1
|
Wu T, Sugiarto S, Yang R, Sathasivam T, Weerasinghe UA, Chee PL, Yap O, Nyström G, Kai D. From 3D to 4D printing of lignin towards green materials and sustainable manufacturing. MATERIALS HORIZONS 2025; 12:2789-2819. [PMID: 39895545 DOI: 10.1039/d4mh01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lignin is the second most abundant renewable and sustainable biomass resource. Developing advanced manufacturing to process lignin/lignocellulose into functional materials could reduce the consumption of petroleum-based materials. 3D printing provides a promising strategy to realize complex and customized geometries of lignin materials. The heterogeneity and complexity of lignin hinder its processing via additive manufacturing, but the recent advancement in lignin modification and polymerization provides new opportunities. Here, we summarize the recent state-of-the-art 3D printing of lignin materials, including the selection and formulation of lignin materials based on different printing techniques, the chemical modification of lignin for enhanced printability, and the related application fields. Additionally, we highlight the significant role of the 3D printing of lignocellulose biomass materials, such as wood powder and agricultural wastes. It was concluded that the most challenging part is to enhance the printability of lignin materials through modification and pretreatment of lignin while keeping the whole process green and sustainable. Beyond 3D printing, we further discuss the development of smart lignin materials and their potential for 4D printing. Ultimately, we discuss the current challenges and potential opportunities for the additive manufacturing of lignin materials. We believe this review can raise awareness among researchers about the potential of lignin materials as whole materials for constructing blocks and can promote the development of 3D/4D printing of lignin towards sustainability.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Sigit Sugiarto
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Ruochen Yang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Thenapakiam Sathasivam
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Udyani Aloka Weerasinghe
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Odelia Yap
- School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.
- Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, CH-8092, Zürich, Switzerland
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
2
|
Hamada A, Ryu YK, Velasco A, Gómez-Mancebo MB, Fernández Carretero S, Calle F, Martinez J. Boosting flexible laser-induced graphene supercapacitors performance through double pass laser processing. iScience 2025; 28:111696. [PMID: 39886470 PMCID: PMC11780167 DOI: 10.1016/j.isci.2024.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
This study proposes a simple and cost-effective approach to enhance the performance of supercapacitors based on laser-induced graphene (LIG). The use of two consecutive laser passes using the same CO2 engraver on polyimide film led to the expansion in the size of the pores, the increase in the graphitization degree, and the densification of the produced material. These changes in the morphology and chemical structure of the LIG impacted positively its electrochemical performance when it was used as an electrode for supercapacitors. The best achieved material displayed the following results: (a) an enhancement of the areal energy density from 0.77 to 2.20 μWh/cm2 at 0.05 mA/cm2, (b) a reduction of 60% in the equivalent series resistance, (c) high cycling stability with a capacitance retention rate of 91% after 10.000 cycles, (d) high performance stability under mechanical tests at different angles, and (e) green LED illumination under configuration in series.
Collapse
Affiliation(s)
- Assia Hamada
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
| | - Yu Kyoung Ryu
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
- Departamento de Física Aplicada e Ingeniería de Materiales, E.T.S.I Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Andres Velasco
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
| | - María Belén Gómez-Mancebo
- División de Química, Departamento de Tecnología, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Av. Complutense 40, 28040 Madrid, Spain
| | - Sergio Fernández Carretero
- Unidad de Residuos de Alta Actividad, Unidad de Fisión Nuclear, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Av. Complutense 40, 28040 Madrid, Spain
| | - Fernando Calle
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
- Departamento de Ingeniería Electrónica, E.T.S.I Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
| | - Javier Martinez
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
- Departamento de Ciencia de Materiales-CIME, E.T.S.I Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/ Profesor Aranguren s/n, 28040 Madrid, Spain
| |
Collapse
|
3
|
Pergal MV, Rašljić Rafajilović M, Vićentić T, Pašti IA, Ostojić S, Bajuk-Bogdanović D, Spasenović M. Laser-Induced Graphene on Novel Crosslinked Poly(dimethylsiloxane)/Triton X-100 Composites for Improving Mechanical, Electrical and Hydrophobic Properties. Polymers (Basel) 2024; 16:3157. [PMID: 39599248 PMCID: PMC11598474 DOI: 10.3390/polym16223157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Laser-induced graphene (LIG) has become a highly promising material for flexible functional devices due to its robust mechanical stability, excellent electrical properties, and ease of fabrication. Most research has been focused on LIG production on rigid or flexible substrates, with an obvious gap in laser induction of graphene on elastic, stretchable substrates, which limits the scope of application of LIG in flexible electronics. We demonstrate laser induction of graphene on a novel, cross-linked poly(dimethylsiloxane) (PDMS)/Triton X-100 composite substrates. The effect of varying Triton content (1-30 wt.%) on the structural, thermal, surface, nanomechanical, and electrical properties of LIG was systematically studied. Physicochemical characterization confirmed the successful induction of LIG on the surface of PDMS/Triton composites. A higher content of Triton in the PDMS matrix improves the quality of LIG, increases stiffness and hydrophobicity, and somewhat decreases sheet resistance. Similar thermal properties and super-hydrophobicity were observed for LIG/PDMS/Triton materials as compared to their counterparts without LIG. Direct laser irradiation of graphene on the surface of PDMS/Triton composites results in the formation of extremely promising materials, which have great potential for use in flexible electronic devices.
Collapse
Affiliation(s)
- Marija V. Pergal
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.R.R.); (T.V.); (M.S.)
| | - Milena Rašljić Rafajilović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.R.R.); (T.V.); (M.S.)
| | - Teodora Vićentić
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.R.R.); (T.V.); (M.S.)
| | - Igor A. Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia (D.B.-B.)
| | - Sanja Ostojić
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia
| | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia (D.B.-B.)
| | - Marko Spasenović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.R.R.); (T.V.); (M.S.)
| |
Collapse
|
4
|
Ganeriwala MD, Motos Espada R, Marin EG, Cuesta-Lopez J, Garcia-Palomo M, Rodríguez N, Ruiz FG, Godoy A. A Flexible Laser-Induced Graphene Memristor with Volatile Switching for Neuromorphic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49724-49732. [PMID: 39241231 PMCID: PMC11420864 DOI: 10.1021/acsami.4c07589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Two-dimensional graphene and graphene-based materials are attracting increasing interest in neuromorphic computing applications by the implementation of memristive architectures that enable the closest solid-state equivalent to biological synapses and neurons. However, the state-of-the-art fabrication methodology involves routine use of high-temperature processes and multistepped chemical synthesis, often on a rigid substrate constraining the experimental exploration in the field to high-tech facilities. Here, we demonstrate the use of a one-step process using a commercial laser to fabricate laser-induced graphene (LIG) memristors directly on a flexible polyimide substrate. For the first time, a volatile resistive switching phenomenon is reported in the LIG without using any additional materials. The absence of any precursor or patterning mask greatly simplifies the process while reducing the cost and providing greater controllability. The fabricated memristors show multilevel resistance-switching characteristics with high endurance and tunable timing characteristics. The recovery time and the trigger pulse-dependent state change are shown to be highly suitable for its use as a synaptic element and in the realization of leaky-integrate and fire neuron in neuromorphic circuits.
Collapse
Affiliation(s)
- Mohit D Ganeriwala
- Electronics Department, Campus Fuentenueva S/N, University of Granada, Granada 18071, Spain
| | - Roberto Motos Espada
- Electronics Department, Campus Fuentenueva S/N, University of Granada, Granada 18071, Spain
| | - Enrique G Marin
- Electronics Department, Campus Fuentenueva S/N, University of Granada, Granada 18071, Spain
| | - Juan Cuesta-Lopez
- Electronics Department, Campus Fuentenueva S/N, University of Granada, Granada 18071, Spain
| | - Mikel Garcia-Palomo
- Electronics Department, Campus Fuentenueva S/N, University of Granada, Granada 18071, Spain
| | - Noel Rodríguez
- Electronics Department, Campus Fuentenueva S/N, University of Granada, Granada 18071, Spain
| | - Francisco G Ruiz
- Electronics Department, Campus Fuentenueva S/N, University of Granada, Granada 18071, Spain
| | - Andres Godoy
- Electronics Department, Campus Fuentenueva S/N, University of Granada, Granada 18071, Spain
| |
Collapse
|
5
|
Ghosh A, Kaur S, Verma G, Dolle C, Azmi R, Heissler S, Eggeler YM, Mondal K, Mager D, Gupta A, Korvink JG, Wang DY, Sharma A, Islam M. Enhanced Performance of Laser-Induced Graphene Supercapacitors via Integration with Candle-Soot Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39052020 DOI: 10.1021/acsami.4c07094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Laser-induced graphene (LIG) has been emerging as a promising electrode material for supercapacitors due to its cost-effective and straightforward fabrication approach. However, LIG-based supercapacitors still face challenges with limited capacitance and stability. To overcome these limitations, in this work, we present a novel, cost-effective, and facile fabrication approach by integrating LIG materials with candle-soot nanoparticles. The composite electrode is fabricated by laser irradiation on a Kapton sheet to generate LIG material, followed by spray-coating with candle-soot nanoparticles and annealing. Materials characterization reveals that the annealing process enables a robust connection between the nanoparticles and the LIG materials and enhances nanoparticle graphitization. The prepared supercapacitor yields a maximum specific capacitance of 15.1 mF/cm2 at 0.1 mA/cm2, with a maximum energy density of 2.1 μWh/cm2 and a power density of 50 μW/cm2. Notably, the synergistic activity of candle soot and LIG surpasses the performances of previously reported LIG-based supercapacitors. Furthermore, the cyclic stability of the device demonstrates excellent capacitance retention of 80% and Coulombic efficiency of 100% over 10000 cycles.
Collapse
Affiliation(s)
- Arnab Ghosh
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain
| | - Sukhman Kaur
- Mechanical Engineering Department, Punjab Engineering College, Sector 12, Chandigarh, 160012, India
| | - Gulshan Verma
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Christian Dolle
- Microscopy of Nanoscale Structures and Mechanisms (MNM), Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology, Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Raheleh Azmi
- Institut für Angewandte Materialien, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heissler
- Institut für Funktionelle Grenzflächen, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yolita M Eggeler
- Microscopy of Nanoscale Structures and Mechanisms (MNM), Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology, Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Kunal Mondal
- Idaho National Laboratory, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415, United States
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - De-Yi Wang
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Monsur Islam
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Pinheiro T, Morais M, Silvestre S, Carlos E, Coelho J, Almeida HV, Barquinha P, Fortunato E, Martins R. Direct Laser Writing: From Materials Synthesis and Conversion to Electronic Device Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402014. [PMID: 38551106 DOI: 10.1002/adma.202402014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Direct Laser Writing (DLW) has been increasingly selected as a microfabrication route for efficient, cost-effective, high-resolution material synthesis and conversion. Concurrently, lasers participate in the patterning and assembly of functional geometries in several fields of application, of which electronics stand out. In this review, recent advances and strategies based on DLW for electronics microfabrication are surveyed and outlined, based on laser material growth strategies. First, the main DLW parameters influencing material synthesis and transformation mechanisms are summarized, aimed at selective, tailored writing of conductive and semiconducting materials. Additive and transformative DLW processing mechanisms are discussed, to open space to explore several categories of materials directly synthesized or transformed for electronics microfabrication. These include metallic conductors, metal oxides, transition metal chalcogenides and carbides, laser-induced graphene, and their mixtures. By accessing a wide range of material types, DLW-based electronic applications are explored, including processing components, energy harvesting and storage, sensing, and bioelectronics. The expanded capability of lasers to participate in multiple fabrication steps at different implementation levels, from material engineering to device processing, indicates their future applicability to next-generation electronics, where more accessible, green microfabrication approaches integrate lasers as comprehensive tools.
Collapse
Affiliation(s)
- Tomás Pinheiro
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Maria Morais
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Sara Silvestre
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Emanuel Carlos
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - João Coelho
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Henrique V Almeida
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Pedro Barquinha
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Elvira Fortunato
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Rodrigo Martins
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| |
Collapse
|
7
|
Moon S, Senokos E, Trouillet V, Loeffler FF, Strauss V. Sustainable design of high-performance multifunctional carbon electrodes by one-step laser carbonization for supercapacitors and dopamine sensors. NANOSCALE 2024; 16:8627-8638. [PMID: 38606506 PMCID: PMC11064777 DOI: 10.1039/d4nr00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Laser carbonization is a rapid method to produce functional carbon materials for electronic devices, but many typical carbon precursors are not sustainable and/or require extensive processing for electrochemical applications. Here, a sustainable concept to fabricate laser patterned carbon (LP-C) electrodes from biomass-derived sodium lignosulfonate, an abundant waste product from the paper industry is presented. By introducing an adhesive polymer interlayer between the sodium lignosulfonate and a graphite foil current collector, stable, abrasion-resistant LP-C electrodes can be fabricated in a single laser irradiation step. The electrode properties can be systematically tuned by controlling the laser processing parameters. The optimized LP-C electrodes demonstrate a promising performance in supercapacitors and electrochemical dopamine biosensors. They exhibit high areal capacitances of 38.9 mF cm-2 in 1 M H2SO4 and high energy and power densities of 4.3 μW h cm-2 and 16 mW cm-2 in 17 M NaClO4, showing the best performance among biomass-derived LP-C materials reported so far. After 20 000 charge/discharge cycles, they retain a high capacitance of 81%. Dopamine was linearly detected in the range of 0.1 to 20 μM with an extrapolated limit of detection of 0.5 μM (S/N = 3) and high sensitivity (13.38 μA μM-1 cm-2), demonstrating better performance than previously reported biomass-derived LP-C dopamine sensors.
Collapse
Affiliation(s)
- Sanghwa Moon
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Evgeny Senokos
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Volker Strauss
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
8
|
Vićentić T, Greco I, Iorio CS, Mišković V, Bajuk-Bogdanović D, Pašti IA, Radulović K, Klenk S, Stimpel-Lindner T, Duesberg GS, Spasenović M. Laser-induced graphene on cross-linked sodium alginate. NANOTECHNOLOGY 2023; 35:115103. [PMID: 38081076 DOI: 10.1088/1361-6528/ad143a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
Laser-induced graphene (LIG) possesses desirable properties for numerous applications. However, LIG formation on biocompatible substrates is needed to further augment the integration of LIG-based technologies into nanobiotechnology. Here, LIG formation on cross-linked sodium alginate is reported. The LIG is systematically investigated, providing a comprehensive understanding of the physicochemical characteristics of the material. Raman spectroscopy, scanning electron microscopy with energy-dispersive x-ray analysis, x-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy techniques confirm the successful generation of oxidized graphene on the surface of cross-linked sodium alginate. The influence of laser parameters and the amount of crosslinker incorporated into the alginate substrate is explored, revealing that lower laser speed, higher resolution, and increased CaCl2content leads to LIG with lower electrical resistance. These findings could have significant implications for the fabrication of LIG on alginate with tailored conductive properties, but they could also play a guiding role for LIG formation on other biocompatible substrates.
Collapse
Affiliation(s)
- T Vićentić
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - I Greco
- Center for Research and Engineering in Space Technologies (CREST), Universite Libre de Bruxelles, Bruxelles, Belgium
| | - C S Iorio
- Center for Research and Engineering in Space Technologies (CREST), Universite Libre de Bruxelles, Bruxelles, Belgium
| | - V Mišković
- Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy
| | | | - I A Pašti
- University of Belgrade-Faculty of Physical Chemistry Belgrade, Serbia
| | - K Radulović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - S Klenk
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & SENS Research Center, Neubiberg, Germany
| | - T Stimpel-Lindner
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & SENS Research Center, Neubiberg, Germany
| | - G S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & SENS Research Center, Neubiberg, Germany
| | - M Spasenović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Roy N, Khattak N, Phan KK, Hossain MS, Thomas S, Ram M, Sheridan M, Lorentz B, Takshi A. Sequential Laser-Burned Lignin and Hydrogen Evolution-Assisted Copper Electrodeposition to Manufacture Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46571-46578. [PMID: 37733934 DOI: 10.1021/acsami.3c11814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In the contemporary world, wearable electronics and smart textiles/fabrics are galvanizing a transformation of the health care, aerospace, military, and commercial industries. However, a major challenge that exists is the manufacture of electronic circuits directly on fabrics. In this work, we addressed the issue by developing a sequential manufacturing process. First, the target fabric was coated with a customized ink containing lignin. Next, a desired circuit layout was patterned by laser burning lignin, converting it to carbon and establishing a conductive template on the fabric. At last, using an in-house-designed printer, a devised localized hydrogen evolution-assisted (HEA) copper electroplating method was applied to metalize the surface of the laser-burned lignin pattern to achieve a very low resistive circuit layout (0.103 Ω for a 1 cm long interconnect). The nanostructure and material composition of the different layers were investigated via scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Monitoring the conductivity change before and after bending, rolling, stretching, washing, and adhesion tests presented remarkable mechanical stability due to the entanglement of the copper nanostructure to the fibers of the fabric. Furthermore, the HEA method was used to solder a light-emitting diode to a patterned circuit on the fabric by growing copper at the terminals, creating interconnects. The presented sequential printing method has the potential for fabricating reliable wearable electronics for various applications, particularly in medical monitoring.
Collapse
Affiliation(s)
- Nirmita Roy
- University of South Florida, Tampa, Florida 33620, United States
| | - Nida Khattak
- University of South Florida, Tampa, Florida 33620, United States
| | - Kat-Kim Phan
- University of South Florida, Tampa, Florida 33620, United States
| | | | - Sylvia Thomas
- University of South Florida, Tampa, Florida 33620, United States
| | - Manoj Ram
- PolyMaterialsApp, Tampa, Florida 33612, United States
| | | | | | - Arash Takshi
- University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
10
|
Zhao N, Zhang H, Yang S, Sun Y, Zhao G, Fan W, Yan Z, Lin J, Wan C. Direct Induction of Porous Graphene from Mechanically Strong and Waterproof Biopaper for On-Chip Multifunctional Flexible Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300242. [PMID: 37381614 DOI: 10.1002/smll.202300242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Graphene with a 3D porous structure is directly laser-induced on lignocellulosic biopaper under ambient conditions and is further explored for multifunctional biomass-based flexible electronics. The mechanically strong, flexible, and waterproof biopaper is fabricated by surface-functionalizing cellulose with lignin-based epoxy acrylate (LBEA). This composite biopaper shows as high as a threefold increase in tensile strength and excellent waterproofing compared with pure cellulose one. Direct laser writing (DLW) rapidly induces porous graphene from the biopaper in a single step. The porous graphene shows an interconnected carbon network, well-defined graphene domains, and high electrical conductivity (e.g., ≈3 Ω per square), which can be tuned by lignin precursors and loadings as well as lasing conditions. The biopaper in situ embedded with porous graphene is facilely fabricated into flexible electronics for on-chip and paper-based applications. The biopaper-based electronic devices, including the all-solid-state planer supercapacitor, electrochemical and strain biosensors, and Joule heater, show great performances. This study demonstrates the facile, versatile, and low-cost fabrication of multifunctional graphene-based electronics from lignocellulose-based biopaper.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Blvd, Zhengzhou, Henan Province, 450001, China
| | - Hanwen Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Shuhong Yang
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Yisheng Sun
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, 416 South 6th Street, Columbia, MO, 65211, USA
| | - Wenjun Fan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri, 416 South 6th Street, Columbia, MO, 65211, USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, 416 South 6th Street, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Bressi AC, Dallinger A, Steksova Y, Greco F. Bioderived Laser-Induced Graphene for Sensors and Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471123 PMCID: PMC10401514 DOI: 10.1021/acsami.3c07687] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The maskless and chemical-free conversion and patterning of synthetic polymer precursors into laser-induced graphene (LIG) via laser-induced pyrolysis is a relatively new but growing field. Bioderived precursors from lignocellulosic materials can also be converted to LIG, opening a path to sustainable and environmentally friendly applications. This review is designed as a starting point for researchers who are not familiar with LIG and/or who wish to switch to sustainable bioderived precursors for their applications. Bioderived precursors are described, and their performances (mainly crystallinity and sheet resistance of the obtained LIG) are compared. The three main fields of application are reviewed: supercapacitors and electrochemical and physical sensors. The key advantages and disadvantages of each precursor for each application are discussed and compared to those of a benchmark of polymer-derived LIG. LIG from bioderived precursors can match, or even outperform, its synthetic analogue and represents a viable and sometimes better alternative, also considering its low cost and biodegradability.
Collapse
Affiliation(s)
- Anna Chiara Bressi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alexander Dallinger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
| | - Yulia Steksova
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Francesco Greco
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
- Interdisciplinary Center on Sustainability and Climate, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
12
|
Balk M, Sofia P, Neffe AT, Tirelli N. Lignin, the Lignification Process, and Advanced, Lignin-Based Materials. Int J Mol Sci 2023; 24:11668. [PMID: 37511430 PMCID: PMC10380785 DOI: 10.3390/ijms241411668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
At a time when environmental considerations are increasingly pushing for the application of circular economy concepts in materials science, lignin stands out as an under-used but promising and environmentally benign building block. This review focuses (A) on understanding what we mean with lignin, i.e., where it can be found and how it is produced in plants, devoting particular attention to the identity of lignols (including ferulates that are instrumental for integrating lignin with cell wall polysaccharides) and to the details of their coupling reactions and (B) on providing an overview how lignin can actually be employed as a component of materials in healthcare and energy applications, finally paying specific attention to the use of lignin in the development of organic shape-memory materials.
Collapse
Affiliation(s)
- Maria Balk
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Pietro Sofia
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- The Open University Affiliated Research Centre at the Istituto Italiano di Tecnologia (ARC@IIT), Via Morego 30, 16163 Genova, Italy
| | - Axel T Neffe
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
13
|
Qu C, Lu M, Zhang Z, Chen S, Liu D, Zhang D, Wang J, Sheng B. Flexible Microstructured Capacitive Pressure Sensors Using Laser Engraving and Graphitization from Natural Wood. Molecules 2023; 28:5339. [PMID: 37513212 PMCID: PMC10385064 DOI: 10.3390/molecules28145339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, laser engraving has received widespread attention as a convenient, efficient, and programmable method which has enabled high-quality porous graphene to be obtained from various precursors. Laser engraving is often used to fabricate the dielectric layer with a microstructure for capacitive pressure sensors; however, the usual choice of electrodes remains poorly flexible metal electrodes, which greatly limit the overall flexibility of the sensors. In this work, we propose a flexible capacitive pressure sensor made entirely of thermoplastic polyurethane (TPU) and laser-induced graphene (LIG) derived from wood. The capacitive pressure sensor consisted of a flexible LIG/TPU electrode (LTE), an LIG/TPU electrode with a microhole array, and a dielectric layer of TPU with microcone array molded from a laser-engraved hole array on wood, which provided high sensitivity (0.11 kPa-1), an ultrawide pressure detection range (20 Pa to 1.4 MPa), a fast response (~300 ms), and good stability (>4000 cycles, at 0-35 kPa). We believe that our research makes a significant contribution to the literature, because the easy availability of the materials derived from wood and the overall consistent flexibility meet the requirements of flexible electronic devices.
Collapse
Affiliation(s)
- Chenkai Qu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Meilan Lu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Ziyan Zhang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shangbi Chen
- Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
| | - Dewen Liu
- Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
| | - Dawei Zhang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Jing Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bin Sheng
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
14
|
Zhao T, Zhu H, Zhang H. Rapid Prototyping Flexible Capacitive Pressure Sensors Based on Porous Electrodes. BIOSENSORS 2023; 13:bios13050546. [PMID: 37232907 DOI: 10.3390/bios13050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Flexible pressure sensors are widely applied in tactile perception, fingerprint recognition, medical monitoring, human-machine interfaces, and the Internet of Things. Among them, flexible capacitive pressure sensors have the advantages of low energy consumption, slight signal drift, and high response repeatability. However, current research on flexible capacitive pressure sensors focuses on optimizing the dielectric layer for improved sensitivity and pressure response range. Moreover, complicated and time-consuming fabrication methods are commonly applied to generate microstructure dielectric layers. Here, we propose a rapid and straightforward fabrication approach to prototyping flexible capacitive pressure sensors based on porous electrodes. Laser-induced graphene (LIG) is produced on both sides of the polyimide paper, resulting in paired compressible electrodes with 3D porous structures. When the elastic LIG electrodes are compressed, the effective electrode area, the relative distance between electrodes, and the dielectric property vary accordingly, thereby generating a sensitive pressure sensor in a relatively large working range (0-9.6 kPa). The sensitivity of the sensor is up to 7.71%/kPa-1, and it can detect pressure as small as 10 Pa. The simple and robust structure allows the sensor to produce quick and repeatable responses. Our pressure sensor exhibits broad potential in practical applications in health monitoring, given its outstanding comprehensive performance combined with its simple and quick fabrication method.
Collapse
Affiliation(s)
- Tiancong Zhao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Huichao Zhu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
- School of Artificial Intelligence, Dalian University of Technology, Dalian 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications. Mikrochim Acta 2023; 190:40. [PMID: 36585475 PMCID: PMC9803761 DOI: 10.1007/s00604-022-05610-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022]
Abstract
Laser-induced graphene (LIG) is as a promising material for flexible microsupercapacitors (MSCs) due to its simple and cost-effective processing. However, LIG-MSC research and production has been centered on non-sustainable polymeric substrates, such as polyimide. In this work, it is presented a cost-effective, reproducible, and robust approach for the preparation of LIG structures via a one-step laser direct writing on chromatography paper. The developed strategy relies on soaking the paper in a 0.1 M sodium tetraborate solution (borax) prior to the laser processing. Borax acts as a fire-retardant agent, thus allowing the laser processing of sensitive substrates that other way would be easily destroyed under the high-energy beam. LIG on paper exhibiting low sheet resistance (30 Ω sq-1) and improved electrode/electrolyte interface was obtained by the proposed method. When used as microsupercapacitor electrodes, this laser-induced graphene resulted in specific capacitances of 4.6 mF cm-2 (0.015 mA cm-2). Furthermore, the devices exhibit excellent cycling stability (> 10,000 cycles at 0.5 mA cm-2) and good mechanical properties. By connecting the devices in series and parallel, it was also possible to control the voltage and energy delivered by the system. Thus, paper-based LIG-MSC can be used as energy storage devices for flexible, low-cost, and portable electronics. Additionally, due to their flexible design and architecture, they can be easily adapted to other circuits and applications with different power requirements.
Collapse
|
16
|
Chen Y, He Z, Ding S, Wang M, Liu H, Hou M, Chen X, Gao J, Wang L, Wong CP. Facilely preparing lignin-derived graphene-ferroferric oxide nanocomposites by flash Joule heating method. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Correia R, Deuermeier J, Correia MR, Vaz Pinto J, Coelho J, Fortunato E, Martins R. Biocompatible Parylene-C Laser-Induced Graphene Electrodes for Microsupercapacitor Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46427-46438. [PMID: 36209418 PMCID: PMC9585513 DOI: 10.1021/acsami.2c09667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Laser irradiation of polymeric materials has drawn great attention as a fast, simple, and cost-effective method for the formation of porous graphene films that can be subsequently fabricated into low-cost and flexible electronic and energy-storage devices. In this work, we report a systematic study of the formation of laser-induced graphene (LIG) with sheet resistances as low as 9.4 Ω/sq on parylene-C ultrathin membranes under a CO2 infrared laser. Raman analysis proved the formation of the multilayered graphenic material, with ID/IG and I2D/IG peak ratios of 0.42 and 0.65, respectively. As a proof of concept, parylene-C LIG was used as the electrode material for the fabrication of ultrathin, solid-state microsupercapacitors (MSCs) via a one-step, scalable, and cost-effective approach, aiming at future flexible and wearable applications. The produced LIG-MSC on parylene-C exhibited good electrochemical behavior, with a specific capacitance of 1.66 mF/cm2 and an excellent cycling stability of 96% after 10 000 cycles (0.5 mA/cm2). This work allows one to further extend the knowledge in LIG processes, widening the group of precursor materials as well as promoting future applications. Furthermore, it reinforces the potential of parylene-C as a key material for next-generation biocompatible and flexible electronic devices.
Collapse
Affiliation(s)
- Ricardo Correia
- CENIMAT|i3N
Department of Materials Science, NOVA School
of Science and Technology and CEMOP/UNINOVA, Campus da Caparica, 2829-516Caparica, Portugal
| | - Jonas Deuermeier
- CENIMAT|i3N
Department of Materials Science, NOVA School
of Science and Technology and CEMOP/UNINOVA, Campus da Caparica, 2829-516Caparica, Portugal
| | | | - Joana Vaz Pinto
- CENIMAT|i3N
Department of Materials Science, NOVA School
of Science and Technology and CEMOP/UNINOVA, Campus da Caparica, 2829-516Caparica, Portugal
| | - João Coelho
- CENIMAT|i3N
Department of Materials Science, NOVA School
of Science and Technology and CEMOP/UNINOVA, Campus da Caparica, 2829-516Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N
Department of Materials Science, NOVA School
of Science and Technology and CEMOP/UNINOVA, Campus da Caparica, 2829-516Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N
Department of Materials Science, NOVA School
of Science and Technology and CEMOP/UNINOVA, Campus da Caparica, 2829-516Caparica, Portugal
| |
Collapse
|
18
|
Liu J, Zhang K, Wang H, Lin L, Zhang J, Li P, Zhang Q, Shi J, Cui H. Advances in Micro-/Mesopore Regulation Methods for Plant-Derived Carbon Materials. Polymers (Basel) 2022; 14:polym14204261. [PMID: 36297839 PMCID: PMC9611847 DOI: 10.3390/polym14204261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, renewable and clean energy has become increasingly important due to energy shortage and environmental pollution. Selecting plants as the carbon precursors to replace costly non-renewable energy sources causing severe pollution is a good choice. In addition, owing to their diverse microstructure and the rich chemical composition, plant-based carbon materials are widely used in many fields. However, some of the plant-based carbon materials have the disadvantage of possessing a large percentage of macroporosity, limiting their functionality. In this paper, we first introduce two characteristics of plant-derived carbon materials: diverse microstructure and rich chemical composition. Then, we propose improvement measures to cope with a high proportion of macropores of plant-derived carbon materials. Emphatically, size regulation methods are summarized for micropores (KOH activation, foam activation, physical activation, freezing treatment, and fungal treatment) and mesopores (H3PO4 activation, enzymolysis, molten salt activation, and template method). Their advantages and disadvantages are also compared and analyzed. Finally, the paper makes suggestions on the pore structure improvement of plant-derived carbon materials.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
| | - Ke Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
| | - Huiyan Wang
- Beijing Spacecraft Manufacturing Co., Ltd., Beijing 100094, China
| | - Lin Lin
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
- Correspondence: (L.L.); (J.S.)
| | - Jian Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
| | - Peng Li
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qiang Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
- Correspondence: (L.L.); (J.S.)
| | - Hang Cui
- National Demonstration Center for Experimental Physics Education, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Vivaldi F, Dallinger A, Poma N, Bonini A, Biagini D, Salvo P, Borghi F, Tavanti A, Greco F, Di Francesco F. Sweat analysis with a wearable sensing platform based on laser-induced graphene. APL Bioeng 2022; 6:036104. [PMID: 36147196 PMCID: PMC9489259 DOI: 10.1063/5.0093301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
The scientific community has shown increasing interest in laser scribing for the direct fabrication of conductive graphene-based tracks on different substrates. This can enable novel routes for the noninvasive analysis of biofluids (such as sweat or other noninvasive matrices), whose results can provide the rapid evaluation of a person's health status. Here, we present a wearable sensing platform based on laser induced graphene (LIG) porous electrodes scribed on a flexible polyimide sheet, which samples sweat through a paper sampler. The device is fully laser manufactured and features a two layer design with LIG-based vertical interconnect accesses. A detailed characterization of the LIG electrodes including pore size, surface groups, surface area in comparison to electroactive surface area, and the reduction behavior of different LIG types was performed. The bare LIG electrodes can detect the electrochemical oxidation of both uric acid and tyrosine. Further modification of the surface of the LIG working electrode with an indoaniline derivative [4-((4-aminophenyl)imino)-2,6-dimethoxycyclohexa-2,5-dien-1-one] enables the voltammetric measurement of pH with an almost ideal sensitivity and without interference from other analytes. Finally, electrochemical impedance spectroscopy was used to measure the concentrations of ions through the analysis of the sweat impedance. The device was successfully tested in a real case scenario, worn on the skin during a sports session. In vitro tests proved the non-cytotoxic effect of the device on the A549 cell line.
Collapse
Affiliation(s)
| | - A Dallinger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | | | - A Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - D Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - P Salvo
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - F Borghi
- Interdisciplinary Center for Nanostructured Materials and Interfaces, Department of Physics, University of Milan, Via Celoria 16, Milan 20133, Italy
| | - A Tavanti
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | | | - F Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
20
|
Zhu J, Huang X, Song W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS NANO 2021; 15:18708-18741. [PMID: 34881870 DOI: 10.1021/acsnano.1c05806] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laser-induced graphene (LIG) is produced rapidly by directly irradiating carbonaceous precursors, and it naturally exhibits as a three-dimensional porous structure. Due to advantages such as simple preparation, time-saving, environmental friendliness, low cost, and expanding categories of raw materials, LIG and its derivatives have achieved broad applications in sensors. This has been witnessed in various fields such as wearable devices, disease diagnosis, intelligent robots, and pollution detection. However, despite LIG sensors having demonstrated an excellent capability to monitor physical and chemical parameters, the systematic review of synthesis, sensing mechanisms, and applications of them combined with comparison against other preparation approaches of graphene is still lacking. Here, graphene-based sensors for physical, biological, and chemical detection are reviewed first, followed by the introduction of general preparation methods for the laser-induced method to yield graphene. The preparation and advantages of LIG, sensing mechanisms, and the properties of different types of emerging LIG-based sensors are comprehensively reviewed. Finally, possible solutions to the problems and challenges of preparing LIG and LIG-based sensors are proposed. This review may serve as a detailed reference to guide the development of LIG-based sensors that possess properties for future smart sensors in health care, environmental protection, and industrial production.
Collapse
Affiliation(s)
- Junbo Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Weixing Song
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| |
Collapse
|
21
|
Lin Y, Zhang Q, Deng Y, Wu Q, Ye XP, Wang S, Fang G. Fabricating Graphene and Nanodiamonds from Lignin by Femtosecond Laser Irradiation. ACS OMEGA 2021; 6:33995-34002. [PMID: 34926947 PMCID: PMC8675041 DOI: 10.1021/acsomega.1c05328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 05/25/2023]
Abstract
This study demonstrates a new transformation path from lignin to graphene and nanodiamonds (NDs) by femtosecond laser writing in air at ambient temperature and pressure. Graphene nanoribbon rolls were generated at lower laser power. When the laser power was high, NDs could be obtained apart from graphene and onion-like carbon intermediates. These structures were confirmed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The effects of laser power and laser writing speed on the structure of laser-induced patterns were investigated. The results show that the laser power was more important than the writing speed for the synthesis of carbon nanoparticles, and high laser power contributed to enhanced electrically conductive performance. Therefore, the direct laser irradiation technique leads a simple, low-cost, and sustainable way to synthesize graphene and NDs and is promising for the fabrication of sensors and electric devices.
Collapse
Affiliation(s)
- Yan Lin
- Institute
of Chemical Industry of Forest Products, CAF; National Engineering
Lab for Biomass Chemical Utilization; Key Lab of Biomass Energy and
Material, Jiangsu Province; Co-Innovation Center of Efficient Processing
and Utilization of Forest Resources, Jiangsu Province, No. 16, 5th Suojin, Nanjing 210042, PR China
- Center
for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, Tennessee 37996, United States
| | - Qijun Zhang
- Center
for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, Tennessee 37996, United States
- Institute
of Urban Environmental, Chinese Academy
of Sciences, 1799 Jimei
Road, Xiamen 361021, PR China
| | - Yongjun Deng
- Institute
of Chemical Industry of Forest Products, CAF; National Engineering
Lab for Biomass Chemical Utilization; Key Lab of Biomass Energy and
Material, Jiangsu Province; Co-Innovation Center of Efficient Processing
and Utilization of Forest Resources, Jiangsu Province, No. 16, 5th Suojin, Nanjing 210042, PR China
| | - Qiang Wu
- Center
for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, Tennessee 37996, United States
- School
of Engineering, Zhejiang A&F University, 88 Huangcheng North Road, Hangzhou 311300, PR China
| | - Xiaofei P. Ye
- Department
of Biosystems Engineering and Soil Science, University of Tennessee, 2506 E.J. Chapman Drive, Knoxville, Tennessee 37996, United States
| | - Siqun Wang
- Center
for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, Tennessee 37996, United States
| | - Guigan Fang
- Institute
of Chemical Industry of Forest Products, CAF; National Engineering
Lab for Biomass Chemical Utilization; Key Lab of Biomass Energy and
Material, Jiangsu Province; Co-Innovation Center of Efficient Processing
and Utilization of Forest Resources, Jiangsu Province, No. 16, 5th Suojin, Nanjing 210042, PR China
| |
Collapse
|
22
|
Vivaldi F, Dallinger A, Bonini A, Poma N, Sembranti L, Biagini D, Salvo P, Greco F, Di Francesco F. Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30245-30260. [PMID: 34167302 PMCID: PMC8289247 DOI: 10.1021/acsami.1c05614] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
Notwithstanding its relatively recent discovery, graphene has gone through many evolution steps and inspired a multitude of applications in many fields, from electronics to life science. The recent advancements in graphene production and patterning, and the inclusion of two-dimensional (2D) graphenic materials in three-dimensional (3D) superstructures, further extended the number of potential applications. In this Review, we focus on laser-induced graphene (LIG), an intriguing 3D porous graphenic material produced by direct laser scribing of carbonaceous precursors, and on its applications in chemical sensors and biosensors. LIG can be shaped in different 3D forms with a high surface-to-volume ratio, which is a valuable characteristic for sensors that typically rely on phenomena occurring at surfaces and interfaces. Herein, an overview of LIG, including synthesis from various precursors, structure, and characteristic properties, is first provided. The discussion focuses especially on transport and surface properties, and on how these can be controlled by tuning the laser processing. Progresses and trends in LIG-based chemical sensors are then reviewed, discussing the various transduction mechanisms and different LIG functionalization procedures for chemical sensing. A comparative evaluation of sensors performance is then provided. Finally, sensors for glucose detection are reviewed in more detail, since they represent the vast majority of LIG-based chemical sensors.
Collapse
Affiliation(s)
- Federico
Maria Vivaldi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
- Institute
of Clinical Physiology, National Research
Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Alexander Dallinger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Andrea Bonini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Noemi Poma
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Sembranti
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Denise Biagini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Pietro Salvo
- Institute
of Clinical Physiology, National Research
Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Francesco Greco
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Fabio Di Francesco
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
23
|
Mahmood F, Sun Y, Wan C. Biomass-derived porous graphene for electrochemical sensing of dopamine. RSC Adv 2021; 11:15410-15415. [PMID: 35424061 PMCID: PMC8698650 DOI: 10.1039/d1ra00735a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/01/2021] [Indexed: 01/14/2023] Open
Abstract
Cost-effective valorization of biomass into advanced carbon remains a challenge. Here we reported a facile and ultrafast laser writing technique to convert biomass into porous graphene for electrochemical sensing. Laser-induced graphene (LIG) was synthesized from a fully biomass-based film composed of kraft lignin (KL) and cellulose nanofibers (CNFs). The LIG-based electrode was applied to detect dopamine using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Dopamine with a concentration ranging from 5 to 40 μM was detected linearly, with a sensitivity of 4.39 μA μM-1 cm-2. Our study eliminated the use of synthetic polymer for lignin-based film formation. It demonstrated the feasibility of using the film fully composed of biomass for LIG formation. Furthermore, derived LIG electrodes were shown to have high electrochemical sensing performance.
Collapse
Affiliation(s)
- Faisal Mahmood
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia 65211 USA +1 573 884 5650 +1 573 884 7882
- Department of Energy Systems Engineering, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Yisheng Sun
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia 65211 USA +1 573 884 5650 +1 573 884 7882
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia 65211 USA +1 573 884 5650 +1 573 884 7882
| |
Collapse
|
24
|
Xu Y, Fei Q, Page M, Zhao G, Ling Y, Chen D, Yan Z. Laser-induced graphene for bioelectronics and soft actuators. NANO RESEARCH 2021; 14:3033-3050. [PMID: 33841746 PMCID: PMC8023525 DOI: 10.1007/s12274-021-3441-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 05/18/2023]
Abstract
Laser-assisted process can enable facile, mask-free, large-area, inexpensive, customizable, and miniaturized patterning of laser-induced porous graphene (LIG) on versatile carbonaceous substrates (e.g., polymers, wood, food, textiles) in a programmed manner at ambient conditions. Together with high tailorability of its porosity, morphology, composition, and electrical conductivity, LIG can find wide applications in emerging bioelectronics (e.g., biophysical and biochemical sensing) and soft robots (e.g., soft actuators). In this review paper, we first introduce the methods to make LIG on various carbonaceous substrates and then discuss its electrical, mechanical, and antibacterial properties and biocompatibility that are critical for applications in bioelectronics and soft robots. Next, we overview the recent studies of LIG-based biophysical (e.g., strain, pressure, temperature, hydration, humidity, electrophysiological) sensors and biochemical (e.g., gases, electrolytes, metabolites, pathogens, nucleic acids, immunology) sensors. The applications of LIG in flexible energy generators and photodetectors are also introduced. In addition, LIG-enabled soft actuators that can respond to chemicals, electricity, and light stimulus are overviewed. Finally, we briefly discuss the future challenges and opportunities of LIG fabrications and applications.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Qihui Fei
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Margaret Page
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Dick Chen
- Rock Bridge High School, Columbia, Missouri 65203 USA
| | - Zheng Yan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| |
Collapse
|