1
|
George A, Carson RB, Gracias DJ, Ugras TJ, Robinson RD, Musser AJ. Near-UV Tunable Polaritons from Magic-Size Clusters. ACS NANO 2025. [PMID: 40261917 DOI: 10.1021/acsnano.4c17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Stronglight-matter coupling to form polaritons has gained significant attention for its applications in materials engineering, optoelectronics, and beyond. The combined properties of their underlying states allow for numerous advantages such as delocalization over long distances, room-temperature Bose-Einstein condensation, and tunability of energy states. Few exciton-polariton systems, however, reach into the UV, and identifying ideal materials that possess large oscillator strengths, large exciton binding energies, ease of processing, and that are stable for device integration has proven challenging. Here, we demonstrate that CdS magic-size clusters (MSCs) combine all these traits. Simple solution processing in metallic Fabry-Perot (FP) cavities enables the MSCs to exhibit room-temperature strong coupling, as demonstrated by the square root dependence of Rabi splitting on chromophore concentration. Rabi splitting as large as 390 meV can be achieved, with emission from polariton states spanning from 3.07 eV (403 nm) to 3.64 eV (340 nm). When Rabi splittings are normalized by the excitonic line width, this system is comparable with high-performing systems in the visible range and surpasses reported UV polariton systems. The strong UV absorption of these MSCs establishes a platform to develop stable polaritonic devices with tunability across the near-UV.
Collapse
Affiliation(s)
- Aleesha George
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - River B Carson
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Daniel J Gracias
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Thomas J Ugras
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Richard D Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
2
|
Zhang T, Li M, Li X, Jiang X, Tao Y, Zheng S, Gu J, Zheng N, Bai G, Zhang M, Li C, Guan Y, Wang B, Fu Y. Tuning Interlayer Couplings and Stabilizing 2D Perovskite Lattices through Intercalation Chemistry. J Am Chem Soc 2025. [PMID: 40252046 DOI: 10.1021/jacs.5c04810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Two-dimensional (2D) organic-inorganic hybrid lead halide perovskites are promising semiconductors for optoelectronics, spintronics, and ferroelectrics due to their versatile structural and physical properties enabled by a variety of organic spacer cations. While previous research has focused on new spacer cations for templating 2D perovskite structures and influencing their properties, the intercalation of functional molecules within the organic layers has been less explored. Here, we demonstrate the intercalation of iodine within the organic sublattice as an effective tool to tune interlayer electronic interactions and stabilize 2D perovskite structures that would otherwise not form. We synthesized and determined the single-crystal structures of seven new iodine-intercalated 2D perovskites with varying spacer cations and inorganic compositions. The intercalated iodine bridges neighboring inorganic layers via halogen bonding with the apical iodides, leading to interlayer vibrational and electronic couplings. The iodine intercalation enhances the lattice rigidity, which decreases phonon-phonon scattering and exciton-phonon coupling. Adjusting the inorganic composition further tunes the electronic band structures, because iodine's frontier orbitals contribute differently to the band edge states, leading to varied band alignments and photoluminescence quenching behaviors. Moreover, a decreased anisotropic emission polarization is observed after iodine intercalation due to the decreased in-plane confinement of the excitons. Our results demonstrate iodine intercalation as a powerful tool for tuning the structural and optoelectronic properties of 2D perovskites.
Collapse
Affiliation(s)
- Tianhao Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingyuan Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyu Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaofan Jiang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Tao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shixuan Zheng
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiazhen Gu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Nanlong Zheng
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guangsheng Bai
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chen Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Ghasemi M, Lu J, Jia B, Wen X. Steady state and transient absorption spectroscopy in metal halide perovskites. Chem Soc Rev 2025; 54:1644-1683. [PMID: 39801268 DOI: 10.1039/d4cs00985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Metal halide perovskites (MHPs) have emerged as the most promising materials due to superior optoelectronic properties and great applications spanning from photovoltaics to photonics. Absorption spectroscopy provides a broad and deep insight into the carrier dynamics of MHPs, and is a critical complement to fluorescence and scattering spectroscopy. However, absorption spectroscopy is often misunderstood or underestimated, being seen as UV-vis spectroscopy only, which can lead to various misinterpretations. In fact, absorption spectroscopy is one of the most important branches of spectroscopic techniques (others including fluorescence and scattering), which plays a critical role in understanding the electronic structure and optoelectrical dynamics of MHPs. In this tutorial, the basic principles of various types of absorption spectroscopy as well as their recent developments and applications in MHP materials and devices are summarized, covering comprehensive advances in steady state and transient absorption spectroscopy. Given the significance of absorption spectroscopy in directing the design of different optoelectronic applications of MHPs, this tutorial will comprehensively discuss absorption spectroscopy, covering wavelengths from optical to terahertz (THz) and microwave, and timescales from femtoseconds to hours, and it specifically focuses on time-dependent steady-state and transient absorption spectroscopy under light illumination bias to study MHP materials and devices, allowing researchers to select suitable characterization techniques.
Collapse
Affiliation(s)
- Mehri Ghasemi
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Junlin Lu
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, 3000, Australia.
| |
Collapse
|
4
|
Gu J, Fu Y. Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites? ACS MATERIALS AU 2025; 5:24-34. [PMID: 39802148 PMCID: PMC11718535 DOI: 10.1021/acsmaterialsau.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions. Minimizing structural distortions, such as dynamic out-of-plane octahedral tilting and lone pair distortion, appears to be essential for achieving narrow photoluminescence (PL) emission peaks, high PL quantum yields, and rapid exciton diffusion by suppressing exciton-phonon coupling, as demonstrated in 2D perovskites based on phenylethylammonium cation or its derivatives. We propose that designing spacer cations with enhanced intermolecular interactions and denser packing, combined with the close packing of inorganic ions to minimize the motions of both organic and inorganic lattices, would be the ideal scenario for yielding the most favorable optoelectronic properties in these materials.
Collapse
Affiliation(s)
- Jiazhen Gu
- Beijing
National Laboratory for Molecular Science, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongping Fu
- Beijing
National Laboratory for Molecular Science, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Dang NHM, Zanotti S, Drouard E, Chevalier C, Trippé-Allard G, Deleporte E, Seassal C, Gerace D, Nguyen HS. Long-Range Ballistic Propagation of 80% Excitonic Fraction Polaritons in a Perovskite Metasurface at Room Temperature. NANO LETTERS 2024; 24:11839-11846. [PMID: 39268715 DOI: 10.1021/acs.nanolett.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Exciton-polaritons, hybrid light-matter excitations arising from the strong coupling between excitons in semiconductors and photons in photonic nanostructures, are crucial for exploring the physics of quantum fluids of light and developing all-optical devices. Achieving room temperature propagation of polaritons with a large excitonic fraction is challenging but vital, e.g., for nonlinear light transport. We report on room temperature propagation of exciton-polaritons in a metasurface made from a subwavelength lattice of perovskite pillars. The large Rabi splitting, much greater than the optical phonon energy, decouples the lower polariton band from the phonon bath of the perovskite. These cooled polaritons, in combination with the high group velocity achieved through the metasurface design, enable long-range propagation, exceeding hundreds of micrometers even with an 80% excitonic component. Furthermore, the design of the metasurface introduces an original mechanism for unidirectional propagation through polarization control, suggesting a new avenue for the development of advanced polaritonic devices.
Collapse
Affiliation(s)
- Nguyen Ha My Dang
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
| | - Simone Zanotti
- Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - Emmanuel Drouard
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
| | - Céline Chevalier
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
| | - Gaëlle Trippé-Allard
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, Lumière, Matière et Interfaces (LuMIn) Laboratory, 91190 Gif-sur-Yvette, France
| | - Emmanuelle Deleporte
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, Lumière, Matière et Interfaces (LuMIn) Laboratory, 91190 Gif-sur-Yvette, France
| | - Christian Seassal
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
| | - Dario Gerace
- Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - Hai Son Nguyen
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
6
|
Fieramosca A, Mastria R, Dini K, Dominici L, Polimeno L, Pugliese M, Prontera CT, De Marco L, Maiorano V, Todisco F, Ballarini D, De Giorgi M, Gigli G, Liew TCH, Sanvitto D. Origin of Exciton-Polariton Interactions and Decoupled Dark States Dynamics in 2D Hybrid Perovskite Quantum Wells. NANO LETTERS 2024; 24:8240-8247. [PMID: 38925628 PMCID: PMC11247545 DOI: 10.1021/acs.nanolett.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The realization of efficient optical devices depends on the ability to harness strong nonlinearities, which are challenging to achieve with standard photonic systems. Exciton-polaritons formed in hybrid organic-inorganic perovskites offer a promising alternative, exhibiting strong interactions at room temperature (RT). Despite recent demonstrations showcasing a robust nonlinear response, further progress is hindered by an incomplete understanding of the microscopic mechanisms governing polariton interactions in perovskite-based strongly coupled systems. Here, we investigate the nonlinear properties of quasi-2D dodecylammonium lead iodide perovskite (n3-C12) crystals embedded in a planar microcavity. Polarization-resolved pump-probe measurements reveal the contribution of indirect exchange interactions assisted by dark states formation. Additionally, we identify a strong dependence of the unique spin-dependent interaction of polaritons on sample detuning. The results are pivotal for the advancement of polaritonics, and the tunability of the robust spin-dependent anisotropic interaction in n3-C12 perovskites makes this material a powerful choice for the realization of polaritonic circuits.
Collapse
Affiliation(s)
- Antonio Fieramosca
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Rosanna Mastria
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Lorenzo Dominici
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Laura Polimeno
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Marco Pugliese
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | | | - Luisa De Marco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Vincenzo Maiorano
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Francesco Todisco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Dario Ballarini
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Milena De Giorgi
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, Lecce 73100, Italy
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| |
Collapse
|
7
|
Son Bui HX, Thi Doan T, Tri Luong NH, Khue Luu D, Thu Do HT, Ha Chu L, Pham D, Kim Vu OT, Tung Bui S, Tran Nguyen T, Khuyen Bui X, Lam Vu D, Son Nguyen H, Son Ha T, Le-Van Q. Spatial photoluminescence and lifetime mappings of quasi-2D perovskites coupled with a dielectric metasurface. OPTICS LETTERS 2024; 49:2465-2468. [PMID: 38691745 DOI: 10.1364/ol.517100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Light-matter interaction between quantum emitters and optical cavities plays a vital role in fundamental quantum photonics and the development of optoelectronics. Resonant metasurfaces are proven to be an efficient platform for tailoring the spontaneous emission (SE) of the emitters. In this work, we study the interplay between quasi-2D perovskites and dielectric TiO2 metasurfaces. The metasurface, functioning as an open cavity, enhances electric fields near its plane, thereby influencing the emissions of the perovskite. This is verified through angle-resolved photoluminescence (PL) studies. We also conducted reflectivity measurements and numerical simulations to validate the coupling between the quasi-2D perovskites and photonic modes. Notably, our work introduces a spatial mapping approach to study Purcell enhancement. Using fluorescence lifetime imaging microscopy (FLIM), we directly link the PL and lifetimes of the quasi-2D perovskites in spatial distribution when positioned on the metasurface. This correlation provides unprecedented insights into emitter distribution and emitter-resonator interactions. The methodology opens a new (to the best of our knowledge) approach for studies in quantum optics, optoelectronics, and medical imaging by enabling spatial mapping of both PL intensity and lifetime, differentiating between uncoupled quantum emitters and those coupled with different types of resonators.
Collapse
|
8
|
Xiong Z, Wu H, Cai Y, Zhai X, Liu T, Li B, Song T, Guo L, Liu Z, Dong Y, Liu P, Ren Y. Selective Excitation of Exciton-Polariton Condensate Modes in an Annular Perovskite Microcavity. NANO LETTERS 2024; 24. [PMID: 38620069 PMCID: PMC11057030 DOI: 10.1021/acs.nanolett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Exciton-polariton systems composed of a light-matter quasi-particle with a light effective mass easily realize Bose-Einstein condensation. In this work, we constructed an annular trap in a halide perovskite semiconductor microcavity and observed the spontaneous formation of symmetrical petal-shaped exciton-polariton condensation in the annular trap at room temperature. In our study, we found that the number of petals of the petal-shaped exciton-polariton condensates, which is decided by the orbital angular momentum, is dependent on the light intensity distribution. Therefore, the selective excitation of perovskite microcavity exciton-polariton condensates under all-optical control can be realized by adjusting the light intensity distribution. This could pave the way to room-temperature topological devices, optical cryptographical devices, and new quantum gyroscopes in the exciton-polariton system.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Hao Wu
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Yuanwen Cai
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Xiaokun Zhai
- Institute
of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Tong Liu
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Baili Li
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Tieling Song
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Longfei Guo
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Zhengliang Liu
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Yifan Dong
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
| | - Peicheng Liu
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| | - Yuan Ren
- Department
of Aerospace Engineering and Technology, Space Engineering University, Beijing 101416, China
- Lab
of Quantum Detection & Awareness, Space
Engineering University, Beijing 101416, China
| |
Collapse
|
9
|
Jin L, Mora Perez C, Gao Y, Ma K, Park JY, Li S, Guo P, Dou L, Prezhdo O, Huang L. Superior Phonon-Limited Exciton Mobility in Lead-Free Two-Dimensional Perovskites. NANO LETTERS 2024; 24:3638-3646. [PMID: 38498912 DOI: 10.1021/acs.nanolett.3c04895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tin-based two-dimensional (2D) perovskites are emerging as lead-free alternatives in halide perovskite materials, yet their exciton dynamics and transport remain less understood due to defect scattering. Addressing this, we employed temperature-dependent transient photoluminescence (PL) microscopy to investigate intrinsic exciton transport in three structurally analogous Sn- and Pb-based 2D perovskites. Employing conjugated ligands, we synthesized high-quality crystals with enhanced phase stability at various temperatures. Our results revealed phonon-limited exciton transport in Sn perovskites, with diffusion constants increasing from 0.2 cm2 s-1 at room temperature to 0.6 cm2 s-1 at 40 K, and a narrowing PL line width. Notably, Sn-based perovskites exhibited greater exciton mobility than their Pb-based equivalents, which is attributed to lighter effective masses. Thermally activated optical phonon scattering was observed in Sn-based compounds but was absent in Pb-based materials. These findings, supported by molecular dynamics simulations, demonstrate that the phonon scattering mechanism in Sn-based halide perovskites can be distinct from their Pb counterparts.
Collapse
Affiliation(s)
- Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carlos Mora Perez
- Departments of Chemistry and Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
| | - Yao Gao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Letian Dou
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Oleg Prezhdo
- Departments of Chemistry and Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Yang W, Wang J, He Y, Jiang S, Hou L, Zhuo L. Anapole assisted self-hybridized exciton-polaritons in perovskite metasurfaces. NANOSCALE 2024; 16:6068-6077. [PMID: 38433725 DOI: 10.1039/d4nr00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The exciton-polaritons in a lead halide perovskite not only have great significance for macroscopic quantum effects but also possess vital potential for applications in ultralow-threshold polariton lasers, integrated photonics, slow-light devices, and quantum light sources. In this study, we have successfully demonstrated strong coupling with huge Rabi splitting of 553 meV between perovskite excitons and anapole modes in the perovskite metasurface at room temperature. This outcome is achieved by introducing anapole modes to suppress radiative losses, thereby confining light to the perovskite metasurface and subsequently hybridizing it with excitons in the same material. Our results indicate the formation of self-hybridized exciton-polaritons within the perovskite metasurface, which may pave the way towards achieving high coupling strengths that could potentially bring exciting phenomena to fruition, such as Bose-Einstein condensation as well as enabling applications such as efficient light-emitting diodes and lasers.
Collapse
Affiliation(s)
- Weimin Yang
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Jingyu Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030000, China.
| | - Yonglin He
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Shengjie Jiang
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Liling Hou
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Liqiang Zhuo
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| |
Collapse
|
11
|
Cai R, Feng M, Kanwat A, Furuhashi T, Wang B, Sum TC. Floquet Engineering of Excitons in Two-Dimensional Halide Perovskites via Biexciton States. NANO LETTERS 2024; 24:3441-3447. [PMID: 38457695 DOI: 10.1021/acs.nanolett.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Layered two-dimensional halide perovskites (2DHPs) exhibit exciting non-equilibrium properties that allow the manipulation of energy levels through coherent light-matter interactions. Under the Floquet picture, novel quantum states manifest through the optical Stark effect (OSE) following intense subresonant photoexcitation. Nevertheless, a detailed understanding of the influence of strong many-body interactions between excitons on the OSE in 2DHPs remains unclear. Herein, we uncover the crucial role of biexcitons in photon-dressed states and demonstrate precise optical control of the excitonic states via the biexcitonic OSE in 2DHPs. With fine step tuning of the driven energy, we fully parametrize the evolution of exciton resonance modulation. The biexcitonic OSE enables Floquet engineering of the exciton resonance with either a blue-shift or a red-shift of the energy levels. Our findings shed new light on the intricate nature of coherent light-matter interactions in 2DHPs and extend the degree of freedom for ultrafast coherent optical control over excitonic states.
Collapse
Affiliation(s)
- Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Anil Kanwat
- Energy Research Institute@NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Tomoki Furuhashi
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Bo Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
12
|
Wanasinghe S, Gjoni A, Burson W, Majeski C, Zaslona B, Rury AS. Motional Narrowing through Photonic Exchange: Rational Suppression of Excitonic Disorder from Molecular Cavity Polariton Formation. J Phys Chem Lett 2024; 15:2405-2418. [PMID: 38394364 PMCID: PMC10926155 DOI: 10.1021/acs.jpclett.3c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Maximizing the coherence between the constituents of molecular materials remains a crucial goal toward the implementation of these systems into everyday optoelectronic technologies. Here we experimentally assess the ability of strong light-matter coupling in the collective limit to reduce energetic disorder using porphyrin-based chromophores in Fabry-Pérot (FP) microresonator structures. Following characterization of cavity polaritons formed from chemically distinct porphyrin dimers, we find that the peaks corresponding to the lower polariton (LP) state in each sample do not possess widths consistent with conventional theories. We model the behavior of the polariton peak widths effectively using the results of spectroscopic theory. We correlate differences in the suppression of excitonic energetic disorder between our samples with microscopic light-matter interactions and propose that the suppression stems from photonic exchange. Our results demonstrate that cavity polariton formation can suppress disorder and show researchers how to design coherence into hybrid molecular material systems.
Collapse
Affiliation(s)
- Sachithra
T. Wanasinghe
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United
States
| | - Adelina Gjoni
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United
States
| | - Wade Burson
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Caris Majeski
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Bradley Zaslona
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Aaron S. Rury
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United
States
| |
Collapse
|
13
|
Posmyk K, Zawadzka N, Łucja Kipczak, Dyksik M, Surrente A, Maude DK, Kazimierczuk T, Babiński A, Molas MR, Bumrungsan W, Chooseng C, Paritmongkol W, Tisdale WA, Baranowski M, Plochocka P. Bright Excitonic Fine Structure in Metal-Halide Perovskites: From Two-Dimensional to Bulk. J Am Chem Soc 2024; 146:4687-4694. [PMID: 38324275 PMCID: PMC10885139 DOI: 10.1021/jacs.3c11957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The optical response of two-dimensional (2D) perovskites, often referred to as natural quantum wells, is primarily governed by excitons, whose properties can be readily tuned by adjusting the perovskite layer thickness. We have investigated the exciton fine structure splitting in the archetypal 2D perovskite (PEA)2(MA)n-1PbnI3n+1 with varying numbers of inorganic octahedral layers n = 1, 2, 3, and 4. We demonstrate that the in-plane excitonic states exhibit splitting and orthogonally oriented dipoles for all confinement regimes. The evolution of the exciton states in an external magnetic field provides further insights into the g-factors and diamagnetic coefficients. With increasing n, we observe a gradual evolution of the excitonic parameters characteristic of a 2D to three-dimensional transition. Our results provide valuable information concerning the evolution of the optoelectronic properties of 2D perovskites with the changing confinement strength.
Collapse
Affiliation(s)
- Katarzyna Posmyk
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Grenoble Alpes, Université Toulouse, Université Toulouse 3, INSA-T, 38042 Grenoble, Toulouse 31400, France
| | - Natalia Zawadzka
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Łucja Kipczak
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Alessandro Surrente
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Duncan K Maude
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Grenoble Alpes, Université Toulouse, Université Toulouse 3, INSA-T, 38042 Grenoble, Toulouse 31400, France
| | - Tomasz Kazimierczuk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Wakul Bumrungsan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Chanisara Chooseng
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Watcharaphol Paritmongkol
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michał Baranowski
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Paulina Plochocka
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Grenoble Alpes, Université Toulouse, Université Toulouse 3, INSA-T, 38042 Grenoble, Toulouse 31400, France
| |
Collapse
|
14
|
Tian S, Wang Q, Liang S, Han Q, Zhang D, Huang Z, Ning J, Mei S, Xie W, Zhao H, Wu X, Wang J. High Q-Factor Single-Mode Lasing in Inorganic Perovskite Microcavities with Microfocusing Field Confinement. NANO LETTERS 2024; 24:1406-1414. [PMID: 38227806 DOI: 10.1021/acs.nanolett.3c04797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The realization of high-Q single-mode lasing on the microscale is significant for the advancement of on-chip integrated light sources. It remains a challenging trade-off between Q-factor enhancement and light-field localization to raise the lasing emission rate. Here, we fabricated a zero-dimensional perovskite microcavity integrated with a nondamage pressed microlens to three-dimensionally tailor the intracavity light field and demonstrated linearly and nonlinearly (two-photon) pumped lasing by this microfocusing configuration. Notably, the microlensing microcavity experimentally achieves a high Q-factor (16700), high polarization (99.6%), and high Purcell factor (11.40) single-mode lasing under high-repetition pulse pumping. Three-dimensional light-field confinement formed by the microlens and plate microcavity simultaneously reduces the mode volume (∼3.66 μm3) and suppresses diffraction and transverse walk-off loss, which induces discretization on energy-momentum dispersions and spatial electromagnetic-field distributions. The Q factor and Purcell factor of our lasing come out on top among most of the reported perovskite microcavities, paving a promising avenue toward further studying electrically driven on-chip microlasers.
Collapse
Affiliation(s)
- Shuangshuang Tian
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Qi Wang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Shuang Liang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241 Shanghai, China
| | - Qi Han
- School of Microelectronics, Fudan University, 200433 Shanghai, China
| | - Debao Zhang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Zhongmin Huang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Jiqiang Ning
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | - Wei Xie
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241 Shanghai, China
| | - Haibin Zhao
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, 200433 Shanghai, China
| | - Xiang Wu
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, 200433 Shanghai, China
| | - Jun Wang
- Key Laboratory of Micro & Nano Photonic Structures, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, 200433 Shanghai, China
| |
Collapse
|
15
|
Anantharaman SB, Lynch J, Stevens CE, Munley C, Li C, Hou J, Zhang H, Torma A, Darlington T, Coen F, Li K, Majumdar A, Schuck PJ, Mohite A, Harutyunyan H, Hendrickson JR, Jariwala D. Dynamics of self-hybridized exciton-polaritons in 2D halide perovskites. LIGHT, SCIENCE & APPLICATIONS 2024; 13:1. [PMID: 38161209 PMCID: PMC10757995 DOI: 10.1038/s41377-023-01334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Excitons, bound electron-hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E-Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E-Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E-Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E-P modes. These E-Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E-Ps to lower energy E-Ps. Finally, we also demonstrate that E-Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E-Ps opening new opportunities towards their manipulation for polaritonic devices.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher E Stevens
- KBR Inc., Beavercreek, OH, 45431, USA
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Christopher Munley
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Chentao Li
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Jin Hou
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Andrew Torma
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Thomas Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Francis Coen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin Li
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arka Majumdar
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Aditya Mohite
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Hayk Harutyunyan
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Joshua R Hendrickson
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Kang H, Ma J, Li J, Zhang X, Liu X. Exciton Polaritons in Emergent Two-Dimensional Semiconductors. ACS NANO 2023; 17:24449-24467. [PMID: 38051774 DOI: 10.1021/acsnano.3c07993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The "marriage" of light (i.e., photon) and matter (i.e., exciton) in semiconductors leads to the formation of hybrid quasiparticles called exciton polaritons with fascinating quantum phenomena such as Bose-Einstein condensation (BEC) and photon blockade. The research of exciton polaritons has been evolving into an era with emergent two-dimensional (2D) semiconductors and photonic structures for their tremendous potential to break the current limitations of quantum fundamental study and photonic applications. In this Perspective, the basic concepts of 2D excitons, optical resonators, and the strong coupling regime are introduced. The research progress of exciton polaritons is reviewed, and important discoveries (especially the recent ones of 2D exciton polaritons) are highlighted. Subsequently, the emergent 2D exciton polaritons are discussed in detail, ranging from the realization of the strong coupling regime in various photonic systems to the discoveries of attractive phenomena with interesting physics and extensive applications. Moreover, emerging 2D semiconductors, such as 2D perovskites (2DPK) and 2D antiferromagnetic (AFM) semiconductors, are surveyed for the manipulation of exciton polaritons with distinct control degrees of freedom (DOFs). Finally, the outlook on the 2D exciton polaritons and their nonlinear interactions is presented with our initial numerical simulations. This Perspective not only aims to provide an in-depth overview of the latest fundamental findings in 2D exciton polaritons but also attempts to serve as a valuable resource to prospect explorations of quantum optics and topological photonic applications.
Collapse
Affiliation(s)
- Haifeng Kang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jingwen Ma
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Junyu Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiang Zhang
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
- Department of Physics, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xiaoze Liu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
17
|
Gao B, Li L, Chen Z, Xu Q. Pressure Coupled Lanthanide Ion Doping to Enhance Optical Properties in BaTiO 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308427. [PMID: 37967321 DOI: 10.1002/smll.202308427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Self-trapped excitons (STEs) typically give broadband photoluminescence emission with a large Stokes shift, which is important for the enhancement of the optical properties of materials. Here, low-dimensional La-doped BaTiO3 nanocrystals with defects are prepared using supercritical CO2 (SC CO2 ). The generation of the STEs is facilitated by doping La3+ ions and introducing CO2 pressure, which effectively enhance the luminescence intensity of BaTiO3 . This discovery shows that the La ion doping concentration can modulate the photoluminescence of BaTiO3 nanocrystals under pressure. This work deepens the understanding of the influence of rare-earth-doped luminescent materials under pressure and provides insight to improve the capabilities of optical devices.
Collapse
Affiliation(s)
- Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lianyu Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
18
|
Wang Z, Lin CC, Murata K, Kamal ASA, Lin BW, Chen MH, Tang S, Ho YL, Chen CC, Chen CW, Daiguji H, Ishii K, Delaunay JJ. Chiroptical Response Inversion and Enhancement of Room-Temperature Exciton-Polaritons Using 2D Chirality in Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303203. [PMID: 37587849 DOI: 10.1002/adma.202303203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Although chiral semiconductors have shown promising progress in direct circularly polarized light (CPL) detection and emission, they still face potential challenges. A chirality-switching mechanism or approach integrating two enantiomers is needed to discriminate the handedness of a given CPL; additionally, a large material volume is required for sufficient chiroptical interaction. These two requirements pose significant obstacles to the simplification and miniaturization of the devices. Here, room-temperature chiral polaritons fulfilling dual-handedness functions and exhibiting a more-than-two-order enhancement of the chiroptical signal are demonstrated, by embedding a 40 nm-thick perovskite film with a 2D chiroptical effect into a Fabry-Pérot cavity. By mixing chiral perovskites with different crystal structures, a pronounced 2D chiroptical effect is accomplished in the perovskite film, featured by an inverted chiroptical response for counter-propagating CPL. This inversion behavior matches the photonic handedness switch during CPL circulation in the Fabry-Pérot cavity, thus harvesting giant enhancement of the chiroptical response. Furthermore, affected by the unique quarter-wave-plate effects, the polariton emission achieves a chiral dissymmetry of ±4% (for the emission from the front and the back sides). The room-temperature polaritons with the strong dissymmetric chiroptical interaction shall have implications on a fundamental level and future on-chip applications for biomolecule analysis and quantum computing.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Cheng-Chieh Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | | | - Bo-Wei Lin
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Mu-Hsin Chen
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Siyi Tang
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Ya-Lun Ho
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd., Taipei, 11677, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Hirofumi Daiguji
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Jean-Jacques Delaunay
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
19
|
Guo X, Han Q, Wang J, Tian S, Bai R, Zhao H, Zou X, Lu X, Sun Q, Zhang DW, Hu S, Ji L. Optoelectronic Devices of Large-Scale Transferred All-Inorganic Lead Halide Perovskite Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24606-24613. [PMID: 37184060 DOI: 10.1021/acsami.3c03191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report the large-scale transfer process for monocrystalline CsPbBr3 thin films prepared by chemical vapor deposition (CVD) with excellent optical properties and stability. The transfer process is robust, simple, and effective, in which CsPbBr3 thin films could be transferred to several substrates and effectively avoid chemical or physical fabrication processes to damage the perovskite surface. Moreover, the transfer process endows CsPbBr3 and substrates with atomically clean and electronically flat interfaces. We utilize this transfer process to realize several optoelectronic devices, including a photonic laser with a threshold of 61 μJ/cm2, a photodetector with a responsivity of 2.4 A/W, and a transistor with a hole mobility of 11.47 cm2 V-1 s-1. High device performances mainly originate from low defects of high-quality single-crystal perovskite and seamless contact between CsPbBr3 and target substrates. The large-scale nondestructive transfer process provides promising opportunities for optoelectronic applications based on monocrystalline perovskites.
Collapse
Affiliation(s)
- Xiangyu Guo
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Qi Han
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jun Wang
- Department of Optical Science and Engineering, and School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Shuangshuang Tian
- Department of Optical Science and Engineering, and School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Rongxu Bai
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Haibin Zhao
- Department of Optical Science and Engineering, and School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Qingqing Sun
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - David W Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Hubei Yangtz Memory Laboratories, Wuhan 430205, China
| | - Shen Hu
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Jiashan Fudan Institute, Jiashan 314100, China
| | - Li Ji
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Hubei Yangtz Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
20
|
Mandal A, Xu D, Mahajan A, Lee J, Delor M, Reichman DR. Microscopic Theory of Multimode Polariton Dispersion in Multilayered Materials. NANO LETTERS 2023; 23:4082-4089. [PMID: 37103998 DOI: 10.1021/acs.nanolett.3c01017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We develop a microscopic theory for the multimode polariton dispersion in materials coupled to cavity radiation modes. Starting from a microscopic light-matter Hamiltonian, we devise a general strategy for obtaining simple matrix models of polariton dispersion curves based on the structure and spatial location of multilayered 2D materials inside the optical cavity. Our theory exposes the connections between seemingly distinct models that have been employed in the literature and resolves an ambiguity that has arisen concerning the experimental description of the polaritonic band structure. We demonstrate the applicability of our theoretical formalism by fabricating various geometries of multilayered perovskite materials coupled to cavities and demonstrating that our theoretical predictions agree with the experimental results presented here.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
21
|
Wang Y, Tian J, Klein M, Adamo G, Ha ST, Soci C. Directional Emission from Electrically Injected Exciton-Polaritons in Perovskite Metasurfaces. NANO LETTERS 2023; 23:4431-4438. [PMID: 37129264 DOI: 10.1021/acs.nanolett.3c00727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a new approach to achieving strong coupling between electrically injected excitons and photonic bound states in the continuum of a dielectric metasurface. Here a high-finesse metasurface cavity is monolithically patterned in the channel of a perovskite light-emitting transistor to induce a large Rabi splitting of ∼200 meV and more than 50-fold enhancement of the polaritonic emission compared to the intrinsic excitonic emission of the perovskite film. Moreover, the directionality of polaritonic electroluminescence can be dynamically tuned by varying the source-drain bias, which induces an asymmetric distribution of exciton population within the transistor channel. We argue that this approach provides a new platform to study strong light-matter interactions in dispersion engineered photonic cavities under electrical injection and paves the way to solution-processed electrically pumped polariton lasers.
Collapse
Affiliation(s)
- Yutao Wang
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Interdisciplinary Graduate School, Energy Research Institute @NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Jingyi Tian
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Maciej Klein
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Giorgio Adamo
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Son Tung Ha
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| | - Cesare Soci
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
22
|
Bera KP, Hanmandlu C, Lin HI, Ghosh R, Gudelli VK, Lai CS, Chu CW, Chen YF. Fabry-Perot Oscillation and Resonance Energy Transfer: Mechanism for Ultralow-Threshold Optically and Electrically Driven Random Laser in Quasi-2D Ruddlesden-Popper Perovskites. ACS NANO 2023; 17:5373-5386. [PMID: 36897286 DOI: 10.1021/acsnano.2c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The recently emerged metal-halide hybrid perovskite (MHP) possesses superb optoelectronic features, which have obtained great attention in solid-state lighting, photodetection, and photovoltaic applications. Because of its excellent external quantum efficiency, MHP has promising potential for the manifestation of ultralow threshold optically pumped laser. However, the demonstration of an electrically driven laser remains a challenge because of the vulnerable degradation of perovskite, limited exciton binding energy (Eb), intensity quenching, and efficiency drop by nonradiative recombinations. In this work, based on the paradigm of integration of Fabry-Perot (F-P) oscillation and resonance energy transfer, we observed an ultralow-threshold (∼250 μWcm-2) optically pumped random laser from moisture-insensitive mixed dimensional quasi-2D Ruddlesden-Popper phase perovskite microplates. Particularly, we demonstrated an electrically driven multimode laser with a threshold of ∼60 mAcm-2 from quasi-2D RPP by judicious combination of a perovskite/hole transport layer (HTL) and an electron transport layer (ETL) having suitable band alignment and thickness. Additionally, we showed the tunability of lasing modes and color by driving an external electric potential. Performing finite difference time domain (FDTD) simulations, we confirmed the presence of F-P feedback resonance, the light trapping effect at perovskite/ETL, and resonance energy transfer contributing to laser action. Our discovery of an electrically driven laser from MHP opens a useful avenue for developing future optoelectronics.
Collapse
Affiliation(s)
- Krishna Prasad Bera
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gao X, Lin J, Guo X, He G, Zou D, Ishii T, Zhang D, Zhao C, Zhan H, Huang JS, Liu X, Adachi C, Qin C, Wang L. Room-Temperature Continuous-Wave Microcavity Lasers from Solution-Processed Smooth Quasi-2D Perovskite Films with Low Thresholds. J Phys Chem Lett 2023; 14:2493-2500. [PMID: 36867762 DOI: 10.1021/acs.jpclett.3c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Continuous-wave (CW) lasing in quasi-two-dimensional (2D) perovskite-based distributed feedback cavities has been achieved at room temperature; however, CW microcavity lasers comprising distributed Bragg reflectors (DBRs) have rarely been prepared using solution-processed quasi-2D perovskite films because the roughness of perovskite films significantly increases intersurface scattering loss in the microcavity. Herein, high-quality spin-coated quasi-2D perovskite gain films were prepared using an antisolvent to reduce roughness. The highly reflective top DBR mirrors were deposited via room-temperature e-beam evaporation to protect the perovskite gain layer. Lasing emission of the prepared quasi-2D perovskite microcavity lasers under CW optical pumping was clearly observed at room temperature, featuring a low threshold of ∼1.4 W cm-2 and beam divergence of ∼3.5°. It was concluded that these lasers originated from weakly coupled excitons. These results elucidate the importance of controlling the roughness of quasi-2D films to achieve CW lasing, thus facilitating the design of electrically pumped perovskite microcavity lasers.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jie Lin
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, P. R. China
| | - Xiaoyang Guo
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Geng He
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, P. R. China
| | - Deyue Zou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Tomohiro Ishii
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Dezhong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chenyang Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Song Huang
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, P. R. China
| | - Xingyuan Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
24
|
Kottilil D, Gupta M, Lu S, Babusenan A, Ji W. Triple Threshold Transitions and Strong Polariton Interaction in 2D Layered Metal-Organic Framework Microplates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209094. [PMID: 36623260 DOI: 10.1002/adma.202209094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Room-temperature interaction between light-matter hybrid particles such as exciton-polaritons under extremely low-pump plays a crucial role in future coherent quantum light sources. However, the practical and scalable realization of coherent quantum light sources operating under low-pump remains a challenge because of the insufficient polariton interaction strength. Here, at room temperature, a very large polariton interaction strength is demonstrated, g ≈ 128 ± 21 µeV µm2 realized in a 2D nanolayered metal-organic framework (MOF). As a result, a polariton lasing at an extremely low pump fluence of P1 ≈ 0.01 ± 0.0015 µJ cm-2 (first threshold) is observed. Interestingly, as pump fluence increases to P2 ≈ 0.031 ± 0.003 µJ cm-2 (second threshold), a spontaneous transition to a polariton breakdown region occurs, which has not been reported before. Finally, an ordinary photon lasing occurs at P3 ≈ 0.11 ± 0.077 µJ cm-2 (third threshold), or above. These experiments and the theoretical model reveal new insights into the transition mechanisms characterized by three distinct optical regions. This work introduces MOF as a new type of quantum material, with naturally formed polariton cavities, that is a cost-effective and scalable solution to build microscale coherent quantum light sources and polaritonic devices.
Collapse
Affiliation(s)
- Dileep Kottilil
- Department of Physics, National University of Singapore, 3, Science Drive 3, Singapore, 117542, Singapore
| | - Mayank Gupta
- Department of Physics, National University of Singapore, 3, Science Drive 3, Singapore, 117542, Singapore
| | - Shunbin Lu
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Anu Babusenan
- Department of Physics, National University of Singapore, 3, Science Drive 3, Singapore, 117542, Singapore
| | - Wei Ji
- Department of Physics, National University of Singapore, 3, Science Drive 3, Singapore, 117542, Singapore
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
25
|
Jain U, Soni S, Chauhan N. Application of perovskites in bioimaging: the state-of-the-art and future developments. Expert Rev Mol Diagn 2022; 22:867-880. [PMID: 36254607 DOI: 10.1080/14737159.2022.2135990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recently, the development of perovskite-based nanocrystals for sustainable applications in bioimaging and clinical diagnostics have become a very active area of research. From 2D hybrid to zero-dimensional quantum dots (QDs), perovskites along with a variety of characteristic features, specifically non-linear optoelectronics properties, have attracted enormous research attention. These characteristics can be tuned by the type of cations or anions and their ratio used in host perovskites. Carrier doping and chemical modifications are additional alternatives to control optical and magnetism in radiodiagnostics. AREA COVERED This review begins by explaining the physical phenomena associated with luminescence or optical features of novel perovskites in diagnostic applications. Moreover, reported oxide, halide, doped, and QDs-based nanoprobes were elaborated. At last, the need for novel perovskite development, for example, persistent luminescent and low cytotoxicity is discussed, and the futuristic perspective of perovskites in clinical diagnostics with real-time demonstration is explained. EXPERT OPINION Our article concludes that hybrid perovskites, including metal-free, core-shell nanocomposites-based, and alloy-based perovskites, exhibit tunable bandgap and high photoluminescence quantum yields which ultimately result in high optical features. However, given limited understanding of ion transport mechanisms and dependency on environmental conditions of the perovskites, more research is needed.
Collapse
Affiliation(s)
- Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, India
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, India
| |
Collapse
|
26
|
Gao W, Wei Q, Wang T, Xu J, Zhuang L, Li M, Yao K, Yu SF. Two-Photon Lasing from Two-Dimensional Homologous Ruddlesden-Popper Perovskite with Giant Nonlinear Absorption and Natural Microcavities. ACS NANO 2022; 16:13082-13091. [PMID: 35969210 DOI: 10.1021/acsnano.2c05726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional Ruddlesden-Popper perovskites (RPPs) with multiple quantum well-like structures, strong excitonic quantum confinement, and high stability are promising optical gain media. However, the lasing from such material with a small number of inorganic well layers is difficult to achieve. Herein, we demonstrate the low-threshold upconversion lasing from the homologous RPP (PEA)2(MA)n-1PbnI3n+1 (n = 2 and 3) microflakes with wavelength varies from 598 to 637 nm under 800 nm laser excitation at low temperature (≤153 K). Using the micro Z-scan technique, we discovered that the RPP flakes have a giant two-photon absorption coefficient β as high as 3.6 × 103 cm GW-1, resulting in the effective upconversion transition under two-photon excitation. Furthermore, the self-formation of Fabry-Pérot microcavities provides the support for lasing emission from the n ≥ 2 RPP flakes. Calculation results and microscopic transient absorption measurements reveal that low-threshold lasing is due to the high differential gain coefficient and the suppressed nonradiative Auger recombination rate inside the quantum confinement structures. These properties enable RPPs as potential gain media for developing upconversion microcavity lasers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518060, China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ting Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jiangtao Xu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Lyuchao Zhuang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Kai Yao
- Institute of Photovoltaics/Department of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Siu Fung Yu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518060, China
| |
Collapse
|
27
|
Zhang Q, Krisnanda T, Giovanni D, Dini K, Ye S, Feng M, Liew TCH, Sum TC. Electric Field Modulation of 2D Perovskite Excitonics. J Phys Chem Lett 2022; 13:7161-7169. [PMID: 35904326 DOI: 10.1021/acs.jpclett.2c01792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiquantum-well (MQW) perovskite is one of the forerunners in high-efficiency perovskite LED (PeLEDs) research. Despite the rapid inroads, PeLEDs suffer from the pertinent issue of efficiency decrease with increasing brightness, commonly known as "efficiency roll-off". The underlying mechanisms are presently an open question. Herein, we explicate the E-field effects on the exciton states in the archetypal MQW perovskite (C6H5C2H4NH3)2PbI4, or PEPI, in a device-like architecture using field-assisted transient spectroscopy and theoretical modeling. The applied E-field results in a complex interplay of spectral blueshifts and enhancement/quenching of the different exciton modes. The former originates from the DC Stark shift, while the latter is attributed to the E-field modulation of the transfer rates between bright/dark exciton modes. Importantly, our findings uncover crucial insights into the photophysical processes under E-field modulation contributing to efficiency roll-off in MQW PeLEDs. Electrical modulation of exciton properties presents exciting possibilities for signal processing devices.
Collapse
Affiliation(s)
- Qiannan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tanjung Krisnanda
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - David Giovanni
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- KLA-Tencor (Singapore) Pte. Ltd., 4 Serangoon North Avenue 5, Singapore 554532, Singapore
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Senyun Ye
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Universite Côte d'Azur, Sorbonne Universite, National University of Singapore, and Nanyang Technological University, Singapore 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
28
|
Wang T, Zang Z, Gao Y, Lyu C, Gu P, Yao Y, Peng K, Watanabe K, Taniguchi T, Liu X, Gao Y, Bao W, Ye Y. Electrically Pumped Polarized Exciton-Polaritons in a Halide Perovskite Microcavity. NANO LETTERS 2022; 22:5175-5181. [PMID: 35714056 DOI: 10.1021/acs.nanolett.2c00906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, exciton-polaritons in lead halide perovskite microcavities have been extensively investigated to address striking phenomena such as polariton condensation and quantum emulation. However, a critical step in advancing these findings into practical applications, i.e., realizing electrically pumped perovskite polariton light-emitting devices, has not yet been presented. Here, we devise a new method to combine the device with a microcavity and report the first halide perovskite polariton light-emitting device. Specifically, the device is based on a CsPbBr3 capacitive structure, which can inject the electrons and holes from the same electrode, conducive to the formation of excitons and simultaneously maintaining the high quality of the microcavity. In addition, highly polarized polariton emissions have been demonstrated due to the optical birefringence in the CsPbBr3 microplate. This work paves the way for realizing practical polaritonic devices such as high-speed light-emitting devices for information communications and inversionless electrically pumped lasers based on perovskites.
Collapse
Affiliation(s)
- Tingting Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Zhihao Zang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Yuchen Gao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Chao Lyu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Pingfan Gu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yige Yao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Kai Peng
- Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Xiaoze Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, Hubei, People's Republic of China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Wei Bao
- Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| |
Collapse
|
29
|
Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature. Nat Commun 2022; 13:3785. [PMID: 35778391 PMCID: PMC9249758 DOI: 10.1038/s41467-022-31529-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Spin-orbit coupling plays an important role in the spin Hall effect and topological insulators. Bose-Einstein condensates with spin-orbit coupling show remarkable quantum phase transition. In this work we control an exciton polariton condensate – a macroscopically coherent state of hybrid light and matter excitations – by virtue of the Rashba-Dresselhaus (RD) spin-orbit coupling. This is achieved in a liquid-crystal filled microcavity where CsPbBr3 perovskite microplates act as the gain material at room temperature. Specifically, we realize an artificial gauge field acting on the CsPbBr3 exciton polariton condensate, splitting the condensate fractions with opposite spins in both momentum and real space. Besides the ground states, higher-order discrete polariton modes can also be split by the RD effect. Our work paves the way to manipulate exciton polariton condensates with a synthetic gauge field based on the RD spin-orbit coupling at room temperature. Engineered spin-orbit coupling can induce novel quantum phases in a Bose-Einstein condensate, however such demonstrations have been limited to cold atom systems. Here the authors realize a exciton-polarion condensate with tunable spin-orbit coupling in a liquid crystal microcavity at room temperature.
Collapse
|
30
|
Yang H, Zhang L, Xiang W, Lu C, Cui Y, Zhang J. Ultralow Threshold Room Temperature Polariton Condensation in Colloidal CdSe/CdS Core/Shell Nanoplatelets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200395. [PMID: 35466544 PMCID: PMC9218774 DOI: 10.1002/advs.202200395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Room-temperature exciton-polariton Bose-Einstein condensation (BEC), a phase transition to single quantum state with strong nonlinearity, provides a new strategy for coherent light sources and ultralow threshold optic switches. In this work, colloidal CdSe/CdS 2D nanoplatelets are embedded into a microcavity, and exciton-polariton BEC is realized with an ultralow threshold of 0.5 µJ cm-2 at room temperature. The superlinear power-dependent emission, macroscopic occupation of the ground state, strong blueshift and broadening of the emission peak, and long-range coherence strongly confirm the realization of the polariton laser. This work suggests considerable prospects for colloidal nanoplatelets in low-cost, high-performance polariton devices, and coherent light sources.
Collapse
Affiliation(s)
- Hongyu Yang
- Advanced Photonics CenterSoutheast UniversityNanjingJiangsu210096P. R. China
| | - Lei Zhang
- Advanced Photonics CenterSoutheast UniversityNanjingJiangsu210096P. R. China
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Wenbin Xiang
- Advanced Photonics CenterSoutheast UniversityNanjingJiangsu210096P. R. China
| | - Changgui Lu
- Advanced Photonics CenterSoutheast UniversityNanjingJiangsu210096P. R. China
| | - Yiping Cui
- Advanced Photonics CenterSoutheast UniversityNanjingJiangsu210096P. R. China
| | - Jiayu Zhang
- Advanced Photonics CenterSoutheast UniversityNanjingJiangsu210096P. R. China
| |
Collapse
|
31
|
Park JE, López-Arteaga R, Sample AD, Cherqui CR, Spanopoulos I, Guan J, Kanatzidis MG, Schatz GC, Weiss EA, Odom TW. Polariton Dynamics in Two-Dimensional Ruddlesden-Popper Perovskites Strongly Coupled with Plasmonic Lattices. ACS NANO 2022; 16:3917-3925. [PMID: 35235746 DOI: 10.1021/acsnano.1c09296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Strong coupling between light and matter can produce hybrid eigenstates known as exciton-polaritons. Although polariton dynamics are important photophysical properties, the relaxation pathways of polaritons in different coupling regimes have seen limited attention. This paper reports the dynamics of hybridized states from 2D Ruddlesden-Popper perovskites coupled to plasmonic nanoparticle lattices. The open cavity architecture of Al lattices enables the coupling strength to be modulated by varying either the lead halide perovskite film thickness or the superstrate refractive index. Both experiments and finite-difference time-domain simulations of the optical dispersion diagrams showed avoided crossings that are a signature of strong coupling. Our analytical model also elucidated the correlation between the exciton/plasmon mixing ratio and polariton coupling strength. Using fs-transient absorption spectroscopy, we found that both the upper and lower polaritons have shorter lifetimes than the excitons and that polaritons can show faster excited-state dynamics when they have access to additional energy transfer channels.
Collapse
Affiliation(s)
- Jeong-Eun Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael López-Arteaga
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander D Sample
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles R Cherqui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jun Guan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Otero-Martínez C, Ye J, Sung J, Pastoriza-Santos I, Pérez-Juste J, Xia Z, Rao A, Hoye RLZ, Polavarapu L. Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107105. [PMID: 34775643 DOI: 10.1002/adma.202107105] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Colloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light-emitting diodes (LEDs). This review discusses the state-of-the-art in colloidal MHP NPls: synthetic routes, thickness-controlled synthesis of both organic-inorganic hybrid and all-inorganic MHP NPls, their linear and nonlinear optical properties (including charge-carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jooyoung Sung
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Zhiguo Xia
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Robert L Z Hoye
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
| |
Collapse
|
33
|
Kim S, Woo BH, An SC, Lim Y, Seo IC, Kim DS, Yoo S, Park QH, Jun YC. Topological Control of 2D Perovskite Emission in the Strong Coupling Regime. NANO LETTERS 2021; 21:10076-10085. [PMID: 34843262 DOI: 10.1021/acs.nanolett.1c03853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Momentum space topology can be exploited to manipulate radiation in real space. Here we demonstrate topological control of 2D perovskite emission in the strong coupling regime via polaritonic bound states in the continuum (BICs). Topological polarization singularities (polarization vortices and circularly polarized eigenstates) are observed at room temperature by measuring the Stokes parameters of photoluminescence in momentum space. Particularly, in symmetry-broken structures, a very large degree of circular polarization (DCP) of ∼0.835 is achieved in the perovskite emission, which is the largest in perovskite materials to our knowledge. In the strong coupling regime, lower polariton modes shift to the low-loss spectral region, resulting in strong emission enhancement and large DCP. Our reciprocity analysis reveals that DCP is limited by material absorption at the emission wavelength. Polaritonic BICs based on 2D perovskite materials combine unique topological features with exceptional material properties and may become a promising platform for active nanophotonic devices.
Collapse
Affiliation(s)
- Seongheon Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byung Hoon Woo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soo-Chan An
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeonsoo Lim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - In Cheol Seo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, UNIST, Ulsan 44919, Republic of Korea
| | - SeokJae Yoo
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Q-Han Park
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Young Chul Jun
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
34
|
Yu G, Li J, Zong H, Lei M, Chen H, Lang R, Li S, Akbar Khan MS, Hu X. Two-round quasi-whispering gallery mode exciton polaritons with large Rabi splitting in a GaN microrod. OPTICS EXPRESS 2021; 29:39788-39800. [PMID: 34809335 DOI: 10.1364/oe.442540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
We investigate the exciton polaritons and their corresponding optical modes in a hexagonal GaN microrod at room temperature. The dispersion curves are measured by the angle-resolved micro-photoluminescence spectrometer, and two types of exciton polaritons are identified with the help of the finite-difference time-domain simulation. By changing the pump position, the photon part of the exciton polaritons is found to switch between the quasi-whispering gallery modes and the two-round quasi-whispering gallery modes. The exciton polaritons formed by the latter are observed and distinguished for the first time, with a giant Rabi splitting as large as 2Ω = 230.3 meV.
Collapse
|
35
|
Sun Q, Zhao C, Yin Z, Wang S, Leng J, Tian W, Jin S. Ultrafast and High-Yield Polaronic Exciton Dissociation in Two-Dimensional Perovskites. J Am Chem Soc 2021; 143:19128-19136. [PMID: 34730344 DOI: 10.1021/jacs.1c08900] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Layered two-dimensional (2D) lead halide perovskites are a class of quantum well (QW) materials, holding dramatic potentials for optical and optoelectronic applications. However, the thermally activated exciton dissociation into free carriers in 2D perovskites, a key property that determines their optoelectronic performance, was predicted to be weak due to large exciton binding energy (Eb, about 100-400 meV). Herein, in contrast to the theoretical prediction, we discover an ultrafast (<1.4 ps) and highly efficient (>80%) internal exciton dissociation in (PEA)2(MA)n-1PbnI3n+1 (PEA = C6H5C2H4NH3+, MA = CH3NH3+, n = 2-4) 2D perovskites despite the large Eb. We demonstrate that the exciton dissociation activity in 2D perovskites is significantly promoted because of the formation of exciton-polarons with considerably reduced exciton binding energy (down to a few tens of millielectronvolts) by the polaronic screening effect. This ultrafast and high-yield exciton dissociation limits the photoluminescence of 2D perovskites but on the other hand well explains their exceptional performance in photovoltaic devices. The finding should represent a common exciton property in the 2D hybrid perovskite family and provide a guideline for their rational applications in light emitting and photovoltaics.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyi Zhao
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixi Yin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Wang
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
36
|
Dielectric Confinement and Exciton Fine Structure in Lead Halide Perovskite Nanoplatelets. NANOMATERIALS 2021; 11:nano11113054. [PMID: 34835818 PMCID: PMC8621522 DOI: 10.3390/nano11113054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022]
Abstract
Owing to their flexible chemical synthesis and the ability to shape nanostructures, lead halide perovskites have emerged as high potential materials for optoelectronic devices. Here, we investigate the excitonic band edge states and their energies levels in colloidal inorganic lead halide nanoplatelets, particularly the influence of dielectric effects, in a thin quasi-2D system. We use a model including band offset and dielectric confinements in the presence of Coulomb interaction. Short- and long-range contributions, modified by dielectric effects, are also derived, leading to a full modelization of the exciton fine structure, in cubic, tetragonal and orthorhombic phases. The fine splitting structure, including dark and bright excitonic states, is discussed and compared to recent experimental results, showing the importance of both confinement and dielectric contributions.
Collapse
|
37
|
Feng J, Wang J, Fieramosca A, Bao R, Zhao J, Su R, Peng Y, Liew TCH, Sanvitto D, Xiong Q. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. SCIENCE ADVANCES 2021; 7:eabj6627. [PMID: 34757800 PMCID: PMC8580323 DOI: 10.1126/sciadv.abj6627] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ultrafast all-optical switches and integrated circuits call for giant optical nonlinearity to minimize energy consumption and footprint. Exciton polaritons underpin intrinsic strong nonlinear interactions and high-speed propagation in solids, thus affording an intriguing platform for all-optical devices. However, semiconductors sustaining stable exciton polaritons at room temperature usually exhibit restricted nonlinearity and/or propagation properties. Delocalized and strongly interacting Wannier-Mott excitons in metal halide perovskites highlight their advantages in integrated nonlinear optical devices. Here, we report all-optical switching by using propagating and strongly interacting exciton-polariton fluids in self-assembled CsPbBr3 microwires. Strong polariton-polariton interactions and extended polariton fluids with a propagation length of around 25 μm have been reached. All-optical switching on/off of polariton propagation can be realized in picosecond time scale by locally blue-shifting the dispersion with interacting polaritons. The all-optical switching, together with the scalable self-assembly method, highlights promising applications of solution-processed perovskites toward integrated photonics operating in strong coupling regime.
Collapse
Affiliation(s)
- Jiangang Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Corresponding author. (Q.X.); (J.F.)
| | - Jun Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Antonio Fieramosca
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ruiqi Bao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yutian Peng
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Timothy C. H. Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China
- Corresponding author. (Q.X.); (J.F.)
| |
Collapse
|
38
|
Zhang W, You JB, Liu J, Xiong X, Li Z, Png CE, Wu L, Qiu CW, Zhou ZK. Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. NANO LETTERS 2021; 21:8979-8986. [PMID: 34644095 DOI: 10.1021/acs.nanolett.1c02248] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plexcitonic strong coupling between a plasmon-polariton and a quantum emitter empowers ultrafast quantum manipulations in the nanoscale under ambient conditions. The main body of previous studies deals with homogeneous quantum emitters. To enable multiqubit states for future quantum computing and network, the strong coupling involving two excitons of the same material but different resonant energies has been investigated and observed primarily at very low temperature. Here, we report a room-temperature diexcitonic strong coupling (DiSC) nanosystem in which the excitons of a transition metal dichalcogenide monolayer and dye molecules are both strongly coupled to a single Au nanocube. Coherent information exchange in this DiSC nanosystem could be observed even when exciton energy detuning is about five times larger than the respective line widths. The strong coupling behaviors in such a DiSC nanosystem can be manipulated by tuning the plasmon resonant energies and the coupling strengths, opening up a paradigm of controlling plasmon-assisted coherent energy transfer.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Bin You
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, Connexis, Singapore 138632
| | - Jingfeng Liu
- College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Xiong
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, Connexis, Singapore 138632
| | - Zixian Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Ching Eng Png
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, Connexis, Singapore 138632
| | - Lin Wu
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, Connexis, Singapore 138632
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583
| | - Zhang-Kai Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
39
|
Su R, Fieramosca A, Zhang Q, Nguyen HS, Deleporte E, Chen Z, Sanvitto D, Liew TCH, Xiong Q. Perovskite semiconductors for room-temperature exciton-polaritonics. NATURE MATERIALS 2021; 20:1315-1324. [PMID: 34211156 DOI: 10.1038/s41563-021-01035-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/07/2021] [Indexed: 05/13/2023]
Abstract
Lead-halide perovskites are generally excellent light emitters and can have larger exciton binding energies than thermal energy at room temperature, exhibiting great promise for room-temperature exciton-polaritonics. Rapid progress has been made recently, although challenges and mysteries remain in lead-halide perovskite semiconductors to push polaritons to room-temperature operation. In this Perspective, we discuss fundamental aspects of perovskite semiconductors for exciton-polaritons and review the recent rapid experimental advances using lead-halide perovskites for room-temperature polaritonics, including the experimental realization of strong light-matter interaction using various types of microcavities as well as reaching the polariton condensation regime in planar microcavities and lattices.
Collapse
Affiliation(s)
- Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Antonio Fieramosca
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qing Zhang
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Hai Son Nguyen
- Institut des Nanotechnologies de Lyon, Université de Lyon, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Ecully, France
| | - Emmanuelle Deleporte
- LuMIn, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CentraleSupélec, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Zhanghai Chen
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, P. R. China
| | - Daniele Sanvitto
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecotekne, Lecce, Italy.
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P. R. China.
- Beijing Academy of Quantum Information Sciences, Beijing, P. R. China.
| |
Collapse
|
40
|
Anantharaman SB, Jo K, Jariwala D. Exciton-Photonics: From Fundamental Science to Applications. ACS NANO 2021; 15:12628-12654. [PMID: 34310122 DOI: 10.1021/acsnano.1c02204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semiconductors in all dimensionalities ranging from 0D quantum dots and molecules to 3D bulk crystals support bound electron-hole pair quasiparticles termed excitons. Over the past two decades, the emergence of a variety of low-dimensional semiconductors that support excitons combined with advances in nano-optics and photonics has burgeoned an advanced area of research that focuses on engineering, imaging, and modulating the coupling between excitons and photons, resulting in the formation of hybrid quasiparticles termed exciton-polaritons. This advanced area has the potential to bring about a paradigm shift in quantum optics, as well as classical optoelectronic devices. Here, we present a review on the coupling of light in excitonic semiconductors and previous investigations of the optical properties of these hybrid quasiparticles via both far-field and near-field imaging and spectroscopy techniques. Special emphasis is given to recent advances with critical evaluation of the bottlenecks that plague various materials toward practical device implementations including quantum light sources. Our review highlights a growing need for excitonic material development together with optical engineering and imaging techniques to harness the utility of excitons and their host materials for a variety of applications.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
41
|
Anantharaman SB, Stevens CE, Lynch J, Song B, Hou J, Zhang H, Jo K, Kumar P, Blancon JC, Mohite AD, Hendrickson JR, Jariwala D. Self-Hybridized Polaritonic Emission from Layered Perovskites. NANO LETTERS 2021; 21:6245-6252. [PMID: 34260259 DOI: 10.1021/acs.nanolett.1c02058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light-matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room temperature with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light-matter coupling in Ruddlesden-Popper phase 2D HOIP crystals without the necessity of an external cavity. We report the concurrent occurrence of multiple orders of hybrid light-matter states via both reflectance and luminescence spectroscopy in thick (>100 nm) crystals and near-unity absorption in thin (<20 nm) crystals. We observe resonances with quality factors of >250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher E Stevens
- KBR, Inc., Beavercreek, Ohio 45431, United States
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Baokun Song
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Hou
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Huiqin Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pawan Kumar
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jean-Christophe Blancon
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Joshua R Hendrickson
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
42
|
Zhao J, Su R, Fieramosca A, Zhao W, Du W, Liu X, Diederichs C, Sanvitto D, Liew TCH, Xiong Q. Ultralow Threshold Polariton Condensate in a Monolayer Semiconductor Microcavity at Room Temperature. NANO LETTERS 2021; 21:3331-3339. [PMID: 33797259 DOI: 10.1021/acs.nanolett.1c01162] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exciton-polaritons, hybrid light-matter bosonic quasiparticles, can condense into a single quantum state, i.e., forming a polariton Bose-Einstein condensate (BEC), which represents a crucial step for the development of nanophotonic technology. Recently, atomically thin transition-metal dichalcogenides (TMDs) emerged as promising candidates for novel polaritonic devices. Although the formation of robust valley-polaritons has been realized up to room temperature, the demonstration of polariton lasing remains elusive. Herein, we report for the first time the realization of this important milestone in a TMD microcavity at room temperature. Continuous wave pumped polariton lasing is evidenced by the macroscopic occupation of the ground state, which undergoes a nonlinear increase of the emission along with the emergence of temporal coherence, the presence of an exciton fraction-controlled threshold and the buildup of linear polarization. Our work presents a critically important step toward exploiting nonlinear polariton-polariton interactions, as well as offering a new platform for thresholdless lasing.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Antonio Fieramosca
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Weijie Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei Du
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xue Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Carole Diederichs
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore 637371, Singapore
- Laboratoire Pierre Aigrain, Département de physique de l'ENS, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Paris 75005, France
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, Lecce 73100, Italy
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore 637371, Singapore
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China
| |
Collapse
|
43
|
Wu J, Ghosh S, Su R, Fieramosca A, Liew TCH, Xiong Q. Nonlinear Parametric Scattering of Exciton Polaritons in Perovskite Microcavities. NANO LETTERS 2021; 21:3120-3126. [PMID: 33788571 DOI: 10.1021/acs.nanolett.1c00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Comparing with pure photons, higher nonlinearity in polariton systems has been exploited in various proof-of-principle demonstrations of efficient optical devices based on the parametric scattering effect. However, most of them demand cryogenic temperatures limited by the small exciton binding energy of traditional semiconductors or exhibit weak nonlinearity resulting from Frenkel excitons. Lead halide perovskites, possessing both a large binding energy and a strong polariton interaction, emerge as ideal platforms to explore nonlinear polariton physics toward room temperature operation. Here, we report the first observation of nonlinear parametric scattering in a lead halide perovskite microcavity with multiple polariton branches at room temperature. Driven by the scattering source from condensation in one polariton branch, correlated polariton pairs are obtained at high k states in an adjacent branch. Our results strongly advocate the ability to reach the nonlinear regime essential for perovskite polaritonics working at room temperature.
Collapse
Affiliation(s)
- Jinqi Wu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Sanjib Ghosh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Antonio Fieramosca
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, https://majulab.cnrs.fr/
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China
| |
Collapse
|
44
|
Fu R, Zhao W, Wang L, Ma Z, Xiao G, Zou B. Pressure‐Induced Emission toward Harvesting Cold White Light from Warm White Light. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruijing Fu
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Wenya Zhao
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Lingrui Wang
- Key Laboratory of Materials Physics of Ministry of Education School of Physics and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Zhiwei Ma
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| |
Collapse
|
45
|
Fu R, Zhao W, Wang L, Ma Z, Xiao G, Zou B. Pressure-Induced Emission toward Harvesting Cold White Light from Warm White Light. Angew Chem Int Ed Engl 2021; 60:10082-10088. [PMID: 33759324 DOI: 10.1002/anie.202015395] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 11/10/2022]
Abstract
The pressure-induced emission (PIE) behavior of halide perovskites has attracted widespread attention and has potential application in pressure sensing. However, high-pressure reversibility largely inhibits practical applications. Here, we describe the emission enhancement and non-doping control of the color temperature in two-dimensional perovskite (C6 H5 CH2 CH2 NH3 )2 PbCl4 ((PEA)2 PbCl4 ) nanocrystals (NCs) through high-pressure processing. A remarkable 5 times PIE was achieved at a mild pressure of 0.4 GPa, which was highly associated with the enhanced radiative recombination of self-trapped excitons. Of particular importance is the retention of the 1.6 times emission of dense (PEA)2 PbCl4 NCs upon the complete release of pressure, accompanied by a color change from "warm" (4403 K) to "cold" white light with 14295 K. The irreversible pressure-induced structural amorphization, which facilitates the remaining local distortion of inorganic Pb-Cl octahedra with respect to the steric hindrance of organic PEA+ cations, should be greatly responsible for the quenched high-efficiency photoluminescence.
Collapse
Affiliation(s)
- Ruijing Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Wenya Zhao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Lingrui Wang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhiwei Ma
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
46
|
Wang J, Xu H, Su R, Peng Y, Wu J, Liew TCH, Xiong Q. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. LIGHT, SCIENCE & APPLICATIONS 2021; 10:45. [PMID: 33649295 PMCID: PMC7921445 DOI: 10.1038/s41377-021-00478-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 05/26/2023]
Abstract
Exciton-polariton condensation is regarded as a spontaneous macroscopic quantum phenomenon with phase ordering and collective coherence. By engineering artificial annular potential landscapes in halide perovskite semiconductor microcavities, we experimentally and theoretically demonstrate the room-temperature spontaneous formation of a coherent superposition of exciton-polariton orbital states with symmetric petal-shaped patterns in real space, resulting from symmetry breaking due to the anisotropic effective potential of the birefringent perovskite crystals. The lobe numbers of such petal-shaped polariton condensates can be precisely controlled by tuning the annular potential geometry. These petal-shaped condensates form in multiple orbital states, carrying locked alternating π phase shifts and vortex-antivortex superposition cores, arising from the coupling of counterrotating exciton-polaritons in the confined circular waveguide. Our geometrically patterned microcavity exhibits promise for realizing room-temperature topological polaritonic devices and optical polaritonic switches based on periodic annular potentials.
Collapse
Affiliation(s)
- Jun Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Huawen Xu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Yutian Peng
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Jinqi Wu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore, Singapore.
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P.R. China.
| |
Collapse
|
47
|
Gan Z, Cheng Y, Chen W, Loh KP, Jia B, Wen X. Photophysics of 2D Organic-Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001843. [PMID: 33747717 PMCID: PMC7967069 DOI: 10.1002/advs.202001843] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/01/2020] [Indexed: 05/17/2023]
Abstract
2D organic-inorganic hybrid Ruddlesden-Popper perovskites (RPPs) have recently attracted increasing attention due to their excellent environmental stability, high degree of electronic tunability, and natural multiquantum-well structures. Although there is a rapid development of photoelectronic applications in solar cells, photodetectors, light emitting diodes (LEDs), and lasers based on 2D RPPs, the state-of-the-art performance is far inferior to that of the existing devices because of the limited understanding on fundamental physics, especially special photophysics in carrier dynamics, excitonic fine structures, excitonic quasiparticles, and spin-related effect. Thus, there is still plenty of room to improve the performances of photoelectronic devices based on 2D RPPs by enhancing knowledge on fundamental photophysics. This review highlights the special photophysics of 2D RPPs that is fundamentally different from the conventional 3D congeners. It also provides the most recent progress, debates, challenges, prospects, and in-depth understanding of photophysics in 2D perovskites, which is significant for not only boosting performance of solar cells, LEDs, photodetectors, but also future development of applications in lasers, spintronics, quantum information, and integrated photonic chips.
Collapse
Affiliation(s)
- Zhixing Gan
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
- College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Weijian Chen
- Centre for Translational AtomaterialsFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyJohn StreetHawthornVIC3122Australia
- Australian Centre for Advanced PhotovoltaicsSchool of Photovoltaic and Renewable Energy EngineeringUNSW SydneyKensingtonNSW2052Australia
| | - Kian Ping Loh
- Department of Chemistryand Centre for Advanced 2D Materials and Graphene Research CentreNational University of SingaporeSingapore117543Singapore
| | - Baohua Jia
- Centre for Translational AtomaterialsFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyJohn StreetHawthornVIC3122Australia
| | - Xiaoming Wen
- Centre for Translational AtomaterialsFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyJohn StreetHawthornVIC3122Australia
| |
Collapse
|
48
|
Li Z, Sun F, Zheng Z, Chen J, Davydov AV, Deng S, Zhang H, Chen H, Liu F. High-Quality All-Inorganic Perovskite CsPbBr 3 Microsheet Crystals as Low-Loss Subwavelength Exciton-Polariton Waveguides. NANO LETTERS 2021; 21:1822-1830. [PMID: 33560855 DOI: 10.1021/acs.nanolett.0c04908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostructured all-inorganic metal halide perovskites have attracted considerable attention due to their outstanding photonic and optoelectronic properties. Particularly, they can exhibit room-temperature exciton-polaritons (EPs) capable of confining electromagnetic fields down to the subwavelength scale, enabling efficient light harvesting and guiding. However, a real-space nanoimaging study of the EPs in perovskite crystals is still absent. Additionally, few studies focused on the ambient-pressure and reliable fabrication of large-area CsPbBr3 microsheets. Here, CsPbBr3 orthorhombic microsheet single crystals were successfully synthesized under ambient pressure. Their EPs were examined using a real-space nanoimaging technique, which reveal EP waveguide modes spanning the visible to near-infrared spectral region. The EPs exhibit a sufficient long propagation length of over 16 μm and a very low propagation loss of less than 0.072 dB·μm-1. These results demonstrate the potential applications of CsPbBr3 microsheets as subwavelength waveguides in integrated optics.
Collapse
Affiliation(s)
- Zijuan Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengsheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zebo Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Albert V Davydov
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Huairuo Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Theiss Research, Inc., La Jolla, California 92037, United States
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
49
|
Coriolano A, Polimeno L, De Giorgi M, Todisco F, Mastria R, Ardizzone V, Dominici L, Ballarini D, Rizzo A, Gigli G, Sanvitto D, De Marco L. Improved Photostability in Fluorinated 2D Perovskite Single Crystals. NANOMATERIALS 2021; 11:nano11020465. [PMID: 33670330 PMCID: PMC7918564 DOI: 10.3390/nano11020465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 02/05/2021] [Indexed: 11/18/2022]
Abstract
Hybrid organic-inorganic perovskites are very promising semiconductors for many optoelectronic applications, although their extensive use is limited by their poor stability under environmental conditions. In this work, we synthesize two-dimensional perovskite single crystals and investigate their optical and structural evolution under continuous light irradiation. We found that the hydrophobic nature of the fluorinated component, together with the absence of grain boundary defects, lead to improved material stability thanks to the creation of a robust barrier that preserve the crystalline structure, hindering photo-degradation processes usually promoted by oxygen and moisture.
Collapse
Affiliation(s)
- Annalisa Coriolano
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Laura Polimeno
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Milena De Giorgi
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
| | - Francesco Todisco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
| | - Rosanna Mastria
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
| | - Vincenzo Ardizzone
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
| | - Lorenzo Dominici
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
| | - Dario Ballarini
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
| | - Aurora Rizzo
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
| | - Luisa De Marco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.C.); (L.P.); (M.D.G.); (F.T.); (R.M.); (V.A.); (L.D.); (D.B.); (A.R.); (G.G.); (D.S.)
- Correspondence:
| |
Collapse
|
50
|
Pan D, Fu Y, Spitha N, Zhao Y, Roy CR, Morrow DJ, Kohler DD, Wright JC, Jin S. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden-Popper halide perovskites. NATURE NANOTECHNOLOGY 2021; 16:159-165. [PMID: 33257896 DOI: 10.1038/s41565-020-00802-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/20/2020] [Indexed: 05/24/2023]
Abstract
Ruddlesden-Popper lead halide perovskites have emerged as a new class of two-dimensional semiconductors with tunable optoelectronic properties, potentially offering unlimited heterostructure configurations for exploration. However, the practical realization of such heterostructures is challenging because of the difficulty in achieving controllable direct synthesis or van der Waals integration of halide perovskites due to their mobile and fragile crystal lattices. Here we report direct growth of large-area nanosheets of diverse phase-pure Ruddlesden-Popper perovskites with thicknesses down to one monolayer at the solution-air interface and a reliable approach for gently transferring and stacking these nanosheets. These advances enable the deterministic fabrication of arbitrary vertical heterostructures and multi-heterostructures of Ruddlesden-Popper perovskites with greater structural degrees of freedom that define the electronic structures of the heterojunctions. Such rationally designed heterostructures exhibit interesting interlayer properties, such as interlayer carrier transfer and reduction of the photoluminescence linewidth, and could enable the exploration of exciton physics and optoelectronic applications.
Collapse
Affiliation(s)
- Dongxu Pan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yongping Fu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Natalia Spitha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuzhou Zhao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris R Roy
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Darien J Morrow
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel D Kohler
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|