1
|
Tsvetkova IB, Roos N, Miller LM, DiNunno N, Conrady M, Ebert D, Lilie H, Scott LW, Jarrold MF, Wang JCY, Simon C, Dragnea B. Genetically Engineered, Multichromophore Virus-Like Nanoparticles with Ultranarrow Distribution of Emission Intensity. ACS NANO 2025; 19:479-487. [PMID: 39752260 PMCID: PMC11974147 DOI: 10.1021/acsnano.4c10039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Variance in the properties of optical mesoscopic probes is often a limiting factor in applications. In the thermodynamic limit, the smaller the probe, the larger the relative variance. However, specific viral protein cages can assemble efficiently outside the bounds of statistical fluctuations at equilibrium through a process that is characterized by intrinsic quality-control and self-limiting capabilities. In this paper, an approach is described that leverages stoichiometric and structural accuracy in the murine polyoma virus capsid assembly to demonstrate bright, narrowly distributed fluorescence intensity from multichromophore particles that surpass state-of-the-art fluorescent nanosphere probes. Charge-detection mass spectrometry analysis demonstrated that proteins resulting from the fusion of superfolding green fluorescent protein (sfGFP) murine polyoma virus coat proteins self-assemble in vitro into virus-like particles that have similar stoichiometry as virus-like particles formed from wild-type virus coat proteins. Single-particle analysis by total internal reflection fluorescence microscopy provided evidence for a narrow fluorescence intensity that reflects stoichiometric accuracy of the construct.
Collapse
Affiliation(s)
- Irina B Tsvetkova
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nora Roos
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Elfriede Aulhorn-Str. 06, Tuebingen 72076, Germany
| | - Lohra M Miller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nadia DiNunno
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Marcel Conrady
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Elfriede Aulhorn-Str. 06, Tuebingen 72076, Germany
| | - Domenic Ebert
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Elfriede Aulhorn-Str. 06, Tuebingen 72076, Germany
| | - Hauke Lilie
- Institute for Biotechnology and Biochemistry/Technical Biochemistry, Martin-Luther-University Halle-Wittemberg, Halle 06120, Germany
| | - Liam W Scott
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Claudia Simon
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Elfriede Aulhorn-Str. 06, Tuebingen 72076, Germany
- Boehringer Ingelheim Pharma GmbH & Ko. KG, Virus Therapeutics Center, Birkendorfer Str. 65, Biberach an der Riss 88397, Germany
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
3
|
Gee M, Atai K, Coller HA, Yeates TO, Castells-Graells R. Designed fluorescent protein cages as fiducial markers for targeted cell imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582585. [PMID: 38464160 PMCID: PMC10925312 DOI: 10.1101/2024.02.28.582585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding how proteins function within their cellular environments is essential for cellular biology and biomedical research. However, current imaging techniques exhibit limitations, particularly in the study of small complexes and individual proteins within cells. Previously, protein cages have been employed as imaging scaffolds to study purified small proteins using cryo-electron microscopy (cryo-EM). Here we demonstrate an approach to deliver designed protein cages - endowed with fluorescence and targeted binding properties - into cells, thereby serving as fiducial markers for cellular imaging. We used protein cages with anti-GFP DARPin domains to target a mitochondrial protein (MFN1) expressed in mammalian cells, which was genetically fused to GFP. We demonstrate that the protein cages can penetrate cells, are directed to specific subcellular locations, and are detectable with confocal microscopy. This innovation represents a milestone in developing tools for in-depth cellular exploration, especially in conjunction with methods such as cryo-correlative light and electron microscopy (cryo-CLEM).
Collapse
Affiliation(s)
- Morgan Gee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
| | - Kaiser Atai
- Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA 90095
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA 90095
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA 90095
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA 90095
| | | |
Collapse
|
4
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
5
|
Esquirol L, McNeale D, Venturi M, Sainsbury F. Production and Purification of Virus-Like Particles by Transient Expression in Plants. Methods Mol Biol 2023; 2671:387-402. [PMID: 37308657 DOI: 10.1007/978-1-0716-3222-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transient expression in plants has become a useful production system for virus-like particle (VLP) expression. High yields and flexible approaches to assembling complex VLPs, combine with ease of scale-up and inexpensive reagents to provide an attractive method for recombinant protein expression in general. Plants have demonstrated excellent capacity for the assembly and production of protein cages for use in vaccine design and nanotechnology. Furthermore, numerous virus structures have now been determined using plant-expressed VLPs, showing the utility of this approach in structural virology. Transient protein expression in plants uses common microbiology techniques, leading to a straightforward transformation procedure that does not result in stable transgenesis. In this chapter, we aim to provide a generic protocol for transient expression of VLPs in Nicotiana benthamiana using soil-free plant cultivation and a simple vacuum infiltration procedure, along with methodology for purifying VLPs from plant leaves.
Collapse
Affiliation(s)
- Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Micol Venturi
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
6
|
McNeale D, Dashti N, Cheah LC, Sainsbury F. Protein cargo encapsulation by
virus‐like
particles: Strategies and applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1869. [PMID: 36345849 DOI: 10.1002/wnan.1869] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Viruses and the recombinant protein cages assembled from their structural proteins, known as virus-like particles (VLPs), have gained wide interest as tools in biotechnology and nanotechnology. Detailed structural information and their amenability to genetic and chemical modification make them attractive systems for further engineering. This review describes the range of non-enveloped viruses that have been co-opted for heterologous protein cargo encapsulation and the strategies that have been developed to drive encapsulation. Spherical capsids of a range of sizes have been used as platforms for protein cargo encapsulation. Various approaches, based on native and non-native interactions between the cargo proteins and inner surface of VLP capsids, have been devised to drive encapsulation. Here, we outline the evolution of these approaches, discussing their benefits and limitations. Like the viruses from which they are derived, VLPs are of interest in both biomedical and materials applications. The encapsulation of protein cargo inside VLPs leads to numerous uses in both fundamental and applied biocatalysis and biomedicine, some of which are discussed herein. The applied science of protein-encapsulating VLPs is emerging as a research field with great potential. Developments in loading control, higher order assembly, and capsid optimization are poised to realize this potential in the near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery Griffith University Nathan Queensland Australia
| | - Noor Dashti
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| | - Li Chen Cheah
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery Griffith University Nathan Queensland Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| |
Collapse
|
7
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
8
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Byrne M, Kashyap A, Esquirol L, Ranson N, Sainsbury F. The structure of a plant-specific partitivirus capsid reveals a unique coat protein domain architecture with an intrinsically disordered protrusion. Commun Biol 2021; 4:1155. [PMID: 34615994 PMCID: PMC8494798 DOI: 10.1038/s42003-021-02687-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Persistent plant viruses may be the most common viruses in wild plants. A growing body of evidence for mutualism between such viruses and their hosts, suggests that they play an important role in ecology and agriculture. Here we present the capsid structure of a plant-specific partitivirus, Pepper cryptic virus 1, at 2.9 Å resolution by Cryo-EM. Structural features, including the T = 1 arrangement of 60 coat protein dimers, are shared with fungal partitiviruses and the picobirnavirus lineage of dsRNA viruses. However, the topology of the capsid is markedly different with protrusions emanating from, and partly comprising, the binding interface of coat protein dimers. We show that a disordered region at the apex of the protrusion is not required for capsid assembly and represents a hypervariable site unique to, and characteristic of, the plant-specific partitiviruses. These results suggest a structural basis for the acquisition of additional functions by partitivirus coat proteins that enables mutualistic relationships with diverse plant hosts.
Collapse
Affiliation(s)
- Matthew Byrne
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Aseem Kashyap
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Neil Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organization (CSIRO), Brisbane, QLD, 4001, Australia.
| |
Collapse
|
10
|
Hagan MF, Grason GM. Equilibrium mechanisms of self-limiting assembly. REVIEWS OF MODERN PHYSICS 2021; 93:025008. [PMID: 35221384 PMCID: PMC8880259 DOI: 10.1103/revmodphys.93.025008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the spontaneous organization of multiple subunits (e.g. macromolecules, particles) into ordered multi-unit structures. The vast majority of equilibrium assembly processes give rise to two states: one consisting of dispersed disassociated subunits, and the other, a bulk-condensed state of unlimited size. This review focuses on the more specialized class of self-limiting assembly, which describes equilibrium assembly processes resulting in finite-size structures. These systems pose a generic and basic question, how do thermodynamic processes involving non-covalent interactions between identical subunits "measure" and select the size of assembled structures? In this review, we begin with an introduction to the basic statistical mechanical framework for assembly thermodynamics, and use this to highlight the key physical ingredients that ensure equilibrium assembly will terminate at finite dimensions. Then, we introduce examples of self-limiting assembly systems, and classify them within this framework based on two broad categories: self-closing assemblies and open-boundary assemblies. These include well-known cases in biology and synthetic soft matter - micellization of amphiphiles and shell/tubule formation of tapered subunits - as well as less widely known classes of assemblies, such as short-range attractive/long-range repulsive systems and geometrically-frustrated assemblies. For each of these self-limiting mechanisms, we describe the physical mechanisms that select equilibrium assembly size, as well as potential limitations of finite-size selection. Finally, we discuss alternative mechanisms for finite-size assemblies, and draw contrasts with the size-control that these can achieve relative to self-limitation in equilibrium, single-species assemblies.
Collapse
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Thuenemann EC, Le DHT, Lomonossoff GP, Steinmetz NF. Bluetongue Virus Particles as Nanoreactors for Enzyme Delivery and Cancer Therapy. Mol Pharm 2021; 18:1150-1156. [PMID: 33566625 DOI: 10.1021/acs.molpharmaceut.0c01053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The side effects of chemotherapy can be reduced by targeting tumor cells with an enzyme (or the corresponding gene) that converts a nontoxic prodrug into a toxic drug inside the tumor cells, also killing the surrounding tumor cells via the bystander effect. Viruses are the most efficient gene delivery vehicles because they have evolved to transfer their own nucleic acids into cells, but their efficiency must be balanced against the risks of infection, the immunogenicity of nucleic acids, and the potential for genomic integration. We therefore tested the effectiveness of genome-free virus-like particles (VLPs) for the delivery of Herpes simplex virus 1 thymidine kinase (HSV1-TK), the most common enzyme used in prodrug conversion therapy. HSV1-TK is typically delivered as a gene, but in the context of VLPs, it must be delivered as a protein. We constructed VLPs and smaller core-like particles (CLPs) based on Bluetongue virus, with HSV1-TK fused to the inner capsid protein VP3. TK-CLPs and TK-VLPs could be produced in large quantities in plants. The TK-VLPs killed human glioblastoma cells efficiently in the presence of ganciclovir, with an IC50 value of 14.8 μM. Conversely, CLPs were ineffective because they remained trapped in the endosomal compartment, in common with many synthetic nanoparticles. VLPs are advantageous because they can escape from endosomes and therefore allow HSV1-TK to access the cytosolic adenosine triphosphate (ATP) required for the phosphorylation of ganciclovir. The VLP delivery strategy of TK protein therefore offers a promising new modality for the treatment of cancer with systemic prodrugs such as ganciclovir.
Collapse
Affiliation(s)
- Eva C Thuenemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Colney, United Kingdom
| | - Duc H T Le
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513 (STO 3.25), 5600 MB Eindhoven, The Netherlands.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Colney, United Kingdom
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Pan H, Shi H, Fu P, Shi P, Yang J. Liposomal Dendritic Cell Vaccine in Breast Cancer Immunotherapy. ACS OMEGA 2021; 6:3991-3998. [PMID: 33585776 PMCID: PMC7876850 DOI: 10.1021/acsomega.0c05924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 05/24/2023]
Abstract
Cancer vaccine is well recognized as a promising approach for immunotherapy of cancers. Since dendritic cells (DCs) are capable of processing and presenting antigens to initiate the immune response cascade, the development of DC vaccines is considered as a good choice for the treatment of cancer. Herein, a folic acid (FA)-modified liposome was constructed and loaded with chlorin e6 (Ce6) as a DC vaccine (FA-Lipo-Ce6). It was suggested that the loaded Ce6 within FA-Lipo-Ce6 can be activated under laser irradiation. The photodynamic therapy (PDT) of Ce6 was expected to create on-demand reactive oxygen species (ROS) in situ, which causes cell death and trigger the exposure of tumor-associated antigen (TAA). In addition, the produced ROS can mimic the inflammatory responses for the employment of DC for better antigen presentation and immune response. Most importantly, the employment of DC can recognize the exposed TAA to stimulate DC for effective vaccination in situ. Our results demonstrated the powerful capacity of FA-Lipo-Ce6 to induce DC activation, leading to effective suppression of the growth of breast cancers.
Collapse
|
13
|
Hu P, An J, Faulkner MM, Wu H, Li Z, Tian X, Giraldo JP. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS NANO 2020; 14:7970-7986. [PMID: 32628442 DOI: 10.1021/acsnano.9b09178] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.
Collapse
Affiliation(s)
- Peiguang Hu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Jing An
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Maquela M Faulkner
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Steinmetz NF, Lim S, Sainsbury F. Protein cages and virus-like particles: from fundamental insight to biomimetic therapeutics. Biomater Sci 2020; 8:2771-2777. [PMID: 32352101 PMCID: PMC8085892 DOI: 10.1039/d0bm00159g] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein cages (viral and non-viral) found in nature have evolved for a variety of purposes and are found in all kingdoms of life. The main functions of these nanoscale compartments are the protection and delivery of nucleic acids e.g. virus capsids, or the enrichment and sequestration of metabolons e.g. bacterial microcompartments. This review focuses on recent developments of protein cages for use in immunotherapy and therapeutic delivery. In doing so, we highlight the unique ways in which protein cages have informed on fundamental principles governing bio-nano interactions. With the enormous existing design space among naturally occurring protein cages, there is still much to learn from studying them as biomimetic particles.
Collapse
Affiliation(s)
- Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, CA 92093, USA and Department of Bioengineering, University of California, San Diego, CA 92093, USA and Department of Radiology, University of California, San Diego, CA 92093, USA and Moores Cancer Center, University of California, San Diego, CA 92093, USA and Center for Nano-ImmunoEngineering, University of California, San Diego, CA 92093, USA
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore and NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637457, Singapore
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia. and Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD 4001, Australia
| |
Collapse
|
15
|
Mao M, Liu S, Zhou Y, Wang G, Deng J, Tian L. Nanostructured lipid carrier delivering chlorins e6 as in situ dendritic cell vaccine for immunotherapy of gastric cancer. JOURNAL OF MATERIALS RESEARCH 2020; 35:3257-3264. [PMID: 33424109 PMCID: PMC7785780 DOI: 10.1557/jmr.2020.227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 05/05/2023]
Abstract
The recent scientific progress has shown the promising effect of the vaccine in immunotherapy of cancer, which relies on the antigen processing/presentation capability of dendritic cells (DCs). As a result, cancer vaccines targeting DC, which also named as DC vaccine, was a hot-spot in vaccine development. Herein, a nanostructured lipid carrier (NLC) was employed to load chlorin e6 (Ce6) to serve as a potential in situ DC vaccine (NLC/Ce6) for effective immunotherapy of gastric cancer. Taking advantage of the photodynamic effect of Ce6 to generate reactive oxygen species (ROS) under laser irradiation, the NLC/Ce6 was able to trigger cell death and expose tumor-associated antigen (TAA). Moreover, mimicking the natural inflammatory response, the ROS can also recruit the DC for the effective processing/presentation of the in situ exposed TAA. As expected, we observed strong capability DC vaccination efficacy of this platform to effectively inhibit the growth of both primary and distant gastric tumors.
Collapse
Affiliation(s)
- Mao Mao
- Department of Gastric Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021 China
| | - Senfeng Liu
- Department of Gastric Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021 China
| | - Yiming Zhou
- Department of Gastric Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021 China
| | - Gonghe Wang
- Department of Gastric Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021 China
| | - Jianping Deng
- Department of Gastric Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021 China
| | - Lei Tian
- Department of Gastric Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021 China
| |
Collapse
|
16
|
Abstract
Capsid-based virus particles are widely engineered as viral nanoparticles and virus-like nanoparticles. The highly organized and uniform capsid structures make them ideal candidates for both in vitro and in vivo applications such as therapeutic delivery vehicles or enzymatic nanoreactors. Viruses have adapted to naturally infect a wide variety of organisms making their production achievable in various expression systems from bacterial to plants. Viral capsids can be modified externally and internally to suit the final application. The wide range of possible applications, ease of production in the system of choice, and customizable modification of viral capsids makes them an attractive choice in the field of nanotechnology. In this chapter we aim to provide a generic protocol for the purification and characterization of virus-derived nanoparticles and methodology for chemically labelling them to monitor their uptake in mammalian cells.
Collapse
|
17
|
Rutkowska DA, Mokoena NB, Tsekoa TL, Dibakwane VS, O’Kennedy MM. Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness. BMC Vet Res 2019; 15:432. [PMID: 31796116 PMCID: PMC6892175 DOI: 10.1186/s12917-019-2184-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.
Collapse
Affiliation(s)
| | - Nobalanda B. Mokoena
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | | - Vusi S. Dibakwane
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | |
Collapse
|
18
|
Tsvetkova IB, Anil Sushma A, Wang JCY, Schaich WL, Dragnea B. Radiation Brightening from Virus-like Particles. ACS NANO 2019; 13:11401-11408. [PMID: 31335115 DOI: 10.1021/acsnano.9b04786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Concentration quenching is a well-known challenge in many fluorescence imaging applications. Here, we show that the optical emission from hundreds of chromophores confined onto the surface of a 28 nm diameter virus particle can be recovered under pulsed irradiation. We have found that as one increases the number of chromophores tightly bound to the virus surface, fluorescence quenching ensues at first, but when the number of chromophores per particle is nearing the maximum number of surface sites allowable, a sudden brightening of the emitted light and a shortening of the excited-state lifetime are observed. This radiation brightening occurs only under short pulse excitation; steady-state excitation is characterized by conventional concentration quenching for any number of chromophores per particle. The observed suppression of fluorescence quenching is consistent with efficient, collective relaxation at room temperature. Interestingly, radiation brightening disappears when the emitters' spatial and/or dynamic heterogeneity is increased, suggesting that the template structural properties may play a role that could be instrumental in developing virus-enabled imaging vectors that have optical properties qualitatively different than those of state-of-the-art biophotonic agents.
Collapse
|
19
|
Rybicki EP. Plant molecular farming of virus‐like nanoparticles as vaccines and reagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1587. [DOI: 10.1002/wnan.1587] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology University of Cape Town Cape Town South Africa
| |
Collapse
|
20
|
Ni J, Sun Y, Song J, Zhao Y, Gao Q, Li X. Artificial Cell-Mediated Photodynamic Therapy Enhanced Anticancer Efficacy through Combination of Tumor Disruption and Immune Response Stimulation. ACS OMEGA 2019; 4:12727-12735. [PMID: 31460395 PMCID: PMC6682153 DOI: 10.1021/acsomega.9b01881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
Recent studies have identified photodynamic therapy (PDT) as a promising approach for cancer treatment. Here, in this study, we have constructed cancer cell membrane (CCM)-coated silica nanoparticles (SIL) as an artificial cell carrier (CCM/SIL) to effectively deliver chlorin e6 (Ce6), a commonly adopted photodynamic reagent (CCM/SIL/Ce6), to achieve enhanced PDT of cancer. In addition, apart from the generally recognized cytotoxicity induced by reactive oxygen species (ROS), our study also revealed that ROS could further potentiate the loss of intercellular junctions and integrity disruption as a result of down-regulation of VE-cadherin and CD31. Consequently, dendritic cells (DCs) were more readily accumulated to the tumor tissue and became maturated, which secreted tumor necrosis factor-α and interleukin-12 (IL-12) to trigger the following immune responses. Our work not only explored the anticancer feasibility of a new system but also demonstrated the underlining mechanisms responsible for PDT-induced anticancer effects, which offers a new perspective to employ and improve the efficacy of PDT and related systems.
Collapse
Affiliation(s)
- Jiang Ni
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Ying Sun
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Jinfang Song
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Yiqing Zhao
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Qiufang Gao
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Xia Li
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| |
Collapse
|
21
|
Thang DC, Wang Z, Lu X, Xing B. Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective. Theranostics 2019; 9:3308-3340. [PMID: 31244956 PMCID: PMC6567964 DOI: 10.7150/thno.33888] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology-assisted spatiotemporal manipulation of biological events holds great promise in advancing the practice of precision medicine in healthcare systems. The progress in internal and/or external stimuli-responsive nanoplatforms for highly specific cellular regulations and theranostic controls offer potential clinical translations of the revolutionized nanomedicine. To successfully implement this new paradigm, the emerging light-responsive nanoregulators with unparalleled precise cell functions manipulation have gained intensive attention, providing UV-Vis light-triggered photocleavage or photoisomerization studies, as well as near-infrared (NIR) light-mediated deep-tissue applications for stimulating cellular signal cascades and treatment of mortal diseases. This review discusses current developments of light-activatable nanoplatforms for modulations of various cellular events including neuromodulations, stem cell monitoring, immunomanipulation, cancer therapy, and other biological target intervention. In summary, the propagation of light-controlled nanomedicine would place a bright prospect for future medicine.
Collapse
Affiliation(s)
- Do Cong Thang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xiaoling Lu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bengang Xing
- Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510000, China
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
22
|
Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, Celik E, Leblanc RM. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1871:419-433. [PMID: 31034927 PMCID: PMC6549504 DOI: 10.1016/j.bbcan.2019.04.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/27/2022]
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide, and one of the deadliest after lung cancer. Currently, standard methods for cancer therapy including BC are surgery followed by chemotherapy or radiotherapy. However, both chemotherapy and radiotherapy often fail to treat BC due to the side effects that these therapies incur in normal tissues and organs. In recent years, various nanoparticles (NPs) have been discovered and synthesized to be able to selectively target tumor cells without causing any harm to the healthy cells or organs. Therefore, NPs-mediated targeted drug delivery systems (DDS) have become a promising technique to treat BC. In addition to their selectivity to target tumor cells and reduce side effects, NPs have other unique properties which make them desirable for cancer treatment such as low toxicity, good compatibility, ease of preparation, high photoluminescence (PL) for bioimaging in vivo, and high loadability of drugs due to their tunable surface functionalities. In this study, we summarize with a critical analysis of the most recent therapeutic studies involving various NPs-mediated DDS as alternatives for the traditional treatment approaches for BC. It will shed light on the significance of NPs-mediated DDS and serve as a guide to seeking for the ideal methodology for future targeted drug delivery for an efficient BC treatment.
Collapse
Affiliation(s)
- Piumi Y Liyanage
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Allal Ouhtit
- Department of Biological & Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Elif S Seven
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Cagri Y Oztan
- Department of Aerospace and Mechanical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Emrah Celik
- Department of Aerospace and Mechanical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
23
|
Berardi A, Baldelli Bombelli F, Thuenemann EC, Lomonossoff GP. Viral nanoparticles can elude protein barriers: exploiting rather than imitating nature. NANOSCALE 2019; 11:2306-2316. [PMID: 30662985 DOI: 10.1039/c8nr09067j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein-corona formation in body fluids and/or entrapment of nanoparticles in protein matrices (e.g. food and mucus) can hinder the delivery of nanoparticles, irrespective of the route of administration. Here we demonstrate that certain viral nanoparticles (VNPs) can evade the adhesion of a broad panel of macromolecules from several biological milieus. We also show that the permeability of VNPs through mucin gels is far superior to that of synthetic nanoparticles. The non-sticky nature of VNPs implies that they will be able to readily cross most non-specific protein and glycoprotein barriers encountered, ubiquitously, upon administration through mucosal, and non-mucosal routes.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| | | | | | | |
Collapse
|
24
|
Virus-like nanoparticles: emerging tools for targeted cancer diagnostics and therapeutics. Ther Deliv 2018; 8:1019-1021. [PMID: 29125065 DOI: 10.4155/tde-2017-0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
25
|
Chen J, Lansac Y, Tresset G. Interactions between the Molecular Components of the Cowpea Chlorotic Mottle Virus Investigated by Molecular Dynamics Simulations. J Phys Chem B 2018; 122:9490-9498. [DOI: 10.1021/acs.jpcb.8b08026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingzhi Chen
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Yves Lansac
- GREMAN, UMR 7347, CNRS, Université de Tours, 37200 Tours, France
| | - Guillaume Tresset
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
26
|
Empty Turnip yellow mosaic virus capsids as delivery vehicles to mammalian cells. Virus Res 2018; 252:13-21. [DOI: 10.1016/j.virusres.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022]
|
27
|
Zeng C, Rodriguez Lázaro G, Tsvetkova IB, Hagan MF, Dragnea B. Defects and Chirality in the Nanoparticle-Directed Assembly of Spherocylindrical Shells of Virus Coat Proteins. ACS NANO 2018; 12:5323-5332. [PMID: 29694012 PMCID: PMC6202266 DOI: 10.1021/acsnano.8b00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Virus coat proteins of small isometric plant viruses readily assemble into symmetric, icosahedral cages encapsulating noncognate cargo, provided the cargo meets a minimal set of chemical and physical requirements. While this capability has been intensely explored for certain virus-enabled nanotechnologies, additional applications require lower symmetry than that of an icosahedron. Here, we show that the coat proteins of an icosahedral virus can efficiently assemble around metal nanorods into spherocylindrical closed shells with hexagonally close-packed bodies and icosahedral caps. Comparison of chiral angles and packing defects observed by in situ atomic force microscopy with those obtained from molecular dynamics models offers insight into the mechanism of growth, and the influence of stresses associated with intrinsic curvature and assembly pathways.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | | | - Irina B Tsvetkova
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Michael F Hagan
- Department of Physics , Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Bogdan Dragnea
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
28
|
Dashti NH, Abidin RS, Sainsbury F. Programmable In Vitro Coencapsidation of Guest Proteins for Intracellular Delivery by Virus-like Particles. ACS NANO 2018; 12:4615-4623. [PMID: 29697964 DOI: 10.1021/acsnano.8b01059] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages are being developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both in vitro and in vivo cell engineering. However, there is a lack of bionanotechnology platforms that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for in vivo self-sorting of cargo-linked capsomeres of murine polyomavirus (MPyV) that enables controlled encapsidation of guest proteins by in vitro self-assembly. Using Förster resonance energy transfer, we demonstrate the flexibility in this system to support coencapsidation of multiple proteins. Complementing these ensemble measurements with single-particle analysis by super-resolution microscopy shows that the stochastic nature of coencapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable coencapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.
Collapse
Affiliation(s)
- Noor H Dashti
- Australian Institute of Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Rufika S Abidin
- Australian Institute of Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Frank Sainsbury
- Australian Institute of Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| |
Collapse
|
29
|
Wang Y, Sun S, Zhang Z, Shi D. Nanomaterials for Cancer Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705660. [PMID: 29504159 DOI: 10.1002/adma.201705660] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/28/2017] [Indexed: 05/21/2023]
Abstract
Medical science has recently advanced to the point where diagnosis and therapeutics can be carried out with high precision, even at the molecular level. A new field of "precision medicine" has consequently emerged with specific clinical implications and challenges that can be well-addressed by newly developed nanomaterials. Here, a nanoscience approach to precision medicine is provided, with a focus on cancer therapy, based on a new concept of "molecularly-defined cancers." "Next-generation sequencing" is introduced to identify the oncogene that is responsible for a class of cancers. This new approach is fundamentally different from all conventional cancer therapies that rely on diagnosis of the anatomic origins where the tumors are found. To treat cancers at molecular level, a recently developed "microRNA replacement therapy" is applied, utilizing nanocarriers, in order to regulate the driver oncogene, which is the core of cancer precision therapeutics. Furthermore, the outcome of the nanomediated oncogenic regulation has to be accurately assessed by the genetically characterized, patient-derived xenograft models. Cancer therapy in this fashion is a quintessential example of precision medicine, presenting many challenges to the materials communities with new issues in structural design, surface functionalization, gene/drug storage and delivery, cell targeting, and medical imaging.
Collapse
Affiliation(s)
- Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Donglu Shi
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
- The Materials Science and Engineering Program, College of Engineering and Applied Science, 2901 Woodside Drive, Cincinnati, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
30
|
Ai X, Hu M, Wang Z, Zhang W, Li J, Yang H, Lin J, Xing B. Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications. Bioconjug Chem 2018; 29:838-851. [PMID: 29509403 DOI: 10.1021/acs.bioconjchem.8b00103] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In terms of the extremely small size and large specific surface area, nanomaterials often exhibit unusual physical and chemical properties, which have recently attracted considerable attention in bionanotechnology and nanomedicine. Currently, the extensive usage of nanotechnology in medicine holds great potential for precise diagnosis and effective therapeutics of various human diseases in clinical practice. However, a detailed understanding regarding how nanomedicine interacts with the intricate environment in complex living systems remains a pressing and challenging goal. Inspired by the diversified membrane structures and functions of natural prototypes, research activities on biomimetic and bioinspired membranes, especially for those cloaking nanosized platforms, have increased exponentially. By taking advantage of the flexible synthesis and multiple functionality of nanomaterials, a variety of unique nanostructures including inorganic nanocrystals and organic polymers have been widely devised to substantially integrate with intrinsic biomoieties such as lipids, glycans, and even cell and bacteria membrane components, which endow these abiotic nanomaterials with specific biological functionalities for the purpose of detailed investigation of the complicated interactions and activities of nanomedicine in living bodies, including their immune response activation, phagocytosis escape, and subsequent clearance from vascular system. In this review, we summarize the strategies established recently for the development of biomimetic membrane-cloaked nanoplatforms derived from inherent host cells (e.g., erythrocytes, leukocytes, platelets, and exosomes) and invasive pathogens (e.g., bacteria and viruses), mainly attributed to their versatile membrane properties in biological fluids. Meanwhile, the promising biomedical applications based on nanoplatforms inspired by diverse moieties, such as selective drug delivery in targeted sites and effective vaccine development for disease prevention, have also been outlined. Finally, the potential challenges and future prospects of the biomimetic membrane-cloaked nanoplatforms are also discussed.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Wenmin Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Juan Li
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Huanghao Yang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
31
|
Thuenemann EC, Lomonossoff GP. Delivering Cargo: Plant-Based Production of Bluetongue Virus Core-Like and Virus-Like Particles Containing Fluorescent Proteins. Methods Mol Biol 2018; 1776:319-334. [PMID: 29869252 DOI: 10.1007/978-1-4939-7808-3_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter provides a practical guide to the in planta transient production of bluetongue virus-like particles containing a fluorescent cargo protein. Bluetongue virus (BTV) particles are icosahedral, multishelled entities of a relatively large size. Heterologous expression of the four main structural proteins of BTV results in the assembly of empty virus-like particles which resemble the native virus externally, but are devoid of nucleic acid. The space within the particles is sufficient to allow incorporation of relatively large cargo proteins, such as green fluorescent protein (GFP), by genetic fusion to the structural protein VP3. The method described utilizes the pEAQ vectors for high-level transient expression of such particles in Nicotiana benthamiana.
Collapse
Affiliation(s)
- Eva C Thuenemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
32
|
Angelescu DG. Role of polyion length in the co-assembly of stoichiometric viral-like nanoparticles. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017; 5:biomedicines5030044. [PMID: 28758953 PMCID: PMC5618302 DOI: 10.3390/biomedicines5030044] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Plant-made biopharmaceuticals have long been considered a promising technology for providing inexpensive and efficacious medicines for developing countries, as well as for combating pandemic infectious diseases and for use in personalized medicine. Plant virus expression vectors produce high levels of pharmaceutical proteins within a very short time period. Recently, plant viruses have been employed as nanoparticles for novel forms of cancer treatment. This review provides a glimpse into the development of plant virus expression systems both for pharmaceutical production as well as for immunotherapy.
Collapse
|
34
|
Abstract
The assembly line is a commonly invoked example of allopoiesis, the process whereby a system produces a different system than itself. In this sense, virus production in plants is an instance of bio-enabled bottom-up allopoiesis because the plant host can be regarded as a programmable assembly line for the virus. Reprogramming this assembly line and integrating it into a larger lineup of chemical manipulations has seen a flurry of activity recently, with more sophisticated systems emerging every year. The field of virus nanomaterials now has several subdisciplines that focus on virus shells as assemblers, scaffolds for molecular circuitry, chemical reactors, magnetic and photonic beacons, and therapeutic carriers. A case in point is the work reported by Brillault et al. in this issue of ACS Nano. They show how two types of animal virus coat proteins can be simultaneously expressed and efficiently assembled in plants into a complex virus-like particle of well-defined stoichiometry and composition. Such advances, combined with the promise of scalability and sustainability afforded by plants, paint a bright picture for the future of high-performance virus-based nanomaterials.
Collapse
Affiliation(s)
- Bogdan Dragnea
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|