1
|
Sistani S, Shekarchizadeh H. Recent trends and advances in biopolymer-based self-healing materials for smart food packaging: A review. Int J Biol Macromol 2025; 312:144130. [PMID: 40360106 DOI: 10.1016/j.ijbiomac.2025.144130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/03/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
The increasing demand for high-quality, fresh, and minimally processed products with a long shelf life has driven numerous advancements in the packaging industry. However, most packaging is exposed to mechanical stresses and adverse environmental conditions during storage, transportation, and distribution. A damaged package may fail to preserve the product due to the loss of integrity and barrier function. Incorporating self-healing properties into packaging materials can allow them to repair damage and restore their original functionality. Currently, most food packaging relies on petroleum-based polymers, which contribute to various environmental concerns. Biopolymer-based packaging with self-healing and biocompatibility features has emerged as a promising area of research. These smart materials have the potential to improve packaging stability, maintain product quality, and support food preservation. This review provides an updated overview of recent advancements in self-healing food packaging, with a particular focus on biopolymers. It begins by outlining the concept of self-healing, the types of self-healing materials, and their underlying mechanisms from chemical and physical perspectives. It then discusses various biopolymers used in self-healing packaging. Furthermore, it explores strategies for improving mechanical and barrier properties and developing multifunctional packaging systems (e.g., self-healing, active/intelligent packaging). Finally, the review addresses current challenges and future perspectives in this evolving field.
Collapse
Affiliation(s)
- Shabnam Sistani
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hajar Shekarchizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
2
|
Klein M, Fesser P, Zechel S, Hager MD, Schubert US. Self-Healing Behavior of Metallopolymers in Complex3D-Structures Obtained by DLP-Based 3D-Printing. Chemistry 2025; 31:e202404267. [PMID: 39853790 PMCID: PMC11924990 DOI: 10.1002/chem.202404267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2-phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed. The thermo-mechanical properties of the obtained metallopolymers were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) as well as dynamic mechanical thermal analysis (DMTA). Multiple damages with defined forces ranging from 20 to 1500 mN were introduced into the 3D-structures and successfully healed within 24 h at 70 °C or 120 °C, respectively without losing the structural integrity of the overall 3D-structures. Herein, excellent healing efficiencies up to 97 % were determined. Consequently, these hollow structures not only feature very good self-healing abilities but also excellent retention of the 3D-structure at and above the healing temperature.
Collapse
Affiliation(s)
- Michael Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Patrick Fesser
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz-Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstr. 12-14, 07443, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz-Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstr. 12-14, 07443, Jena, Germany
- Helmholtz-Zentrum Berlin (HZB), Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| |
Collapse
|
3
|
Sarkar AK, Yang Z, Astruc T, Amdursky N. Aqueous-Based Assembly of Plant-Derived Proteins Yields a Crosslinker-Free Biodegradable Bioplastic Consistent with Green Chemistry Principles. CHEMSUSCHEM 2025; 18:e202401567. [PMID: 39392314 PMCID: PMC11884229 DOI: 10.1002/cssc.202401567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Plastics are an indispensable part of modern life. Due to the harmful environmental consequences of petroleum-based plastic usage, there is an urgent need to replace them with biodegradable bioplastics that meet the sustainability standards required for a low environmental footprint. Here, we use plant-derived proteins to produce bioplastics. Since most plant-derived proteins are not water-soluble, there has always been a need to use acidic or basic solutions or organic solvents with plasticizers and crosslinkers to produce bioplastic. Here, we present a counterintuitive approach for using water-insoluble plant-derived soy and pea proteins to manufacture large-scale bioplastics using only water as a solvent without common plasticizers or crosslinkers. We show that bioplastics can form via a self-assembly process initiated by a small molecular initiator while maintaining favourable mechanical properties. The lack of crosslinking and the protein nature of the bioplastic leads to a rapid biodegradation process under various conditions. Overall, the approach we present is highly attractive in terms of cost and time, and most importantly, it obeys all the relevant principles of green chemistry in bioplastics production.
Collapse
Affiliation(s)
- Amit Kumar Sarkar
- Schulich Faculty of ChemistryTechnion–Israel Institute of TechnologyHaifa3200003Israel
- College of Engineering and Physical SciencesAston UniversityBirminghamB4 7ETUnited Kingdom
| | - Ziyu Yang
- Schulich Faculty of ChemistryTechnion–Israel Institute of TechnologyHaifa3200003Israel
| | - Tal Astruc
- Schulich Faculty of ChemistryTechnion–Israel Institute of TechnologyHaifa3200003Israel
| | - Nadav Amdursky
- Schulich Faculty of ChemistryTechnion–Israel Institute of TechnologyHaifa3200003Israel
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUnited Kingdom
| |
Collapse
|
4
|
Ding C, Zhao Y, Yin W, Kang F, Huang W, Zhang Q. Regulating Intermolecular Hydrogen Bonds in Organic Cathode Materials to Realize Ultra-stable, Flexible and Low-temperature Aqueous Zinc-organic Batteries. Angew Chem Int Ed Engl 2025; 64:e202417988. [PMID: 39382562 DOI: 10.1002/anie.202417988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Rational design of molecular structures is one of the effective strategies to obtain high-performance organic cathode materials. However, besides the optimization of single-molecule structures, the influence of the "weak" interaction forces (e.g. hydrogen bonds) in organic cathode materials on the performance of batteries should be fully considered. Herein, three organic small molecules with different numbers of hydroxyl groups (namely nitrogen heterocyclic tetraketone (DAB), monohydroxyl nitrogen heterocyclic dione (HDA), dihydroxyl nitrogen heterocyclic dione (DHT)) were selected as the cathodes of aqueous zinc ion batteries (AZIBs), and the effect of the intermolecular hydrogen bonds on their electrochemical performance was studied for the first time. Clearly, the stable hydrogen-bond networks built through the hydroxyl groups significantly enhance the cycle stability of organic small-molecule cathodes and facilitate rapid proton conduction between the hydrogen-bond networks through the Grotthuss mechanism, thereby endowing them with excellent rate performance. In addition, a larger and more dense two-dimensional hydrogen-bond network can be constructed through multiple hydroxyl groups, further enhancing the structural stability of organic small-molecule cathodes, giving them better cycle tolerance, excellent rate performance, and extreme environmental tolerance.
Collapse
Affiliation(s)
- Chaojian Ding
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Yuxuan Zhao
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Weifeng Yin
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Weiwei Huang
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Santis GD, Xantheas SS. Extending Badger's rule. I. The relationship between energy and structure in hydrogen bonds. J Chem Phys 2025; 162:044106. [PMID: 39868916 DOI: 10.1063/5.0244238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
We derive a new expression for the strength of a hydrogen bond (VHB) in terms of the elongation of the covalent bond of the donor fragment participating in the hydrogen bond (ΔrHB) and the intermolecular coordinates R (separation between the heavy atoms) and θ (deviation of the hydrogen bond from linearity). The expression includes components describing the covalent D-H bond of the hydrogen bond donor via a Morse potential, the Pauli repulsion, and electrostatic interactions between the constituent fragments using a linear expansion of their dipole moment and a quadratic expansion of their polarizability tensor. We fitted the parameters of the model using ab initio electronic structure results for six hydrogen bonded dimers, namely, NH3-NH3, H2O-H2O, HF-HF, H2O-NH3, HF-H2O, and HF-NH3, and validated its performance for extended parts of their potential energy surfaces, resulting in a mean absolute error ranging from 0.07 to 0.31 kcal/mol. The derived expression describes the energy-structure relationship in terms of a single structural parameter, namely, the elongation of the donor's covalent bond (ΔrHB), and suggests the novel relationship of 8.0 kcal/mol pm-1 (or 0.8 kcal/mol per 0.001 Å elongation). This structural parameter is easily obtained from theory and can serve as the single descriptor of the strength of individual hydrogen bonds.
Collapse
Affiliation(s)
- Garrett D Santis
- Department of Chemistry, University of Washington, Seattle, Washington 98185, USA
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington 98185, USA
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J7-10, Richland, Washington 99352, USA
- Computational and Theoretical Chemistry Institute (CTCI), Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
6
|
Beckett J, Thrasher CJ, Michonski J, Drexler RM, Babu S, Cox AM, Windham BJ, Yu Z, Auguste AD, Shetty A, Osborn TH, Lowe RL, Sowards LA, Crouse CA. 3D-Printable Elastomers for Real-Time Autonomous Self-Healing in Soft Devices. ACS MATERIALS LETTERS 2025; 7:123-132. [PMID: 39790739 PMCID: PMC11707794 DOI: 10.1021/acsmaterialslett.4c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 01/12/2025]
Abstract
Photocurable self-healing elastomers are promising candidates for producing complex soft devices that can mend damage. However, the practicality of these materials is limited by reliance on external stimuli, custom synthesis, manual realignment, and multihour healing cycles. This paper introduces a tough 3D-printable hybrid acrylate/thiol-ene elastomer (prepared with commercially available precursors) that exhibits nearly instantaneous damage repair in the absence of external stimuli. This rapid, hydrogen bond-driven self-healing enables meaningful restoration of mechanical properties, including tensile strains up to 344% post-damage. Furthermore, structured herringbone grafts are showcased as a compelling strategy to enable cohesive failure away from healed interfaces, realizing up to 18× increases in toughness from only modest increases in interfacial surface area. Prototype soft robotic devices fabricated using vat photopolymerization demonstrate self-healing within seconds under ambient conditions and without external intervention. These results demonstrate a scalable strategy to provide real-time, autonomous functionality restoration in damaged soft devices.
Collapse
Affiliation(s)
- Joseph
G. Beckett
- Department
of Mechanical and Aerospace Engineering, University of Dayton, Dayton, Ohio 45469, United States
- UES,
Inc., Dayton, Ohio 45432, United States
| | - Carl J. Thrasher
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Joshua Michonski
- Department
of Mechanical and Aerospace Engineering, University of Dayton, Dayton, Ohio 45469, United States
- UES,
Inc., Dayton, Ohio 45432, United States
| | - Robert M. Drexler
- Department
of Mechanical and Aerospace Engineering, University of Dayton, Dayton, Ohio 45469, United States
- UES,
Inc., Dayton, Ohio 45432, United States
| | - Sachin Babu
- UES,
Inc., Dayton, Ohio 45432, United States
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
| | - Allyson M. Cox
- Additive
Manufacturing Technology Development, University
of Dayton Research Institute, Dayton, Ohio 45469, United States
| | - Braeden J. Windham
- Additive
Manufacturing Technology Development, University
of Dayton Research Institute, Dayton, Ohio 45469, United States
| | - Zhenning Yu
- UES,
Inc., Dayton, Ohio 45432, United States
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
| | - Anesia D. Auguste
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
| | - Abhishek Shetty
- Anton Paar
USA, Inc., Ashland, Virginia 23005, United States
| | - Timothy H. Osborn
- Additive
Manufacturing Technology Development, University
of Dayton Research Institute, Dayton, Ohio 45469, United States
| | - Robert L. Lowe
- Department
of Mechanical and Aerospace Engineering, University of Dayton, Dayton, Ohio 45469, United States
| | - Laura A. Sowards
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
| | - Christopher A. Crouse
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
7
|
Lo TY, Su HH, Ho JH, Chang CW, Chen HR, Hsu HH, Chang KJ, Chen JT. Intrinsic Repeated Self-Healing Textiles: Developing Electrospun Fabrics for Enhanced Durability and Stretchability. ACS OMEGA 2024; 9:51623-51630. [PMID: 39758634 PMCID: PMC11696384 DOI: 10.1021/acsomega.4c09296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
The development of healable polymers represents a significant advancement in materials science, addressing the need for sustainable solutions that can reduce waste and prolong the lifespan of various products. For the development of healable polymer fabrics, however, there are still unsolved issues because of limited healing cycles and poor mechanical properties. In this work, we present intrinsically healable materials for the creation of stretchable, healable fabrics. Specifically, a blend of polyurethane (TPU) and poly(thiourea triethylene glycol) (PTUEG3) is fabricated into fabrics utilizing the electrospinning method. The TPU/PTUEG3 fabrics demonstrate room-temperature self-healing capabilities over repeated cycles under external forces driven by dynamic hydrogen bonding interactions. Furthermore, their self-healing ability can be enhanced through heating. The tensile tests and differential scanning calorimetry (DSC) indicate that the healing capabilities and mechanical properties can be optimized by adjusting the TPU/PTUEG3 weight ratios. This research provides a practical approach for preparing intrinsically healable fabrics with excellent durability and flexibility, offering a sustainable solution to extend the functional life of textiles and reduce environmental impact, thereby promoting environmental sustainability.
Collapse
Affiliation(s)
- Tse-Yu Lo
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Heng-Hsuan Su
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jhih-Hao Ho
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chia-Wei Chang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Huan-Ru Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Hsun-Hao Hsu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Kai-Jie Chang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jiun-Tai Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
8
|
Váradi M, Keszei SJ, Gömöry Á, Kovács M, Kégl T, Fodor L, Skoda-Földes R. Investigation of Host-Guest Interactions in 2-Ureido-4-ferrocenylpyrimidine Derivatives. Int J Mol Sci 2024; 25:13552. [PMID: 39769314 PMCID: PMC11677767 DOI: 10.3390/ijms252413552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
In the present study, synthesis, conformational behavior, host-guest complex formation, and electrochemical properties of novel 6-substituted-2-ureido-4-ferrocenylpyrimidines were explored. A comprehensive NMR spectroscopic investigation was carried out to confirm the structure and conformational equilibrium of the ureidopyrimidines through studying the temperature- and concentration dependence of NMR spectra. Low-temperature NMR measurements were used to clarify structural changes inflicted by a 2,6-diaminopyridine guest. Association constant (Kassoc) values of host-guest complexes were calculated based on low-temperature titrations. It was shown that the introduction of a pyridin-2-yl substituent in the pyrimidine ring in host 10 induced a considerable change not only in the conformational equilibrium of the host itself but also in that of the host-guest complex. Geometries and relative stabilities of the conformers of host 10 as well as its host-guest complexes were determined by quantum chemical calculations. Electrochemical behavior of ureidopyrimidine hosts and host-guest complexes was investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) measurements. Two ureidopyrimidine derivatives were immobilized on the surface of spectral graphite electrodes, and their electrochemical response on the addition of 2,6-diaminopyridine was compared. These results also supported the importance of the pyridin-2-yl substituent in the efficient sensing of the guest.
Collapse
Affiliation(s)
- Márk Váradi
- Research Group of Organic Synthesis and Catalysis, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary;
| | - Soma J. Keszei
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege út 29-33, 1121 Budapest, Hungary;
| | - Ágnes Gömöry
- MS Proteomics Research Group, Hungarian Research Network, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary;
| | - Margit Kovács
- NMR Laboratory, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary;
| | - Tamás Kégl
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary;
- János Szentágothai Research Center, Ifjúság útja 34, 7624 Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Lajos Fodor
- Research Group of Environmental and Inorganic Photochemistry, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary;
| | - Rita Skoda-Földes
- Research Group of Organic Synthesis and Catalysis, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary;
| |
Collapse
|
9
|
Wang X, Wang Z, Wang X, Kang F, Gu Q, Zhang Q. Recent Advances of Organic Cocrystals in Emerging Cutting-Edge Properties and Applications. Angew Chem Int Ed Engl 2024; 63:e202416181. [PMID: 39305144 DOI: 10.1002/anie.202416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 11/01/2024]
Abstract
Organic cocrystals, representing one type of new functional materials, have gathered significant interest in various engineering areas. Owing to their diverse stacking modes, rich intermolecular interactions and abundant functional components, the physicochemical properties of organic cocrystals can be tailored to meet different requirements and exhibit novel characteristics. The past few years have witnessed the rapid development of organic cocrystals in both fundamental characteristics and various applications. Beyond the typical properties like ambipolarity, emission tuning ability, ferroelectricity, etc. that are previously well demonstrated, many novel, impressive and cutting-edge properties and applications of cocrystals are also emerged and advanced recently. Especially during the nearest five years, photothermal conversion, room-temperature phosphorescence, thermally activated delay fluorescence, circularly polarized luminescence, organic solid-state lasers, near-infrared sensing, photocatalysis, batteries, and stimuli responses have been reported. In this review, these new properties are carefully summarized. Besides, some neoteric architecture and methodologies, such as host-guest structures and machine learning-based screening, are introduced. Finally, the potential future developments and expectations for organic cocrystals are discussed for further investigations on multiple functions and applications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Zongrui Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
10
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
11
|
An NT, Vu Thi N, Trung NT. Profound importance of the conventional O-H⋯O hydrogen bond versus a considerable blue shift of the C sp2-H bond in complexes of substituted carbonyls and carboxyls. Phys Chem Chem Phys 2024; 26:22775-22789. [PMID: 39162235 DOI: 10.1039/d4cp00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Using quantum chemical approaches, we investigated the conventional O-H⋯O and nonconventional Csp2-H⋯O hydrogen bonds between carboxylic acids and aldehydes in 21 stable complexes. The strength of complexes is determined by the conventional O-H⋯O bond together with the nonconventional Csp2-H⋯O hydrogen bond, in which the former one is 4-5 times as strong as the latter one. Proportional linear correlations of the interaction energy with both individual energies of the O-H⋯O and Csp2-H⋯O hydrogen bonds are proposed. Different impacts of electron-donating and electron-withdrawing groups in substituted formaldehyde and formic acid on characteristics of conventional and nonconventional hydrogen bonds, as well as the strength of both hydrogen bond types and complexes, are also evaluated. Following complexation, it is noteworthy that the largest blue shift of the Csp2-H stretching frequency in the Csp2-H⋯O bond up to 105.3 cm-1 in CH3CHO⋯FCOOH is due to a decisive role of the O-H⋯O hydrogen bond, which has been rarely reported in the literature. The obtained results show that the conventional O-H⋯O hydrogen bond plays a pivotal role in the significant blue shift of the Csp2-H stretching frequency in the nonconventional Csp2-H⋯O hydrogen bond. Remarkably, the considerable blue shift of the Csp2-H stretching frequency is found to be one H of C-H in formic acid substituted by the electron-withdrawing group and one H in formaldehyde substituted by the electron-donating group. In addition, the change in the Csp2-H stretching frequency following complexation is proportional to both changes of electron density in σ*(Csp2-H) and σ*(O-H) orbitals, in which a dominant role of σ*(O-H) versus σ*(Csp2-H) is observed.
Collapse
Affiliation(s)
- Nguyen Truong An
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 18223 Prague 8, Czech Republic
| | - Ngan Vu Thi
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
| |
Collapse
|
12
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
13
|
Sokjorhor J, Yimyai T, Thiramanas R, Crespy D. Self-healing, antibiofouling and anticorrosion properties enabled by designing polymers with dynamic covalent bonds and responsive linkages. J Mater Chem B 2024; 12:6827-6839. [PMID: 38904191 DOI: 10.1039/d4tb00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Coating metal structures with a protective material is a popular strategy to prevent their deterioration due to corrosion. However, maintaining the barrier properties of coatings after their mechanical damage is challenging. Herein, we prepared multifunctional coatings with self-healing ability to conserve their anticorrosion performance after damage. The coating was formed by blending synthesized redox-responsive copolymers with the ability to release a corrosion inhibitor upon the onset of corrosion with synthesized self-healing polyurethanes containing disulfide bonds. The corrosion rate of steel substrates coated with a blend is approximately 24 times lower than that of steel coated with only self-healing polyurethane. An exceptional healing efficiency, as high as 95%, is obtained after mechanical damage. The antibiofouling property against bacterial and microalgal attachments on coatings is facilitated by the repellent characteristic of fluorinated segments and the biocidal activity of the inhibitor moieties in the copolymer.
Collapse
Affiliation(s)
- Jenpob Sokjorhor
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Tiwa Yimyai
- Department of Chemical and Bimolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Raweewan Thiramanas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
14
|
Li X, Lin Y, Zhao C, Meng N, Bai Y, Wang X, Yu J, Ding B. Biodegradable Polyurethane Derived from Hydroxylated Polylactide with Superior Mechanical Properties. Polymers (Basel) 2024; 16:1809. [PMID: 39000664 PMCID: PMC11243797 DOI: 10.3390/polym16131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Developing biodegradable polyurethane (PU) materials as an alternative to non-degradable petroleum-based PU is a crucial and challenging task. This study utilized lactide as the starting material to synthesize polylactide polyols (PLA-OH). PLA-based polyurethanes (PLA-PUs) were successfully synthesized by introducing PLA-OH into the PU molecular chain. A higher content of PLA-OH in the soft segments resulted in a substantial improvement in the mechanical attributes of the PLA-PUs. This study found that the addition of PLA-OH content significantly improved the tensile stress of the PU from 5.35 MPa to 37.15 MPa and increased the maximum elongation to 820.8%. Additionally, the modulus and toughness of the resulting PLA-PU were also significantly improved with increasing PLA-OH content. Specifically, the PLA-PU with 40% PLA-OH exhibited a high modulus of 33.45 MPa and a toughness of 147.18 MJ m-3. PLA-PU films can be degraded to carbon dioxide and water after 6 months in the soil. This highlights the potential of synthesizing PLA-PU using biomass-renewable polylactide, which is important in green and sustainable chemistry.
Collapse
Affiliation(s)
- Xueqin Li
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yanyan Lin
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Cengceng Zhao
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Na Meng
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ying Bai
- Textile Industry Science and Technology Development Center, Beijing 100020, China
| | - Xianfeng Wang
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Wang L, Meng Y, Wang X. Sustainable Supramolecular Polymers. Chempluschem 2024; 89:e202300694. [PMID: 38355904 DOI: 10.1002/cplu.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Polymer waste is a pressing issue that requires innovative solutions from the scientific community. As a beacon of hope in addressing this challenge, the concept of sustainable supramolecular polymers (SSPs) emerges. This article discusses challenges and efforts in fabricating SSPs. Addressing the trade-offs between mechanical performance and sustainability, the ultra-tough and multi-recyclable supramolecular polymers are fabricated via tailoring mismatched supramolecular interactions. Additionally, the healing of kinetically inert polymer materials is realized through transient regulation of the interfacial reactivity. Furthermore, a possible development trajectory for SSPs is proposed, and the transient materials can be regarded as the next generation in this field. The evolution of SSPs promises to be a pivotal stride towards a regenerative economy, sparking further exploration and innovation in the realm of sustainable materials.
Collapse
Affiliation(s)
- Luping Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuwen Meng
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
16
|
Bui AH, Fernando Pulle AD, Micallef AS, Lessard JJ, Tuten BT. Dynamic Chalcogen Squares for Material and Topological Control over Macromolecules. Angew Chem Int Ed Engl 2024; 63:e202404474. [PMID: 38453652 DOI: 10.1002/anie.202404474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Herein we introduce chalcogen squares via selenadiazole motifs as a new class of dynamic supramolecular bonding interactions for the modification and control of soft matter materials. We showcase selenadiazole motifs in supramolecular networks of varying primary chain length prepared through polymerization using tandem step-growth/Passerini multicomponent reactions (MCRs). Compared to controls lacking the selenadiazole motif, these networks display increased glass transition temperatures and moduli due to the chalcogen bonding linkages formed between chains. These elastomeric networks were shown to autonomously heal at room temperature, retaining up to 83 % of the ultimate tensile strength. Lastly, we use post-polymerization modification via the Biginelli MCR to add selenadiazole motifs to narrowly dispersed polymers for controlled topology in solution. Chalcogen squares via selenadiazoles introduce an exciting exchange mechanism to the realm of dynamic materials.
Collapse
Affiliation(s)
- Aaron H Bui
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Anne D Fernando Pulle
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Aaron S Micallef
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois Urbana, Champaign Urbana, Illinois, 61801, United States of America
| | - Bryan T Tuten
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
17
|
Dallaev R. Advances in Materials with Self-Healing Properties: A Brief Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2464. [PMID: 38793530 PMCID: PMC11123491 DOI: 10.3390/ma17102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The development of materials with self-healing capabilities has garnered considerable attention due to their potential to enhance the durability and longevity of various engineering and structural applications. In this review, we provide an overview of recent advances in materials with self-healing properties, encompassing polymers, ceramics, metals, and composites. We outline future research directions and potential applications of self-healing materials (SHMs) in diverse fields. This review aims to provide insights into the current state-of-the-art in SHM research and guide future efforts towards the development of innovative and sustainable materials with enhanced self-repair capabilities. Each material type showcases unique self-repair mechanisms tailored to address specific challenges. Furthermore, this review investigates crack healing processes, shedding light on the latest developments in this critical aspect of self-healing materials. Through an extensive exploration of these topics, this review aims to provide a comprehensive understanding of the current landscape and future directions in self-healing materials research.
Collapse
Affiliation(s)
- Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, Czech Republic
| |
Collapse
|
18
|
Gudla H, Edström K, Zhang C. Salt Effects on the Mechanical Properties of Ionic Conductive Polymer: A Molecular Dynamics Study. ACS MATERIALS AU 2024; 4:300-307. [PMID: 38737121 PMCID: PMC11083113 DOI: 10.1021/acsmaterialsau.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 05/14/2024]
Abstract
Functional polymers can be used as electrolyte and binder materials in solid-state batteries. This often requires performance targets in terms of both the transport and mechanical properties. In this work, a model ionic conductive polymer system, i.e., poly(ethylene oxide)-LiTFSI, was used to study the impact of salt concentrations on mechanical properties, including different types of elastic moduli and the viscoelasticity with both nonequilibrium and equilibrium molecular dynamics simulations. We found an encouragingly good agreement between experiments and simulations regarding Young's modulus, bulk modulus, and viscosity. In addition, we identified an intermediate salt concentration at which the system shows high ionic conductivity, high Young's modulus, and short elastic restoration time. Therefore, this study laid the groundwork for investigating ionic conductive polymer binders with self-healing functionality from molecular dynamics simulations.
Collapse
Affiliation(s)
- Harish Gudla
- Department of ChemistryÅngström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 75121 Uppsala, Sweden
| | - Kristina Edström
- Department of ChemistryÅngström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 75121 Uppsala, Sweden
| | - Chao Zhang
- Department of ChemistryÅngström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 75121 Uppsala, Sweden
| |
Collapse
|
19
|
Li B, Wang L, Gao L, Xu T, Zhang D, Li F, Lyu J, Zhu R, Gao X, Zhang H, Hu BL, Li RW. Elastic Relaxor Ferroelectric by Thiol-ene Click Reaction. Angew Chem Int Ed Engl 2024; 63:e202400511. [PMID: 38488202 DOI: 10.1002/anie.202400511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 04/05/2024]
Abstract
As ferroelectrics hold significance and application prospects in wearable devices, the elastification of ferroelectrics becomes more and more important. Nevertheless, achieving elastic ferroelectrics requires stringent synthesis conditions, while the elastification of relaxor ferroelectric materials remains unexplored, presenting an untapped potential for utilization in energy storage and actuation for wearable electronics. The thiol-ene click reaction offers a mild and rapid reaction platform to prepare functional polymers. Therefore, we employed this approach to obtain an elastic relaxor ferroelectric by crosslinking an intramolecular carbon-carbon double bonds (CF=CH) polymer matrix with multiple thiol groups via a thiol-ene click reaction. The resulting elastic relaxor ferroelectric demonstrates pronounced relaxor-type ferroelectric behaviour. This material exhibits low modulus, excellent resilience, and fatigue resistance, maintaining a stable ferroelectric response even under strains up to 70 %. This study introduces a straightforward and efficient approach for the construction of elastic relaxor ferroelectrics, thereby expanding the application possibilities in wearable electronics.
Collapse
Affiliation(s)
- Bowen Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, P. R. China, 650500
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201
| | - Linping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201
| | - Liang Gao
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201
- Nano Science and Technology Institute, University of Science and Technology of China, No.166 Renai Road, Suzhou Industrial Park, Suzhou, P. R. China, 215123
| | - Tianhua Xu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing, P. R. China, 100049
| | - Dongyang Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201
| | - Fangzhou Li
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing, P. R. China, 100049
| | - Jike Lyu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201
| | - Ren Zhu
- Oxford Instruments Asylum Research, Shanghai, 200233, P. R. China
| | - Xin Gao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, P. R. China, 650500
| | - Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, P. R. China, 650500
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing, P. R. China, 100049
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, P. R. China, 315201
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing, P. R. China, 100049
| |
Collapse
|
20
|
Liu J, Urban MW. Dynamic Interfaces in Self-Healable Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7268-7285. [PMID: 38395626 DOI: 10.1021/acs.langmuir.3c03696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
It is well-established that interfaces play critical roles in biological and synthetic processes. Aside from significant practical applications, the most accessible and measurable quantity is interfacial tension, which represents a measure of the energy required to create or rejoin two surfaces. Owing to the fact that interfacial processes are critical in polymeric materials, this review outlines recent advances in dynamic interfacial processes involving physics and chemistry targeting self-healing. Entropic interfacial energies stored during damage participate in the recovery, and self-healing depends upon copolymer composition and monomer sequence, monomer molar ratios, molecular weight, and polymer dispersity. These properties ultimately impact chain flexibility, shape-memory recovery, and interfacial interactions. Self-healing is a localized process with global implications on mechanical and other properties. Selected examples driven by interfacial flow and shape memory effects are discussed in the context of covalent and supramolecular rebonding targeting self-healable materials development.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Materials Science and Engineering Clemson University, Clemson, South Carolina 29634, United States
| | - Marek W Urban
- Department of Materials Science and Engineering Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
21
|
Xiang W, Xia J. Synthesis of Novel (Meth)acrylates with Variable Hydrogen Bond Interaction and Their Application in a Clear Viscoelastic Film. ACS OMEGA 2024; 9:13644-13654. [PMID: 38559987 PMCID: PMC10976382 DOI: 10.1021/acsomega.3c07566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 04/04/2024]
Abstract
Clear viscoelastic films (CVFs) have many applications in the display industry. Acrylic monomers containing a hydrogen bond (H-monomer) are often used in the preparation of CVF to increase the cohesion and form favorable interactions with the display substrate. Common H-monomers face a counterbalance between the glass transition temperature (Tg) and the hydrogen-bonding association constant (Ka). Strong hydrogen bonding often leads to a high Tg and high modulus, which are unfavorable in certain applications such as foldable display. To solve these problems, four types of hydrogen-bonding (meth)acrylic monomers (carbamate acrylate, carbamate methacrylate, urea acrylate, and urea methacrylate) with different Ka and Tg were readily synthesized. Among them, urea acrylates displayed the highest Ka while still maintaining moderate Tg. These H-monomers were copolymerized with 2-ethylhexyl acrylate (EHA) and cross-linked to obtain a series of copolymers (H-copolymers) as pressure-sensitive adhesives. After the characterization of rheology, optics, and peel adhesion, urea-acrylic H-copolymers showed the best overall performance by combining great optical property (>98% in transmittance, < 1% in haze) and mechanical performance (8-12 N/25 mm in peel adhesion, 84-92% in creep recovery). This work provides a new path to prepare acrylic CVF for flexible display application.
Collapse
Affiliation(s)
- Weizhong Xiang
- South China Advanced Institute
for Soft Matter Science and Technology, School of Emergent Soft Matter,
Guangdong Provincial Key Laboratory of Functional and Intelligent
Hybrid Materials and Devices, South China
University of Technology, Guangzhou 510640, China
| | - Jianhui Xia
- South China Advanced Institute
for Soft Matter Science and Technology, School of Emergent Soft Matter,
Guangdong Provincial Key Laboratory of Functional and Intelligent
Hybrid Materials and Devices, South China
University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
23
|
Oshinowo M, Piccini M, Kociok-Köhn G, Marken F, Buchard A. Xylose- and Nucleoside-Based Polymers via Thiol-ene Polymerization toward Sugar-Derived Solid Polymer Electrolytes. ACS APPLIED POLYMER MATERIALS 2024; 6:1622-1632. [PMID: 38357438 PMCID: PMC10862469 DOI: 10.1021/acsapm.3c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
A series of copolymers have been prepared via thiol-ene polymerization of bioderived α,ω-unsaturated diene monomers with dithiols toward application as solid polymer electrolytes (SPEs) for Li+-ion conduction. Amorphous polyesters and polyethers with low Tg's (-31 to -11 °C) were first prepared from xylose-based monomers (with varying lengths of fatty acid moiety) and 2,2'-(ethylenedioxy)diethanethiol (EDT). Cross-linking by incorporation of a trifunctional monomer also produced a series of SPEs with ionic conductivities up to 2.2 × 10-5 S cm-1 at 60 °C and electrochemical stability up to 5.08 V, a significant improvement over previous xylose-derived materials. Furthermore, a series of copolymers bearing nucleoside moieties were prepared to exploit the complementary base-pairing interaction of nucleobases. Flexible, transparent, and reprocessable SPE films were thus prepared with improved ionic conductivity (up to 1.5 × 10-4 S cm-1 at 60 °C), hydrolytic degradability, and potential self-healing capabilities.
Collapse
Affiliation(s)
- Matthew Oshinowo
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- University
of Bath Institute for Sustainability, Claverton Down, Bath BA2
7AY, U.K.
| | - Marco Piccini
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- University
of Bath Institute for Sustainability, Claverton Down, Bath BA2
7AY, U.K.
| | - Gabriele Kociok-Köhn
- Materials
and Chemical Characterisation Facility (MC2), University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- University
of Bath Institute for Sustainability, Claverton Down, Bath BA2
7AY, U.K.
| | - Antoine Buchard
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- University
of Bath Institute for Sustainability, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
24
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
25
|
Wan Q, Thompson BC. Control of Properties through Hydrogen Bonding Interactions in Conjugated Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305356. [PMID: 37946703 PMCID: PMC10885672 DOI: 10.1002/advs.202305356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Molecular design is crucial for endowing conjugated polymers (CPs) with unique properties and enhanced electronic performance. Introducing Hydrogen-bonding (H-bonding) into CPs has been a broadly exploited, yet still emerging strategy capable of tuning a range of properties encompassing solubility, crystallinity, electronic properties, solid-state morphology, and stability, as well as mechanical properties and self-healing properties. Different H-bonding groups can be utilized to tailor CPs properties based on the applications of interest. This review provides an overview of classes of H-bonding CPs (assorted by the different H-bond functional groups), the synthetic methods to introduce the corresponding H-bond functional groups and the impact of H-bonding in CPs on corresponding electronic and materials properties. Recent advances in addressing the trade-off between electronic performance and mechanical durability are also highlighted. Furthermore, insights into future directions and prospects for H-bonded CPs are discussed.
Collapse
Affiliation(s)
- Qingpei Wan
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| | - Barry C Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| |
Collapse
|
26
|
Ahmed S, Jeong JE, Kim JC, Lone S, Cheong IW. Self-healing polymers for surface scratch regeneration. RSC Adv 2023; 13:35050-35064. [PMID: 38046629 PMCID: PMC10690873 DOI: 10.1039/d3ra06676b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Recently, there has been a significant increase in academic and industrial interest in self-healing polymers (SHPs) due to their remarkable ability to regenerate scratched surfaces and materials of astronomical significance. Scientists have been inspired by the magical repairing mechanism of the living world. They transformed the fiction of self-healing into reality by designing engrossing polymeric materials that could self-repair mechanical abrasions repeatedly. As a result, the durability of the materials is remarkably improved. Thus, the idea of studying SHPs passively upholds economic and environmental sustainability. However, the critical areas of self-healing (including healing efficiency, healing mechanism, and thermo-mechanical property changes during healing) are under continuous scientific improvisation. This review highlights recent notable advances of SHPs for application in regenerating scratched surfaces with various distinctive underlying mechanisms. The primary focus of the work is aimed at discussing the impact of SHPs on scratch-healing technology. Beyond that, insights regarding scratch testing, methods of investigating polymer surfaces, wound depths, the addition of healing fillers, and the environmental conditions maintained during the healing process are reviewed thoroughly. Finally, broader future perspectives on the challenges and prospects of SHPs in healing surface scratches are discussed.
Collapse
Affiliation(s)
- Sana Ahmed
- Department of Applied Chemistry, Kyungpook National University Daegu 41566 Republic of Korea
| | - Ji-Eun Jeong
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
| | - Jin Chul Kim
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
| | - Saifullah Lone
- Department of Chemistry, iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar 190006 India
| | - In Woo Cheong
- Department of Applied Chemistry, Kyungpook National University Daegu 41566 Republic of Korea
| |
Collapse
|
27
|
Chen S, Xiao M, Hou Z, Li Z, Hu J, Guo J, Chen J, Yang L, Na Q. Functionalized TMC and ε-CL elastomers with shape memory and self-healing properties. Front Bioeng Biotechnol 2023; 11:1298723. [PMID: 38033822 PMCID: PMC10687579 DOI: 10.3389/fbioe.2023.1298723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Smart elastomers, which possess self-healing and shape memory capabilities, have immense potential in the field of biomedical applications. Polycarbonates and polyesters have gained widespread interest due to their remarkable biocompatibility over the last century. Nevertheless, the lack of functional versatility in conventional polyesters and polycarbonates means that they fall short of meeting the ever-evolving demands of the future. Methods: This paper introduced a new smart elastomer, named mPEG43-b-(PMBC-co-PCL)n, developed from polyester and polycarbonate blends, that possessed shape memory and self-heal capabilities via a physical crosslinking system. Results: The material demonstrated a significant tensile strength of 0.38 MPa and a tensile ratio of 1155.6%, highlighting its favorable mechanical properties. In addition, a conspicuous shape retrieval rate of 93% was showcased within 32.5 seconds at 37°C. Remarkably, the affected area could be repaired proficiently with no irritation experienced during 6h at room temperature, which was indicative of an admirable repair percentage of 87.6%. Furthermore, these features could be precisely modified by altering the proportion of MBC and ε-CL to suit individual constraints. Discussion: This innovative elastomer with exceptional shape memory and self-heal capabilities provides a solid basis and promising potential for the development of self-contracting intelligent surgical sutures in the biomedical field.
Collapse
Affiliation(s)
- Siwen Chen
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
| | - Miaomiao Xiao
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongcun Li
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
| | - Jing Guo
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Liu Y, Li Z, Zhang C, Yang B, Ren H. A Self-Healing Thermoset Epoxy Modulated by Dynamic Boronic Ester for Powder Coating. Polymers (Basel) 2023; 15:3894. [PMID: 37835943 PMCID: PMC10575017 DOI: 10.3390/polym15193894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Thermoset powder coatings exhibit distinctive characteristics such as remarkable hardness and exceptional resistance to corrosion. In contrast to conventional paints, powder coatings are environmentally friendly due to the absence of volatile organic compounds (VOCs). However, their irreversible cross-linking structures limit their chain segment mobility, preventing polymers from autonomously repairing cracks. Dynamic cross-linking networks have garnered attention for their remarkable self-healing capabilities, facilitated by rapid internal bond exchange. Herein, we introduce an innovative method for synthesizing thermoset epoxy containing boronic ester moieties which could prolong the life of the powder coating. The epoxy resin system relies on the incorporation of two curing agents: one featuring small-molecule diamines with boronic bonds and the other a modified polyurethane prepolymer. A state of equilibrium in mechanical properties was achieved via precise manipulation of the proportions of these agents, with the epoxy composite exhibiting a fracture stress of 67.95 MPa while maintaining a stable glass transition temperature (Tg) of 51.39 °C. This imparts remarkable self-healing ability to the coating surface, capable of returning to its original state even after undergoing 1000 cycles of rubbing (using 1200-grit abrasive paper). Furthermore, the introduction of carbon nanotube nanoparticles enabled non-contact sequential self-healing. Subsequently, we introduce this method into powder coatings of different materials. Therefore, this work provides a strategy to develop functional interior decoration and ensure its potential for broad-ranging applications, such as aerospace, transportation, and other fields.
Collapse
Affiliation(s)
- Yongqi Liu
- Ningbo Research Institute, Zhejiang University, Ningbo 315807, China; (Y.L.); (B.Y.)
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyuan Li
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China;
| | - Caifu Zhang
- Tongling Shanwei New Material Technology Inc. Co., Ltd., Tongling 244000, China;
| | - Biru Yang
- Ningbo Research Institute, Zhejiang University, Ningbo 315807, China; (Y.L.); (B.Y.)
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hua Ren
- Ningbo Research Institute, Zhejiang University, Ningbo 315807, China; (Y.L.); (B.Y.)
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Kuddushi M, Deng X, Nayak J, Zhu S, Xu BB, Zhang X. A Transparent, Tough and Self-Healable Biopolymeric Composites Hydrogel for Open Wound Management. ACS APPLIED BIO MATERIALS 2023; 6:3810-3822. [PMID: 37624750 DOI: 10.1021/acsabm.3c00455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Modern healthcare engineering requires a wound dressing solution supported by materials with outstanding features such as high biological compatibility, strong mechanical strength, and higher transparency with effective antibacterial properties. Here, we present a unique hydrogel technology consisting of two negatively charged biopolymers and a positively charged synthetic polymer. The interaction between charged polymers through hydrogen bonds has been created, which are revealed in the simulation by density functional theory and Fourier transform infrared spectra of individual polymers and the hydrogel film. The transparent hydrogel film dressings showed excellent stretchability, a higher water swelling ratio (60%), and strong mechanical strength (∼100 MPa) with self-healing abilities (85-90%). The fabricated hydrogel film showed stable blood clots (within 119 ± 15 s) with rapid hemostasis (<2%) properties and effective antibacterial studies against E. coli and S. aureus bacterial strains. In addition, the obtained hydrogel film also showed excellent cell viability on mouse fibroblast cells. With their enormous amenability to modification, these hydrogel films may serve as promising biomaterials for wound dressing applications.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Xiaoyi Deng
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Jyotsnamayee Nayak
- Department of Chemistry, S.V. National Institute of Technology, Surat 395007, Gujarat India
| | - Sidi Zhu
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, U.K
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| |
Collapse
|
30
|
Fan Y, Liu T, Li Y, Miao X, Chen B, Ding J, Dong Z, Rios O, Bao B, Lin Q, Zhu L. One-Step Manufacturing of Supramolecular Liquid-Crystal Elastomers by Stress-Induced Alignment and Hydrogen Bond Exchange. Angew Chem Int Ed Engl 2023; 62:e202308793. [PMID: 37496468 DOI: 10.1002/anie.202308793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Liquid-crystal elastomers (LCEs) capable of performing large and reversible deformation in response to an external stimulus are an important class of soft actuators. However, their manufacturing process typically involves a multistep approach that requires harsh conditions. For the very first time, LCEs with customized geometries that can be manufactured by a rapid one-step approach at room temperature are developed. The LCEs are hydrogen bond (H-bond) crosslinked main chain polymers comprising flexible short side chains. Applying a stretching/shear force to the LCE can simultaneously induce mesogen alignment and H-bond exchange, allowing for the formation of well-aligned LCE networks stabilized by H-bonds. Based on this working principle, soft actuators in fibers and 2D/3D objects can be manufactured by mechanical stretching or melt extrusion within a short time (e.g. <1 min). These actuators can perform reversible macroscopic motions with large, controlled deformations up to 38 %. The dynamic nature of H-bonds also provides the actuators with reprocessability and reprogrammability. Thus, this work opens the way for the one-step and custom manufacturing of soft actuators.
Collapse
Affiliation(s)
- Yuexin Fan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xuepei Miao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, P. R. China
| | - Baihang Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhixiang Dong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Orlando Rios
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
31
|
Safaei A, Brancart J, Wang Z, Yazdani S, Vanderborght B, Van Assche G, Terryn S. Fast Self-Healing at Room Temperature in Diels-Alder Elastomers. Polymers (Basel) 2023; 15:3527. [PMID: 37688153 PMCID: PMC10490179 DOI: 10.3390/polym15173527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Despite being primarily categorized as non-autonomous self-healing polymers, we demonstrate the ability of Diels-Alder polymers to heal macroscopic damages at room temperature, resulting in complete restoration of their mechanical properties within a few hours. Moreover, we observe immediate partial recovery, occurring mere minutes after reuniting the fractured surfaces. This fast room-temperature healing is accomplished by employing an off-stoichiometric maleimide-to-furan ratio in the polymer network. Through an extensive investigation of seven Diels-Alder polymers, the influence of crosslink density on self-healing, thermal, and (thermo-)mechanical performance was thoroughly examined. Crosslink density variations were achieved by adjusting the molecular weight of the monomers or utilizing the off-stoichiometric maleimide-to-furan ratio. Quasistatic tensile testing, dynamic mechanical analysis, dynamic rheometry, differential scanning calorimetry, and thermogravimetric analysis were employed to evaluate the individual effects of these parameters on material performance. While lowering the crosslink density in the polymer network via decreasing the off-stoichiometric ratio demonstrated the greatest acceleration of healing, it also led to a slight decrease in (dynamic) mechanical performance. On the other hand, reducing crosslink density using longer monomers resulted in faster healing, albeit to a lesser extent, while maintaining the (dynamic) mechanical performance.
Collapse
Affiliation(s)
- Ali Safaei
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
| | - Joost Brancart
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
- Brubotics, Vrije Universiteit Brussel and Imec, Pleinlaan 2, B-1050 Brussels, Belgium; (Z.W.); (B.V.)
| | - Zhanwei Wang
- Brubotics, Vrije Universiteit Brussel and Imec, Pleinlaan 2, B-1050 Brussels, Belgium; (Z.W.); (B.V.)
| | - Sogol Yazdani
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel and Imec, Pleinlaan 2, B-1050 Brussels, Belgium; (Z.W.); (B.V.)
| | - Guy Van Assche
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
| | - Seppe Terryn
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
- Brubotics, Vrije Universiteit Brussel and Imec, Pleinlaan 2, B-1050 Brussels, Belgium; (Z.W.); (B.V.)
| |
Collapse
|
32
|
Park H, Kang T, Kim H, Kim JC, Bao Z, Kang J. Toughening self-healing elastomer crosslinked by metal-ligand coordination through mixed counter anion dynamics. Nat Commun 2023; 14:5026. [PMID: 37596250 PMCID: PMC10439188 DOI: 10.1038/s41467-023-40791-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Mechanically tough and self-healable polymeric materials have found widespread applications in a sustainable future. However, coherent strategies for mechanically tough self-healing polymers are still lacking due to a trade-off relationship between mechanical robustness and viscoelasticity. Here, we disclose a toughening strategy for self-healing elastomers crosslinked by metal-ligand coordination. Emphasis was placed on the effects of counter anions on the dynamic mechanical behaviors of polymer networks. As the coordinating ability of the counter anion increases, the binding of the anion leads to slower dynamics, thus limiting the stretchability and increasing the stiffness. Additionally, multimodal anions that can have diverse coordination modes provide unexpected dynamicity. By simply mixing multimodal and non-coordinating anions, we found a significant synergistic effect on mechanical toughness ( > 3 fold) and self-healing efficiency, which provides new insights into the design of coordination-based tough self-healing polymers.
Collapse
Affiliation(s)
- Hyunchang Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Taewon Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunjun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong-Chul Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
33
|
Voigt LJ, Tucker KE, Zelisko PM. Thymine-Modified Silicones: A Bioinspired Approach to Cross-Linked, Recyclable Silicone Polymers. Biomacromolecules 2023; 24:3463-3471. [PMID: 37506046 DOI: 10.1021/acs.biomac.3c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
In DNA, thymine typically forms hydrogen bonds with adenine to hold two complementary strands together and to preserve the genetic code. While thymine is typically absent in RNA, a thymine-thymine hydrogen bonding structure is reminiscent of the wobble region in tRNA recognition, where noncanonical base pairing can occur. This noncanonical base pairing can be applied to synthetic polymer systems, where thymine is free to hydrogen bond with itself. In this work, the natural hydrogen bonding capacity of thymine was used to produce silicone polymer systems designed to be cross-linked by hydrogen bonds. Backbone and end-group-modified silicones were synthesized with differing concentrations of thymine, which facilitated the cross-linking of the polymeric strands. Removing the hydrogen on N3─which is typically involved in hydrogen bonding─resulted in systems with similar viscosities to the starting material and that were devoid of any apparent cross-links. Differential scanning calorimetry (DSC) studies of the thymine-modified polymers displayed thermal absorptions and releases, indicative of bond breaking and reformation, around 100 and 60 °C, respectively. The cycle of bond breaking and formation could be repeated without any noticeable degradation of the chemical structure of the polymers. These polymeric materials could be readily recycled and remolded by heating them at 110 °C for 5 min, followed by cooling to room temperature, confirming their thermoplastic nature.
Collapse
Affiliation(s)
- Laura J Voigt
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Katie E Tucker
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Paul M Zelisko
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
34
|
Hong YW, Laysandra L, Chiu YC, Kang DY. Vacuum-Assisted Self-Healing Amphiphilic Copolymer Membranes for Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37411032 DOI: 10.1021/acsami.3c06518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Membrane gas separation provides a multitude of benefits over alternative separation techniques, especially in terms of energy efficiency and environmental sustainability. While polymeric membranes have been extensively investigated for gas separations, their self-healing capabilities have often been neglected. In this work, we have developed innovative self-healing amphiphilic copolymers by strategically incorporating three functional segments: n-butyl acrylate (BA), N-(hydroxymethyl)acrylamide (NMA), and methacrylic acid (MAA). Utilizing these three functional components, we have synthesized two distinct amphiphilic copolymers, namely, APNMA (PBAx-co-PNMAy) and APMAA (PBAx-co-PMAAy). These copolymers have been meticulously designed for gas separation applications. During the creation of these amphiphilic copolymers, BA and NMA segments were selected due to their vital role in the ease of tuning mechanical and self-healing properties. The functional groups (-OH and -NH) present on the NMA segment interact with CO2 through hydrogen bonding, thereby boosting CO2/N2 separation and achieving superior selectivity. We assessed the self-healing potential of these amphiphilic copolymer membranes using two distinct strategies: conventional and vacuum-assisted self-healing. In the vacuum-assisted approach, a robust vacuum pump generates a suction force, leading to the formation of a cone-like shape in the membrane. This formation allows common fracture sites to adhere and trigger the self-healing process. As a result, APNMA maintains its high gas permeability and CO2/N2 selectivity even after the vacuum-assisted self-healing operation. The ideal CO2/N2 selectivity of the APNMA membrane aligns closely with the commercially available PEBAX-1657 membrane (17.54 vs 20.09). Notably, the gas selectivity of the APNMA membrane can be readily restored after damage, in contrast to the PEBAX-1657 membrane, which loses its selectivity upon damage.
Collapse
Affiliation(s)
- Yao-Wei Hong
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Livy Laysandra
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106335, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106335, Taiwan
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
35
|
Wu SD, Chuang WT, Ho JC, Wu HC, Hsu SH. Self-Healing of Recombinant Spider Silk Gel and Coating. Polymers (Basel) 2023; 15:polym15081855. [PMID: 37112001 PMCID: PMC10141599 DOI: 10.3390/polym15081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression host. The self-assembled recombinant spider silk hydrogel was obtained through the dialysis process (purity > 85%). The recombinant spider silk hydrogel with a storage modulus of ~250 Pa demonstrated autonomous self-healing and high strain-sensitive properties (critical strain ~50%) at 25 °C. The in situ small-angle X-ray scattering (in situ SAXS) analyses revealed that the self-healing mechanism was associated with the stick-slip behavior of the β-sheet nanocrystals (each of ~2-4 nm) based on the slope variation (i.e., ~-0.4 at 100%/200% strains, and ~-0.9 at 1% strain) of SAXS curves in the high q-range. The self-healing phenomenon may occur through the rupture and reformation of the reversible hydrogen bonding within the β-sheet nanocrystals. Furthermore, the recombinant spider silk as a dry coating material demonstrated self-healing under humidity as well as cell affinity. The electrical conductivity of the dry silk coating was ~0.4 mS/m. Neural stem cells (NSCs) proliferated on the coated surface and showed a 2.3-fold number expansion after 3 days of culture. The biomimetic self-healing recombinant spider silk gel and thinly coated surface may have good potential in biomedical applications.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Jo-Chen Ho
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| |
Collapse
|
36
|
Marinow A, Katcharava Z, Binder WH. Self-Healing Polymer Electrolytes for Next-Generation Lithium Batteries. Polymers (Basel) 2023; 15:polym15051145. [PMID: 36904385 PMCID: PMC10007462 DOI: 10.3390/polym15051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The integration of polymer materials with self-healing features into advanced lithium batteries is a promising and attractive approach to mitigate degradation and, thus, improve the performance and reliability of batteries. Polymeric materials with an ability to autonomously repair themselves after damage may compensate for the mechanical rupture of an electrolyte, prevent the cracking and pulverization of electrodes or stabilize a solid electrolyte interface (SEI), thus prolonging the cycling lifetime of a battery while simultaneously tackling financial and safety issues. This paper comprehensively reviews various categories of self-healing polymer materials for application as electrolytes and adaptive coatings for electrodes in lithium-ion (LIBs) and lithium metal batteries (LMBs). We discuss the opportunities and current challenges in the development of self-healable polymeric materials for lithium batteries in terms of their synthesis, characterization and underlying self-healing mechanism, as well as performance, validation and optimization.
Collapse
|
37
|
Chen Y, Yang W, Liu J, Wang Y, Luo Y. The characteristics and mechanism of hydrogen bonding assembly in linear polyurethane with multiple pendant 2‐ureido‐4[1
H
]‐pyrimidone units. J Appl Polym Sci 2022. [DOI: 10.1002/app.53520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yimei Chen
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Wei Yang
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Juan Liu
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Yuanliang Wang
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Yanfeng Luo
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| |
Collapse
|
38
|
Aiswarya S, Awasthi P, Banerjee SS. Self-healing thermoplastic elastomeric materials: Challenges, opportunities and new approaches. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
LIU X, GALLAVARDIN T, BUREL F, VULUGA D. Influence of quadruple hydrogen bonding on polyvinyl butyral resin properties. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Wei C, Yu W, Wu L, Ge X, Xu T. Physically and Chemically Stable Anion Exchange Membranes with Hydrogen-Bond Induced Ion Conducting Channels. Polymers (Basel) 2022; 14:polym14224920. [PMID: 36433047 PMCID: PMC9696997 DOI: 10.3390/polym14224920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Anion exchange membranes (AEMs) with desirable properties are the crucial components for numerous energy devices such as AEM fuel cells (AEMFCs), AEM water electrolyzers (AEMWEs), etc. However, the lack of suitable AEMs severely limits the performance of devices. Here, a series of physically and chemically stable AEMs have been prepared by the reaction between the alkyl bromine terminal ether-bond-free aryl backbone and the urea group-containing crosslinker. Morphology analyses confirm that the hydrogen bonding interaction between urea groups is capable of driving the ammonium cations to aggregate and further form continuous ion-conducting channels. Therefore, the resultant AEM demonstrates remarkable OH− conductivity (59.1 mS cm−1 at 30 °C and 122.9 mS cm−1 at 90 °C) despite a moderate IEC (1.77 mmol g−1). Simultaneously, due to the adoption of ether-bond-free aryl backbone and alkylene chain-modified trimethylammonium cation, the AEM possesses excellent alkaline stability (87.3% IEC retention after soaking in 1 M NaOH for 1080 h). Moreover, the prepared AEM shows desirable mechanical properties (tensile stress > 25 MPa) and dimensional stability (SR = 20.3% at 90 °C) contributed by the covalent-bond and hydrogen-bond crosslinking network structures. Moreover, the resulting AEM reaches a peak power density of 555 mW cm−2 in an alkaline H2/O2 single fuel cell at 70 °C without back pressure. This rational structural design presented here provides inspiration for the development of high-performance AEMs, which are crucial for membrane technologies.
Collapse
|
41
|
Rahman MA, Dionne CJ, Giri A. Thermally Conductive Self-Healing Nanoporous Materials Based on Hydrogen-Bonded Organic Frameworks. NANO LETTERS 2022; 22:8534-8540. [PMID: 36260758 DOI: 10.1021/acs.nanolett.2c03032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a class of nanoporous crystalline materials formed by the assembly of organic building blocks that are held together by a network of hydrogen-bonding interactions. Herein, we show that the dynamic and responsive nature of these hydrogen-bonding interactions endows HOFs with a host of unique physical properties that combine ultraflexibility, high thermal conductivities, and the ability to "self-heal". Our systematic atomistic simulations reveal that their unique mechanical properties arise from the ability of the hydrogen-bond arrays to absorb and dissipate energy during deformation. Moreover, we also show that these materials demonstrate relatively high thermal conductivities for porous crystals with low mass densities due to their extended periodic framework structure that is comprised of light atoms. Our results reveal that HOFs mark a new regime of material design combining multifunctional properties that make them ideal candidates for gas storage and separation, flexible electronics, and thermal switching applications.
Collapse
Affiliation(s)
- Muhammad Akif Rahman
- Department of Mechanical Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - C Jaymes Dionne
- Department of Mechanical Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ashutosh Giri
- Department of Mechanical Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
42
|
Utrera-Barrios S, Ricciardi O, González S, Verdejo R, López-Manchado MÁ, Hernández Santana M. Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates. Polymers (Basel) 2022; 14:polym14214607. [PMID: 36365601 PMCID: PMC9653809 DOI: 10.3390/polym14214607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
New bio-thermoplastic elastomer composites with self-healing capacities based on epoxidized natural rubber and polycaprolactone blends reinforced with alginates were developed. This group of salts act as natural reinforcing fillers, increasing the tensile strength of the unfilled rubber from 5.6 MPa to 11.5 MPa without affecting the elongation at break (~1000% strain). In addition, the presence of ionic interactions and hydrogen bonds between the components provides the material with a thermally assisted self-healing capacity, as it is able to restore its catastrophic damages and recover diverse mechanical properties up to ~100%. With the results of this research, an important and definitive step is planned toward the circularity of elastomeric materials.
Collapse
|
43
|
Iwasaki K, Yoshida T, Okoshi M. Near-superhydrophobic silicone microcapsule arrays encapsulating ionic liquid electrolytes for micro-power storage assuming use in seawater. Sci Rep 2022; 12:18264. [PMID: 36309553 PMCID: PMC9617925 DOI: 10.1038/s41598-022-22891-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Micro-energy storage, which is convenient for combination with energy harvesting, is known to be realized by microencapsulation with various shell materials, its application is limited to land. Here, we succeeded in fabricating a silicone microcapsule array encapsulating an ionic liquid electrolyte that can store minute power in NaCl solution as well as a minute power generation method. The ArF excimer laser-irradiated silicone rubber underneath silica microspheres was photochemically and periodically swelled by the photodissociation of silicone. Accompanied by the microswellings, the lower molecular weight silicones generated were ejected along a curvature of each the microsphere to enclose the microspheres. After the chemical etching, the silicone microcapsule arrays became hollow. Moreover, each the hollow silicone microcapsule could entrap an ionic liquid in a vacuum. In addition, the silicone microcapsules before and after the encapsulating ionic liquid showed a superhydrophobic or near-superhydrophobic property. As a result, the silicone microcapsule arrays could be confined in a uniform air gap of electrically insulated region in NaCl solution. This means that each the silicone microcapsule encapsulating ionic liquid as electrolytes enables to function as an electric double layer capacitor for micro-power storage, aiming to connect with Internet of Things devices that work under seawater.
Collapse
Affiliation(s)
- Kaede Iwasaki
- Department of Electrical and Electronic Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| | - Tsuyoshi Yoshida
- Department of Electrical and Electronic Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| | - Masayuki Okoshi
- Department of Electrical and Electronic Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan.
| |
Collapse
|
44
|
Cai H, Wang Z, Utomo NW, Vidavsky Y, Silberstein MN. Highly stretchable ionically crosslinked acrylate elastomers inspired by polyelectrolyte complexes. SOFT MATTER 2022; 18:7679-7688. [PMID: 36173254 DOI: 10.1039/d2sm00755j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-inspired bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications.
Collapse
Affiliation(s)
- Hongyi Cai
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Zhongtong Wang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Nyalaliska W Utomo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yuval Vidavsky
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
45
|
Wang K, Zhang W, Liu N, Hu D, Yu F, He YP. Methionine-Derived Organogels as Lubricant Additives Enhance the Continuity of the Oil Film through Dynamic Self-Healing Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11492-11501. [PMID: 36089744 DOI: 10.1021/acs.langmuir.2c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
(S)-2-((1-(Hexadecylamino)-4-(methylthio)-1-oxobutan-2-yl)carbamoyl)benzoic acid (HMTA) was efficiently synthesized and successfully applied as an additive to several types of blank lubricant oils. Initially, HMTA self-assembles to fibrous structures and traps blank lubricant oils to form gel lubricants. The prepared gel lubricants show thermo-reversible properties and enhanced lubricating performance by 3∼5-fold. X-ray photoelectron spectrometry of the metal surface and the quartz crystal microbalance illustrated that there are no obvious interactions between HMTA and the metal surface. The results of Fourier transform infrared spectroscopy and X-ray diffraction further confirm that inter/intro-molecular H-bonding interactions are the main driving force for the self-healing of HMTA. Finally, molecular dynamics (MD) simulations show that the number of noncovalent H-bonding interactions fluctuates with time, and this highly dynamic H-bonding network could regulate the self-assembly process and result in the self-healing property of the HMTA organogel, which is consistent with the results of the step-strain tests. Especially, the Hirshfeld independent gradient model method at the quantum level demonstrated that C8/C9 aromatics of 500SN have strong π-π stacking interactions with the aromatic heads of HMTA and van der Waals interactions with the hydrophobic tails of HMTA, which disrupt the self-assembly behavior of the 500SN model. Therefore, the calculation studies offer a rational explanation for the superior lubricant property of the PAO10 gel as compared to that for 500SN.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Wannian Zhang
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Na Liu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Dianwen Hu
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
| | - Fang Yu
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Yu-Peng He
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| |
Collapse
|
46
|
Li Y, Jin Y, Fan W, Zhou R. A review on room-temperature self-healing polyurethane: synthesis, self-healing mechanism and application. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPolyurethanes have been widely used in many fields due to their remarkable features such as excellent mechanical strength, good abrasion resistance, toughness, low temperature flexibility, etc. In recent years, room-temperature self-healing polyurethanes have been attracting broad and growing interest because under mild conditions, room-temperature self-healing polyurethanes can repair damages, thereby extending their lifetimes and reducing maintenance costs. In this paper, the recent advances of room-temperature self-healing polyurethanes based on dynamic covalent bonds, noncovalent bonds and combined dual or triple dynamic bonds are reviewed, focusing on their synthesis methods and self-healing mechanisms, and their mechanical properties, healing efficiency and healing time are also described in detial. In addition, the latest applications of room-temperature self-healing polyurethanes in the fields of leather coatings, photoluminescence materials, flexible electronics and biomaterials are summarized. Finally, the current challenges and future development directions of the room-temprature self-healing polyurethanes are highlighted. Overall, this review is expected to provide a valuable reference for the prosperous development of room-temperature self-healing polyurethanes.
Graphical abstract
Collapse
|
47
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
48
|
Wu J, Liu Q, Wu S. Bionic Synthesis of Mussel-like Adhesive L-DMA and Its Effects on Asphalt Properties. MATERIALS 2022; 15:ma15155351. [PMID: 35955284 PMCID: PMC9370006 DOI: 10.3390/ma15155351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023]
Abstract
Cracks are inevitable during the service life of asphalt pavement and the water at the fracture surfaces tends to cause the grouting materials to fail. Studies have shown that the catechol groups in adhesion proteins secreted by mussels can produce strong adhesion performance in the water. In this paper, the mussel-like adhesive L-Dopa Methacrylic anhydride (L-DMA) was prepared based on the concept of bionic design and used to improve the properties of asphalt. By using Fourier-transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), the thermal stability and structural composition of L-DMA were investigated. Then, the rheological and low-temperature properties of L-DMA-modified asphalt were investigated using the dynamic shear rheological (DSR) test and bending beam rheological (BBR) test. Moreover, the modification mechanism was explored by FTIR. It was found that L-DMA can be effectively synthesized and has good thermal stability. The incorporation of L-DMA increases the composite modulus, viscosity, creep recovery rate and rutting factor of asphalt binder, resulting in an enhancement of its high-temperature performance. At a high L-DMA content of 10%, the low-temperature performance of the modified asphalt was enhanced. The modification of L-DMA to asphalt is mainly a physical process. Hydrogen bonds and conjugated systems generated by the introduction of catechol groups enhance the adhesion properties of asphalt. In general, L-DMA improves the properties of asphalt and theoretically can improve the water resistance of asphalt, which will be explored in future research.
Collapse
|
49
|
Mohd Sani NF, Yee HJ, Othman N, Talib AA, Shuib RK. Intrinsic self-healing rubber: A review and perspective of material and reinforcement. POLYMER TESTING 2022; 111:107598. [DOI: 10.1016/j.polymertesting.2022.107598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
50
|
Chen J, Wang L, Xu X, Liu G, Liu H, Qiao Y, Chen J, Cao S, Cha Q, Wang T. Self-Healing Materials-Based Electronic Skin: Mechanism, Development and Applications. Gels 2022; 8:356. [PMID: 35735699 PMCID: PMC9222937 DOI: 10.3390/gels8060356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Electronic skin (e-skin) has brought us great convenience and revolutionized our way of life. However, due to physical or chemical aging and damage, they will inevitably be degraded gradually with practical operation. The emergence of self-healing materials enables e-skins to achieve repairment of cracks and restoration of mechanical function by themselves, meeting the requirements of the era for building durable and self-healing electronic devices. This work reviews the current development of self-healing e-skins with various application scenarios, including motion sensor, human-machine interaction and soft robots. The new application fields and present challenges are discussed; meanwhile, thinkable strategies and prospects of future potential applications are conferenced.
Collapse
Affiliation(s)
- Jingjie Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
| | - Lei Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xiangou Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Guming Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Haoyan Liu
- Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Yuxuan Qiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Honors College, Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Jialin Chen
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Siwei Cao
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Quanbin Cha
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|