1
|
Mutalik C, Sharma S, Yougbaré S, Chen CY, Kuo TR. Nanoplasmonic Biosensors: A Comprehensive Overview and Future Prospects. Int J Nanomedicine 2025; 20:5817-5836. [PMID: 40356858 PMCID: PMC12067471 DOI: 10.2147/ijn.s521442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Recent nanotechnological advancements have resulted in a paradigm shift in biosensing applications through the advent of nanoplasmonic biosensors. These devices integrate nanomaterials with phenomena like surface plasmon resonance (SPR) and localized SPR (LSPR) to address the critical diagnostic and analytical needs across medicine, food safety, and drug discovery. Leveraging metals like gold and silver, these sensors exhibit enhanced optical and electronic properties, enabling the detection of biomolecules at ultralow concentrations. However, despite their transformative potential, challenges concerning stability, reproducibility, cost-efficiency, and scalability impede widespread implementation. This review offers a rigorous analysis of nanoplasmonic biosensors, emphasizing their underlying operational mechanisms and diverse applications. It also delves into design paradigms, fabrication protocols, and optimization strategies while concurrently examining prevailing challenges and prospective advancements. Furthermore, it highlights emerging trends, such as hybrid plasmonic nanostructures, conferring advantages in miniaturization, automation, and high-throughput analysis, thereby establishing a robust foundation for future innovation in the field.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Center for Airborne Infection & Transmission Science, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shashwat Sharma
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, BP 21811, Burkina Faso
| | - Chih-Yu Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- School of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
2
|
Cai Y, Bi Z, Geng X, Chi J, Gao M, Liu Y, Qiu Z, Zhang X, Yu L, Chen Z, Shan W, Qiu M. Ultrasensitive CEA detection using SiO 2/AuNPs-mediated dual inhibition in a signal-off-type photoelectrochemical immunosensor. Anal Chim Acta 2025; 1345:343745. [PMID: 40015784 DOI: 10.1016/j.aca.2025.343745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
An essential tumor marker for the diagnosis and therapy monitoring of numerous cancers is carcinoembryonic antigen (CEA). The current CEA detection method still has drawbacks, such as time-consuming, expensive, and complex analysis. Photoelectric chemical immunosensors show great potential in CEA detection because of their advantages of low cost, high sensitivity and easy operation. The aim of this study was to develop an ultra-sensitive photoelectrochemical (PEC) immunosensor based on In2S3/MnIn2S4 heterojunction for the detection of CEA. MnIn2S4 nanosheets were grown in situ on the surface of In2S3 nanosheets by a simple hydrothermal method, and heterojunctions with matching lattice parameters were constructed. Its band structure optimizes its interaction with visible light, thereby improving its photoelectrochemical properties. Due to the specific recognition of antigens and antibodies, SiO2/AuNPs-Ab2 was captured on the electrode surface, resulting in significant photoelectric signal quenching. Therefore, the PEC signal weakens with the increase of CEA concentration, and quantitative detection was realized. Under optimized experimental conditions, the linear detection range of the PEC immune sensor for CEA ranged from 0.5 pg/mL to 100 ng/mL, and the detection limit was as low as 0.143 pg/mL, showing extremely high sensitivity. The developed PEC immunosensor provides a promising technical means for the high sensitivity detection of CEA, and has the potential to be widely used in clinical diagnosis.
Collapse
Affiliation(s)
- Yueyuan Cai
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | | | - Xinming Geng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Jingtian Chi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Youchang Liu
- Qingdao Institute of Textile Fibre Supervision and Inspection, Qingdao, 266061, PR China
| | - Zhilei Qiu
- Department of Urology, Qingdao Municipal Hospital, Shandong Province, PR China
| | - Xiaoyue Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhi Chen
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Wei Shan
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China.
| |
Collapse
|
3
|
Islam MA, Masson JF. Plasmonic Biosensors for Health Monitoring: Inflammation Biomarker Detection. ACS Sens 2025; 10:577-601. [PMID: 39917878 DOI: 10.1021/acssensors.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Surface plasmon resonance (SPR) and localized SPR (LSPR) biosensors have emerged as viable technologies in the clinical detection of biomarkers for a wide array of health conditions. The success of SPR biosensors lies in their ability to monitor in real-time label-free biomarkers in complex biofluids. Recent breakthroughs in nanotechnology and surface chemistry have significantly improved this feature, notably from the incorporation of advanced nanomaterials including gold nanoparticles, graphene, and carbon nanotubes providing better SPR sensor performance in terms of detection limits, stability, and specificity. Recent progress in microfluidic integration has enabled SPR biosensors to detect multiple biomarkers simultaneously in complex biological samples. Taken together, these advances are closing the gap for their use in clinical diagnostics and point-of-care (POC) applications. While broadly applicable, the latest advancements in plasmonic biosensing are overviewed using inflammation biomarkers C-reactive protein (CRP), interleukins (ILs), tumor necrosis factor-α (TNF-α), procalcitonin (PCT), ferritin, and fibrinogen for a series of conditions, including cardiovascular diseases, autoimmune disorders, infections, and sepsis, as a key example of plasmonic biosensors for clinical applications. We highlight developments in sensor design, nanomaterial integration, surface functionalization, and multiplexing and provide a look forward to clinical applications by assessing the current limitations and exploring future directions for translating SPR biosensors for diagnostics and health monitoring. By enhancement of diagnostic accuracy, reproducibility, and accessibility, particularly in POC settings, SPR biosensors have the potential to significantly contribute to personalized healthcare and bring real-time, high-precision diagnostics to the forefront of clinical practice.
Collapse
Affiliation(s)
- M Amirul Islam
- Département de Chimie, Institut Courtois, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Jean-François Masson
- Département de Chimie, Institut Courtois, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
4
|
Kumar S, Maskova H, Kuzminova A, Curda P, Doudova L, Sterba J, Kylián O, Rego ROM, Straňák V. Tailored Functionalization of Plasmonic AgNPs/C:H:N:O Nanocomposite for Sensitive and Selective Detection. JOURNAL OF BIOPHOTONICS 2025; 18:e202400353. [PMID: 39716390 PMCID: PMC11793947 DOI: 10.1002/jbio.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
We report here on the development of tailored plasmonic AgNPs/C:H:N:O plasma polymer nanocomposites for the detection of the pathogenic bacterium Borrelia afzelii , with high selectivity and sensitivity. Silver (Ag) nanoparticles, generated by a gas aggregation source, are incorporated onto a C:H:N:O plasma polymer matrix, which is deposited by magnetron sputtering of a nylon 6.6. These anchored Ag nanoparticles propagate localized surface plasmon resonance (LSPR), optically responding to changes caused by immobilized pathogens near the nanoparticles. The tailored functionalization of AgNPs/C:H:N:O nanocomposite surface allows both high selectivity for the pathogen and high sensitivity with an LSPR red-shift Δλ > (4.20 ± 0.71) nm for 50 Borrelia per area 0.785 cm2. The results confirmed the ability of LSPR modulation for the rapid and early detection of (not only) tested pathogens.
Collapse
Affiliation(s)
- Sanjay Kumar
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Hana Maskova
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre ASCRInstitute of ParasitologyCeske BudejoviceCzech Republic
| | - Anna Kuzminova
- Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
| | - Paval Curda
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Lenka Doudova
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre ASCRInstitute of ParasitologyCeske BudejoviceCzech Republic
| | - Jan Sterba
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Ondřej Kylián
- Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
| | - Ryan O. M. Rego
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre ASCRInstitute of ParasitologyCeske BudejoviceCzech Republic
| | - Vítězslav Straňák
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| |
Collapse
|
5
|
Teimouri H, Taheri S, Saidabad FE, Nakazato G, Maghsoud Y, Babaei A. New insights into gold nanoparticles in virology: A review of their applications in the prevention, detection, and treatment of viral infections. Biomed Pharmacother 2025; 183:117844. [PMID: 39826358 DOI: 10.1016/j.biopha.2025.117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Viral infections have led to the deaths of millions worldwide and come with significant economic and social burdens. Emerging viral infections, as witnessed with coronavirus disease 2019 (COVID-19), can profoundly affect all aspects of human life, highlighting the imperative need to develop diagnostic, therapeutic, and effective control strategies in response. Numerous studies highlight the diverse applications of nanoparticles in diagnosing, controlling, preventing, and treating viral infections. Due to favorable and flexible physicochemical properties, small size, immunogenicity, biocompatibility, high surface-to-volume ratio, and the ability to combine with antiviral agents, gold nanoparticles (AuNPs) have shown great potential in the fight against viruses. The physical and chemical properties, the adjustability of characteristics based on the type of application, the ability to cross the blood-brain barrier, the ability to infiltrate cells such as phagocytic and dendritic cells, and compatibility for complexing with various compounds, among other features, transform AuNPs into a suitable tool for combating and addressing pathogenic viral agents through multiple applications. In recent years, AuNPs have been employed in various applications to fight viral infections. However, a comprehensive review article on the applications of AuNPs against viral infections has yet to be available. Given their versatility, AuNPs present an appealing option to address various gaps in combating viral infections. Hence, this review explores the attributes, antiviral properties, contributions to drug delivery, vaccine development, and diagnostic uses of AuNPs.
Collapse
Affiliation(s)
- Hossein Teimouri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shiva Taheri
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Parana State CP6001, Brazil
| | - Yazdan Maghsoud
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
6
|
Borjikhani P, Granpayeh N, Zibaii MI. High sensitivity tapered fiber refractive index biosensor using hollow gold nanoparticles. Sci Rep 2025; 15:1458. [PMID: 39789159 PMCID: PMC11717910 DOI: 10.1038/s41598-025-85739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules. The binding of these biomolecules to the receptors changes the local RI around the sensor and this change is detected by the transmittance spectrum of the fiber. Fast, accurate, easy and low-cost disease diagnosis are the advantages of optical fiber biosensors. In this paper, the structure theory is reviewed and the sensor is simulated by the finite difference time domain (FDTD) method and the finite element method (FEM) and the effect of the thickness and diameter of the HAuNPs and the waist diameter of the TOF is investigated. For the structure with HAuNPs thickness (2.5 nm), diameter (50 nm), and the fiber waist diameter of 10 μm, the wavelength sensitivity of 489.8 nm/RIU and full width at half maximum (FWHM) of 50 nm are obtained, which are better than those specifications in some other LSPR fiber sensors. In addition, the sensitivity of the sensor increases about 2-3 times compared to those of sensors with the same structure. Although there are many parameters in human blood that can change its RI, in practical work, the special bioreceptors on the sensor can deactivate other markers except the specific cancer markers, which changes the effective RI. Therefore, this optical fiber sensor is used for label-free detecting the RI of cancer cells and can be used as a biosensor for the detection of early stages of cancers in a non-invasive way, just using human blood samples.
Collapse
Affiliation(s)
- Parisa Borjikhani
- Center of Excellence in Electromagnetics, Optical Communication Laboratory, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Nosrat Granpayeh
- Center of Excellence in Electromagnetics, Optical Communication Laboratory, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
7
|
Hunter SJ, Csányi E, Tyler JJS, Newell MA, Farmer MAH, Ma C, Sanderson G, Leggett GJ, Johnson EC, Armes SP. Covalent Capture of Nanoparticle-Stabilized Oil Droplets via Acetal Chemistry Using a Hydrophilic Polymer Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26735-26741. [PMID: 39641918 DOI: 10.1021/acs.langmuir.4c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We report the capture of nanosized oil droplets using a hydrophilic aldehyde-functional polymer brush. The brush was obtained via aqueous ARGET ATRP of a cis-diol-functional methacrylic monomer from a planar silicon wafer. This precursor was then selectively oxidized using an aqueous solution of NaIO4 to introduce aldehyde groups. The oil droplets were prepared by using excess sterically stabilized diblock copolymer nanoparticles to prepare a relatively coarse squalane-in-water Pickering emulsion (mean droplet diameter = 20 μm). This precursor was then further processed via high-pressure microfluidization to produce ∼200 nm squalane droplets. We demonstrate that adsorption of these nanosized oil droplets involves acetal bond formation between the cis-diol groups located on the steric stabilizer chains and the aldehyde groups on the brush. This interaction occurs under relatively mild conditions and can be tuned by adjusting the solution pH. Hence this is a useful model system for understanding oil droplet interactions with soft surfaces.
Collapse
Affiliation(s)
- Saul J Hunter
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, U.K
| | - Evelin Csányi
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Joshua J S Tyler
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Mark A Newell
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Matthew A H Farmer
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Camery Ma
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - George Sanderson
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Graham J Leggett
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Edwin C Johnson
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
8
|
Chung YH, Oh JK. Research Trends in the Development of Block Copolymer-Based Biosensing Platforms. BIOSENSORS 2024; 14:542. [PMID: 39590001 PMCID: PMC11591610 DOI: 10.3390/bios14110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Biosensing technology, which aims to measure and control the signals of biological substances, has recently been developed rapidly due to increasing concerns about health and the environment. Top-down technologies have been used mainly with a focus on reducing the size of biomaterials to the nano-level. However, bottom-up technologies such as self-assembly can provide more opportunities to molecular-level arrangements such as directionality and the shape of biomaterials. In particular, block copolymers (BCPs) and their self-assembly have been significantly explored as an effective means of bottom-up technologies to achieve recent advances in molecular-level fine control and imaging technology. BCPs have been widely used in various biosensing research fields because they can artificially control highly complex nano-scale structures in a directionally controlled manner, and future application research based on interactions with biomolecules according to the development and synthesis of new BCP structures is greatly anticipated. Here, we comprehensively discuss the basic principles of BCPs technology, the current status of their applications in biosensing technology, and their limitations and future prospects. Rather than discussing a specific field in depth, this study comprehensively covers the overall content of BCPs as a biosensing platform, and through this, we hope to increase researchers' understanding of adjacent research fields and provide research inspiration, thereby bringing about great advances in the relevant research fields.
Collapse
Affiliation(s)
- Yong-Ho Chung
- Department of Chemical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
9
|
Zhuang T, Xu L, Khalid M, Wu X, Du L, Shahnia S, Codemard CA, Bai Z, Wang Y, Liu S, Chen GY, Wang Y. Light-Sheet Skew Ray-Based Microbubble Chemical Sensor for Pb 2+ Measurements. SENSORS (BASEL, SWITZERLAND) 2024; 24:6785. [PMID: 39517680 PMCID: PMC11548372 DOI: 10.3390/s24216785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
A multimode fiber-based sensor is proposed and demonstrated for the detection of lead traces in contaminated water. The sensing mechanism involves using a light sheet to excite a specific group of skew rays that optimizes light absorption. The sensing region features an inline microbubble structure that funnels the skew rays into a tight ring, thereby intensifying the evanescent field. The sensitivity is further refined by incorporating gold nanoparticles, which amplify the evanescent field strength through localized surface plasmon resonance. The gold nanoparticles are functionalized with oxalic acid to improve specificity for lead ion detection. Experiment results demonstrated the significantly enhanced absorption sensitivity of the proposed sensing method for large center offsets, achieving a detection limit of 0.1305 ng/mL (the World Health Organization safety limit is 10 ng/mL) for concentrations ranging from 0.1 to 10 ng/mL.
Collapse
Affiliation(s)
- Tingting Zhuang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (T.Z.); (L.X.); (L.D.); (Z.B.); (Y.W.); (S.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Lukui Xu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (T.Z.); (L.X.); (L.D.); (Z.B.); (Y.W.); (S.L.); (Y.W.)
| | - Mamoona Khalid
- Photonics and Communications Lab, Electrical Engineering Department, University of Engineering and Technology, Taxila 47050, Pakistan;
| | - Xuan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia;
| | - Linqiao Du
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (T.Z.); (L.X.); (L.D.); (Z.B.); (Y.W.); (S.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Soroush Shahnia
- Laser Physics and Photonic Devices Laboratories, School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | | | - Zhiyong Bai
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (T.Z.); (L.X.); (L.D.); (Z.B.); (Y.W.); (S.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Ying Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (T.Z.); (L.X.); (L.D.); (Z.B.); (Y.W.); (S.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Shen Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (T.Z.); (L.X.); (L.D.); (Z.B.); (Y.W.); (S.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - George Y. Chen
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (T.Z.); (L.X.); (L.D.); (Z.B.); (Y.W.); (S.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (T.Z.); (L.X.); (L.D.); (Z.B.); (Y.W.); (S.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Kong X, Li M, Xiao W, Li Y, Luo Z, Shen JW, Duan Y. Ω-Shaped fiber optic LSPR coated with hybridized nanolayers for tumor cell sensing and photothermal treatment. Talanta 2024; 278:126381. [PMID: 38936108 DOI: 10.1016/j.talanta.2024.126381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Circulating tumor cell (CTC) in the blood is the main cause of cancer metastasis for death in cancer patients. It is extremely important for cancer diagnosis at an early stage and treatment to simultaneously detect and kill the CTCs. In this work, a new hybridized nanolayer, namely gold nanoparticle/gold nanorods@ Polydopamine (AuNPs/AuNRs@PDA), was coated on the Ω-shaped fiber optics (Ω-FO) for localized surface plasmonic resonance (LSPR) to perform tumor cell sensing and photothermal treatment (PTT). The PDA nanolayer was formed on a bare fiber optic through the self-polymerization of dopamine under mild conditions. The AuNRs and AuNPs were absorbed on the surface of the PDA nanolayer to form a hybridized nanolayer. The hybridized nanolayer-modified Ω-FO LSPR exhibited a high refractive index sensitivity (RIS) of 37.59 (a.u/RIU) and photothermal conversion efficiency. After being modified with the recognition element of aptamer, the Ω-FO LSPR was used to develop a sensitive and specifical tumor cell sensing. Under the irradiation of near-infrared light (NIR) laser, the Ω-FO LSPR can kill the captured tumor cells with the apoptotic/necrotic rate of 62.6 % and low side-effect for the nontarget cells. The FO LSPR sensor realized the dual functions of CTC sensing and PTT, which provided a new idea for the early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xinyu Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Mingyue Li
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Xiao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510632, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Ji-Wei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
11
|
Kong X, He X, He F, Li Y, Feng Y, Li Y, Luo Z, Shen JW, Duan Y. Sandwich Layer-Modified Ω-Shaped Fiber-Optic LSPR Enables the Development of an Aptasensor for a Cytosensing-Photothermal Therapy Circuit. ACS Sens 2024; 9:4637-4645. [PMID: 39120046 DOI: 10.1021/acssensors.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The metastasis of cancer cells is a principal cause of morbidity and mortality in cancer. The combination of a cytosensor and photothermal therapy (PTT) cannot completely eliminate cancer cells at one time. Hence, this study aimed to design a localized surface plasmonic resonance (LSPR)-based aptasensor for a circuit of cytosensing-PTT (COCP). This was achieved by coating a novel sandwich layer of polydopamine/gold nanoparticles/polydopamine (PDA/AuNPs/PDA) around the Ω-shaped fiber-optic (Ω-FO). The short-wavelength peak of the sandwich layer with strong resonance exhibited a high refractive index sensitivity (RIS). The modification with the T-shaped aptamer endowed FO-LSPR with unique characteristics of time-dependent sensitivity enhancement behavior for a sensitive cytosensor with the lowest limit of detection (LOD) of 13 cells/mL. The long-wavelength resonance peak in the sandwich layer appears in the near-infrared region. Hence, the rate of increased localized temperature of FO-LSPR was 160 and 30-fold higher than that of the bare and PDA-coated FO, indicating strong photothermal conversion efficiency. After considering the localized temperature distribution around the FO under the flow environment, the FO-LSPR-enabled aptasensor killed 77.6% of cancer cells in simulated blood circulation after five cycles of COCP. The FO-LSPR-enabled aptasensor improved the efficiency of the cytosensor and PTT to effectively kill cancer cells, showing significant potential for application in inhibiting cancer metastasis.
Collapse
Affiliation(s)
- Xinyu Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xingliang He
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Fan He
- School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yu Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Yanting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ji-Wei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Guo W, Yu Y, Xin C, Jin G. Comparative study of optical fiber immunosensors based on traditional antibody or nanobody for detecting HER2. Talanta 2024; 277:126317. [PMID: 38810383 DOI: 10.1016/j.talanta.2024.126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
In this study, we present a novel biomarker detection platform employing a modified S-tapered fiber coated with gold nanoparticle/graphene oxide (GNP/GO) for quantifying human epidermal growth factor receptor-2 (HER2) concentrations, using antibodies as sensing elements. The fabrication of this device involves implementing an in-situ layer-by-layer technique coupled with a chemical adsorption step to achieve the self-assembly of GNP, GO, and antibodies on the STF surface. The detection mechanism relies on monitoring the refractive index changes induced by the adsorption of HER2 onto the immobilized antibodies. For comparative analysis, both monoclonal antibody (mAb) and the novel nanobody (Nb) were employed in constructing the STF immunosensor, referred to as the mAb immunosensor and Nb immunosensor, respectively. Spectral analysis results highlight that the Nb immunosensor exhibits twice the sensitivity of the mAb immunosensor. This enhanced sensitivity is attributed to the small size, high antigen affinity, strong specificity, and structural stability of Nb. The Nb immunosensor demonstrated an impressive detection limit of 0.001 nM for HER2, surpassing the detection limit of the mAb immunosensor. These findings underscore the potential of the proposed Nb immunosensor as a promising and sensitive tool for HER2 detection, contributing to the diagnosis and prognosis of breast cancer. Furthermore, the simplicity of production and excellent optical performance position the Nb immunosensor as a prospective real-time biosensor with minimal cytotoxicity.
Collapse
Affiliation(s)
- Wanmei Guo
- Jilin Key Laboratory of Solid Laser Technology and Application, School of Science, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yongsen Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chao Xin
- Jilin Key Laboratory of Solid Laser Technology and Application, School of Science, Changchun University of Science and Technology, Changchun, 130022, China
| | - Guangyong Jin
- Jilin Key Laboratory of Solid Laser Technology and Application, School of Science, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
13
|
Lin M, Wang C, Fan R, Zhao X, Yu L, Lu M, Peng W. Multi-channel prismatic localized surface plasmon resonance biosensor for real-time competitive assay multiple COVID-19 characteristic miRNAs. Talanta 2024; 275:126142. [PMID: 38669961 DOI: 10.1016/j.talanta.2024.126142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
A multi-channel prismatic localized surface plasmon resonance (LSPR) biosensor was developed for quantitative and real-time detection of multiple COVID-19 characteristic miRNAs. The well-dispersed and dense gold nanoparticles (AuNPs) arrays for LSPR biosensing were fabricated through a nano-thickness diblock copolymer template (BCPT). Both theoretical and experimental analyses were conducted to investigate the effects of particle size, interparticle spacing, and surface coverage on LSPR sensing spectrum and intensity sensitivity of varied AuNPs sizes. A competitive assay strategy was proposed and used for non-amplification miRNA detection with a low limit detection of 3.41 nM, while a four-channel prismatic LSPR system enables parallel detection of multiple miRNAs. Furthermore, this sensing strategy can effectively and specifically identify target miRNA, distinguish mismatched miRNA and interfering miRNA, and exhibit low non-specific adsorption. This BCPT-based LSPR biosensor demonstrates the practicality and potential of a multi-channel, adaptable, and integrated prismatic sensor in medical testing and diagnostic applications.
Collapse
Affiliation(s)
- Ming Lin
- Affiliated Cancer Hospital, Dalian University of Technology, Shenyang, 110042, China; School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Chen Wang
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Ruizhi Fan
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Xinya Zhao
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Li Yu
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Mengdi Lu
- Affiliated Cancer Hospital, Dalian University of Technology, Shenyang, 110042, China; School of Physics, Dalian University of Technology, Dalian, 116024, China.
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
14
|
Shchemelev IS, Ivanov AV, Ferapontov NB. Composite "Crosslinked Polyvinyl Alcohol-Magnetite" as a Stimuli-Responsive Matrix for Optical Methods. Molecules 2024; 29:2794. [PMID: 38930858 PMCID: PMC11206915 DOI: 10.3390/molecules29122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
The preparation and application of the composite material "crosslinked polyvinyl alcohol-magnetite" as a sensitive matrix for use in digital colorimetry and optical micrometry methods are discussed. The material was synthesized in the form of spherical granules (for micrometry) and thin films (for digital colorimetry). The obtained composites were characterized by the registration of magnetization curves. It was shown that the amount of grown Fe3O4 particles in the polymer gel is in linear dependence with the iron salt concentrations in the impregnating solutions. The composite granules were applied to determining monosaccharides using optical micrometry. The optimal pH value for the total amount of monosaccharides' determination was 8.6. The study of the analytical response of composite granules and films performed with a low limit of detection (7.9 mmol/dm3) of both glucose and fructose and a possibility of the control of high alcohol contention in water media. The granules were used to determine the total carbohydrate content in samples of natural honey and syrups with high fructose contents, while the films were used to control the alcohol content in hand antiseptics. The results obtained are in good agreement with the data provided by the manufacturers.
Collapse
Affiliation(s)
- Ivan S. Shchemelev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia or (A.V.I.); (N.B.F.)
| | - Alexander V. Ivanov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia or (A.V.I.); (N.B.F.)
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119071 Moscow, Russia
| | - Nikolay B. Ferapontov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia or (A.V.I.); (N.B.F.)
| |
Collapse
|
15
|
Nicolucci P, Gambaro G, Araujo Silva KM, Souza Lima I, Baffa O, Pasquarelli A. XMEA: A New Hybrid Diamond Multielectrode Array for the In Situ Assessment of the Radiation Dose Enhancement by Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2024; 24:2409. [PMID: 38676026 PMCID: PMC11053603 DOI: 10.3390/s24082409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
This work presents a novel multielectrode array (MEA) to quantitatively assess the dose enhancement factor (DEF) produced in a medium by embedded nanoparticles. The MEA has 16 nanocrystalline diamond electrodes (in a cell-culture well), and a single-crystal diamond divided into four quadrants for X-ray dosimetry. DEF was assessed in water solutions with up to a 1000 µg/mL concentration of silver, platinum, and gold nanoparticles. The X-ray detectors showed a linear response to radiation dose (r2 ≥ 0.9999). Overall, platinum and gold nanoparticles produced a dose enhancement in the medium (maximum of 1.9 and 3.1, respectively), while silver nanoparticles produced a shielding effect (maximum of 37%), lowering the dose in the medium. This work shows that the novel MEA can be a useful tool in the quantitative assessment of radiation dose enhancement due to nanoparticles. Together with its suitability for cells' exocytosis studies, it proves to be a highly versatile device for several applications.
Collapse
Affiliation(s)
- Patricia Nicolucci
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Guilherme Gambaro
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Kyssylla Monnyelle Araujo Silva
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Iara Souza Lima
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Oswaldo Baffa
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, University of Ulm, 89069 Ulm, Germany
| |
Collapse
|
16
|
Janghorban M, Aradanas I, Malaeb K, Abuelazm H, Nittala A, Hu J, Murari K, Pandey R. Redox-Concatenated Aptamer Integrated Skin Mimicking Electrochemical Patch for Noninvasive Detection of Cortisol. ACS Sens 2024; 9:799-809. [PMID: 38148619 DOI: 10.1021/acssensors.3c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
This research focuses on developing and validating a wearable electrochemical biosensor called the concatenated aptamer integrated skin patch, also known as the Captain Patch. The main objective is to detect cortisol levels in sweat, which can provide valuable insights into an individual's health. The biosensor utilizes a corrugated surface that mimics the skin, allowing for better attachment and an improved electrochemical performance. The study demonstrates the successful application of Captain Patch on the human body by using artificially spiked sweat samples. The results indicate good measurement accuracy and conformity when the patch is worn on the body. However, for long-term usage, the patch needs to be changed every 3-4 h or worn three times a day to enable monitoring of cortisol levels. Despite the need for frequent patch changes, the cost-effectiveness and ease of operation make these skin patches suitable for longitudinal cortisol monitoring and other sweat analytes. By customization of the biorecognition probe, the developed biowearable can be used to monitor a variety of vital biomarkers. Overall, Captain Patch, with its capability of detecting specific health markers such as cortisol, hints at the future potential of wearables to offer valuable data on various other biomarkers. Our approach presents the first step in integrating a cost-effective wearable electrochemical patch integrated with a redox-concatenated aptamer for noninvasive biomarker detection. This personalized approach to monitoring can lead to improved patient outcomes and increased patient engagement in managing their health.
Collapse
Affiliation(s)
- Mohammad Janghorban
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Irvyne Aradanas
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Karem Malaeb
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Habiba Abuelazm
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Aditya Nittala
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kartikeya Murari
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richa Pandey
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
17
|
Guan T, Chen W, Tang H, Li D, Wang X, Weindl CL, Wang Y, Liang Z, Liang S, Xiao T, Tu S, Roth SV, Jiang L, Müller-Buschbaum P. Decoding the Self-Assembly Plasmonic Interface Structure in a PbS Colloidal Quantum Dot Solid for a Photodetector. ACS NANO 2023; 17:23010-23019. [PMID: 37948332 DOI: 10.1021/acsnano.3c08526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Hybrid plasmonic nanostructures have gained enormous attention in a variety of optoelectronic devices due to their surface plasmon resonance properties. Self-assembled hybrid metal/quantum dot (QD) architectures offer a means of coupling the properties of plasmonics and QDs to photodetectors, thereby modifying their functionality. The arrangement and localization of hybrid nanostructures have an impact on exciton trapping and light harvesting. Here, we present a hybrid structure consisting of self-assembled gold nanospheres (Au NSs) embedded in a solid matrix of PbS QDs for mapping the interface structures and the motion of charge carriers. Grazing-incidence small-angle X-ray scattering is utilized to analyze the localization and spacing of the Au NSs within the hybrid structure. Furthermore, by correlating the morphology of the Au NSs in the hybrid structure with the corresponding differences observed in the performance of photodetectors, we are able to determine the impact of interface charge carrier dynamics in the coupling structure. From the perspective of architecture, our study provides insights into the performance improvement of optoelectronic devices.
Collapse
Affiliation(s)
- Tianfu Guan
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Wei Chen
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Haodong Tang
- College of Integrated Circuit and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Dong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiao Wang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Christian L Weindl
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Yawen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Suzhe Liang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Tianxiao Xiao
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Suo Tu
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Lin Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibniz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany
| |
Collapse
|
18
|
Ten A, West CA, Jeong S, Hopper ER, Wang Y, Zhu B, Ramasse QM, Ye X, Ringe E. Bimetallic copper palladium nanorods: plasmonic properties and palladium content effects. NANOSCALE ADVANCES 2023; 5:6524-6532. [PMID: 38024297 PMCID: PMC10662198 DOI: 10.1039/d3na00523b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Cu is an inexpensive alternative plasmonic metal with optical behaviour comparable to Au but with much poorer environmental stability. Alloying with a more stable metal can improve stability and add functionality, with potential effects on the plasmonic properties. Here we investigate the plasmonic behaviour of Cu nanorods and Cu-CuPd nanorods containing up to 46 mass percent Pd. Monochromated scanning transmission electron microscopy electron energy-loss spectroscopy first reveals the strong length dependence of multiple plasmonic modes in Cu nanorods, where the plasmon peaks redshift and narrow with increasing length. Next, we observe an increased damping (and increased linewidth) with increasing Pd content, accompanied by minimal frequency shift. These results are corroborated by and expanded upon with numerical simulations using the electron-driven discrete dipole approximation. This study indicates that adding Pd to nanostructures of Cu is a promising method to expand the scope of their plasmonic applications.
Collapse
Affiliation(s)
- Andrey Ten
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
- Department of Earth Sciences, University of Cambridge Downing Street Cambridge CB2 3EQ UK
| | - Claire A West
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
- Department of Earth Sciences, University of Cambridge Downing Street Cambridge CB2 3EQ UK
| | - Soojin Jeong
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Elizabeth R Hopper
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
- Department of Earth Sciences, University of Cambridge Downing Street Cambridge CB2 3EQ UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Yi Wang
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Baixu Zhu
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Quentin M Ramasse
- School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
- School of Physics and Astronomy, University of Leeds Leeds LS2 9JS UK
- SuperSTEM, SciTech Daresbury Science and Innovation Campus Keckwick Lane Daresbury WA4 4AD UK
| | - Xingchen Ye
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
- Department of Earth Sciences, University of Cambridge Downing Street Cambridge CB2 3EQ UK
| |
Collapse
|
19
|
Masson JF, Wallace GQ, Asselin J, Ten A, Hojjat Jodaylami M, Faulds K, Graham D, Biggins JS, Ringe E. Optoplasmonic Effects in Highly Curved Surfaces for Catalysis, Photothermal Heating, and SERS. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46181-46194. [PMID: 37733583 PMCID: PMC10561152 DOI: 10.1021/acsami.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Surface curvature can be used to focus light and alter optical processes. Here, we show that curved surfaces (spheres, cylinders, and cones) with a radius of around 5 μm lead to maximal optoplasmonic properties including surface-enhanced Raman scattering (SERS), photocatalysis, and photothermal processes. Glass microspheres, microfibers, pulled fibers, and control flat substrates were functionalized with well-dispersed and dense arrays of 45 nm Au NP using polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) and chemically modified with 4-mercaptobenzoic acid (4-MBA, SERS reporter), 4-nitrobenzenethiol (4-NBT, reactive to plasmonic catalysis), or 4-fluorophenyl isocyanide (FPIC, photothermal reporter). The various curved substrates enhanced the plasmonic properties by focusing the light in a photonic nanojet and providing a directional antenna to increase the collection efficacy of SERS photons. The optoplasmonic effects led to an increase of up to 1 order of magnitude of the SERS response, up to 5 times the photocatalytic conversion of 4-NBT to 4,4'-dimercaptoazobenzene when the diameter of the curved surfaces was about 5 μm and a small increase in photothermal effects. Taken together, the results provide evidence that curvature enhances plasmonic properties and that its effect is maximal for spherical objects around a few micrometers in diameter, in agreement with a theoretical framework based on geometrical optics. These enhanced plasmonic effects and the stationary-phase-like plasmonic substrates pave the way to the next generation of sensors, plasmonic photocatalysts, and photothermal devices.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Quebec center for advanced materials, Regroupement québécois
sur les matériaux de pointe, and Centre interdisciplinaire
de recherche sur le cerveau et l’apprentissage, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC Canada, H3C 3J7
| | - Gregory Q. Wallace
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Jérémie Asselin
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| | - Andrey Ten
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| | - Maryam Hojjat Jodaylami
- Département
de chimie, Quebec center for advanced materials, Regroupement québécois
sur les matériaux de pointe, and Centre interdisciplinaire
de recherche sur le cerveau et l’apprentissage, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC Canada, H3C 3J7
| | - Karen Faulds
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Duncan Graham
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - John S. Biggins
- Engineering
Department, University of Cambridge, Trumpington Street, Cambridge, U.K. CB2 1PZ
| | - Emilie Ringe
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| |
Collapse
|
20
|
Li X, Wang N, Wang F, Liu J, Shi Y, Jiang J, Liu H, Li M, Zhang L, Zhang W, Zhao Y, Zhang L, Huang C. A parylene-mediated plasmonic-photonic hybrid fiber-optic sensor and its instrumentation for miniaturized and self-referenced biosensing. Analyst 2023; 148:1672-1681. [PMID: 36939193 DOI: 10.1039/d3an00028a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
With the development of advanced nanofabrication techniques over the past decades, different nanostructure-based plasmonic fiber-optic sensors have been developed and have presented a low limit of detection for various biomolecules. However, owing to both the dependence on complex equipment and the trade-off between the fabrication cost and sensing performance, nanostructured plasmonic fiber-optic sensors are rarely used outside laboratories. To facilitate wider application of the plasmonic fiber-optic sensors, a parylene-mediated hybrid plasmonic-photonic cavity-based sensor was developed. Compared with a similar plasmonic sensor which only works in the plasmonic mode, the proposed hybrid sensor shows a higher reproducibility (CV < 2.5%) due to its resistance to fabrication variations. Meanwhile, a self-referenced detection mechanism and a novel miniaturized system were developed to adapt to the hybrid resonance sensor. The entire system only has a weight of 263 g, and a size of 12 cm × 10 cm × 8 cm, and is especially suitable for outdoor applications in a handheld manner. In experiments, a high refractive index sensitivity of 3.148 RIU-1 and real-time biomolecule monitoring at nanomolar concentrations were achieved by the proposed system, further confirming the potential of the miniaturized system as a candidate for point-of-care health diagnostics outside laboratories.
Collapse
Affiliation(s)
- Xin Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nanxi Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinlong Liu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimin Shi
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahong Jiang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China.
| | - Hongyao Liu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China.
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China.
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Wenchang Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China.
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China.
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China.
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Al-Yahmadi K, Kyaw HH, Myint MTZ, Al-Mamari R, Dobretsov S, Al-Abri M. Development of portable sensor for the detection of bacteria: effect of gold nanoparticle size, effective surface area, and interparticle spacing upon sensing interface. DISCOVER NANO 2023; 18:45. [PMID: 37382758 DOI: 10.1186/s11671-023-03826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 06/30/2023]
Abstract
In this study, systematic development of a portable sensor for the rapid detection of Escherichia coli (E. coli) and Exiguobacterium aurantiacum (E. aurantiacum) was reported. A conductive glass was utilized as a substrate and developed the electrode patterns on it. Trisodium citrate (TSC) and chitosan-stabilized gold nanoparticles (AuNPs) (CHI-AuNP-TSC) and chitosan-stabilized AuNPs (CHI-AuNP) were synthesized and utilized as a sensing interface. The morphology, crystallinity, optical properties, chemical structures, and surface properties of immobilized AuNPs on the sensing electrodes were investigated. The sensing performance of the fabricated sensor was evaluated by using an electrochemical method to observe the current changes in cyclic voltammetric responses. The CHI-AuNP-TSC electrode has higher sensitivity toward E. coli than CHI-AuNP with a limit of detection (LOD) of 1.07 CFU/mL. TSC in the AuNPs synthesis process played a vital role in the particle size, the interparticle spacing, the sensor's effective surface area, and the presence of CHI around AuNPs, thus enhancing the sensing performance. Moreover, post-analysis of the fabricated sensor surface exhibited the sensor stability and the interaction between bacteria and the sensor surface. The sensing results showed a promising potential for rapid detection using a portable sensor for various water and food-borne pathogenic diseases.
Collapse
Affiliation(s)
- Khadija Al-Yahmadi
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman
| | - Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, 123, Muscat, Oman
| | - Rahma Al-Mamari
- UNESCO Chair. Department of Marine Science and Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 34, 123, Muscat, Oman
| | - Sergey Dobretsov
- UNESCO Chair. Department of Marine Science and Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 34, 123, Muscat, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
| |
Collapse
|
22
|
Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, Tabish M, Khan AU. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:867. [PMID: 36903746 PMCID: PMC10005622 DOI: 10.3390/nano13050867] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ali Darraj
- Department of Medicine, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226025, India
| | - Abdulaziz Alalwan
- University Family Medicine Center, Department of Family and Community Medicine, College of Medicine, King Saud University Medical City, Riyadh 2925, Saudi Arabia
| | - Osamah Alamri
- Consultant of Family Medicine, Ministry of Health, Second Health Cluster, Riyadh 2925, Saudi Arabia
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
23
|
Jia S, Ma A, Dong H, Xia S. Quantifiable Effect of Interparticle Plasmonic Coupling on Sensitivity and Tuning Range for Wavelength-Mode LSPR Fiber Sensor Fabricated by Simple Immobilization Method. SENSORS (BASEL, SWITZERLAND) 2022; 22:9075. [PMID: 36501777 PMCID: PMC9739458 DOI: 10.3390/s22239075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/05/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Herein a gold nanosphere (AuNS)-coated wavelength-mode localized surface plasmon resonance (LSPR) fiber sensor was fabricated by a simple and time-saving electrostatic self-assembly method using poly(allylamine hydrochloride). Based on the localized enhanced coupling effect between AuNSs, the LSPR spectrums of the AuNS monolayer with good dispersity and high density exhibited a favourable capability for refractive index (RI) measurement. Based on the results obtained from the optimization for AuNS distribution, sensing length, and RI range, the best RI sensitivity of the fiber modified by 100 nm AuNS reached up to about 2975 nm/RIU, with the surrounding RI range from 1.3322 to 1.3664. Using an 80 nm AuNS-modified fiber sensor, the RI sensitivity of 3953 nm/RIU was achieved, with the RI range increased from 1.3744 to 1.3911. The effect of sensing length to RI sensitivity was proven to be negligible. Furthermore, the linear relationship between the RI sensitivity and plasma resonance frequency of the bulk metal, which was dependent on the interparticle plasmon coupling effect, was quantified. Additionally, the resonance peak was tuned from 539.18 nm to 820.48 nm by different sizes of AuNSs-coated fiber sensors at a RI of 1.3322, which means the spectrum was extended from VIS to NIR. It has enormous potential in hypersensitive biochemistry detection at VIS and NIR ranges.
Collapse
Affiliation(s)
- Shuo Jia
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Aiwen Ma
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- Chinese Society for Measurement, Beijing 100029, China
| | - Hanpeng Dong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Shanhong Xia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Wang J, Guo Q, Li Q, Zheng L, Yang X, Wang X, Nie G. A “signal-off” type photoelectrochemical immunosensor for detecting carcinoembryonic antigen based on TiO2 NRs/BiOI heterojunction and SiO2/PDA-Au inhibitor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Wu M, Li G, Ye X, Zhou B, Zhou J, Cai J. Ultrasensitive Molecular Detection at Subpicomolar Concentrations by the Diffraction Pattern Imaging with Plasmonic Metasurfaces and Convex Holographic Gratings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201682. [PMID: 35618447 PMCID: PMC9353501 DOI: 10.1002/advs.202201682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Compact and cost-effective optical devices for highly sensitive detection of trace molecules are significant in many applications, including healthcare, pollutant monitoring and explosive detection. Nanophotonic metasurface-based sensors have been intensively attracting attentions for molecular detection. However, conventional methods often involve spectroscopic characterizations that require bulky, expensive and sophisticated spectrometers. Here, a novel ultrasensitive sensor of plasmonic metasurfaces is designed and fabricated for the detection of trace molecules. The sensor features a convex holographic grating, of which the first-order diffraction pattern of a disposable metasurface is recorded by a monochrome camera.The diffraction pattern changes with the molecules attached to the metasurface, realizing label-free and spectrometer-free molecular detection by imaging and analyzing of the diffraction pattern. By integrating the sensor with a microfluidic setup, the quantitative characterization of rabbit anti-human Immunoglobulin G (IgG) and human IgG biomolecular interactions is demonstrated with an excellent limit of detection (LOD) of 0.6 pm. Moreover, both the metasurface and holographic grating are obtained through vacuum-free solution-processed fabrications, minimizing the manufacturing cost of the sensor. A prototype of the imaging-based sensor, consisting of a white light-emitting diode (LED) and a consumer-level imaging sensor is achieved to demonstrate the potential for on-site detection.
Collapse
Affiliation(s)
- Mingxi Wu
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Guohua Li
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xiangyi Ye
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Bin Zhou
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jianhua Zhou
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jingxuan Cai
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
26
|
Recent Advances in Nanomaterial-Based Biosensors for Pesticide Detection in Foods. BIOSENSORS 2022; 12:bios12080572. [PMID: 36004968 PMCID: PMC9405907 DOI: 10.3390/bios12080572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Biosensors are a simple, low-cost, and reliable way to detect pesticides in food matrices to ensure consumer food safety. This systematic review lists which nanomaterials, biorecognition materials, transduction methods, pesticides, and foods have recently been studied with biosensors associated with analytical performance. A systematic search was performed in the Scopus (n = 388), Web of Science (n = 790), and Science Direct (n = 181) databases over the period 2016–2021. After checking the eligibility criteria, 57 articles were considered in this study. The most common use of nanomaterials (NMs) in these selected studies is noble metals in isolation, such as gold and silver, with 8.47% and 6.68%, respectively, followed by carbon-based NMs, with 20.34%, and nanohybrids, with 47.45%, which combine two or more NMs, uniting unique properties of each material involved, especially the noble metals. Regarding the types of transducers, the most used were electrochemical, fluorescent, and colorimetric, representing 71.18%, 13.55%, and 8.47%, respectively. The sensitivity of the biosensor is directly connected to the choice of NM and transducer. All biosensors developed in the selected investigations had a limit of detection (LODs) lower than the Codex Alimentarius maximum residue limit and were efficient in detecting pesticides in food. The pesticides malathion, chlorpyrifos, and paraoxon have received the greatest attention for their effects on various food matrices, primarily fruits, vegetables, and their derivatives. Finally, we discuss studies that used biosensor detection systems devices and those that could detect multi-residues in the field as a low-cost and rapid technique, particularly in areas with limited resources.
Collapse
|
27
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
28
|
Najeeb J, Farwa U, Ishaque F, Munir H, Rahdar A, Nazar MF, Zafar MN. Surfactant stabilized gold nanomaterials for environmental sensing applications - A review. ENVIRONMENTAL RESEARCH 2022; 208:112644. [PMID: 34979127 DOI: 10.1016/j.envres.2021.112644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Surfactant stabilized Gold (Au) nanomaterials (NMs) have been documented extensively in recent years for numerous sensing applications in the academic literature. Despite the crucial role these surfactants play in the sensing applications, the comprehensive reviews that highlights the fundamentals associated with these assemblies and impact of these surfactants on the properties and sensing mechanisms are still quite scare. This review is an attempt in organizing the vast literature associated with this domain by providing critical insights into the fundamentals, preparation methodologies and sensing mechanisms of these surfactant stabilized Au NMs. For the simplification, the surfactants are divided into the typical and advanced surfactants and the Au NMs are classified into Au nanoparticles (NPs) and Au nanoclusters (NCs) depending upon the complexity in structure and size of the NMs respectively. The preparative methodologies are also elaborated for enhancing the understanding of the readers regarding such assemblies. The case studies regarding surfactant stabilized Au NMs were further divided into colorimetric sensors, surface plasmonic resonance (SPR) based sensors, luminescence-based sensors, and electrochemical/electrical sensors depending upon the property utilized by the sensor for the sensing of an analyte. Future perspectives are also discussed in detail for the researchers looking for further progress in that particular research domain.
Collapse
Affiliation(s)
- Jawayria Najeeb
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Fatima Ishaque
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Hira Munir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98615-538, Iran
| | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Multan Campus, 60700, Pakistan.
| | | |
Collapse
|
29
|
Moulahoum H, Ghorbanizamani F, Guler Celik E, Timur S. Nano-Scaled Materials and Polymer Integration in Biosensing Tools. BIOSENSORS 2022; 12:301. [PMID: 35624602 PMCID: PMC9139048 DOI: 10.3390/bios12050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
30
|
Song L, Yin X, Zhu L, Huang Z, Ma J, Xu A, Gu Y, An Y, Miao Y. A specific identification platform based on biscuit-like bismuth nanosheets for label-free electrochemical immunosensor. ANAL SCI 2022; 38:571-582. [DOI: 10.1007/s44211-022-00067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
|
31
|
He L, He F, Feng Y, Wang X, Li Y, Tian Y, Gao A, Zhang P, Qi X, Luo Z, Duan Y. Hybridized nanolayer modified Ω-shaped fiber-optic synergistically enhances localized surface plasma resonance for ultrasensitive cytosensor and efficient photothermal therapy. Biosens Bioelectron 2021; 194:113599. [PMID: 34521011 DOI: 10.1016/j.bios.2021.113599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Inadequate sensitivity and side-effect are the main challenges to develop cytosensors combining with therapeutic potential simultaneously for cancer diagnosis and treatment. Herein, localized surface plasma resonance (LSPR) based on hybridized nanolayer modified Ω-shaped fiber-optic (HN/Ω-FO) was developed to integrate cytosensor and plasmonic photothermal treatment (PPT). On one hand, hybridized nanolayers improve the coverage of nanoparticles and refractive index sensitivity (RIS). Moreover, the hybridized nanoploymers of gold nanorods/gold nanoparticles (AuNRs/AuNPs) also result in intense enhancement in electronic field intensity (I). On the other hand, Ω-shaped fiber-optic (Ω-FO) led to strong bending loss in its bending part. To be specific, a majority of light escaped from fiber will interact with HN. Thus, HN/Ω-FO synergistically enhances the plasmonic, which achieved the goal of ultrasensitive cytosensor and highly-efficient plasmonic photothermal treatment (PPT). The proposed cytosensor exhibits ultrasensitivity for detection of cancer cells with a low limit of detection down to 2.6 cells/mL was realized just in 30 min. HN/Ω-FO-based LSPR exhibits unique characteristics of highly efficient, localized, and geometry-dependent heat distribution, which makes it suitable for PPT to only kill the cancer cells specifically on the surface or surrounding fiber-optic (FO) surface. Thus, HN/Ω-FO provides a new approach to couple cytosensor with PPT, indicating its great potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Lu He
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Fan He
- School of Physics, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Yanting Feng
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Xu Wang
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Aihua Gao
- School of Physics, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Pei Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Xinyuan Qi
- School of Physics, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| |
Collapse
|
32
|
Xie KX, Liu C, Liu Q, Xiao XX, Li Z, Li MF. Multiarchitecture-Based Plasmonic-Coupled Emission Employing Gold Nanoparticles: An Efficient Fluorescence Modulation and Biosensing Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11880-11886. [PMID: 34592818 DOI: 10.1021/acs.langmuir.1c01965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface plasmon-coupled emission (SPCE) is an efficient surface-enhanced fluorescence method based on the near-field coupling process of surface plasmons and fluorophores. Based on this, we developed multiple coupling structures for an SPCE system by introducing gold nanoparticles (AuNPs) with different architectures by adjusting different modification methods and configurations. By assembling AuNPs on a gold substrate through electrostatic adsorption and spin-coating, 40- and 55-fold enhancements were obtained compared to free space (FS) emission, respectively. After theoretical simulations and the optimization of experimental conditions, a novel "hot-spot" plasmonic structure, an intense electromagnetic field within the system, plasmonic properties, and the coupled process were found to be mainly responsible for the diverse enhancement effects observed. For the spin-coating deposition method, new enhancing systems with high efficiency can be easily built without complex modification. Additionally, the subsequent detection system based on the uniform modification of AuNPs through electrostatic adsorption is convenient to establish with high sensitivity and stability, which can broaden the application of SPCE in both fluorescence-based sensing and imaging. This AuNP-enhanced SPCE using an electrostatic adsorption method was designed as an immunosensor to prove feasibility.
Collapse
Affiliation(s)
- Kai-Xin Xie
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Chang Liu
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Qian Liu
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiu-Xian Xiao
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Zhuan Li
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Meng-Fan Li
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| |
Collapse
|
33
|
Lu YJ, Hsieh HY, Kuo WC, Wei PK, Sheen HJ, Tahara H, Chiu TW, Fan YJ. Nanoplasmonic Structure of a Polycarbonate Substrate Integrated with Parallel Microchannels for Label-Free Multiplex Detection. Polymers (Basel) 2021; 13:polym13193294. [PMID: 34641110 PMCID: PMC8512492 DOI: 10.3390/polym13193294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, a multiplex detection system was proposed by integrating a localized surface plasmon resonance (LSPR) sensing array and parallel microfluidic channels. The LSPR sensing array was fabricated by nanoimprinting and gold sputter on a polycarbonate (PC) substrate. The polydimethylsiloxane (PDMS) microfluidic channels and PC LSPR sensing array were bound together through (3-aminopropyl)triethoxysilane (APTES) surface treatment and oxygen plasma treatment. The resonant spectrum of the LSPR sensing device was obtained by broadband white-light illumination and polarized wavelength measurements with a spectrometer. The sensitivity of the LSPR sensing device was measured using various ratios of glycerol to water solutions with different refractive indices. Multiplex detection was demonstrated using human immunoglobulin G (IgG), IgA, and IgM. The anti-IgG, anti-IgA, and anti-IgM were separately modified in each sensing region. Various concentrations of human IgG, IgA, and IgM were prepared to prove the concept that the parallel sensing device can be used to detect different targets.
Collapse
Affiliation(s)
- Yi-Jung Lu
- Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Han-Yun Hsieh
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan; (H.-Y.H.); (W.-C.K.); (H.-J.S.)
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Chang Kuo
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan; (H.-Y.H.); (W.-C.K.); (H.-J.S.)
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan;
| | - Horn-Jiunn Sheen
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan; (H.-Y.H.); (W.-C.K.); (H.-J.S.)
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
- Correspondence: (T.-W.C.); (Y.-J.F.); Tel.: +886-2-2736-1661 (ext. 7722) (Y.-J.F.)
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-W.C.); (Y.-J.F.); Tel.: +886-2-2736-1661 (ext. 7722) (Y.-J.F.)
| |
Collapse
|
34
|
Del Real Mata C, Siavash Moakhar R, Hosseini II, Jalali M, Mahshid S. A nanostructured microfluidic device for plasmon-assisted electrochemical detection of hydrogen peroxide released from cancer cells. NANOSCALE 2021; 13:14316-14329. [PMID: 34477715 DOI: 10.1039/d0nr07608b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Non-invasive liquid biopsies offer hope for a rapid, risk-free, real-time glimpse into cancer diagnostics. Recently, hydrogen peroxide (H2O2) was identified as a cancer biomarker due to its continued release from cancer cells compared to normal cells. The precise monitoring and quantification of H2O2 are hindered by its low concentration and the limit of detection (LOD) in traditional sensing methods. Plasmon-assisted electrochemical sensors with their high sensitivity and low LOD make a suitable candidate for effective detection of H2O2, yet their electrical properties need to be improved. Here, we propose a new nanostructured microfluidic device for ultrasensitive, quantitative detection of H2O2 released from cancer cells in a portable fashion. The fluidic device features a series of self-organized gold nanocavities, enhanced with graphene nanosheets having optoelectrical properties, which facilitate the plasmon-assisted electrochemical detection of H2O2 released from human cells. Remarkably, the device can successfully measure the released H2O2 from breast cancer (MCF-7) and prostate cancer (PC3) cells in human plasma. Briefly, direct amperometric detection of H2O2 under simulated visible light illumination showed a superb LOD of 1 pM in a linear range of 1 pM-10 μM. We thoroughly studied the formation of self-organized plasmonic nanocavities on gold electrodes via surface and photo-electrochemical characterization techniques. In addition, the finite-difference time domain (FDTD) simulation of the electric field demonstrates the intensity of charge distribution at the nanocavity structure edges under visible light illumination. The superb LOD of the proposed electrode combining gold plasmonic nanocavities and graphene sheets paves the way for the development of non-invasive plasmon-assisted electrochemical sensors that can effectively detect low concentrations of H2O2 released from cancer cells.
Collapse
|
35
|
Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: Strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Jing J, Liu K, Jiang J, Xu T, Wang S, Ma J, Zhang Z, Zhang W, Liu T. Double-Antibody Sandwich Immunoassay and Plasmonic Coupling Synergistically Improved Long-Range SPR Biosensor with Low Detection Limit. NANOMATERIALS 2021; 11:nano11082137. [PMID: 34443967 PMCID: PMC8400597 DOI: 10.3390/nano11082137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
A long-range surface plasmonic resonance (LR-SPR) biosensor modified with double-antibody sandwich immunoassay and plasmonic coupling is demonstrated for human-immunoglobulin G detection with a low limit of detection (LOD). The double-antibody sandwich immunoassay dramatically changes the average refractive index of the medium layer on the sensor surface. The near-field electron coupling between the localized surface plasmon and the long-range surface plasmon leads to a significant perturbation of the evanescent field. The large penetration depth and the long propagation distance of the long-range surface plasmonic waves facilitate the LR-SPR sensor in the detection of biological macromolecules. The unique light absorption characteristic of the nanocomposite material in the sensor provides the in situ self-compensation for the disturbance. Therefore, besides the inherent advantages of optical fiber sensors, the developed biosensor can realize the detection of biomolecules with high sensitivity, low LOD and high accuracy and reliability. Experimental results demonstrate that the LOD of the biosensor is as low as 0.11 μg/mL in the detection of the phosphate-buffered saline sample, and the spike-and-repetition rate is 105.56% in the detection of the real serum sample, which partly shows the practicability of the biosensor. This indicates that the LR-SPR biosensor provides better response compared with existing similar sensors and can be regarded as a valuable method for biochemical analysis and disease detection.
Collapse
Affiliation(s)
- Jianying Jing
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Kun Liu
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
- Correspondence: ; Tel.: +86-022-27404459
| | - Junfeng Jiang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Shuang Wang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Jinying Ma
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Zhao Zhang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Wenlin Zhang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| |
Collapse
|
37
|
Hynninen V, Chandra S, Das S, Amini M, Dai Y, Lepikko S, Mohammadi P, Hietala S, Ras RHA, Sun Z, Ikkala O. Luminescent Gold Nanocluster-Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005205. [PMID: 33491913 DOI: 10.1002/smll.202005205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Because of their lightweight structure, flexibility, and immunity to electromagnetic interference, polymer optical fibers (POFs) are used in numerous short-distance applications. Notably, the incorporation of luminescent nanomaterials in POFs offers optical amplification and sensing for advanced nanophotonics. However, conventional POFs suffer from nonsustainable components and processes. Furthermore, the traditionally used luminescent nanomaterials undergo photobleaching, oxidation, and they can be cytotoxic. Therefore, biopolymer-based optical fibers containing nontoxic luminescent nanomaterials are needed, with efficient and environmentally acceptable extrusion methods. Here, such an approach for fibers wet-spun from aqueous methylcellulose (MC) dispersions under ambient conditions is demonstrated. Further, the addition of either luminescent gold nanoclusters, rod-like cellulose nanocrystals or gold nanocluster-cellulose nanocrystal hybrids into the MC matrix furnishes strong and ductile composite fibers. Using cutback attenuation measurement, it is shown that the resulting fibers can act as short-distance optical fibers with a propagation loss as low as 1.47 dB cm-1 . The optical performance is on par with or even better than some of the previously reported biopolymeric optical fibers. The combination of excellent mechanical properties (Young's modulus and maximum strain values up to 8.4 GPa and 52%, respectively), low attenuation coefficient, and high photostability makes the MC-based composite fibers excellent candidates for multifunctional optical fibers and sensors.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P. O. Box 541, Tampere, FI-33101, Finland
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Sourov Chandra
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Mohammad Amini
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Sakari Lepikko
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre, P. O. Box 1000, Espoo, FI-02044, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P. O. Box 55, Helsinki, FI-00014, Finland
| | - Robin H A Ras
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Olli Ikkala
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| |
Collapse
|
38
|
Sun J, Ma Q, Xue D, Shan W, Liu R, Dong B, Zhang J, Wang Z, Shao B. Polymer/inorganic nanohybrids: An attractive materials for analysis and sensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Zhang C, Chen P, Zhou L, Peng J. Photoelectrochemical detection for 3,3',4,4'-tetrachlorobiphenyl in fish based on synergistic effects by Schottky junction and sensitization. Food Chem 2021; 366:130490. [PMID: 34274703 DOI: 10.1016/j.foodchem.2021.130490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/04/2022]
Abstract
In this study, a novel signal amplification strategy on photoelectrochemical (PEC) aptasensor was designed for high-sensitivity and -selectivity detection of 3,3',4,4'-tetrachlorobiphenyl (PCB77) on the basis of Schottky junction and sensitization. First, the Schottky barrier not only provided an electron-transfer irreversible passage from CuO to Au Nanoparticles (NPs) but also generated excellent local surface plasmon resonance between CuO and Au NPs, thus improving the efficiency of charge separation and light absorption. Second, to further improve the response of the PEC aptasensor under the action of the sensitization, the complementary-DNA-functionalized CdS quantum dots were introduced onto the surface of CuO/Au NPs via hybridization of the target aptamer. The PEC aptasensor exhibited a low detection limit of 17.3 pg L-1, and a wide linear response was shown at a range of 0.2-220 ng L-1 depending on the variation of photocurrent before and after incubation.
Collapse
Affiliation(s)
- Cuizhong Zhang
- School of Chemisty and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Peican Chen
- School of Chemisty and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liya Zhou
- School of Chemisty and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Jinyun Peng
- Photochemical Sensing and Regional Environmental Analysis Laboratory, College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China.
| |
Collapse
|
40
|
Cheng YT, Tsao HK, Sheng YJ. Non-affinity adsorption of nanorods onto smooth walls via an entropy driven mechanism. SOFT MATTER 2021; 17:5756-5762. [PMID: 34019063 DOI: 10.1039/d1sm00238d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preferential adsorption of nanorods onto smooth walls is investigated using dissipative particle dynamics in the absence of specific attraction and a depletant. Although the translational and rotational entropy of nanorods is significantly reduced after adsorption, the effective attraction between the nanorod and wall is clearly identified based on the distribution profile of rods. As the rod length increases, the attractive interaction grows stronger and clusters of aligned nanorods can emerge on the smooth wall. However, the presence of a depletion zone of nanorods adjacent to the adsorbed layer gives zero surface excess. These two regions correspond to the primary minimum and maximum mean force potentials observed. Since adsorbed nanorods lose their rotational and translational entropy, the strong adsorption of long nanorods has to be attributed to the entropy gain associated with the increase in free volume for the solvent in this athermal system. Nonetheless, as the surface roughness is present, entropy-driven attraction is lessened, similar to the depletion force between colloids.
Collapse
Affiliation(s)
- Yi-Ting Cheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, Republic of China.
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| |
Collapse
|
41
|
Thi Huong V, Thi Ta HK, Mai NXD, Van Tran TT, Khuyen BX, Trinh KTL, Lee NY, Phan BT, Tran NHT. Development of a highly sensitive sensor chip using optical diagnostic based on functionalized plasmonically active AuNPs. NANOTECHNOLOGY 2021; 32:335505. [PMID: 33979787 DOI: 10.1088/1361-6528/ac0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Measuring solution concentration plays an important role in chemical, biochemical, clinical diagnosis, environmental monitoring, and biological analyses. In this work, we develop a transmission-mode localized surface plasmon resonance sensor chip system and convenient method which is highly efficient, highly sensitive for detection sensing using multimode fiber. The plasmonically active sensor's surface AuNPs with high-density NPs were decorated onto 1 cm sensing length of various clad-free fiber in the form of homogeneous monolayer utilizing a self-assembly process for immobilization of the target molecule. The carboxyl bond is formed through a functional reaction on the sensor head. Using the significance in the refractive index difference and numerical aperture, which is caused by a variation in the concentration of measuring bovine serum albumin (BSA) protein which can be accurately measured by the output signal. The refractive index variation of the medium analyte layer can be converted to signal output power change at the He-Ne wavelength of 632.8 nm. The sensor detection limit was estimated to be 0.075 ng ml-1for BSA protein which shows high sensitivity compared to other types of label-free optical biosensors. This also leads to a possibility of finding the improvement in the sensitivity label-free biosensors. The conventional method should allow multimode fiber biosensors to become a possible replacement for conventional biosensing techniques based on fluorescence.
Collapse
Affiliation(s)
- Vu Thi Huong
- Faculty Department of Information Communication, Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Hanh Kieu Thi Ta
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Vietnam
- Vietnam National University, HoChiMinh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), HoChiMinh City, Vietnam
| | - Ngoc Xuan Dat Mai
- Vietnam National University, HoChiMinh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), HoChiMinh City, Vietnam
| | - Thi Thanh Van Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Vietnam
- Vietnam National University, HoChiMinh City, Vietnam
| | - Bui Xuan Khuyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Bach Thang Phan
- Vietnam National University, HoChiMinh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), HoChiMinh City, Vietnam
- Laboratory of Advanced Materials, University of Science, HoChiMinh City, Vietnam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Vietnam
- Vietnam National University, HoChiMinh City, Vietnam
| |
Collapse
|
42
|
Luo X, Zhao X, Wallace GQ, Brunet MH, Wilkinson KJ, Wu P, Cai C, Bazuin CG, Masson JF. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6545-6556. [PMID: 33522805 DOI: 10.1021/acsami.0c21493] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe surface-enhanced Raman spectroscopy (SERS) aptasensors that can indirectly detect MC-LR and MC-RR, individually or simultaneously, in natural water and in algal culture. The sensor is constructed from nanoparticles composed of successive layers of Au core-SERS label-silver shell-gold shell (Au@label@Ag@Au NPs), functionalized on the outer Au surface by MC-LR and/or MC-RR aptamers. These NPs are immobilized on asymmetric Au nanoflowers (AuNFs) dispersed on planar silicon substrates through DNA hybridization of the aptamers and capture DNA sequences with which the AuNFs are functionalized, thereby forming core-satellite nanostructures on the substrates. This construction led to greater electromagnetic (EM) field enhancement of the Raman label-modified region, as supported by finite-difference time-domain (FDTD) simulations of the core-satellite assembly. In the presence of MC-LR and/or MC-RR, the aptamer-functionalized NPs dissociate from the AuNFs because of the stronger affinity of the aptamers with the MCs, which decreases the SERS signal, thus allowing indirect detection of the MCs. The improved SERS sensitivity significantly decreased the limit of detection (LOD) for separate MC-LR detection (0.8 pM) and for multiplex detection (1.5 pM for MC-LR and 1.3 pM for MC-RR), compared with other recently reported SERS-based methods for MC-LR detection. The aptasensors show excellent selectivity to MC-LR/MC-RR and excellent recoveries (96-105%). The use of these SERS aptasensors to monitor MC-LR production over 1 week in a culture medium of M. aeruginosa cells demonstrates the applicability of the sensors in a realistic environment.
Collapse
Affiliation(s)
- Xiaojun Luo
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Xingjuan Zhao
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Gregory Q Wallace
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Marie-Hélène Brunet
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Kevin J Wilkinson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - C Geraldine Bazuin
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Jean-Francois Masson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| |
Collapse
|
43
|
Wen HY, Wang SF, Li CH, Yeh YT, Chiang CC. Real-Time and Sensitive Immunosensor for Label-Free Detection of Specific Antigen with a Comb of Microchannel Long-Period Fiber Grating. Anal Chem 2020; 92:15989-15996. [PMID: 33269917 DOI: 10.1021/acs.analchem.0c03519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study aimed to develop a comb of microchannel and immunosensor based on long-period fiber grating using the process of Lithographie Galvanoformung Abformung-like micro-electromechanical systems (LIGA-like MEMS) for real-time and label-free detection of specific antigen. The coupling between propagating core and cladding modes was conducted from the comb of microchannel long-period fiber grating (CM-LPFG). The CM-LPFG-based immunosensor consisted of a microchannel structure through photoresist stacking processes and was sandwiched with an optical fiber to obtain a long-period structure. Specific immunoglobulin against protein antigen was immobilized onto an optical fiber surface and produced a real-time resonance effect on sensing specific protein antigen from the extracted protein mixtures of the cancer cell lines. The variable transmission loss was -14.07 dB, and the resonant wavelength shift was 11.239 nm. The low limit of detection for total protein concentration was 1.363 ng/μL. Our results revealed that the CM-LPFG-based immnosensor for real-time detection of label-free protein antigen is feasible and sensitive based on the diversification of a transmission loss and achieves specific immunosensing purposes for lab-on-fiber technology.
Collapse
Affiliation(s)
- Hsin-Yi Wen
- Department of Mechanical of Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Sheng-Feng Wang
- Department of Mechanical of Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Chien-Hsing Li
- Department of Mechanical of Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Chia-Chin Chiang
- Department of Mechanical of Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
44
|
Romero M, Macchione MA, Mattea F, Strumia M. The role of polymers in analytical medical applications. A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Liu K, Zhang J, Jiang J, Xu T, Wang S, Chang P, Zhang Z, Ma J, Liu T. Multi-layer optical fiber surface plasmon resonance biosensor based on a sandwich structure of polydopamine-MoSe 2@Au nanoparticles-polydopamine. BIOMEDICAL OPTICS EXPRESS 2020; 11:6840-6851. [PMID: 33408965 PMCID: PMC7747900 DOI: 10.1364/boe.409535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 05/04/2023]
Abstract
An all-optical fiber multi-layer surface plasmon resonance (SPR) biosensor based on a sandwich structure of polydopamine-MoSe2@Au nanoparticles-polydopamine (PDA-MoSe2@AuNPs-PDA) was designed for the detection of specific immunoreactions. By optimizing the multi-layer structure and the ratio of MoSe2: AuNPs, a sensitivity of 5117.59 nm/RIU has been obtained, which is more than double that of the only Au-filmed optical fiber SPR sensor. A large surface area was produced by integrating the MoSe2 primitive unit cell and the AuNPs into a hybrid plasmonic nanostructure of MoSe2@AuNPs, leading to optical fiber SPR signal amplification. The nanostructure of MoSe2@AuNPs was surrounded by the PDA layer to guarantee the efficient immobilization of the protein molecules on the optical fiber by strong covalent bond. This biosensor achieved a detection limit of 54.05 ng/mL for detecting the goat-anti-rabbit IgG, which demonstrated enhancements of 12.1%, 23.3% and 184.6% in comparison with three reported SPR biosensors decorated with PDA-AuNPs-PDA, PDA and Cysteamine-MoSe2@AuNPs-Cysteamine nanostructure, respectively. This biosensor achieved favorable selectivity and outstanding sensitivity compared with the reported SPR immuno-sensors, which will provide a miniaturized, rapid-response and label-free optical fiber bio-sensing platform for clinical diagnosis in the future.
Collapse
Affiliation(s)
- Kun Liu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Jiahang Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Junfeng Jiang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Shuang Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Pengxiang Chang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Zhao Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Jinying Ma
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| |
Collapse
|
46
|
Lu M, Zhu H, Hong L, Zhao J, Masson JF, Peng W. Wavelength-Tunable Optical Fiber Localized Surface Plasmon Resonance Biosensor via a Diblock Copolymer-Templated Nanorod Monolayer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50929-50940. [PMID: 33136359 DOI: 10.1021/acsami.0c09711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Well-dispersed and dense layers of gold nanorods (AuNRs) on optical fibers are shown to regulate the longitudinal peak wavelength and enhance the sensing performances of localized surface plasmon resonance (LSPR) biosensors. A simple self-assembly method relying on a brush-like monolayer of poly(styrene)-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer was used to immobilize AuNRs with various aspect ratios from 2.33 to 4.60 on optical fibers. Both the experimental and simulation results illustrated that the particle aspect ratio, deposition time (related to the coverage of AuNRs), and interparticle gap significantly affected the optical properties of the fiber-based LSPR biosensors. The highest refractive index (RI) sensitivity of the sensor was 753 nm/RIU, while the limit of detection for human IgG was as low as 0.8 nM. Compared with standard nanoparticle deposition methods of polyelectrolytes or alkoxysilanes, the RI sensitivity of the PS-b-PAA dip-coating method was approximately 3-fold better, a consequence of the higher particle coverage and fewer AuNR aggregates. The presented AuNR-based LSPR sensors could regulate the detection range by tuning the aspect ratios of AuNRs. Applicability is demonstrated via quantitative analysis of antigen-antibody interactions, DNA sensing, and surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Mengdi Lu
- College of Physics, Dalian University of Technology, Dalian 116024, China
| | - Hu Zhu
- Department of Chemistry, University of Toronto, Ontario M5S3H6, Canada
| | - Long Hong
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jijun Zhao
- College of Physics, Dalian University of Technology, Dalian 116024, China
| | - Jean-Francois Masson
- Département de Chimie, Regroupement Québécois des Matériaux de Pointe, and Centre Québécois sur les Matériaux Fonctionnels (CQMF), Université de Montréal, Montreal H3C 3J7, Quebec, Canada
| | - Wei Peng
- College of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
47
|
Li J, Wang H, Li Z, Su Z, Zhu Y. Preparation and Application of Metal Nanoparticals Elaborated Fiber Sensors. SENSORS 2020; 20:s20185155. [PMID: 32927607 PMCID: PMC7570743 DOI: 10.3390/s20185155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
In recent years, surface plasmon resonance devices (SPR, or named plamonics) have attracted much more attention because of their great prospects in breaking through the optical diffraction limit and developing new photons and sensing devices. At the same time, the combination of SPR and optical fiber promotes the development of the compact micro-probes with high-performance and the integration of fiber and planar waveguide. Different from the long-range SPR of planar metal nano-films, the local-SPR (LSPR) effect can be excited by incident light on the surface of nano-scaled metal particles, resulting in local enhanced light field, i.e., optical hot spot. Metal nano-particles-modified optical fiber LSPR sensor has high sensitivity and compact structure, which can realize the real-time monitoring of physical parameters, environmental parameters (temperature, humidity), and biochemical molecules (pH value, gas-liquid concentration, protein molecules, viruses). In this paper, both fabrication and application of the metal nano-particles modified optical fiber LSPR sensor probe are reviewed, and its future development is predicted.
Collapse
Affiliation(s)
- Jin Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China
- Correspondence:
| | - Haoru Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhi Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhengcheng Su
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Yue Zhu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| |
Collapse
|
48
|
Ringe E. Shapes, Plasmonic Properties, and Reactivity of Magnesium Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:15665-15679. [PMID: 32905178 PMCID: PMC7467285 DOI: 10.1021/acs.jpcc.0c03871] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Indexed: 05/19/2023]
Abstract
Localized surface plasmon resonances have attracted much attention due to their ability to enhance light-matter interactions and manipulate light at the subwavelength level. Recently, alternatives to the rare and expensive noble metals Ag and Au have been sought for more sustainable and large-scale plasmonic utilization. Mg supports plasmon resonances, is one of the most abundant elements in earth's crust, and is fully biocompatible, making it an attractive framework for plasmonics. This feature article first reports the hexagonal, folded, and kite-like shapes expected theoretically from a modified Wulff construction for single crystal and twinned Mg structures and describes their excellent match with experimental results. Then, the optical response of Mg nanoparticles is overviewed, highlighting Mg's ability to sustain localized surface plasmon resonances across the ultraviolet, visible, and near-infrared electromagnetic ranges. The various resonant modes of hexagons, leading to the highly localized electric field characteristic of plasmonic behavior, are presented numerically and experimentally. The evolution of these modes and the associated field from hexagons to the lower symmetry folded structures is then probed, again by matching simulations, optical, and electron spectroscopy data. Lastly, results demonstrating the opportunities and challenges related to the high chemical reactivity of Mg are discussed, including surface oxide formation and galvanic replacement as a synthetic tool for bimetallics. This Feature Article concludes with a summary of the next steps, open questions, and future directions in the field of Mg nanoplasmonics.
Collapse
Affiliation(s)
- Emilie Ringe
- Department of Materials Science
and Metallurgy, Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom CB2 3EQ
| |
Collapse
|
49
|
De Acha N, Elía V, Delgado-Camón A, Arregui FJ, Elosúa C. Straightforward nano patterning on optical fiber for sensors development. OPTICS LETTERS 2020; 45:3877-3880. [PMID: 32667308 DOI: 10.1364/ol.397817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A simple method to prepare a nano pattern along the surface of an optical fiber is applied in this Letter to develop a pH sensor. The template is made of a block copolymer that defines specific locations where gold nano particles are adsorbed on forming clusters. The average diameter of the resulting agglomerates is 121 nm, and the mean distance between the centers is 182 nm. The morphology of the gold cluster array produces localized surface plasmon resonance. The absorbance spectrum is affected by pH variations, and the ratio between the absorption at two different wavelengths is used to characterize the response, which is repetitive and reversible. This Letter highlights the potentiality of this type of chemical nano patterning for the development of optical fiber sensors.
Collapse
|
50
|
Hg2+ Optical Fiber Sensor Based on LSPR with PDDA-Templated AuNPs and CS/PAA Bilayers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An optical fiber localized surface plasmon resonance (LSPR) sensor was proposed and experimentally demonstrated to detect Hg2+ ions by functionalizing the optical fiber surface with gold nanoparticles (AuNPs) and chitosan (CS)/poly acrylic acid (PAA) bilayers. A flame-brushing technology was proposed to post-process the polydimethyl diallyl ammonium chloride(PDDA)-templated nanoparticles, avoiding the aggregation of AuNPs and achieving well-dispersed AuNPs arrays. LSPR stimulated by the AuNPs is sensitive to changes in the refractive index induced by Hg2+ ions absorption on the CS/PAA bilayers. Experimental results demonstrated that the LSPR peak wavelength linearly shifts with the concentrations of Hg2+ ions from 1 to 30 μM with a sensitivity of around 0.51 nm/ppm. The sensor also exhibits good specificity and longtime stability.
Collapse
|