1
|
Zhou M, Urrutia Gomez JE, Mandsberg NK, Liu S, Schmidt S, Meier M, Levkin PA, Jahnke H, Popova A. Electrode Droplet Microarray (eDMA): An Impedance Platform for Label-Free Parallel Monitoring of Cellular Drug Response in Nanoliter Droplets. Adv Healthc Mater 2025; 14:e2402046. [PMID: 39403791 PMCID: PMC11773094 DOI: 10.1002/adhm.202402046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/24/2024] [Indexed: 01/29/2025]
Abstract
Label-free real-time monitoring of cellular behavior using impedance spectroscopy is important for drug development and toxicological assessments. Parallelization and miniaturization of such experiments are essential for increasing throughput and enabling experiments with low abundant stem or primary cells. Traditional methods are not miniaturized and require large volumes of reagents and number of cells, limiting their suitability for cost effective high-throughput screening of cells of limited availability. Here, the fabrication, optimization, and application of a bioelectrical signaling monitoring system - electrode droplet microarray (eDMA) are demonstrated. The eDMA platform is based on preparation of a hydrophilic-superhydrophobic patterns covering an array of individually addressable microelectrodes, which confines cells to individual microelectrodes, allowing for parallel, real-time, and label-free detection of cellular responses to drug treatments in nanoliter droplets. The real-time monitoring of cytotoxic effect of an anticancer drug is demonstrated over 48 h with real-time calculation of the half-inhibitory concentration (IC50) values through impedance spectroscopy. This demonstrates eDMA's ability to dynamically assess responses to various drugs in parallel at any given time point, which is crucial for functional personalized oncology. Specifically, the platform can be employed for monitoring anticancer drug toxicity using limited patient samples, where the miniaturization provided by eDMA is essential.
Collapse
Affiliation(s)
- Meijun Zhou
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of TechnologyKaiserstrasse 1276131KarlsruheGermany
| | - Joaquin E. Urrutia Gomez
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of TechnologyKaiserstrasse 1276131KarlsruheGermany
- Karlsruhe Institute of Technology (KIT)Institute of Automation and Applied Informatics (IAI) Eggenstein‐Leopoldshafen76344KarlsruheGermany
| | - Nikolaj K. Mandsberg
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of TechnologyKaiserstrasse 1276131KarlsruheGermany
| | - Sida Liu
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of TechnologyKaiserstrasse 1276131KarlsruheGermany
| | - Sabine Schmidt
- Centre for Biotechnology and BiomedicineBiochemical Cell TechnologyLeipzig UniversityDeutscher Platz 5D‐04103LeipzigGermany
| | - Matthias Meier
- Centre for Biotechnology and BiomedicineBiochemical Cell TechnologyLeipzig UniversityDeutscher Platz 5D‐04103LeipzigGermany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of TechnologyKaiserstrasse 1276131KarlsruheGermany
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyKaiserstrasse 1276131KarlsruheGermany
| | - Heinz‐Georg Jahnke
- Centre for Biotechnology and BiomedicineBiochemical Cell TechnologyLeipzig UniversityDeutscher Platz 5D‐04103LeipzigGermany
| | - Anna Popova
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of TechnologyKaiserstrasse 1276131KarlsruheGermany
| |
Collapse
|
2
|
Zeng X, Feng PK, Li SJ, Lv SQ, Wen ML, Li Y. GNN-DDAS: Drug discovery for identifying anti-schistosome small molecules based on graph neural network. J Comput Chem 2024; 45:2825-2834. [PMID: 39189298 DOI: 10.1002/jcc.27490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Schistosomiasis is a tropical disease that poses a significant risk to hundreds of millions of people, yet often goes unnoticed. While praziquantel, a widely used anti-schistosome drug, has a low cost and a high cure rate, it has several drawbacks. These include ineffectiveness against schistosome larvae, reduced efficacy in young children, and emerging drug resistance. Discovering new and active anti-schistosome small molecules is therefore critical, but this process presents the challenge of low accuracy in computer-aided methods. To address this issue, we proposed GNN-DDAS, a novel deep learning framework based on graph neural networks (GNN), designed for drug discovery to identify active anti-schistosome (DDAS) small molecules. Initially, a multi-layer perceptron was used to derive sequence features from various representations of small molecule SMILES. Next, GNN was employed to extract structural features from molecular graphs. Finally, the extracted sequence and structural features were then concatenated and fed into a fully connected network to predict active anti-schistosome small molecules. Experimental results showed that GNN-DDAS exhibited superior performance compared to the benchmark methods on both benchmark and real-world application datasets. Additionally, the use of GNNExplainer model allowed us to analyze the key substructure features of small molecules, providing insight into the effectiveness of GNN-DDAS. Overall, GNN-DDAS provided a promising solution for discovering new and active anti-schistosome small molecules.
Collapse
Affiliation(s)
- Xin Zeng
- College of Mathematics and Computer Science, Dali University, Dali, China
| | - Peng-Kun Feng
- College of Mathematics and Computer Science, Dali University, Dali, China
| | - Shu-Juan Li
- Department of Endemic Diseases, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Shuang-Qing Lv
- Institute of Surveying and Information Engineering, West Yunnan University of Applied Science, Dali, China
| | - Meng-Liang Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali, China
| |
Collapse
|
3
|
Panwar J, Utharala R, Fennelly L, Frenzel D, Merten CA. iSort enables automated complex microfluidic droplet sorting in an effort to democratize technology. CELL REPORTS METHODS 2023; 3:100478. [PMID: 37323570 PMCID: PMC10261925 DOI: 10.1016/j.crmeth.2023.100478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Fluorescence-activated droplet sorting (FADS) is a widely used microfluidic technique for high-throughput screening. However, it requires highly trained specialists to determine optimal sorting parameters, and this results in a large combinatorial space that is challenging to optimize systematically. Additionally, it is currently challenging to track every single droplet within a screen, leading to compromised sorting and "hidden" false-positive events. To overcome these limitations, we have developed a setup in which the droplet frequency, spacing, and trajectory at the sorting junction are monitored in real time using impedance analysis. The resulting data are used to continuously optimize all parameters automatically and to counteract perturbations, resulting in higher throughput, higher reproducibility, increased robustness, and a beginner-friendly character. We believe this provides a missing piece for the spreading of phenotypic single-cell analysis methods, similar to what we have seen for single-cell genomics platforms.
Collapse
Affiliation(s)
- Jatin Panwar
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Ramesh Utharala
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Laura Fennelly
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Daniel Frenzel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Christoph A. Merten
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
4
|
Yuan H, Yuan W, Duan S, Jiao K, Zhang Q, Lim EG, Chen M, Zhao C, Pan P, Liu X, Song P. Microfluidic-Assisted Caenorhabditis elegans Sorting: Current Status and Future Prospects. CYBORG AND BIONIC SYSTEMS 2023; 4:0011. [PMID: 37287459 PMCID: PMC10243201 DOI: 10.34133/cbsystems.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/15/2023] [Indexed: 07/30/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) has been a popular model organism for several decades since its first discovery of the huge research potential for modeling human diseases and genetics. Sorting is an important means of providing stage- or age-synchronized worm populations for many worm-based bioassays. However, conventional manual techniques for C. elegans sorting are tedious and inefficient, and commercial complex object parametric analyzer and sorter is too expensive and bulky for most laboratories. Recently, the development of lab-on-a-chip (microfluidics) technology has greatly facilitated C. elegans studies where large numbers of synchronized worm populations are required and advances of new designs, mechanisms, and automation algorithms. Most previous reviews have focused on the development of microfluidic devices but lacked the summaries and discussion of the biological research demands of C. elegans, and are hard to read for worm researchers. We aim to comprehensively review the up-to-date microfluidic-assisted C. elegans sorting developments from several angles to suit different background researchers, i.e., biologists and engineers. First, we highlighted the microfluidic C. elegans sorting devices' advantages and limitations compared to the conventional commercialized worm sorting tools. Second, to benefit the engineers, we reviewed the current devices from the perspectives of active or passive sorting, sorting strategies, target populations, and sorting criteria. Third, to benefit the biologists, we reviewed the contributions of sorting to biological research. We expect, by providing this comprehensive review, that each researcher from this multidisciplinary community can effectively find the needed information and, in turn, facilitate future research.
Collapse
Affiliation(s)
- Hang Yuan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
| | - Wenwen Yuan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Sixuan Duan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Keran Jiao
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Chemistry,
Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Quan Zhang
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
| | - Eng Gee Lim
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Min Chen
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Chun Zhao
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Peng Pan
- Department of Mechanical & Industrial Engineering,
University of Toronto, Toronto, Canada
| | - Xinyu Liu
- Department of Mechanical & Industrial Engineering,
University of Toronto, Toronto, Canada
| | - Pengfei Song
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Liang M, Tang Q, Zhong J, Ai Y. Machine learning empowered multi-stress level electromechanical phenotyping for high-dimensional single cell analysis. Biosens Bioelectron 2023; 225:115086. [PMID: 36696849 DOI: 10.1016/j.bios.2023.115086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Microfluidics provides a powerful platform for biological analysis by harnessing the ability to precisely manipulate fluids and microparticles with integrated microsensors. Here, we introduce an imaging and impedance cell analyzer (IM2Cell), which implements single cell level impedance analysis and hydrodynamic mechanical phenotyping simultaneously. For the first time, IM2Cell demonstrates the capability of multi-stress level mechanical phenotyping. Specifically, IM2Cell is capable of characterizing cell diameter, three deformability responses, and four electrical properties. It presents high-dimensional information to give insight into subcellular components such as cell membrane, cytoplasm, cytoskeleton, and nucleus. In this work, we first validate imaging and impedance-based cell analyses separately. Then, the two techniques are combined to obtain both imaging and impedance data analyzed by machine learning method, exhibiting an improved prediction accuracy from 83.1% to 95.4% between fixed and living MDA-MB-231 breast cancer cells. Next, IM2Cell demonstrates 91.2% classification accuracy in a mixture of unlabeled MCF-10A, MCF-7, and MDA-MB-231 cell lines. Finally, an application demonstrates the potential of IM2Cell for the deformability studies of peripheral blood mononuclear cells (PBMCs) subpopulations without cumbersome isolation or labeling steps.
Collapse
Affiliation(s)
- Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Qiang Tang
- Jiangsu Provincal Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
| |
Collapse
|
6
|
Nguyen TH, Nguyen HA, Tran Thi YV, Hoang Tran D, Cao H, Chu Duc T, Bui TT, Do Quang L. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Analyst 2023; 148:1912-1929. [PMID: 36928639 DOI: 10.1039/d2an02027k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Microfluidic cytometry (MC) and electrical impedance spectroscopy (EIS) are two important techniques in biomedical engineering. Microfluidic cytometry has been utilized in various fields such as stem cell differentiation and cancer metastasis studies, and provides a simple, label-free, real-time method for characterizing and monitoring cellular fates. The impedance microdevice, including impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS), is integrated into MC systems. IFC measures the impedance of individual cells as they flow through a microfluidic device, while EIS measures impedance changes during binding events on electrode regions. There have been significant efforts to improve and optimize these devices for both basic research and clinical applications, based on the concepts, electrode configurations, and cell fates. This review outlines the theoretical concepts, electrode engineering, and data analytics of these devices, and highlights future directions for development.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | | | - Y-Van Tran Thi
- University of Science, Vietnam National University, Hanoi, Vietnam.
| | | | - Hung Cao
- University of California, Irvine, USA
| | - Trinh Chu Duc
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Tung Thanh Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Loc Do Quang
- University of Science, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
7
|
Pal A, Kaswan K, Barman SR, Lin YZ, Chung JH, Sharma MK, Liu KL, Chen BH, Wu CC, Lee S, Choi D, Lin ZH. Microfluidic nanodevices for drug sensing and screening applications. Biosens Bioelectron 2023; 219:114783. [PMID: 36257116 PMCID: PMC9533638 DOI: 10.1016/j.bios.2022.114783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.
Collapse
Affiliation(s)
- Arnab Pal
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Zih Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jun-Hsuan Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Manish Kumar Sharma
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuei-Lin Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bo-Huan Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, 333, Taiwan
| | - Chih-Cheng Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Center of Quality Management, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, 30059, Taiwan; College of Medicine, National Taiwan University, Taipei, 10051, Taiwan; Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, 35053, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| |
Collapse
|
8
|
Tanaka Y, Ma D, Amaya S, Aishan Y, Shen Y, Funano SI, Tang T, Hosokawa Y, Gusev O, Okuda T, Kikawada T, Yalikun Y. Anhydrobiotic chironomid larval motion-based multi-sensing microdevice for the exploration of survivable locations. iScience 2022; 25:104639. [PMID: 36039361 PMCID: PMC9418600 DOI: 10.1016/j.isci.2022.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
African chironomid (Polypedilum vanderplanki) larvae can suspend their metabolism by undergoing severe desiccation and then resume this activity by simple rehydration. We present a microdevice using interdigital comb electrodes to detect the larval motion using the natural surface charge of the living larvae in water. The larvae were most active 2 h after soaking them in water at 30°C; they exhibited motions with 2 Hz frequency. This was comparable to the signal obtained from the microdevice via fast Fourier transform (FFT) processing. The amplitude of the voltage and current were 0.11 mV and 730 nA, respectively. They would be enough to be detected by a low power consumption microcomputer. Temperature and pH sensing were demonstrated by detecting the vital motions of the revived larvae under different conditions. This multi-functional biosensor will be a useful microdevice to search for survivable locations under extreme environmental conditions like those on other planets.
Collapse
Affiliation(s)
- Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Doudou Ma
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Amaya
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusufu Aishan
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yigang Shen
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shun-ichi Funano
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tao Tang
- Graduate School of Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Yoichiroh Hosokawa
- Graduate School of Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Oleg Gusev
- RIKEN Cluster for Science, Technology and Innovation Hub (RCSTI), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Okuda
- Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Takahiro Kikawada
- Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yaxiaer Yalikun
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
9
|
Ravaynia PS, Biendl S, Grassi F, Keiser J, Hierlemann A, Modena MM. Real-time and automated monitoring of antischistosomal drug activity profiles for screening of compound libraries. iScience 2022; 25:104087. [PMID: 35378863 PMCID: PMC8976133 DOI: 10.1016/j.isci.2022.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects over 200 million people annually. As the antischistosomal drug pipeline is currently empty, repurposing of compound libraries has become a source for accelerating drug development, which demands the implementation of high-throughput and efficient screening strategies. Here, we present a parallelized impedance-based platform for continuous and automated viability evaluation of Schistosoma mansoni schistosomula in 128 microwells during 72 h to identify antischistosomal hits in vitro. By initially screening 57 repurposed compounds against larvae, five drugs are identified, which reduce parasite viability by more than 70%. The activity profiles of the selected drugs are then investigated via real-time dose-response monitoring, and four compounds reveal high potency and rapid action, which renders them suitable candidates for follow-up tests against adult parasites. The study shows that our device is a reliable tool for real-time drug screening analysis of libraries to identify new promising therapeutics against schistosomiasis. Scalable, plastic microwell chip with integrated platinum electrodes Automated impedance-based recording of 128 microwell units in parallel Continuous monitoring of in vitro drug library efficacy on schistosomula for 72 h Identification of four fast-acting antischistosomal drugs for in vivo testing
Collapse
Affiliation(s)
- Paolo S Ravaynia
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stefan Biendl
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, 4051 Basel, Switzerland
| | - Francesco Grassi
- Centre for Microsystems Technology, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, 9052 Gent, Belgium
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, 4051 Basel, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mario M Modena
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
10
|
Herath HMPD, Taki AC, Rostami A, Jabbar A, Keiser J, Geary TG, Gasser RB. Whole-organism phenotypic screening methods used in early-phase anthelmintic drug discovery. Biotechnol Adv 2022; 57:107937. [PMID: 35271946 DOI: 10.1016/j.biotechadv.2022.107937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/17/2023]
Abstract
Diseases caused by parasitic helminths (worms) represent a major global health burden in both humans and animals. As vaccines against helminths have yet to achieve a prominent role in worm control, anthelmintics are the primary tool to limit production losses and disease due to helminth infections in both human and veterinary medicine. However, the excessive and often uncontrolled use of these drugs has led to widespread anthelmintic resistance in these worms - particularly of animals - to almost all commercially available anthelmintics, severely compromising control. Thus, there is a major demand for the discovery and development of new classes of anthelmintics. A key component of the discovery process is screening libraries of compounds for anthelmintic activity. Given the need for, and major interest by the pharmaceutical industry in, novel anthelmintics, we considered it both timely and appropriate to re-examine screening methods used for anthelmintic discovery. Thus, we reviewed current literature (1977-2021) on whole-worm phenotypic screening assays developed and used in academic laboratories, with a particular focus on those employed to discover nematocides. This review reveals that at least 50 distinct phenotypic assays with low-, medium- or high-throughput capacity were developed over this period, with more recently developed methods being quantitative, semi-automated and higher throughput. The main features assessed or measured in these assays include worm motility, growth/development, morphological changes, viability/lethality, pharyngeal pumping, egg hatching, larval migration, CO2- or ATP-production and/or enzyme activity. Recent progress in assay development has led to the routine application of practical, cost-effective, medium- to high-throughput whole-worm screening assays in academic or public-private partnership (PPP) contexts, and major potential for novel high-content, high-throughput platforms in the near future. Complementing this progress are major advances in the molecular data sciences, computational biology and informatics, which are likely to further enable and accelerate anthelmintic drug discovery and development.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec H9X3V9, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, Ireland
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
11
|
Oudebrouckx G, Goossens J, Bormans S, Vandenryt T, Wagner P, Thoelen R. Integrating Thermal Sensors in a Microplate Format: Simultaneous Real-Time Quantification of Cell Number and Metabolic Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2440-2451. [PMID: 34990545 DOI: 10.1021/acsami.1c14668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplates have become a standard tool in the pharmaceutical industry and academia for a broad range of screening assays. One of the most commonly performed assays is the cell proliferation assay, which is often used for the purpose of drug discovery. Microplate readers play a crucial role in this field, as they enable high-throughput testing of large sample numbers. Common drawbacks of the most popular plate reader technologies are that they are end-point-based and most often require the use of detection reagents. As a solution, with this work, we aim to expand the possibilities of real-time and label-free monitoring of cell proliferation inside a microplate format by introducing a novel thermal-based sensing approach. For this purpose, we have developed thin-film sensors that can easily be integrated into the bottom of standard 96-well plates. First, the accuracy and precision of the sensors for measuring temperature and thermal effusivity are assessed via characterization experiments. These experiments highlight the fast response of the sensors to changes in temperature and thermal effusivity, as well as the excellent reproducibility between different sensors. Later, proof-of-principle measurements were performed on the proliferation of Saccharomyces cerevisiae. The proliferation measurements show that the thermal sensors were able to simultaneously detect relative changes in cell number as well as changes in metabolic activity. This dual functionality makes the presented sensor technology a promising candidate for monitoring microplate assays.
Collapse
Affiliation(s)
- Gilles Oudebrouckx
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Juul Goossens
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Seppe Bormans
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Thijs Vandenryt
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, KU Leuven, 3001 Leuven, Belgium
| | - Ronald Thoelen
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| |
Collapse
|
12
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
13
|
Validation of a Lab-on-Chip Assay for Measuring Sorafenib Effectiveness on HCC Cell Proliferation. Int J Mol Sci 2021; 22:ijms222313090. [PMID: 34884894 PMCID: PMC8658471 DOI: 10.3390/ijms222313090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal cancer, and although a few drugs are available for treatment, therapeutic effectiveness is still unsatisfactory. New drugs are urgently needed for hepatocellular carcinoma (HCC) patients. In this context, reliable preclinical assays are of paramount importance to screen the effectiveness of new drugs and, in particular, measure their effects on HCC cell proliferation. However, cell proliferation measurement is a time-consuming and operator-dependent procedure. The aim of this study was to validate an engineered miniaturized on-chip platform for real-time, non-destructive cell proliferation assays and drug screening. The effectiveness of Sorafenib, the first-line drug mainly used for patients with advanced HCC, was tested in parallel, comparing the gold standard 96-well-plate assay and our new lab-on-chip platform. Results from the lab-on-chip are consistent in intra-assay replicates and comparable to the output of standard crystal violet proliferation assays for assessing Sorafenib effectiveness on HCC cell proliferation. The miniaturized platform presents several advantages in terms of lesser reagents consumption, operator time, and costs, as well as overcoming a number of technical and operator-dependent pitfalls. Moreover, the number of cells required is lower, a relevant issue when primary cell cultures are used. In conclusion, the availability of inexpensive on-chip assays can speed up drug development, especially by using patient-derived samples to take into account disease heterogeneity and patient-specific characteristics.
Collapse
|
14
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
15
|
Vejzagić N, Prodjinotho UF, El-Khafif N, Huang R, Simeonov A, Spangenberg T, Prazeres da Costa C. Identification of hit compounds with anti-schistosomal activity on in vitro generated juvenile worms in cell-free medium. PLoS Negl Trop Dis 2021; 15:e0009432. [PMID: 34033658 PMCID: PMC8191877 DOI: 10.1371/journal.pntd.0009432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/10/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background Anthelminthic treatment options against schistosomiasis are limited. The current treatment relies almost exclusively on a single drug, praziquantel (PZQ). As a consequence, the development of resistance to PZQ and limited activity of PZQ against earlier development stages are respectively a risk and a limitation to achieving the goals of the new WHO roadmap towards elimination. For the discovery of new chemical starting points, the in vitro drug screening on Schistosoma mansoni (S. mansoni) against newly transformed schistosomula (NTS) is still the most predominant approach. The use of only NTS in the initial screening limits sensitivity to potential new compounds which are predominantly active in later developmental stages. Using our recently described highly standardized, straightforward and reliable culture method that generates high rates of juvenile worms, we aimed to repurpose a subset of the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection (340 compounds) to identify new hits with an in vitro worm culture assay. Methodology/Principal findings Cercariae were mechanically transformed into skin-stage (SkS) schistosomula and continuously cultured for 3–6 weeks to the liver stage (LiS). A commercial source of serum was identified, and decrease of NTS/well along with optimal drug testing conditions was established to test compounds on early and late LiS worms. The library was screened in 96-well format assays using praziquantel (PZQ) as a positive control. Primary screening allowed a 5.9% hit rate and generated two confirmed hits on adult worms; a prophylactic antianginal agent and an antihistaminic drug. Conclusion With this standardized and reliable in vitro assay, important S. mansoni developmental stages up to LiS worms can be generated and cultured over an extended period. When exposed to a subset of the NCATS Pharmaceutical Collection, 3 compounds yielded a defined anti-schistosomal phenotype on juvenile worms. Translation of activity on perfused adult S. mansoni worms was achieved only for perhexiline (a prophylactic antianginal agent) and astemizole (an antihistaminic drug). Schistosomiasis continues to be a major public health problem, mainly in developing countries. Although there have been some advances in finding new drugs, praziquantel is still the drug of choice. Certainly, one of the most important advances in the search for new treatments was the ability to in vitro transform cercariae and to grow schistosomula in culture. To reduce animal use in future drug discovery efforts (3Rs), we optimized a previously established reliable and robust in vitro cell-free culture system for the generation of liver-stage worms that we applied to the screening of a compound library stemming from the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection.
Collapse
Affiliation(s)
- Nermina Vejzagić
- Institute for Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Center for Global Health, TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Ulrich Fabien Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Center for Global Health, TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Nagwa El-Khafif
- Theodor Bilharz Research Institute, Mahad Al Abhas Al Bahari, Warraq Al Arab, El Warraq, Giza Governorate, Egypt
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A. (a subsidiary of Merck KGaA Darmstadt Germany), Eysins, Switzerland
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Center for Global Health, TUM School of Medicine, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
16
|
Eggert S, Gutbrod MS, Liebsch G, Meier R, Meinert C, Hutmacher DW. Automated 3D Microphysiometry Facilitates High-Content and Highly Reproducible Oxygen Measurements within 3D Cell Culture Models. ACS Sens 2021; 6:1248-1260. [PMID: 33621068 DOI: 10.1021/acssensors.0c02551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microphysiometry is a powerful technique to study metabolic parameters and detect changes to external stimuli. However, applying this technique for automated label-free and real-time measurements within cell-laden three-dimensional (3D) cell culture constructs remains a challenge. Herein, we present an entirely automated microphysiometry setup that combines needle-type microsensors with motorized sample and sensor positioning systems inside a standard tissue-culture incubator. The setup records dissolved oxygen as a metabolic parameter along the z-direction within cell-laden 3D constructs in a minimally invasive manner. The microphysiometry setup was applied to characterize the spatial oxygen distribution within thick cell-laden 3D constructs, study the time-dependent changes on the oxygen tension within 3D breast cancer models following a chemotherapeutic treatment, and identify kinetics and recovery effects after drug exposure over 5 weeks. Our data suggest that the microphysiometry setup enables highly reproducible measurements without human intervention, due to the high degree of automation and positional accuracy. The results demonstrate the applicability of the setup to provide valuable long-term insights into oxygenation within 3D models using minimally invasive, label-free, and entirely automated analysis methods.
Collapse
Affiliation(s)
- Sebastian Eggert
- Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- Chair of Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Garching 85748, Germany
| | - Martin S. Gutbrod
- PreSens Precision Sensing GmbH, Am Biopark 11, 93053 Regensburg, Germany
| | - Gregor Liebsch
- PreSens Precision Sensing GmbH, Am Biopark 11, 93053 Regensburg, Germany
| | - Robert Meier
- PreSens Precision Sensing GmbH, Am Biopark 11, 93053 Regensburg, Germany
| | - Christoph Meinert
- Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000 QLD, Australia
| | - Dietmar W. Hutmacher
- Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, Brisbane, 4000 QLD, Australia
| |
Collapse
|
17
|
Wei M, Zhang R, Zhang F, Zhang Y. Evaluating cell viability heterogeneity based on information fusion of multiple adhesion strengths. Biotechnol Bioeng 2021; 118:2360-2367. [PMID: 33694331 DOI: 10.1002/bit.27749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/07/2021] [Accepted: 03/06/2021] [Indexed: 01/20/2023]
Abstract
Cell viability evaluation is significantly meaningful for cellular assays. Some cells with weak viability are easily killed in the detection of anticancer drugs, while others with strong viability survive and proliferate, ultimately leading to the treatment failure or the inaccuracy of biological assays. Accurately evaluating cell viability heterogeneity still remains difficult. This article proposed a multiphysical property information fusion method for evaluating cell viability heterogeneity based on polynomial regression in a single-channel integrated microfluidic chip. In this method, adhesion strengths τN , that are defined as the magnitude of shear stress needed to detach (100 - N) % of cell population, were extracted as the independent variables of polynomial regression model by calculating the nonlinear fitting of the impedance-response curves for shear stress (cell detachment assay). Besides, by calculating the nonlinear fitting of the drug dose-response curves for cancer cells (IC50 assay), the half-maximal inhibitory concentration (IC50 ) was extracted as the dependent variables of polynomial regression model. The results show that the mean relative error of our fusion method averagely reduces by 6.04% and 62.79% compared with the multiple linear regression method and the cell counting method. Moreover, a simplified theoretical model used to describe the quantitative relationship between cell viability and its adhesion strengths was built to provide a theoretical basis for our fusion method.
Collapse
Affiliation(s)
- Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rongbiao Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yecheng Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
18
|
Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. LAB ON A CHIP 2021; 21:22-54. [PMID: 33331376 PMCID: PMC7909465 DOI: 10.1039/d0lc00840k] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
19
|
Dong L, Ravaynia PS, Huang QA, Hierlemann A, Modena MM. Parallelized Wireless Sensing System for Continuous Monitoring of Microtissue Spheroids. ACS Sens 2020; 5:2036-2043. [PMID: 32519548 DOI: 10.1021/acssensors.0c00481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the use of electrical readout methods for the investigation of microtissue spheroids in combination with lab automation tools is hindered by the cable connections that are required to interrogate the on-chip-integrated electrodes. To overcome this limitation, we developed a wireless sensor scheme, which can detect the size variation of microtissues during long-term culturing and drug exposure assays. The sensor system includes an interrogation board, which is composed of an inductor-capacitor (LC) readout circuit, and the tissue culture platform with integrated split-ring sensors. The magnetic coupling between the LC circuit and the sensors enables the interrogation of the on-chip sensors without any wire connection to the culture platform. By optimizing the sensor dimensions and the LC resonance frequencies, we were able to avoid cross talk between neighboring sensors. We integrated 12 tissue compartments on a standard microscopy slide with a sensor-to-sensor pitch of 9 mm, which is in accordance with standard 96-well plate dimensions. As a proof-of-concept experiment for the developed system, we monitored continuously and during more than four days the growth inhibition of colon cancer microtissue spheroids that had been exposed to different concentrations of doxorubicin, a chemotherapeutic compound. The stability of the measurements during long-term culturing and the compatibility of the sensor scheme with standard lab equipment offer great potential for automated electrical microtissue spheroid characterization.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Paolo S. Ravaynia
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Qing-An Huang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Mario M. Modena
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| |
Collapse
|
20
|
Hassan Q, Ahmadi S, Kerman K. Recent Advances in Monitoring Cell Behavior Using Cell-Based Impedance Spectroscopy. MICROMACHINES 2020; 11:E590. [PMID: 32545753 PMCID: PMC7345285 DOI: 10.3390/mi11060590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Cell-based impedance spectroscopy (CBI) is a powerful tool that uses the principles of electrochemical impedance spectroscopy (EIS) by measuring changes in electrical impedance relative to a voltage applied to a cell layer. CBI provides a promising platform for the detection of several properties of cells including the adhesion, motility, proliferation, viability and metabolism of a cell culture. This review gives a brief overview of the theory, instrumentation, and detection principles of CBI. The recent applications of the technique are given in detail for research into cancer, neurodegenerative diseases, toxicology as well as its application to 2D and 3D in vitro cell cultures. CBI has been established as a biophysical marker to provide quantitative cellular information, which can readily be adapted for single-cell analysis to complement the existing biomarkers for clinical research on disease progression.
Collapse
Affiliation(s)
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (Q.H.); (S.A.)
| |
Collapse
|
21
|
Ravaynia PS, Lombardo FC, Biendl S, Dupuch MA, Keiser J, Hierlemann A, Modena MM. Parallelized Impedance-Based Platform for Continuous Dose-Response Characterization of Antischistosomal Drugs. ACTA ACUST UNITED AC 2020; 4:e1900304. [PMID: 32510834 DOI: 10.1002/adbi.201900304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/19/2020] [Indexed: 11/11/2022]
Abstract
Schistosomiasis is an acute and chronic disease caused by tropical parasitic worms of the genus Schistosoma, which parasitizes annually over 200 million people worldwide. Screening of antischistosomal compounds is hampered by the low throughput and potential subjectivity of the visual evaluation of the parasite phenotypes, which affects the current drug assays. Here, an impedance-based platform, capable of assessing the viability of Schistosoma mansoni schistosomula exposed to drugs, is presented. This automated and parallelized platform enables unbiased and continuous measurements of dose-response relationships for more than 48 h. The platform performance is established by exposure of schistosomula to three test compounds, praziquantel, oxethazaine, and mefloquine, which are known to affect the larvae phenotypes. The system is thereafter used to investigate the response of schistosomula to methiothepine, an antipsychotic compound, which causes complex drug-induced effects. Continuous monitoring of the parasites reveals transient behavioral phenotypes and allows for extracting temporal characteristics of dose-response curves, which are essential for selecting drugs that feature high activity and fast kinetics of action. These measurements demonstrate that impedance-based detection provides a wealth of information for the in vitro characterization of candidate antischistosomals and, represents a promising tool for the identification of new lead compounds.
Collapse
Affiliation(s)
- Paolo S Ravaynia
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Flavio C Lombardo
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, Basel, 4051, Switzerland
| | - Stefan Biendl
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, Basel, 4051, Switzerland
| | - Matthias A Dupuch
- Micro and Nanosystems, Department of Mechanical and Process Engineering, ETH Zürich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, Basel, 4051, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Mario M Modena
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
22
|
|
23
|
Abstract
Microfluidics is an appealing platform for drug screening and discovery. Compared with the conventional drug screening methods based on Petri dishes and experimental animals, microfluidic devices have many advantages including miniaturized size, ease-to-use, high sensitivity, and high throughput. More importantly, bioassays on microfluidics can avoid ethical issues which can be a big obstacle hindering the performance of the experiments on animals or human being. Furthermore, three-dimensional (3D) microchips can recapitulate various biochemical and biophysical conditions in vivo and mimic the natural microenvironment of the tissues/organs, providing versatile in vitro models for biomedical applications. In this Perspective, we will focus on the cell-based microfluidic assays for drug screening. Meanwhile, we also propose potential solutions for the difficulties in this field and discuss the prospects of microfluidics-based technologies for drug screening.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|