there are efforts towards evaluating their functional roles. This work investigates the effect of curvature on the sorting of lipids in buckled asymmetric bilayers containing eight lipid types, approximating an average mammalian plasma membrane, through coarse-grained (CG) molecular dynamics (MD) simulations with the Martini force field. The simulations reveal that i) leaflet compositional asymmetry can induce curvature asymmetry, ii) lipids are sorted by curvature to different extents, and iii) curvature-based partitioning trends show moderate to strong correlations with lipid molecular volumes and head to tail bead ratios, respectively. The findings provide unique insights into the role of curvature in membrane organization, and the curvature-based sorting trends should be useful references for later investigations, and potentially interpreting the functional roles of specific lipids.
Collapse
Affiliation(s)
- Elio A Cino
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
29
|
Effect of hydrophobic moment on membrane interaction and cell penetration of apolipoprotein E-derived arginine-rich amphipathic α-helical peptides. Sci Rep 2022; 12:4959. [PMID: 35322082 PMCID: PMC8943082 DOI: 10.1038/s41598-022-08876-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
We previously developed an amphipathic arginine-rich peptide, A2-17, which has high ability to directly penetrate across cell membranes. To understand the mechanism of the efficient cell-penetrating ability of the A2-17 peptide, we designed three structural isomers of A2-17 having different values of the hydrophobic moment and compared their membrane interaction and direct cell penetration. Confocal fluorescence microscopy revealed that cell penetration efficiency of peptides tends to increase with their hydrophobic moment, in which A2-17 L14R/R15L, an A2-17 isomer with the highest hydrophobic moment, predominantly remains on plasma cell membranes. Consistently, Trp fluorescence analysis indicated the deepest insertion of A2-17 L14R/R15L into lipid membranes among all A2-17 isomers. Electrophysiological analysis showed that the duration and charge flux of peptide-induced pores in lipid membranes were prominent for A2-17 L14R/R15L, indicating the formation of stable membrane pores. Indeed, the A2-17 L14R/R15L peptide exhibited the strongest membrane damage to CHO-K1 cells. Atomic force microscopy quantitatively defined the peptide-induced membrane perturbation as the decrease in the stiffness of lipid vesicles, which was correlated with the hydrophobic moment of all A2-17 isomers. These results indicate that optimal membrane perturbation by amphipathic A2-17 peptide is critical for its efficient penetration into cells without inducing stabilized membrane pores.
Collapse
|
30
|
van der Koog L, Gandek TB, Nagelkerke A. Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization. Adv Healthc Mater 2022; 11:e2100639. [PMID: 34165909 PMCID: PMC11468589 DOI: 10.1002/adhm.202100639] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Over the past decades, lipid-based nanoparticle drug delivery systems (DDS) have caught the attention of researchers worldwide, encouraging the field to rapidly develop improved ways for effective drug delivery. One of the most prominent examples is liposomes, which are spherical shaped artificial vesicles composed of lipid bilayers and able to encapsulate both hydrophilic and hydrophobic materials. At the same time, biological nanoparticles naturally secreted by cells, called extracellular vesicles (EVs), have emerged as promising more complex biocompatible DDS. In this review paper, the differences and similarities in the composition of both vesicles are evaluated, and critical mediators that affect their pharmacokinetics are elucidate. Different strategies that have been assessed to tweak the pharmacokinetics of both liposomes and EVs are explored, detailing the effects on circulation time, targeting capacity, and cytoplasmic delivery of therapeutic cargo. Finally, whether a hybrid system, consisting of a combination of only the critical constituents of both vesicles, could offer the best of both worlds is discussed. Through these topics, novel leads for further research are provided and, more importantly, gain insight in what the liposome field and the EV field can learn from each other.
Collapse
Affiliation(s)
- Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyGRIAC Research Institute, University Medical Center GroningenUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
31
|
Norling K, Sjöberg M, Bally M, Zhdanov VP, Parveen N, Höök F. Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2550-2560. [PMID: 35156833 PMCID: PMC8892953 DOI: 10.1021/acs.langmuir.1c03096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The mechanical properties of biological nanoparticles play a crucial role in their interaction with the cellular membrane, in particular for cellular uptake. This has significant implications for the design of pharmaceutical carrier particles. In this context, liposomes have become increasingly popular, among other reasons due to their customizability and easily varied physicochemical properties. With currently available methods, it is, however, not trivial to characterize the mechanical properties of nanoscopic liposomes especially with respect to the level of deformation induced upon their ligand-receptor-mediated interaction with laterally fluid cellular membranes. Here, we utilize the sensitivity of dual-wavelength surface plasmon resonance to probe the size and shape of bound liposomes (∼100 nm in diameter) as a means to quantify receptor-induced deformation during their interaction with a supported cell membrane mimic. By comparing biotinylated liposomes in gel and fluid phases, we demonstrate that fluid-phase liposomes are more prone to deformation than their gel-phase counterparts upon binding to the cell membrane mimic and that, as expected, the degree of deformation depends on the number of ligand-receptor pairs that are engaged in the multivalent binding.
Collapse
Affiliation(s)
- Karin Norling
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Mattias Sjöberg
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marta Bally
- Department
of Clinical Microbiology, Umeå University, 901 85 Umeå, Sweden
- Wallenberg
Centre for Molecular Medicine, Umeå
University, 901 85 Umeå, Sweden
| | - Vladimir P. Zhdanov
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nagma Parveen
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- (N.P.)
| | - Fredrik Höök
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- (F.H.)
| |
Collapse
|
32
|
Hang X, He S, Dong Z, Li Y, Huang Z, Zhang Y, Sun H, Lin L, Li H, Wang Y, Liu B, Wu N, Ren T, Fan Y, Lou J, Yang R, Jiang L, Chang L. High-Throughput DNA Tensioner Platform for Interrogating Mechanical Heterogeneity of Single Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106196. [PMID: 35322558 DOI: 10.1002/smll.202106196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Cell mechanical forces play fundamental roles in regulating cellular responses to environmental stimulations. The shortcomings of conventional methods, including force resolution and cellular throughput, make them less accessible to mechanical heterogeneity at the single-cell level. Here, a DNA tensioner platform is introduced with high throughput (>10 000 cells per chip) and pN-level resolution. A microfluidic-based cell array is trapped on "hairpin-structured" DNA tensioners that enable transformation of the mechanical information of living cells into fluorescence signals. By using the platform, one can identify enhanced mechanical forces of drug-resistant cells as compared to their drug-sensitive counterparts, and mechanical differences between metastatic tumor cells in pleural effusion and nonmetastatic histiocytes. Further genetic analysis traces two genes, VEGFA and MINK1, that may play deterministic roles in regulating mechanical heterogeneities. In view of the ubiquity of cells' mechanical forces in the extracellular microenvironment (ECM), this platform shows wide potential to establish links of cellular mechanical heterogeneity to genetic heterogeneity.
Collapse
Affiliation(s)
- Xinxin Hang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shiqi He
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zaizai Dong
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yun Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zheng Huang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yanruo Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Hong Sun
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Long Lin
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hu Li
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yang Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Tianling Ren
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Ruiguo Yang
- Nebraska Center for Integrated Biomolecular Communication, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lan Jiang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Future Technology, and Sino-Danish College, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| |
Collapse
|
33
|
Park H, Sut TN, Yoon BK, Zhdanov VP, Kim JW, Cho NJ, Jackman JA. Multivalency-Induced Shape Deformation of Nanoscale Lipid Vesicles: Size-Dependent Membrane Bending Effects. J Phys Chem Lett 2022; 13:1480-1488. [PMID: 35129365 DOI: 10.1021/acs.jpclett.2c00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The size of membrane-enveloped virus particles, exosomes, and lipid vesicles strongly impacts functional properties in biological and applied contexts. Multivalent ligand-receptor interactions involving nanoparticle shape deformation are critical to such functions, yet the corresponding effect of nanoparticle size remains largely elusive. Herein, using an indirect nanoplasmonic sensing approach, we investigated how the nanoscale size properties of ligand-modified lipid vesicles affect real-time binding interactions, especially vesicle deformation processes, with a receptor-modified, cell membrane-mimicking platform. Together with theoretical analyses, our findings reveal a pronounced, size-dependent transition in the membrane bending properties of nanoscale lipid vesicles between 60 and 180 nm in diameter. For smaller vesicles, a large membrane bending energy enhanced vesicle stiffness while the osmotic pressure energy was the dominant modulating factor for larger, less stiff vesicles. These findings advance our fundamental understanding of how nanoparticle size affects multivalency-induced nanoparticle shape deformation and can provide guidance for the design of biomimetic nanoparticles with tailored nanomechanical properties.
Collapse
Affiliation(s)
- Hyeonjin Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | | | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | | |
Collapse
|
34
|
Single-molecule manipulation of macromolecules on GUV or SUV membranes using optical tweezers. Biophys J 2021; 120:5454-5465. [PMID: 34813728 DOI: 10.1016/j.bpj.2021.11.2884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Despite their wide applications in soluble macromolecules, optical tweezers have rarely been used to characterize the dynamics of membrane proteins, mainly due to the lack of model membranes compatible with optical trapping. Here, we examined optical trapping and mechanical properties of two potential model membranes, giant and small unilamellar vesicles (GUVs and SUVs, respectively) for studies of membrane protein dynamics. We found that optical tweezers can stably trap GUVs containing iodixanol with controlled membrane tension. The trapped GUVs with high membrane tension can serve as a force sensor to accurately detect reversible folding of a DNA hairpin or membrane binding of synaptotagmin-1 C2AB domain attached to the GUV. We also observed that SUVs are rigid enough to resist large pulling forces and are suitable for detecting protein conformational changes induced by force. Our methodologies may facilitate single-molecule manipulation studies of membrane proteins using optical tweezers.
Collapse
|
35
|
Fu P, Zhang J, Li H, Mak M, Xu W, Tao Z. Extracellular vesicles as delivery systems at nano-/micro-scale. Adv Drug Deliv Rev 2021; 179:113910. [PMID: 34358539 PMCID: PMC8986465 DOI: 10.1016/j.addr.2021.113910] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have shown significant promises as nano-/micro-size carriers in drug delivery and bioimaging. With more characteristics of EVs explored through tremendous research efforts, their unmatched physicochemical properties, biological features, and mechanical aspects make them unique vehicles, owning exceptional pharmacokinetics, circulatory metabolism and biodistribution pattern when delivering theranostic cargoes. In this review we firstly analyzed pros and cons of the EVs as a delivery platform. Secondly, compared to engineered nanoparticle delivery systems, such as biocompatible di-block co-polymers, rational design to improve EVs (exosomes in particular) were elaborated. Lastly, different pharmaceutical loading approaches into EVs were compared, reaching a conclusion on how to construct a clinically available and effective nano-/micro-carrier for a satisfactory medical mission.
Collapse
Affiliation(s)
- Peiwen Fu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China
| | - Jianguo Zhang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Critical Care Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven 06520, USA.
| | - Wenrong Xu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China.
| | - Zhimin Tao
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China.
| |
Collapse
|
36
|
Ridolfi A, Caselli L, Baldoni M, Montis C, Mercuri F, Berti D, Valle F, Brucale M. Stiffness of Fluid and Gel Phase Lipid Nanovesicles: Weighting the Contributions of Membrane Bending Modulus and Luminal Pressurization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12027-12037. [PMID: 34610740 DOI: 10.1021/acs.langmuir.1c01660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The mechanical properties of biogenic membranous compartments are thought to be relevant in numerous biological processes; however, their quantitative measurement remains challenging for most of the already available force spectroscopy (FS)-based techniques. In particular, the debate on the mechanics of lipid nanovesicles and on the interpretation of their mechanical response to an applied force is still open. This is mostly due to the current lack of a unified model being able to describe the mechanical response of both gel and fluid phase lipid vesicles and to disentangle the contributions of membrane rigidity and luminal pressure. In this framework, we herein propose a simple model in which the interplay of membrane rigidity and luminal pressure to the overall vesicle stiffness is described as a series of springs; this approach allows estimating these two contributions for both gel and fluid phase liposomes. Atomic force microscopy-based FS, performed on both vesicles and supported lipid bilayers, is exploited for obtaining all the parameters involved in the model. Moreover, the use of coarse-grained full-scale molecular dynamics simulations allowed for better understanding of the differences in the mechanical responses of gel and fluid phase bilayers and supported the experimental findings. The results suggest that the pressure contribution is similar among all the probed vesicle types; however, it plays a dominant role in the mechanical response of lipid nanovesicles presenting a fluid phase membrane, while its contribution becomes comparable to the one of membrane rigidity in nanovesicles with a gel phase lipid membrane. The results presented herein offer a simple way to quantify two of the most important parameters in vesicle nanomechanics (membrane rigidity and internal pressurization), and as such represent a first step toward a currently unavailable, unified model for the mechanical response of gel and fluid phase lipid nanovesicles.
Collapse
Affiliation(s)
- Andrea Ridolfi
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Firenze, Italy
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, 50019 Firenze, Italy
| | - Lucrezia Caselli
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Firenze, Italy
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, 50019 Firenze, Italy
| | - Matteo Baldoni
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Costanza Montis
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Firenze, Italy
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, 50019 Firenze, Italy
| | - Francesco Mercuri
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Debora Berti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Firenze, Italy
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, 50019 Firenze, Italy
| | - Francesco Valle
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Firenze, Italy
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Marco Brucale
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Firenze, Italy
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| |
Collapse
|
37
|
Ye S, Li W, Wang H, Zhu L, Wang C, Yang Y. Quantitative Nanomechanical Analysis of Small Extracellular Vesicles for Tumor Malignancy Indication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100825. [PMID: 34338437 PMCID: PMC8456224 DOI: 10.1002/advs.202100825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/31/2021] [Indexed: 05/27/2023]
Abstract
The nanomechanical properties of tumor-derived small extracellular vesicles (sEVs) are essential to cancer progression. Here, nanoindentation is utilized on atomic force microscopy (AFM) to quantitatively investigate the nanomechanical properties of human breast cancer cell-derived sEVs at single vesicle level and explore their relationship with tumor malignancy and vesicle size. It is demonstrated that the stiffness of the sEVs results from the combined contribution of the bending modulus and osmotic pressure of the sEVs. The stiffness and osmotic pressure increase with increasing malignancy of the sEVs and decrease with increasing size of the sEVs. The bending modulus decreases with increasing malignancy of the sEVs and is lower in smaller sEVs. This study builds relationship between the nanomechanical signature of the sEV and tumor malignancy, adding information for better understanding cancer mechanobiology.
Collapse
Affiliation(s)
- Siyuan Ye
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Key Laboratory of Biological Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Wenzhe Li
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Key Laboratory of Biological Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100871P. R. China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Key Laboratory of Biological Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Translational Medicine CenterChinese Institute for Brain Research (CIBR)Beijing102206P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Key Laboratory of Biological Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Key Laboratory of Biological Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Key Laboratory of Biological Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
38
|
Yurtsever A, Yoshida T, Badami Behjat A, Araki Y, Hanayama R, Fukuma T. Structural and mechanical characteristics of exosomes from osteosarcoma cells explored by 3D-atomic force microscopy. NANOSCALE 2021; 13:6661-6677. [PMID: 33885545 DOI: 10.1039/d0nr09178b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exosomes have recently gained interest as mediators of cell-to-cell communication and as potential biomarkers for cancer and other diseases. They also have potential as nanocarriers for drug delivery systems. Therefore, detailed structural, molecular, and biomechanical characterization of exosomes is of great importance for developing methods to detect and identify the changes associated with the presence of cancer and other diseases. Here, we employed three-dimensional atomic force microscopy (3D-AFM) to reveal the structural and nanomechanical properties of exosomes at high spatial resolution in physiologically relevant conditions. The substructural details of exosomes released from three different cell types were determined based on 3D-AFM force mapping. The resulting analysis revealed the presence of distinct local domains bulging out from the exosome surfaces, which were associated with the exosomal membrane proteins present on the outer surface. The nanomechanical properties of individual exosomes were determined from the 3D-force maps. We found a considerably high elastic modulus, ranging from 50 to 350 MPa, as compared to that obtained for synthetic liposomes. Moreover, malignancy-dependent changes in the exosome mechanical properties were revealed by comparing metastatic and nonmetastatic tumor cell-derived exosomes. We found a clear difference in their Young's modulus values, suggesting differences in their protein profiles and other exosomal contents. Exosomes derived from a highly aggressive and metastatic k-ras-activated human osteosarcoma (OS) cell line (143B) showed a higher Young's modulus than that derived from a nonaggressive and nonmetastatic k-ras-wildtype human OS cell line (HOS). The increased elastic modulus of the 143B cell-derived exosomes was ascribed to the presence of abundant specific proteins responsible for elastic fiber formation as determined by mass spectroscopy and confirmed by western blotting and ELISA. Therefore, we conclude that exosomes derived from metastatic tumor cells carry an exclusive protein content that differs from their nonmetastatic counterparts, and thus they exhibit different mechanical characteristics. Discrimination between metastatic and nonmetastatic malignant cell-derived exosomes would be of great importance for studying exosome biological functions and using them as diagnostic biomarkers for various tumor types. Our findings further suggest that metastatic tumor cells release exosomes that express increased levels of elastic fiber-associated proteins to preserve their softness.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
40
|
Eid J, Greige-Gerges H, Monticelli L, Jraij A. Elastic moduli of lipid membranes: Reproducibility of AFM measures. Chem Phys Lipids 2020; 234:105011. [PMID: 33217391 DOI: 10.1016/j.chemphyslip.2020.105011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/26/2020] [Accepted: 11/15/2020] [Indexed: 11/29/2022]
Abstract
Membrane elastic properties play a major role in membrane remodeling events, such as vesicle fusion and fission. They are also crucial in drug delivery by liposomes. Different experimental techniques are available to measure elastic properties. Among them, atomic force microscopy (AFM) presents the unique advantage of being directly applicable to nano-sized liposomes. Unfortunately, different AFM measures reported in the literature show little agreement among each other and are difficult to compare with measures of bending modulus obtained by other experimental techniques or by molecular simulations. In this work we determine the bending rigidity of Egg PC liposomes in terms of Young modulus via AFM measurements, using two different tip shapes and different cantilever force constants. We interpret the measures using the Hertz and Shell models, and observe a clear dependency of the Young modulus values on the tip properties and on the interpretative theory. The effect of the AFM tip shape is less important than the effect of the cantilever force constant, and the mathematical model has a major effect on the interpretation of the data. The Shell theory provides the closest agreement between AFM data and other experimental data for the membrane bending modulus. Finally, we compare the results to calculations of bending modulus from molecular dynamics simulations of membrane buckles. Simulations provide values of bending modulus consistent with literature data, but the agreement with AFM experiments is reasonable only for some specific experimental conditions.
Collapse
Affiliation(s)
- Jad Eid
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon; Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS / University Claude Bernard Lyon1, Lyon, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS / University Claude Bernard Lyon1, Lyon, France
| | - Alia Jraij
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon.
| |
Collapse
|
41
|
Sakai-Kato K, Yoshida K, Takechi-Haraya Y, Izutsu KI. Physicochemical Characterization of Liposomes That Mimic the Lipid Composition of Exosomes for Effective Intracellular Trafficking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12735-12744. [PMID: 33054220 DOI: 10.1021/acs.langmuir.0c02491] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Exosomes mediate communication between cells in the body by the incorporation and transfer of biological materials. To design an artificial liposome, which would mimic the lipid composition and physicochemical characteristics of naturally occurring exosomes, we first studied the physicochemical properties of exosomes secreted from HepG2 cells. The exosome stiffness obtained by atomic force microscopy was moderate. Some liposomes were then fabricated to mimic the representative reported lipid composition of exosomes. Their physicochemical properties and cellular internalization efficiencies were investigated to optimize the cellular internalization efficiency of the liposomes. A favorable internalization efficiency was obtained by incubating HeLa cells with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol (Chol)/1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) (40/40/20 mol %) liposomes, which have a similar stiffness and zeta potential to exosomes. A dramatic increase in internalization efficiency was demonstrated by adding DOPS to simple DSPC/Chol liposomes. We found that DOPS had a more desirable effect on cellular internalization than its saturated lipid counterpart, 1,2-distearoyl-sn-glycero-3-phospho-l-serine. Furthermore, it was shown that the phosphatidylserine-binding protein, T-cell immunoglobulin mucin protein 4, was largely involved in the intracellular transfer of DSPC/Chol/DOPS liposomes. Thus, DOPS was a key lipid to provide the appropriate stiffness, zeta potential, and membrane surface affinity of the resulting liposome. Our results may help develop efficient drug carriers aiming to internalize active substances into cells.
Collapse
Affiliation(s)
- Kumiko Sakai-Kato
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Kohki Yoshida
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Takechi-Haraya
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| |
Collapse
|
42
|
|
43
|
Takechi-Haraya Y, Matsuoka M, Imai H, Izutsu K, Sakai-Kato K. Detection of material-derived differences in the stiffness of egg yolk phosphatidylcholine-containing liposomes using atomic force microscopy. Chem Phys Lipids 2020; 233:104992. [PMID: 33058816 DOI: 10.1016/j.chemphyslip.2020.104992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/03/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Naturally sourced phospholipids are used in many liposomal pharmaceuticals. The present report describes a method to detect the effects of different egg yolk phosphatidylcholines (EPCs) on liposomal physicochemical properties. Five EPC-containing liposomes were prepared using five different EPCs obtained from different suppliers. There was no significant difference in purity between each EPC. The stiffness of the liposomes was examined via atomic force microscopy (AFM) in relation to the liposomal membrane permeability coefficient of encapsulated calcein after gel filtration, which is indicative of liposomal stability including the release of a hydrophilic drug from a liposome. Although the size of the liposome and the encapsulation efficiency of calcein did not significantly change with the type of EPC used, the liposome stiffness was found to vary depending on the EPC used, and liposomes with a similar stiffness were found to show a similar membrane permeability to calcein. Our results indicate the usefulness of stiffness measurement, using AFM as the analytical method, to detect material-derived differences in EPC-containing liposomes that affect drug release from the liposomes. Because drug release is one of the most important liposomal functions, combining this method with other analytical methods could be useful in selecting material for the development and quality control of EPC-containing liposomes.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Masaki Matsuoka
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Hirotaka Imai
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Kumiko Sakai-Kato
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
44
|
Eshaghi B, Alsharif N, An X, Akiyama H, Brown KA, Gummuluru S, Reinhard BM. Stiffness of HIV-1 Mimicking Polymer Nanoparticles Modulates Ganglioside-Mediated Cellular Uptake and Trafficking. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000649. [PMID: 32999830 PMCID: PMC7509657 DOI: 10.1002/advs.202000649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Indexed: 05/12/2023]
Abstract
The monosialodihexosylganglioside, GM3, and its binding to CD169 (Siglec-1) have been indicated as key factors in the glycoprotein-independent sequestration of the human immunodeficiency virus-1 (HIV-1) in virus-containing compartments (VCCs) in myeloid cells. Here, lipid-wrapped polymer nanoparticles (NPs) are applied as a virus-mimicking model to characterize the effect of core stiffness on NP uptake and intracellular fate triggered by GM3-CD169 binding in macrophages. GM3-functionalized lipid-wrapped NPs are assembled with poly(lactic-co-glycolic) acid (PLGA) as well as with low and high molecular weight polylactic acid (PLAlMW and PLAhMW) cores. The NPs have an average diameter of 146 ± 17 nm and comparable surface properties defined by the self-assembled lipid layer. Due to differences in the glass transition temperature, the Young's modulus (E) differs substantially under physiological conditions between PLGA (E PLGA = 60 ± 32 MPa), PLAlMW (E PLA lMW = 86 ± 25 MPa), and PLAhMW (E PLA hMW = 1.41 ± 0.67 GPa) NPs. Only the stiff GM3-presenting PLAhMW NPs but not the softer PLGA or PLAlMW NPs avoid a lysosomal pathway and localize in tetraspanin (CD9)-positive compartments that resemble VCCs. These observations suggest that GM3-CD169-induced sequestration of NPs in nonlysosomal compartments is not entirely determined by ligand-receptor interactions but also depends on core stiffness.
Collapse
Affiliation(s)
- Behnaz Eshaghi
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Nourin Alsharif
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Xingda An
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Hisashi Akiyama
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Keith A. Brown
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Suryaram Gummuluru
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| |
Collapse
|
45
|
Jõemetsa S, Joyce P, Lubart Q, Mapar M, Celauro E, Agnarsson B, Block S, Bally M, Esbjörner EK, Jeffries GDM, Höök F. Independent Size and Fluorescence Emission Determination of Individual Biological Nanoparticles Reveals that Lipophilic Dye Incorporation Does Not Scale with Particle Size. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9693-9700. [PMID: 32787069 DOI: 10.1021/acs.langmuir.0c00941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advancements in nanoparticle characterization techniques are critical for improving the understanding of how biological nanoparticles (BNPs) contribute to different cellular processes, such as cellular communication, viral infection, as well as various drug-delivery applications. Since BNPs are intrinsically heterogeneous, there is a need for characterization methods that are capable of providing information about multiple parameters simultaneously, preferably at the single-nanoparticle level. In this work, fluorescence microscopy was combined with surface-based two-dimensional flow nanometry, allowing for simultaneous and independent determination of size and fluorescence emission of individual BNPs. In this way, the dependence of the fluorescence emission of the commonly used self-inserting lipophilic dye 3,3'-dioctadecyl-5,5'-di(4-sulfophenyl)oxacarbocyanine (SP-DiO) could successfully be correlated with nanoparticle size for different types of BNPs, including synthetic lipid vesicles, lipid vesicles derived from cellular membrane extracts, and extracellular vesicles derived from human SH-SY5Y cell cultures; all vesicles had a radius, r, of ∼50 nm and similar size distributions. The results demonstrate that the dependence of fluorescence emission of SP-DiO on nanoparticle size varies significantly between the different types of BNPs, with the expected dependence on membrane area, r2, being observed for synthetic lipid vesicles, while a significant weaker dependence on size was observed for BNPs with more complex composition. The latter observation is attributed to a size-dependent difference in membrane composition, which may influence either the optical properties of the dye and/or the insertion efficiency, indicating that the fluorescence emission of this type of self-inserting dye may not be reliable for determining size or size distribution of BNPs with complex lipid compositions.
Collapse
Affiliation(s)
- Silver Jõemetsa
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| | - Paul Joyce
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| | - Quentin Lubart
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden
| | - Mokhtar Mapar
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| | - Emanuele Celauro
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, Umeå University, NUS Målpunkt R, 901 85 Umeå, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden
| | - Gavin D M Jeffries
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Göteborg, Sweden
| |
Collapse
|
46
|
Sharma S, LeClaire M, Wohlschlegel J, Gimzewski J. Impact of isolation methods on the biophysical heterogeneity of single extracellular vesicles. Sci Rep 2020; 10:13327. [PMID: 32770003 PMCID: PMC7414114 DOI: 10.1038/s41598-020-70245-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) have raised high expectations as a novel class of diagnostics and therapeutics. However, variabilities in EV isolation methods and the unresolved structural complexity of these biological-nanoparticles (sub-100 nm) necessitate rigorous biophysical characterization of single EVs. Here, using atomic force microscopy (AFM) in conjunction with direct stochastic optical reconstruction microscopy (dSTORM), micro-fluidic resistive pore sizing (MRPS), and multi-angle light scattering (MALS) techniques, we compared the size, structure and unique surface properties of breast cancer cell-derived small EVs (sEV) obtained using four different isolation methods. AFM and dSTORM particle size distributions showed coherent unimodal and bimodal particle size populations isolated via centrifugation and immune-affinity methods respectively. More importantly, AFM imaging revealed striking differences in sEV nanoscale morphology, surface nano-roughness, and relative abundance of non-vesicles among different isolation methods. Precipitation-based isolation method exhibited the highest particle counts, yet nanoscale imaging revealed the additional presence of aggregates and polymeric residues. Together, our findings demonstrate the significance of orthogonal label-free surface characteristics of single sEVs, not discernable via conventional particle sizing and counts alone. Quantifying key nanoscale structural characteristics of sEVs, collectively termed ‘EV-nano-metrics’ enhances the understanding of the complexity and heterogeneity of sEV isolates, with broad implications for EV-analyte based research and clinical use.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, USA. .,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Michael LeClaire
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Gimzewski
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
47
|
Vorselen D, Piontek MC, Roos WH, Wuite GJL. Mechanical Characterization of Liposomes and Extracellular Vesicles, a Protocol. Front Mol Biosci 2020; 7:139. [PMID: 32850949 PMCID: PMC7396484 DOI: 10.3389/fmolb.2020.00139] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Both natural as well as artificial vesicles are of tremendous interest in biology and nanomedicine. Small vesicles (<200 nm) perform essential functions in cell biology and artificial vesicles (liposomes) are used as drug delivery vehicles. Atomic Force Microscopy (AFM) is a powerful technique to study the structural properties of these vesicles. AFM is a well-established technique for imaging at nanometer resolution and for mechanical measurements under physiological conditions. Here, we describe the procedure of AFM imaging and force spectroscopy on small vesicles. We discuss how to image vesicles with minimal structural disturbance, and how to analyze the data for accurate size and shape measurements. In addition, we describe the procedure for performing nanoindentations on vesicles and the subsequent data analysis including mechanical models used for data interpretation.
Collapse
Affiliation(s)
- Daan Vorselen
- Fysica Van Levende Systemen and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Melissa C. Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Gijs J. L. Wuite
- Fysica Van Levende Systemen and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
48
|
Ridolfi A, Brucale M, Montis C, Caselli L, Paolini L, Borup A, Boysen AT, Loria F, van Herwijnen MJC, Kleinjan M, Nejsum P, Zarovni N, Wauben MHM, Berti D, Bergese P, Valle F. AFM-Based High-Throughput Nanomechanical Screening of Single Extracellular Vesicles. Anal Chem 2020; 92:10274-10282. [DOI: 10.1021/acs.analchem.9b05716] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea Ridolfi
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via P. Gobetti 101, 40129 Bologna, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Marco Brucale
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Costanza Montis
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Lucrezia Caselli
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Lucia Paolini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Anne Borup
- Department of Clinical Medicine, Faculty of Health, Aarhus University, P. Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Anders T. Boysen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, P. Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Francesca Loria
- HansaBiomed Life Sciences, Mäealuse 2/1, 12618 Tallinn, Estonia
| | - Martijn J. C. van Herwijnen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Marije Kleinjan
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, P. Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Natasa Zarovni
- HansaBiomed Life Sciences, Mäealuse 2/1, 12618 Tallinn, Estonia
| | - Marca H. M. Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Debora Berti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Paolo Bergese
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Francesco Valle
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
49
|
Zhdanov VP. Ligand-receptor-mediated attachment of lipid vesicles to a supported lipid bilayer. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2020; 49:395-400. [PMID: 32556429 PMCID: PMC7351846 DOI: 10.1007/s00249-020-01441-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
The interaction of exosomes (cell-secreted [Formula: see text]100 nm-sized extracellular vesicles) or membrane-enveloped virions with cellular lipid membranes is often mediated by relatively weak ligand-receptor bonds. Interactions of this type can be studied using vesicles and observing their attachment to receptors located in a lipid bilayer formed at a solid surface. The contact region between a vesicle and the supported lipid bilayer and accordingly the number of ligand-receptor pairs there can be increased by deforming a vesicle. Herein, I (i) estimate theoretically the corresponding deformation energy assuming a disk-like or elongated shape of vesicles, (ii) present the equations allowing one to track such deformations by employing total internal reflection fluorescence microscopy and surface plasmon resonance, and (iii) briefly discuss some related experimental studies.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
50
|
Rodriguez-Quijada C, Dahl JB. Non-contact microfluidic mechanical property measurements of single apoptotic bodies. Biochim Biophys Acta Gen Subj 2020; 1865:129657. [PMID: 32512171 DOI: 10.1016/j.bbagen.2020.129657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cells exchange information by secreting micro- and nanosized extracellular vesicles (EVs), ranging from exosomes (30-100 nm) to apoptotic bodies (ABs, 1-5 μm). There is still much to understand about fundamental EV biological, physical, and chemical properties before clinical applications can be developed. EV mechanical properties have only been measured with atomic force microscopy (AFM) with its problematic adhesion and hard substrate effects. To understand EV mechanical behavior in less extreme mechanical conditions relevant to blood flow and many soft tissue environments, a non-contact measurement technique is needed. METHODS We measured the mechanical properties of single microscale ABs derived from human blood plasma using non-contact microfluidics. EVs were gently stretched in extensional flow, similar to a traditional tensile test, and a linear mechanical model was applied to estimate mechanical stiffnesses from the observed stretching. RESULTS The effective shear elastic modulus of ABs in non-contact flow conditions is approximately 5.6 ± 0.5 Pa, 7 orders of magnitude lower than previously reported AFM-measured biological exosome stiffnesses and 200 times smaller than suspended cells. CONCLUSIONS Apoptotic bodies are very soft in fluid environments and exhibit lower effective stiffnesses than suspended cells. By measuring ABs in a natural fluid environment and low-force regime without hard probes and surfaces, we achieved closer agreement with linear mechanical theory and therefore more accurate stiffness measurements. GENERAL SIGNIFICANCE AFM manufacturers and users should consider implementing new mechanical models to interpret AFM force indentation curves so that accurate extracellular vesicle mechanical properties can be extracted.
Collapse
Affiliation(s)
| | - Joanna B Dahl
- Engineering Department, University of Massachusetts Boston, Boston, MA 02125, United States of America.
| |
Collapse
|