1
|
Taguchi K, Sumiyoshi A, Suzuki Y, Ozawa Y, Iiyama M, Gao S, Sakai H, Osada K, Matsumoto K, Aoki I. Methemoglobin-Encapsulating Liposome: A Low-Risk Intravascular Contrast Agent for Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2025; 8:2838-2846. [PMID: 40194156 DOI: 10.1021/acsabm.4c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Hemoglobin shows different contrasts on magnetic resonance imaging (MRI) depending on the iron and oxygenation states of heme. Functional brain MRI utilizes the differences in the concentrations of oxyhemoglobin and deoxyhemoglobin in cerebral blood vessels; blood clots produce strong magnetic susceptibility effects. We hypothesized that methemoglobin (MetHb)-based nanoparticles can act as MRI contrast agents because MetHb levels in red blood cells affect relaxivity and are strictly regulated to <1% in the blood. Herein, we describe the synthesis of methemoglobin-encapsulated liposomes (Met-HbVs) as contrast agents for MRI. Met-HbV, with a size of approximately 200 nm, increased longitudinal relaxivity (r1) by 2.44-fold compared with hemoglobin-encapsulated liposomes in vitro. In contrast, the transverse relaxation capacity (r2) of Met-HbVs was similar to that of the hemoglobin-encapsulated liposomes. Owing to its relaxivity, Met-HbV enhanced the signal intensity on T1-weighted images and angiography, especially in the veins. Furthermore, deleterious biological responses were seldom observed after Met-HbV administration in mice with chronic renal failure. In conclusion, Met-HbV possesses potential as a vascular contrast agent in MRI for angiography, with advantages over gadolinium-based contrast agents in terms of safety for patients with renal failure. To the best of our knowledge, this is the first report demonstrating the potential of MetHb as a biomaterial for contrast agents in MRI.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Akira Sumiyoshi
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa Inage, Chiba 263-8555, Japan
| | - Yuto Suzuki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yoshikazu Ozawa
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa Inage, Chiba 263-8555, Japan
| | - Megumi Iiyama
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa Inage, Chiba 263-8555, Japan
| | - Shan Gao
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa Inage, Chiba 263-8555, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Kensuke Osada
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa Inage, Chiba 263-8555, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Ichio Aoki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa Inage, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Lee C, Chung HW, Kluger R. Conjugating Hemoglobin and Albumin by Strain-Promoted Azide- Alkyne Cycloaddition. Chembiochem 2024; 25:e202400206. [PMID: 38837740 DOI: 10.1002/cbic.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
A one-to-one conjugate of cross-linked human hemoglobin and human serum albumin results from a strain-promoted alkyne-azide cycloaddition (SPAAC) of the modified proteins. Additions of a strained alkyne-substituted maleimide to the Cys-34 thiol of human serum albumin and an azide-containing cross-link between the amino groups of each β-unit at Lys-82 of human hemoglobin provide sites for coupling by the SPAAC process. The coupled hemoglobin-albumin conjugate can be readily purified from unreacted hemoglobin. The oxygen binding properties of the two-protein bioconjugate demonstrate oxygen affinity and cooperativity that are suitable for use in an acellular oxygen carrier.
Collapse
Affiliation(s)
- Chi Lee
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Harriet Wenxin Chung
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Ronald Kluger
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
3
|
Carvalho SF, Pereiro AB, Araújo JMM. Simultaneous Purification of Human Interferon Alpha-2b and Serum Albumin Using Bioprivileged Fluorinated Ionic Liquid-Based Aqueous Biphasic Systems. Int J Mol Sci 2024; 25:2751. [PMID: 38473998 PMCID: PMC10931833 DOI: 10.3390/ijms25052751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Interferon alpha-2b (IFN-α2b) is an essential cytokine widely used in the treatment of chronic hepatitis C and hairy cell leukemia, and serum albumin is the most abundant plasma protein with numerous physiological functions. Effective single-step aqueous biphasic system (ABS) extraction for the simultaneous purification of IFN-α2b and BSA (serum albumin protein) was developed in this work. Effects of the ionic liquid (IL)-based ABS functionalization, fluorinated ILs (FILs; [C2C1Im][C4F9SO3] and [N1112(OH)][C4F9SO3]) vs. mere fluoro-containing IL ([C4C1Im][CF3SO3]), in combination with sucrose or [N1112(OH)][H2PO4] (well-known globular protein stabilizers), or high-charge-density salt K3PO4 were investigated. The effects of phase pH, phase water content (%wt), phase composition (%wt), and phase volume ratio were investigated. The phase pH was found to have a significant effect on IFN-α2b and BSA partition. Experimental results show that simultaneous single-step purification was achieved with a high yield (extraction efficiency up to 100%) for both proteins and a purification factor of IFN-α2b high in the enriched IFN-α2b phase (up to 23.22) and low in the BSA-enriched phase (down to 0.00). SDS-PAGE analysis confirmed the purity of both recovered proteins. The stability and structure of IFN-α2b and BSA were preserved or even improved (FIL-rich phase) during the purification step, as evaluated by CD spectroscopy and DSC. Binding studies of IFN-α2b and BSA with the ABS phase-forming components were assessed by MST, showing the strong interaction between FILs aggregates and both proteins. In view of their biocompatibility, customizable properties, and selectivity, FIL-based ABSs are suggested as an improved purification step that could facilitate the development of biologics.
Collapse
Affiliation(s)
| | | | - João M. M. Araújo
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (S.F.C.); (A.B.P.)
| |
Collapse
|
4
|
Noguchi M, Mao Q, Nakagami A, Kitagishi H. Spontaneous reduction of iron(III)porphyrin to iron(II)porphyrin-CO complex in mouse circulation. Chem Commun (Camb) 2023; 59:6211-6214. [PMID: 37129063 DOI: 10.1039/d3cc00420a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Iron(II/III)porphyrin/cyclodextrin inclusion complexes serve as hemoprotein models in vivo. Here we showed the iron(III)porphyrin complex to be spontaneously reduced to its iron(II) state in mouse circulation. The reduced complex bound endogenous CO from carboxyhemoglobin, which was followed by urinary excretion. The natural reduction system was found to be effective for synthetic heme-model compounds.
Collapse
Affiliation(s)
- Masataka Noguchi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Atsuki Nakagami
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| |
Collapse
|
5
|
Arkosi MK, Mot AC, Lupan I, Tegla MGG, Silaghi-Dumitrescu R. Selective Attachment of Polyethylene Glycol to Hemerythrin for Potential Use in Blood Substitutes. Protein J 2023:10.1007/s10930-023-10118-4. [PMID: 37119381 DOI: 10.1007/s10930-023-10118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Due to its ability to reversibly bind O2, alongside a relatively low redox reactivity and a limited cytotoxicity, the oxygen-carrying protein hemerythrin has been considered as an alternative to hemoglobin in preparing blood substitutes. In order to increase the hydrodynamic volume and lower antigenicity, two site-directed variants, H82C and K92C, were engineered that contained a single cysteine residue on the surface of each hemerythrin octamer for the specific attachment of polyethylene glycol (PEG). A sulfhydryl-reactive PEGylation reagent with a 51.9 Å spacer arm was used for selective cysteine derivatization. The mutants were characterized by UV-vis spectroscopy, size-exclusion chromatography, oxygen affinity, and autooxidation rate measurements. The H82C variant showed altered oligomeric behavior compared to the wild-type and was unstable in the met form. The PEGylated K92C variant is reasonably stable, displays an oxygen affinity similar to that of the wild-type, and shows an increased rate of autoxidation; the latter disadvantage may be counteracted by further chemical modifications.
Collapse
Affiliation(s)
| | - Augustin C Mot
- Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Biology 2, "Babes-Bolyai" University, 1 Mihail Kogălniceanu str, Cluj-Napoca, 400028, Romania
| | | | | |
Collapse
|
6
|
Liu X, Domingues NP, Oveisi E, Coll-Satue C, Jansman MMT, Smit B, Hosta-Rigau L. Metal-organic framework-based oxygen carriers with antioxidant activity resulting from the incorporation of gold nanozymes. Biomater Sci 2023; 11:2551-2565. [PMID: 36786283 DOI: 10.1039/d2bm01405j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Blood transfusions are a life-saving procedure since they can preserve the body's oxygen levels in patients suffering from acute trauma, undergoing surgery, receiving chemotherapy or affected by severe blood disorders. Due to the central role of hemoglobin (Hb) in oxygen transport, so-called Hb-based oxygen carriers (HBOCs) are currently being developed for situations where donor blood is not available. In this context, an important challenge that needs to be addressed is the oxidation of Hb into methemoglobin (metHb), which is unable to bind and release oxygen. While several research groups have considered the incorporation of antioxidant enzymes to create HBOCs with minimal metHb conversion, the use of biological enzymes has important limitations related to their high cost, potential immunogenicity or low stability in vivo. Thus, nanomaterials with enzyme-like properties (i.e., nanozymes (NZs)) have emerged as a promising alternative. Amongst the different NZs, gold (Au)-based metallic nanoparticles are widely used for biomedical applications due to their biocompatibility and multi-enzyme mimicking abilities. Thus, in this work, we incorporate Au-based NZs into a type of HBOC previously reported by our group (i.e., Hb-loaded metal-organic framework (MOF)-based nanocarriers (NCs)) and investigate their antioxidant properties. Specifically, we prepare MOF-NCs loaded with Au-based NZs and demonstrate their ability to catalytically deplete over multiple rounds of two prominent reactive oxygen species (ROS) that exacerbate Hb's autoxidation (i.e., hydrogen peroxide and the superoxide radical). Importantly, following loading with Hb, we show how these ROS-scavenging properties translate into a decrease in metHb content. All in all, these results highlight the potential of NZs to create novel HBOCs with antioxidant protection which may find applications as a blood substitute in the future.
Collapse
Affiliation(s)
- Xiaoli Liu
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Nency Patricio Domingues
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)-Valais, CH-1950 Sion, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clara Coll-Satue
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Michelle Maria Theresia Jansman
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)-Valais, CH-1950 Sion, Switzerland
| | - Leticia Hosta-Rigau
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Mohanto N, Park YJ, Jee JP. Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:153-190. [PMID: 35935469 PMCID: PMC9344254 DOI: 10.1007/s40005-022-00590-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Background Several circumstances such as accidents, surgery, traumatic hemorrhagic shock, and other causalities cause major blood loss. Allogenic blood transfusion can be resuscitative for such conditions; however, it has numerous ambivalent effects, including supply shortage, needs for more time, cost for blood grouping, the possibility of spreading an infection, and short shelf-life. Hypoxia or ischemia causes heart failure, neurological problems, and organ damage in many patients. To address this emergent medical need for resuscitation and to treat hypoxic conditions as well as to enhance oxygen transportation, researchers aspire to achieve a robust technology aimed to develop safe and feasible red blood cell substitutes for effective oxygen transport. Area covered This review article provides an overview of the formulation, storage, shelf-life, clinical application, side effects, and current perspectives of artificial oxygen carriers (AOCs) as red blood cell substitutes. Moreover, the pre-clinical (in vitro and in vivo) assessments for the evaluation of the efficacy and safety of oxygen transport through AOCs are key considerations in this study. With the most significant technologies, hemoglobin- and perfluorocarbon-based oxygen carriers as well as other modern technologies, such as synthetically produced porphyrin-based AOCs and oxygen-carrying micro/nanobubbles, have also been elucidated. Expert opinion Both hemoglobin- and perfluorocarbon-based oxygen carriers are significant, despite having the latter acting as safeguards; they are cost-effective, facile formulations which penetrate small blood vessels and remove arterial blockages due to their nano-size. They also show better biocompatibility and longer half-life circulation than other similar technologies.
Collapse
Affiliation(s)
- Nijaya Mohanto
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
8
|
Mehrizi TZ, Ardestani MS. The Introduction of Dendrimers as a New Approach to Improve the Performance and Quality of Various Blood Products (Platelets, Plasma and Erythrocytes): A 2010-2022 Review Study. CURRENT NANOSCIENCE 2023; 19:103-122. [DOI: 10.2174/1573413718666220728141511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/06/2025]
Abstract
Objectives:Platelet-, erythrocyte- and plasma-related products are vital for some patients. The main problems with these products are storage lesions, shelf life limitations, and function and quality maintenance. Dendrimers, a well-known group of polymeric nanoparticles, may help overcome these challenges due to their special properties.Methods:This review article, for the first time, comprehensively discusses studies from 2010 to 2022 on the compatibility of positive, negative, neutral, and modified charge dendrimers with each blood product. Moreover, it provides information regarding dendrimers' applications for improving the quality and function of blood products.Results:A total of one hundred and twenty-six studies showed that dendrimers affect blood components depending on their load, size, molecular weight, functional group, concentration, and exposure time. Generally, cationic dendrimers with higher concentrations and molecular weight and larger size showed little hemocompatibility, while anionic or neutral dendrimers with lower concentrations and molecular weight, and small size were more hemocompatible. Further, some modifications of cationic dendrimers were found to improve their compatibility. For erythrocytes, they included PEGylation and thiolation of dendrimers or functionalizing them with cyclic RGD, nmaleyl chitosan, zwitterionic chitosan, prednisolone, or carbohydrates. Additionally, dendrimers functionalized with arginine-birch, lysine-Cbz, polyethylene glycol, polyethylene glycol-cyclic RGD, thiol, TiO2, maltotriose, or streptokinase decreased the platelet toxicity of dendrimers. The dendrimers modified with polyethylene glycol, glucose, and gold nanoparticles showed increased compatibility in the case of albumin products. Moreover, the PAMAM-dendrimer-antibody conjugates had no adverse effect on antibodies. Dendrimers have a wide range of applications, including virus detection kits, synthetic O2 carriers, bacterial nanofilters, drug carriers, anticoagulants, and enhanced blood product storage.Conclusion:It can be concluded that due to the outstanding properties of different types of dendrimers, particularly their manipulability, nanomaterials can be promising to enhance the quality of blood products. Thus, further research in this area is required.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ahmed H, Khan EA, Stokke BT. Microfluidic dual picoinjection based encapsulation of hemoglobin in alginate microcapsules reinforced by a poly(L-lysine)- g-poly(ethylene glycol). SOFT MATTER 2022; 19:69-79. [PMID: 36468540 DOI: 10.1039/d2sm01045c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hemoglobin (Hb) encapsulation inside polysaccharide hydrogels has been considered a possible red blood cell (RBC) surrogate in transfusiology. Here we report on the microfluidic dual picoinjection assisted synthesis of Hb encapsulated alginate-poly(L-lysine)-g-poly(ethylene glycol) beads. This process is realized by the on-chip injections of blended Hb alginate solutions in emulsified aqueous calcium chloride (CaCl2) droplets followed by a subsequent injection of an aqueous PLL-g-PEG into each emulsified aqueous droplet. The proposed fabrication approach was realized using a flow-focusing and two picoinjection sites in a single PDMS device. Aqueous CaCl2 solution was emulsified and infused with Hb-alginate solution as the squeezed droplet passed through the first picoinjection site. The injection of PLL-g-PEG to reinforce the microgel and minimize the protein leaching was realized in the second picoinjection site located downstream from the first in the same microfluidic channel. In this process, monodisperse Hb-alginate-PLL-g-PEG particles with a diameter around the size of RBCs (9 μm) were obtained with around 80% of the 7.5 mg ml-1 Hb included in the injected aqueous alginate retaining in the obtained microparticles. Microparticles with Hb loading (32.8 pg per bead) and retention (28.8 pg per bead) over a week of storage at 4 °C are in accordance with the average amount of Hb per RBC. The Hb-alginate-PLL-g-PEG microbeads fabricated in the size range of RBCs are significant for further exploration.
Collapse
Affiliation(s)
- Husnain Ahmed
- Biophysics and Medical Technology, Department of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
10
|
Charbe NB, Castillo F, Tambuwala MM, Prasher P, Chellappan DK, Carreño A, Satija S, Singh SK, Gulati M, Dua K, González-Aramundiz JV, Zacconi FC. A new era in oxygen therapeutics? From perfluorocarbon systems to haemoglobin-based oxygen carriers. Blood Rev 2022; 54:100927. [PMID: 35094845 DOI: 10.1016/j.blre.2022.100927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 02/09/2023]
Abstract
Blood transfusion is the key to life in case of traumatic emergencies, surgeries and in several pathological conditions. An important goal of whole blood or red blood cell transfusion is the fast delivery of oxygen to vital organs and restoration of circulation volume. Whole blood or red blood cell transfusion has several limitations. Free haemoglobin not only loses its tetrameric configuration and extracts via the kidney leading to nephrotoxicity but also scavenges nitric oxide (NO), leading to vasoconstriction and hypertension. PFC based formulations transport oxygen in vivo, the contribution in terms of clinical outcome is challenging. The oxygen-carrying capacity is not the only criterion for the successful development of haemoglobin-based oxygen carriers (HBOCs). This review is a bird's eye view on the present state of the PFCs and HBOCs in which we analyzed the current modifications made or which are underway in development, their promises, and hurdles in clinical implementation.
Collapse
Affiliation(s)
- Nitin B Charbe
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Francisco Castillo
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK
| | - Parteek Prasher
- UGC-Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India; Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Aurora Carreño
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A 678, Colombia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Usuda H, Saito M, Ikeda H, Sato S, Kumagai Y, Saito Y, Kawamura S, Hanita T, Sakai H, Kure S, Yaegashi N, Newnham JP, Kemp MW, Watanabe S. Assessment of synthetic red cell therapy for extremely preterm ovine fetuses maintained on an artificial placenta life-support platform. Artif Organs 2021; 46:653-665. [PMID: 34932228 DOI: 10.1111/aor.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Artificial placenta therapy (APT) is an experimental care strategy for extremely preterm infants born at 21-24 weeks' gestation. In our previous studies, blood taken from the maternal ewe was used as the basis of priming solutions for the artificial placenta circuit. However, the use of maternal blood as a priming solution is accompanied by several challenges. We explored the use of synthetic red cells (hemoglobin vesicles; HbV) as the basis of a priming solution for APT used to manage extremely early preterm ovine fetuses. METHODS Six ewes with singleton pregnancies at 95 d gestation (term = 150 d) were adapted to APT and maintained with constant monitoring of key vital parameters. The target maintenance period was 72 h in duration. A synthetic red cell solution consisting of HbV, sheep albumin and electrolytes was used as priming solutions for the APT circuit. Fetuses were evaluated on gross appearance, physiological parameters and bleeding after euthanasia. RESULTS Two out of six APT fetuses were successfully maintained for the targeted 72 h experimental period with controllable anemia (>10 g/dl) and methemoglobinemia (<10%) using an infusion of blood transfusion and nitroglycerin delivered >1 h after APT commencement, a sufficient period of time to cross-match blood products and screen for viral agents of concern. CONCLUSIONS Extremely preterm sheep fetuses were maintained for a period of up to 72 h using APT in combination with circuit priming using a synthetic red cell (HbV) preparation. Although significant further refinements are required, these findings demonstrated the potential clinical utility of synthetic blood products in the eventual clinical translation of artificial placenta technology to support extremely preterm infants.
Collapse
Affiliation(s)
- Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hideyuki Ikeda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuya Saito
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | | | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Nara, Japan
| | - Shigeo Kure
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Nobuo Yaegashi
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.,Women and Infants Research Foundation, King Edward Memorial Hospital, Perth, Western Australia, Australia
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.,Women and Infants Research Foundation, King Edward Memorial Hospital, Perth, Western Australia, Australia.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
12
|
Farrokhpour H, Aboutorab M, Amiri R, Tabrizchi M. Li + and Na + attachment to some dipeptides via LDI-TOF mass spectrometry: Fragmentation patterns. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120093. [PMID: 34175752 DOI: 10.1016/j.saa.2021.120093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Laser desorption ionization-time of flight (LDI-TOF) mass spectrometry is used for studying the attachment of Na+ and Li+ ions to four dipeptides including phenylalanyl-alanine (Phe-Ala), tyrosyl-alanine (Tyr-Ala), L-Phenylalanyl-L-Phenylalanine (Phe-Phe), and alanyl-glutamine (Ala-Gln) dipeptides. The LiCl, NaOH, and NaF salts are used as the source of Li+ and Na+ ions in the LDI of the dipeptides. Our aim is the investigation of the difference between the fragmentation patterns of the selected dipeptides in the presence of Na+ and Li+ ions due to the laser radiation and providing information for the fragmentation of larger peptides in the same conditions. The characteristic peak, related to [dipeptide-H + 2Na]+ species, is observed in the mass spectrum of Phe-Ala and Tyr-Ala dipeptides in the presence of NaF, while the breaking of the peptide bond (OC-NH) occurs for the Phe-Phe in the presence of the aforementioned salts. The characteristic peak of Ala-Gln dipeptide ([(Ala-Gln)-H + 2Na]+) is observed in the absence of any salt. The mass spectra of the dipeptides, recorded in the presence of LiCl, are crowded compared to those recorded in the presence of NaF and NaOH showing the effect of the type of alkali salt on the dipeptide fragmentation. The theoretical calculations are employed to investigate the ability of the interaction sites of dipeptides for the attachment of one and two Na+ and determine the most stable structure of the [dipeptide-H + 2Na]+ species for each dipeptide.
Collapse
Affiliation(s)
- H Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - M Aboutorab
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - R Amiri
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Tabrizchi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
13
|
Watabe Y, Taguchi K, Sakai H, Enoki Y, Maruyama T, Otagiri M, Kohno M, Matsumoto K. Bioinspired carbon monoxide delivery using artificial blood attenuates the progression of obliterative bronchiolitis via suppression of macrophage activation by IL-17A. Eur J Pharm Biopharm 2021; 170:43-51. [PMID: 34864198 DOI: 10.1016/j.ejpb.2021.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/28/2021] [Accepted: 11/28/2021] [Indexed: 12/18/2022]
Abstract
Carbon monoxide (CO) is expected to attenuate the progression of obliterative bronchiolitis (OB), which is a serious complication after lung transplantation. However, issues in terms of feasible exogenous CO supply, such as continuousness and safety, remain unsolved. Here, we applied nano red blood cells, namely hemoglobin vesicles (Hb-V), as a CO cargo based on the biomimetic concept and investigated the therapeutic potential of CO-loaded Hb-V on OB in orthotopic tracheal transplant model mice. The CO-loaded Hb-V was comprised of negatively charged liposomes encapsulating carbonylhemoglobin with a size of ca. 220 nm. The results of histological evaluation showed that allograft luminal occlusion and fibrosis were significantly ameliorated by treatment with CO-loaded Hb-V compared to treatment with saline, cyclosporine, and Hb-V. The therapeutic effects of CO-loaded Hb-V on OB were due to the suppression of M1 macrophage activation in tracheal allografts, resulting from decreased IL-17A production. Furthermore, the expression of TNF-α and TGF-β in tracheal allografts was decreased by CO-loaded Hb-V treatment but not saline and Hb-V treatment, indicating that CO liberated from CO-loaded Hb-V inhibits epithelial-mesenchymal transition. These findings suggest that CO-loaded Hb-V exerts strong therapeutic efficacy against OB via the regulation of macrophage activation by IL-17A and TGF-β-driven epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Yuki Watabe
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | - Yuki Enoki
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Toru Maruyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan; DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | | |
Collapse
|
14
|
Milner A, Alshammari N, Platts JA. Computational study of copper binding to DAHK peptide. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Oxygen Delivery Approaches to Augment Cell Survival After Myocardial Infarction: Progress and Challenges. Cardiovasc Toxicol 2021; 22:207-224. [PMID: 34542796 DOI: 10.1007/s12012-021-09696-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Myocardial infarction (MI), triggered by blockage of a coronary artery, remains the most common cause of death worldwide. After MI, the capability of providing sufficient blood and oxygen significantly decreases in the heart. This event leads to depletion of oxygen from cardiac tissue and consequently leads to massive cardiac cell death due to hypoxemia. Over the past few decades, many studies have been carried out to discover acceptable approaches to treat MI. However, very few have addressed the crucial role of efficient oxygen delivery to the injured heart. Thus, various strategies were developed to increase the delivery of oxygen to cardiac tissue and improve its function. Here, we have given an overall discussion of the oxygen delivery mechanisms and how the current technologies are employed to treat patients suffering from MI, including a comprehensive view on three major technical approaches such as oxygen therapy, hemoglobin-based oxygen carriers (HBOCs), and oxygen-releasing biomaterials (ORBs). Although oxygen therapy and HBOCs have shown promising results in several animal and clinical studies, they still have a few drawbacks which limit their effectiveness. More recent studies have investigated the efficacy of ORBs which may play a key role in the future of oxygenation of cardiac tissue. In addition, a summary of conducted studies under each approach and the remaining challenges of these methods are discussed.
Collapse
|
16
|
Journot G, Neier R, Gualandi A. Hydrogenation of Calix[4]pyrrole: From the Formation to the Synthesis of Calix[4]pyrrolidine. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Reinhard Neier
- Department of Chemistry University of Neuchâtel Avenue Bellevaux 51 2000 Neuchâtel Switzerland
| | - Andrea Gualandi
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 I-40126 Bologna Italy
| |
Collapse
|
17
|
Suzuki Y, Taguchi K, Kure T, Sakai H, Enoki Y, Otagiri M, Matsumoto K. Liposome-encapsulated methemoglobin as an antidote against cyanide poisoning. J Control Release 2021; 337:59-70. [PMID: 34273418 DOI: 10.1016/j.jconrel.2021.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Cyanide induces acute lethal poisoning resulting from inhibition of cytochrome c oxidase located in the complex IV (Complex IV) of mitochondria. However, current therapies for cyanide poisoning using hydroxocobalamin and nitrous acid compounds remain a clinical issue. Here, we show that liposome-encapsulated methemoglobin (metHb@Lipo), nanosized biomimetic red blood cells, replicate the antidotal mechanism of nitrous acid compounds against cyanide poisoning, achieving superior efficacy and fast action with no adverse effects. The structure of metHb@Lipo, which consists of concentrated methemoglobin in its aqueous core and a lipid membrane resembling the red blood cell membrane, provides favorable characteristics as a cyanide antidote, such as binding properties and membrane permeability. Upon cyanide exposure, metHb@Lipo maintained the mitochondrial function in PC12 cells, resulting in a cell viability comparable to treatment with nitrous acid compounds. In a mouse model of cyanide poisoning, metHb@Lipo treatment dramatically improved mortality with a rapid recovery from the symptoms of cyanide poisoning compared to treatment with nitrous acid compounds. Furthermore, metHb@Lipo also possesses satisfactory pharmacokinetic properties without long-term bioaccumulation and toxicity. Our findings showed a novel concept to develop drugs for cyanide poisoning and provide a promising possibility for biomimetic red blood cell preparations for pharmaceutical applications.
Collapse
Affiliation(s)
- Yuto Suzuki
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuaki Taguchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8521, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8521, Japan
| | - Yuki Enoki
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto City, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto City, Kumamoto 860-0082, Japan
| | - Kazuaki Matsumoto
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
18
|
Shi L, Qin W, Mei C, Xu W, Deng Y, Yin W, Zhou R, Fan X, Li R, Peng F, Huang Z, Li N. Low hemoglobin levels are associated with direct antiglobulin test positivity in patients with acute-on-chronic liver failure. Transfus Apher Sci 2021; 60:103201. [PMID: 34238707 DOI: 10.1016/j.transci.2021.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multiple factors contribute to anemia in patients with Hepatitis B virus (HBV)related acute-on-chronic liver failure (ACLF); however, the mechanism is unclear. The purpose of this study was to evaluate the clinical significance of the direct antiglobulin test (DAT) in patients with HBV related ACLF. METHODS DAT was used to detect immunoglobulins and/or complement proteins on the surface of erythrocytes. RESULTS We recruited 78 HBV-associated ACLF patients, 30 chronic hepatitis B(CHB)patients and 40 healthy people between October 2015 and May 2016. In HBV related ACLF patients, the hemoglobin concentration, number of erythrocytes, and hematocrit value were significantly lower, while the erythrocyte distribution width was significantly higher, compared to patients with CHB and healthy controls (HCs) (P < 0.001). The rates of DAT positivity in HBV related ACLF patients, CHB patients, and HCs were 62.8 %, 13.3 %, and 0%, respectively. DAT-positive ACLF patients exhibited lower Hb levels, older average age, as well as higher total bilirubin, alanine aminotransferase, and complement component 3 levels compared to DAT-negative patients. CONCLUSIONS HBV related ACLF patients showed significant alterations in erythrocyte parameters, possibly reflecting disease development and severity. The high presence of erythrocyte autoantibodies suggested that immunologic clearance of erythrocytes contributed to multifactorial anemia in HBV related ACLF patients.
Collapse
Affiliation(s)
- Linxi Shi
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Wanyuan Qin
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China; Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Wei Xu
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Ying Deng
- Ningxiang People's Hospital Affiliated to Hunan University of Traditional Chinese Medicine, Ningxiang, Hunan Province, China
| | - Wenyu Yin
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Rongrong Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Key Laboratory of Viral Hepatitis, Hunan Province, 87 Xiangya Road, Changsha, 410008, China
| | - Xuegong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Key Laboratory of Viral Hepatitis, Hunan Province, 87 Xiangya Road, Changsha, 410008, China
| | - Ruixuan Li
- Department of Cardiology, The First Hospital Affiliated to Hunan Normal University, Changsha, Hunan Province, China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Zebing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Key Laboratory of Viral Hepatitis, Hunan Province, 87 Xiangya Road, Changsha, 410008, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
19
|
Kure T, Sakai H. Preparation of Artificial Red Blood Cells (Hemoglobin Vesicles) Using the Rotation-Revolution Mixer for High Encapsulation Efficiency. ACS Biomater Sci Eng 2021; 7:2835-2844. [PMID: 34029046 DOI: 10.1021/acsbiomaterials.1c00424] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemoglobin vesicles (Hb-V) are artificial red blood cells encapsulating highly concentrated hemoglobin (Hb) in liposomes comprising phospholipids, cholesterol, negatively charged lipids, and polyethylene glycol (PEG)-conjugated phospholipids. Safety and efficacy of Hb-V as a transfusion alternative have been extensively studied. For this study, we prepared Hb-V using the kneading method with a rotation-revolution mixer as an alternative to the conventional extrusion method. We optimized the kneading operation parameters to obtain Hb-V with a high yield. Results show that the Hb encapsulation efficiency was increased dramatically up to 74.2%, which is higher than that of the extrusion method (20%) because the kneading method enabled mixing of a highly concentrated carbonylhemoglobin (HbCO) solution (40 g/dL) and a considerably large amount of powdered lipids in only 10 min. The high viscosity of the Hb-lipid mixture paste (ca. 103-105 cP) favorably induces frictional heat by kneading and increases the paste temperature (ca. 60 °C), which facilitates lipid dispersion and liposome formation. During the kneading operation using a thermostable HbCO solution, Hb denaturation was prevented. Hb-V prepared using this method showed no marked changes in particle sizes, Hb denaturation, or Hb leakage from liposomes during two years of long-term storage-stability tests. Collectively, these results demonstrate that the kneading method using a rotation-revolution mixer shows good potential as a new method to produce Hb-V.
Collapse
Affiliation(s)
- Tomoko Kure
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| |
Collapse
|
20
|
Othman M, Mahmud K, Mohammed R, Mohd Noor SNF, Tuan Din SA, Zabidi MA. Encapsulation of hemoglobin within mPEG- b-PCL micelle for development of artificial oxygen carrier. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1915782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mislia Othman
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Khadijah Mahmud
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Rafeezul Mohammed
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Biomaterial and Craniofacial Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Sharifah Azdiana Tuan Din
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Muhammad Azrul Zabidi
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
21
|
Sadek SH, Rubio M, Lima R, Vega EJ. Blood Particulate Analogue Fluids: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2451. [PMID: 34065125 PMCID: PMC8126041 DOI: 10.3390/ma14092451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022]
Abstract
Microfluidics has proven to be an extraordinary working platform to mimic and study blood flow phenomena and the dynamics of components of the human microcirculatory system. However, the use of real blood increases the complexity to perform these kinds of in vitro blood experiments due to diverse problems such as coagulation, sample storage, and handling problems. For this reason, interest in the development of fluids with rheological properties similar to those of real blood has grown over the last years. The inclusion of microparticles in blood analogue fluids is essential to reproduce multiphase effects taking place in a microcirculatory system, such as the cell-free layer (CFL) and Fähraeus-Lindqvist effect. In this review, we summarize the progress made in the last twenty years. Size, shape, mechanical properties, and even biological functionalities of microparticles produced/used to mimic red blood cells (RBCs) are critically exposed and analyzed. The methods developed to fabricate these RBC templates are also shown. The dynamic flow/rheology of blood particulate analogue fluids proposed in the literature (with different particle concentrations, in most of the cases, relatively low) is shown and discussed in-depth. Although there have been many advances, the development of a reliable blood particulate analogue fluid, with around 45% by volume of microparticles, continues to be a big challenge.
Collapse
Affiliation(s)
- Samir Hassan Sadek
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain; (S.H.S.); (M.R.)
| | - Manuel Rubio
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain; (S.H.S.); (M.R.)
| | - Rui Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Emilio José Vega
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain; (S.H.S.); (M.R.)
| |
Collapse
|
22
|
Shimanouchi K, Rikihisa N, Saito Y, Iuchi K, Tsumura N, Sakai H, Mitsukawa N. Artificial red blood cells increase large vessel wall damage and decrease surrounding dermal tissue damage in a rabbit auricle model after subsequent flashlamp-pumped pulsed-dye laser treatment. J Dermatol 2021; 48:600-612. [PMID: 33630391 DOI: 10.1111/1346-8138.15805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 01/19/2023]
Abstract
Artificial red blood cells (i.e. hemoglobin [Hb] vesicles [Hb-Vs]) function effectively as photosensitizers in flashlamp-pumped pulsed-dye laser (PDL) treatment for port-wine stains in animal models. Hb-Vs deliver more Hb to the vicinity of the endothelial cells. Both Hb-Vs and red blood cells absorb the laser energy and generate heat, supporting the removal of very small blood vessels and deeper subcutaneous blood vessels with PDL irradiation in in vivo experiments. Here, we analyzed the photosensitizing effect of Hb-Vs in PDL irradiation on large blood vessels and surrounding soft tissues. We histopathologically analyzed markers of damage to the large vessels and surrounding dermal tissue in a rabbit auricle model following PDL irradiation alone or subsequent to the addition of intravenous Hb-V injection. Markers were graded on a five-point scale and statistically compared. The changes in laser light absorption and reflection in a human skin model caused by the administration of Hb-Vs were evaluated using Monte Carlo light-scattering programs. Histological markers of damage to blood vessels were significantly greater in Hb-V-injected arteries and veins measuring 1-3 mm in diameter as compared with the controls. However, Hb-V injection significantly reduced PDL-induced necrosis and hemorrhage in the surrounding tissues. During computer simulation, photon absorption increased within the vessel layer and decreased around the layer. Intravenous Hb-Vs increase the extent of damage in larger vessel walls but significantly reduce damage to the surrounding skin after subsequent PDL irradiation. These beneficial effects are the result of improving vessel selectivity by Hb-Vs in vessels. Hb-V administration prior to PDL irradiation therapy could mechanically improve the outcomes and safety profiles of port-wine stain treatment protocols.
Collapse
Affiliation(s)
- Kae Shimanouchi
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Hospital, Chiba, Japan
| | | | - Yoshiaki Saito
- Laboratory of Pathology, Hatano Research Institute, Food and Drug Safety Center, Hatano, Japan
| | - Kaito Iuchi
- Department of Imaging Sciences, Chiba University, Chiba, Japan
| | | | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Nara, Japan
| | - Nobuyuki Mitsukawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
23
|
Kitagishi H, Kano K. Synthetic heme protein models that function in aqueous solution. Chem Commun (Camb) 2021; 57:148-173. [DOI: 10.1039/d0cc07044k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular porphyrin–cyclodextrin complexes act as biomimetic heme protein models in aqueous solution.
Collapse
Affiliation(s)
- Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyoto 610-0321
- Japan
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyoto 610-0321
- Japan
| |
Collapse
|
24
|
Abstract
In blood, the primary role of red blood cells (RBCs) is to transport oxygen via highly regulated mechanisms involving hemoglobin (Hb). Hb is a tetrameric porphyrin protein comprising of two α- and two β-polypeptide chains, each containing an iron-containing heme group capable of binding one oxygen molecule. In military as well as civilian traumatic exsanguinating hemorrhage, rapid loss of RBCs can lead to suboptimal tissue oxygenation and subsequent morbidity and mortality. In such cases, transfusion of whole blood or RBCs can significantly improve survival. However, blood products including RBCs present issues of limited availability and portability, need for type matching, pathogenic contamination risks, and short shelf-life, causing substantial logistical barriers to their prehospital use in austere battlefield and remote civilian conditions. While robust research is being directed to resolve these issues, parallel research efforts have emerged toward bioengineering of semisynthetic and synthetic surrogates of RBCs, using various cross-linked, polymeric, and encapsulated forms of Hb. These Hb-based oxygen carriers (HBOCs) can potentially provide therapeutic oxygenation when blood or RBCs are not available. Several of these HBOCs have undergone rigorous preclinical and clinical evaluation, but have not yet received clinical approval in the USA for human use. While these designs are being optimized for clinical translations, several new HBOC designs and molecules have been reported in recent years, with unique properties. The current article will provide a comprehensive review of such HBOC designs, including current state-of-the-art and novel molecules in development, along with a critical discussion of successes and challenges in this field.
Collapse
|
25
|
Zou MZ, Liu WL, Chen HS, Bai XF, Gao F, Ye JJ, Cheng H, Zhang XZ. Advances in nanomaterials for treatment of hypoxic tumor. Natl Sci Rev 2020; 8:nwaa160. [PMID: 34691571 PMCID: PMC8288333 DOI: 10.1093/nsr/nwaa160] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
The hypoxic tumor microenvironment is characterized by disordered vasculature and rapid proliferation of tumors, resulting from tumor invasion, progression and metastasis. The hypoxic conditions restrict efficiency of tumor therapies, such as chemotherapy, radiotherapy, phototherapy and immunotherapy, leading to serious results of tumor recurrence and high mortality. Recently, research has concentrated on developing functional nanomaterials to treat hypoxic tumors. In this review, we categorize such nanomaterials into (i) nanomaterials that elevate oxygen levels in tumors for enhanced oxygen-dependent tumor therapy and (ii) nanomaterials with diminished oxygen dependence for hypoxic tumor therapy. To elevate oxygen levels in tumors, oxygen-carrying nanomaterials, oxygen-generating nanomaterials and oxygen-economizing nanomaterials can be used. To diminish oxygen dependence of nanomaterials for hypoxic tumor therapy, therapeutic gas-generating nanomaterials and radical-generating nanomaterials can be used. The biocompatibility and therapeutic efficacy of these nanomaterials are discussed.
Collapse
Affiliation(s)
- Mei-Zhen Zou
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wen-Long Liu
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Han-Shi Chen
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xue-Feng Bai
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Fan Gao
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jing-Jie Ye
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Han Cheng
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xian-Zheng Zhang
- The Institute for Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Zhang K, Xiao X, Li L, Fan Y, Cai Q, Lee IS, Li X. Development of novel oxygen carriers by coupling hemoglobin to functionalized multiwall carbon nanotubes. J Mater Chem B 2019; 7:4821-4832. [PMID: 31389959 DOI: 10.1039/c9tb00894b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of stable and effective artificial oxygen carriers (AOCs) is a promising strategy to temporarily replace transfused blood and solve tissue hypoxia. Developing hemoglobin (Hb) loaded particles is one of the main ways to prepare suitable AOCs. Particles with a hierarchical micro/nanostructure can be loaded with plenty of proteins and have attracted great attention. Therefore, multiwall carbon nanotubes (MWCNTs) were chosen to fabricate AOCs. To improve the Hb-loading capacity of MWCNTs, functionalized MWCNTs, including carboxyl-functionalized MWCNTs (MWCNT-COOH), amino-functionalized MWCNTs (MWCNT-NH2), and heparin-conjugated MWCNTs (MWCNT-Hep), were prepared. Then, in this study, Hb was coupled to the functionalized MWCNTs to fabricate the AOCs. The functionalized MWCNTs and the AOCs were characterized by FTIR, SEM, TEM, and zeta potential analysis. The oxygen/Hb-loading capacity of the AOCs was also measured. The adverse effects of the AOCs on human umbilical vein endothelial cells (HUVECs) and human red blood cells (RBCs) were evaluated. The results showed that (1) the functional groups were grafted on the surface of the MWCNTs, and Hb was bound to the functionalized MWCNTs, thus the AOCs were successfully prepared; (2) MWCNT-Hep-Hb had the most stable dispersibility (i.e., the most negative zeta potential) in 0.9 wt% NaCl solution (MWCNT-Hep-Hb < MWCNT-COOH-Hb < MWCNT-Hb < MWCNT-NH2-Hb < 0); (3) MWCNT-Hep had the best Hb-loading capability, which was three times that of purified MWCNTs; (4) with concentrations increased up to 400 μg mL-1, MWCNT-Hep-Hb still had the highest cell viability (97.63% > 80%, ISO 10993-5:2009) and excellent blood biocompatibility. Therefore, MWCNT-Hep-Hb might be a satisfactory candidate as a blood substitute.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Jia Y, Li J. Molecular Assemblies of Biomimetic Microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8557-8564. [PMID: 30759988 DOI: 10.1021/acs.langmuir.8b04319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Layer-by-layer (LbL) assembly is a most commonly used method to prepare various microcapsules based on the electrostatic interactions, hydrogen bonding, covalent bonding, and so on. Among these interactions, Schiff base bond formed in covalent assembly not only has an advantage in stability, but also enables the assembled microcapsules with autofluorescence and pH sensitivity. In this Article, we will mainly describe the construction of biomimetic microcapsules through Schiff base mediated LbL assembly. The structures and properties of the assembled microcapsules are introduced and their applications as drug carriers are highlighted.
Collapse
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing , 100190 , China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
28
|
Kloypan C, Suwannasom N, Chaiwaree S, Prapan A, Smuda K, Baisaeng N, Pruß A, Georgieva R, Bäumler H. In-vitro haemocompatibility of dextran-protein submicron particles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:241-249. [PMID: 30663396 DOI: 10.1080/21691401.2018.1548476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Blood compatibility is a key requirement to fulfil for intravenous administration of drug and oxygen carrier system. Recently, we published the fabrication of oxidised-dextran (Odex)-crosslinked protein particles by one-pot formulation. In the current study we investigate the haemocompatibility of these Odex - particles including albumin particles (Odex-APs) and haemoglobin particles (Odex-HbMPs). Odex-APs and Odex-HbMPs have a submicron size ranged 800-1000 nm with peanut-like shape and a negative surface charge. In vitro haemocompatibility assays included haemolysis test, indirect phagocytosis test and platelet activation test in human blood. Odex-APs and Odex-HbMPs did not provoke any undesirable effects on the blood cells. Firstly, the ratio of haemolysis after contacted with Odex-crosslinked protein particles were less than 5% and therefore the particles may be considered non-haemolytic. Secondly, the incubation of leukocyte with Odex-APs/HbMPs did not influence the phagocytosis of leukocyte. We conclude that our particles are not recognized by monocytes or granulocytes. Finally, exposure of Odex-APs/HbMPs to platelets did not cause an activation of platelets. Additionally, Odex-HbMP/AP did not enhance or attenuate agonist-induced platelet activation. We conclude that Odex-crosslinked protein particles exhibit a very good haemocompatibility and represent highly promising carriers for drugs or oxygen.
Collapse
Affiliation(s)
- Chiraphat Kloypan
- a Institute of Transfusion Medicine , Charité-Universitätsmedizin Berlin , Berlin , Germany.,b Division of Clinical Immunology and Transfusion Sciences, School of Allied Health Sciences , University of Phayao , Phayao , Thailand
| | - Nittiya Suwannasom
- a Institute of Transfusion Medicine , Charité-Universitätsmedizin Berlin , Berlin , Germany.,c Division of Biochemistry and Nutrition, School of Medical Sciences , University of Phayao , Phayao , Thailand
| | - Saranya Chaiwaree
- d Department of Radiological Technology, Faculty of Allied Health Sciences , Naresuan University , Phitsanulok , Thailand
| | - Ausanai Prapan
- e Department of Pharmaceutical Technology, Faculty of Pharmacy , Payap University , Chiang Mai , Thailand
| | - Kathrin Smuda
- a Institute of Transfusion Medicine , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - Nuttakorn Baisaeng
- f Division of Pharmaceutical Sciences, School of Pharmaceutical Sciences , University of Phayao , Phayao , Thailand
| | - Axel Pruß
- a Institute of Transfusion Medicine , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - Radostina Georgieva
- a Institute of Transfusion Medicine , Charité-Universitätsmedizin Berlin , Berlin , Germany.,g Department of Medical Physics, Biophysics and Radiology, Faculty of Medicine , Trakia University , Stara Zagora , Bulgaria
| | - Hans Bäumler
- a Institute of Transfusion Medicine , Charité-Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
29
|
Sou K, Le DL, Sato H. Nanocapsules for Programmed Neurotransmitter Release: Toward Artificial Extracellular Synaptic Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900132. [PMID: 30887709 DOI: 10.1002/smll.201900132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Nanocapsules present a promising platform for delivering chemicals and biomolecules to a site of action in a living organism. Because the biological action of the encapsulated molecules is blocked until they are released from the nanocapsules, the encapsulation structure enables triggering of the topical and timely action of the molecules at the target site. A similar mechanism seems promising for the spatiotemporal control of signal transduction triggered by the release of signal molecules in neuronal, metabolic, and immune systems. From this perspective, nanocapsules can be regarded as practical tools to apply signal molecules such as neurotransmitters to intervene in signal transduction. However, spatiotemporal control of the payload release from nanocapsules persists as a key technical issue. Stimulus-responsive nanocapsules that release payloads in response to external input of physical stimuli are promising platforms to enable programmed payload release. These programmable nanocapsules encapsulating neurotransmitters are expected to lead to new insights and perspectives related to artificial extracellular synaptic vesicles that might provide an experimental and therapeutic strategy for neuromodulation and nervous system disorders.
Collapse
Affiliation(s)
- Keitaro Sou
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Duc Long Le
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
30
|
Jones SJ, Taylor AF, Beales PA. Towards feedback-controlled nanomedicines for smart, adaptive delivery. Exp Biol Med (Maywood) 2019; 244:283-293. [PMID: 30205721 PMCID: PMC6435888 DOI: 10.1177/1535370218800456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IMPACT STATEMENT The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel "chrononanomedicines."
Collapse
Affiliation(s)
- Stephen J. Jones
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Annette F. Taylor
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
31
|
Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv Colloid Interface Sci 2018; 260:65-84. [PMID: 30177214 DOI: 10.1016/j.cis.2018.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Blood transfusions, which usually consist in the administration of isolated red blood cells (RBCs), are crucial in traumatic injuries, pre-surgical conditions and anemias. Although RBCs transfusion from donors is a safe procedure, donor RBCs can only be stored for a maximum of 42 days under refrigerated conditions and, therefore, stockpiles of RBCs for use in acute disasters do not exist. With a worldwide shortage of donor blood that is expected to increase over time, the creation of oxygen-carriers with long storage life and compatibility without typing and cross-matching, persists as one of the foremost important challenges in biomedicine. However, research has so far failed to produce FDA approved RBCs substitutes (RBCSs) for human usage. As such, due to unacceptable toxicities, the first generation of oxygen-carriers has been withdrawn from the market. Being hemoglobin (Hb) the main component of RBCs, a lot of effort is being devoted in assembling semi-synthetic RBCS utilizing Hb as the oxygen-carrier component, the so-called Hb-based oxygen carriers (HBOCs). However, a native RBC also contains a multi-enzyme system to prevent the conversion of Hb into non-functional methemoglobin (metHb). Thus, the challenge for the fabrication of next-generation HBOCs relies in creating a system that takes advantage of the excellent oxygen-carrying capabilities of Hb, while preserving the redox environment of native RBCs that prevents or reverts the conversion of Hb into metHb. In this review, we feature the most recent advances in the assembly of the new generation of HBOCs with emphasis in two main approaches: the chemical modification of Hb either by cross-linking strategies or by conjugation to other polymers, and the Hb encapsulation strategies, usually in the form of lipidic or polymeric capsules. The applications of the aforementioned HBOCs as blood substitutes or for oxygen-delivery in tissue engineering are highlighted, followed by a discussion of successes, challenges and future trends in this field.
Collapse
|
32
|
Xu M, Liu J, Xu X, Liu S, Peterka F, Ren Y, Zhu X. Synthesis and Comparative Biological Properties of Ag-PEG Nanoparticles with Tunable Morphologies from Janus to Multi-Core Shell Structure. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1787. [PMID: 30241283 PMCID: PMC6213231 DOI: 10.3390/ma11101787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023]
Abstract
Silver nanoparticles synthesized with polymers as coating agents is an effective method to overcome their poor stability and aggregation in solution. Silver-polyethylene glycol (Ag-PEG) nanoparticles were synthesized with the thiol-functionalized polyethylene glycol (SH-PEA) as the coating, reducing and stabilizing agent. The UV irradiation time, polymer and silver nitrate concentration for the synthesis were investigated. The concentration of silver nitrate had significant effect on the morphology of Ag-PEG nanoparticles. When increasing the concentration of silver nitrate, SEM and TEM images showed that Ag-PEG nanoparticles changed from Janus to multi-core shell structure. Meanwhile, pure silver particles in the two hybrid nanoparticles presented spherical shape and had the similar size of 15 nm. The antibacterial activities and cytotoxicity of the two structural Ag-PEG nanoparticles were investigated to understand colloid morphology effect on the properties of AgNPs. The results of antibacterial activities showed that the two structural Ag-PEG nanoparticles exhibited strong antibacterial activities against Staphylococcus aureus, Escherichia coli and Bacillus subtilis. The Janus nanoparticles had larger minimal inhibitory concentration (MIC) and minimum bacterial concentration (MBC) values than the multi-core shell counterparts. The results of cytotoxicity showed the Janus Ag-PEG nanoparticles had lower toxicity than the multi-core shell nanoparticles.
Collapse
Affiliation(s)
- Mengda Xu
- Henan Engineering Laboratory of Flame-retardant and Functional Materials, Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Jie Liu
- Henan Engineering Laboratory of Flame-retardant and Functional Materials, Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Xiankui Xu
- Henan Engineering Laboratory of Flame-retardant and Functional Materials, Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Shanhu Liu
- Henan Engineering Laboratory of Flame-retardant and Functional Materials, Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - František Peterka
- Technical University of Liberec, Studentská 1402/2 461 17, Liberec 46117, Czech Republic.
| | - Yanrong Ren
- Henan Engineering Laboratory of Flame-retardant and Functional Materials, Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Xianfeng Zhu
- School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
33
|
Li S, Li L, Chen Z, Xue G, Jiang L, Zheng K, Chen J, Li R, Yuan C, Huang M. A novel purification procedure for recombinant human serum albumin expressed in Pichia pastoris. Protein Expr Purif 2018; 149:37-42. [DOI: 10.1016/j.pep.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/18/2018] [Accepted: 04/17/2018] [Indexed: 02/02/2023]
|
34
|
Fernandez-Moure J, Maisha N, Lavik EB, Cannon JW. The Chemistry of Lyophilized Blood Products. Bioconjug Chem 2018; 29:2150-2160. [PMID: 29791137 DOI: 10.1021/acs.bioconjchem.8b00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the development of new biologics and bioconjugates, storage and preservation have become more critical than ever before. Lyophilization is a method of cell and protein preservation by removing a solvent such as water from a substance followed by freezing. This technique has been used in the past and still holds promise for overcoming logistic challenges in safety net hospitals with limited blood banking resources, austere environments such as combat, and mass casualty situations where existing resources may be outstripped. This method allows for long-term storage and transport but requires the bioconjugation of preservatives to prevent cell destabilization. Trehalose is utilized as a bioconjugate in platelet and red blood cell preservation to maintain protein thermodynamics and stabilizing protein formulations in liquid and freeze-dried states. Biomimetic approaches have been explored as alternatives to cryo- and lyopreservation of blood components. Intravascular hemostats such as PLGA nanoparticles functionalized with PEG motifs, topical hemostats utilizing fibrinogen or chitosan, and liposomal encapsulated hemoglobin with surface modifications are effectively stored long-term through bioconjugation. In thinking about the best methods for storage and transport, we are focusing this topical review on blood products that have the longest track record of preservation and looking at how these methods can be applied to synthetic systems.
Collapse
Affiliation(s)
- Joseph Fernandez-Moure
- Division of Trauma, Surgical Critical Care & Emergency Surgery , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Nuzhat Maisha
- Department of Chemical, Biochemical & Environmental Engineering , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Erin B Lavik
- Department of Chemical, Biochemical & Environmental Engineering , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Jeremy W Cannon
- Division of Trauma, Surgical Critical Care & Emergency Surgery , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.,Department of Surgery , Uniformed Services University of the Health Sciences , Bethesda , Maryland 20814 , United States
| |
Collapse
|
35
|
Tu J, Bussmann J, Du G, Gao Y, Bouwstra JA, Kros A. Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic. Int J Pharm 2018; 543:169-178. [DOI: 10.1016/j.ijpharm.2018.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/25/2022]
|
36
|
Intravenous injection of artificial red cells and subsequent dye laser irradiation causes deep vessel impairment in an animal model of port-wine stain. Lasers Med Sci 2018; 33:1287-1293. [DOI: 10.1007/s10103-018-2480-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
|
37
|
Kao I, Xiong Y, Steffen A, Smuda K, Zhao L, Georgieva R, Pruss A, Bäumler H. Preclinical In Vitro Safety Investigations of Submicron Sized Hemoglobin Based Oxygen Carrier HbMP-700. Artif Organs 2018; 42:549-559. [DOI: 10.1111/aor.13071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ijad Kao
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| | - Yu Xiong
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
- CC-Ery GmbH; Berlin Germany
| | - Axel Steffen
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
- CC-Ery GmbH; Berlin Germany
| | - Kathrin Smuda
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| | - Lian Zhao
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
- Institute of Transfusion Medicine, Academy of Military Medical Sciences; Beijing China
| | - Radostina Georgieva
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| | - Axel Pruss
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| | - Hans Bäumler
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| |
Collapse
|
38
|
Sheshukova KA, Wilken LR. Analysis of Recombinant Human Serum Albumin Extraction and Degradation in Transgenic Rice Extracts. Biotechnol Prog 2018; 34:681-691. [PMID: 29316385 DOI: 10.1002/btpr.2609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 01/05/2018] [Indexed: 11/12/2022]
Abstract
Transgenic plant systems have successfully been used to express recombinant proteins, including rice seed-expressed recombinant human serum albumin (rHSA), without the risk of contamination of human pathogens. Developing an efficient extraction process is critical as the step determines recombinant protein concentration and purity, quantity of impurities, and process volume. This article evaluates the effect of pH and time on the extraction and stability of rHSA. The amount of rHSA in clarified extract after 60 min of solubilization increased with pH from 0.9 mg/g (pH 3.5) to 9.6 mg/g (pH 6.0), but not over time as 10 min was sufficient for solubilization. Total soluble protein in extracts also increased with pH from 3.9 mg/g (pH 3.5) to 19.7 mg/g (pH 6.0) in clarified extract. Extraction conditions that maximized rHSA purity were not optimal for rHSA stability and yield. Extraction at pH 3.5 resulted in high purity (78%), however, rHSA degraded over time. Similar purities (78%) were observed in pH 4.0 extracts yet rHSA remained stable. rHSA degradation was not observed in pH 4.5 and 6.0 extracts but higher native protein concentrations decreased purity. Strategies such as pH and temperature adjustment were effective for reducing rHSA degradation in pH 3.5 rice extracts. Low temperature pH 3.5 extraction retained high purity (97%) and rHSA stability. While seed-expressed recombinant proteins are known to be stable for up to 3 years, the degradation of rHSA was notably extensive (56% within 60 min) when extracted at low pH. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:681-691, 2018.
Collapse
Affiliation(s)
- Kseniya A Sheshukova
- Dept. of Biological & Agricultural Engineering, Kansas State University, Manhattan, KS, 66506
| | - Lisa R Wilken
- Dept. of Biological & Agricultural Engineering, Kansas State University, Manhattan, KS, 66506
| |
Collapse
|
39
|
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev 2017; 122:84-104. [PMID: 28214553 DOI: 10.1016/j.addr.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.
Collapse
|
40
|
Sen Gupta A. Bio-inspired nanomedicine strategies for artificial blood components. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1464. [PMID: 28296287 PMCID: PMC5599317 DOI: 10.1002/wnan.1464] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/23/2017] [Accepted: 01/29/2017] [Indexed: 11/12/2022]
Abstract
Blood is a fluid connective tissue where living cells are suspended in noncellular liquid matrix. The cellular components of blood render gas exchange (RBCs), immune surveillance (WBCs) and hemostatic responses (platelets), and the noncellular components (salts, proteins, etc.) provide nutrition to various tissues in the body. Dysfunction and deficiencies in these blood components can lead to significant tissue morbidity and mortality. Consequently, transfusion of whole blood or its components is a clinical mainstay in the management of trauma, surgery, myelosuppression, and congenital blood disorders. However, donor-derived blood products suffer from issues of shortage in supply, need for type matching, high risks of pathogenic contamination, limited portability and shelf-life, and a variety of side-effects. While robust research is being directed to resolve these issues, a parallel clinical interest has developed toward bioengineering of synthetic blood substitutes that can provide blood's functions while circumventing the above problems. Nanotechnology has provided exciting approaches to achieve this, using materials engineering strategies to create synthetic and semi-synthetic RBC substitutes for enabling oxygen transport, platelet substitutes for enabling hemostasis, and WBC substitutes for enabling cell-specific immune response. Some of these approaches have further extended the application of blood cell-inspired synthetic and semi-synthetic constructs for targeted drug delivery and nanomedicine. The current study provides a comprehensive review of the various nanotechnology approaches to design synthetic blood cells, along with a critical discussion of successes and challenges of the current state-of-art in this field. WIREs Nanomed Nanobiotechnol 2017, 9:e1464. doi: 10.1002/wnan.1464 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
41
|
Okamoto Y, Sugisaki S, Suga K, Umakoshi H. Development of Time-course Oxygen Binding Analysis for Hemoglobin-based Oxygen Carriers. ANAL SCI 2017; 33:953-956. [PMID: 28794333 DOI: 10.2116/analsci.33.953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Developing blood substitutes is in urgent demand for chronic blood shortage all over the world. In this connection, the oxygen binding behavior of hemoglobin-based oxygen carriers (HBOCs) is one of the most important characteristics. However, present methods available for estimating oxygen binding behavior have need of expensive apparatus, and also are not suitable for high-throughput and the time-course analysis. To overcome these problems, we proposed a simple analysis method for the time-course oxygen binding behavior of HBOCs, which employs a general UV-Vis microplate reader and a common reagent, sodium dithionite, as a reductant for HBOCs and an oxygen scavenger. Our method enabled time-course oxygen binding behavior analysis of HBOCs in a simple manner, and obtained data corresponding with those by the conventional method. Thus, our developed method will accelerate the development of HBOCs due to easy oxygen binding analysis.
Collapse
Affiliation(s)
- Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Shigenori Sugisaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
42
|
Qi X, Wong BL, Lau SH, Ng KTP, Kwok SY, Kin-Wai Sun C, Tzang FC, Shao Y, Li CX, Geng W, Ling CC, Ma YY, Liu XB, Liu H, Liu J, Yeung WH, Lo CM, Man K. A hemoglobin-based oxygen carrier sensitized Cisplatin based chemotherapy in hepatocellular carcinoma. Oncotarget 2017; 8:85311-85325. [PMID: 29156721 PMCID: PMC5689611 DOI: 10.18632/oncotarget.19672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Our previous study showed that liver graft injury not only promotes tumor recurrence, but also induces chemoresistance in recurrent HCC after liver transplantation. Recently, we found that the hemoglobin-based oxygen carrier“YQ23” significantly ameliorates hepatic IR injury and prevent tumor recurrence. Here, we intended to explore the novel therapeutic strategy using oxygen carrier “YQ23”to sensitize chemotherapy in HCC. Methods To investigate the role of YQ23 combined with Cisplatin, the proliferation of HCC cells was examined under combined treatment by MTT and colony formation. To explore the effect of YQ23 on sensitization of Cisplatin based chemotherapy, the orthotopic liver cancer model was established. To characterize the delivery of YQ23 in tumor tissue, the intravital imaging system was applied for longitudinal observation in ectopic liver cancer model. The distribution of YQ23 was examined by IVIS spectrum. Results YQ23 significantly suppressed the proliferation of HCC cells under Cisplatin treatment in a dose and time dependent manner. Moreover, YQ23 administration significantly sensitized Cisplatin based chemotherapy in orthotopic liver cancer model. Down-regulation of DHFR may be one of the reasons for YQ23 sensitizing Cisplatin based chemotherapy. Real-time intravital imaging showed that YQ23 accumulated in the tumor tissue and maintained as long as 3 days in ectopic liver cancer model. The IVIS spectrum examination showed that YQ23 distributed mainly at liver and bladder within the first 36 hours after administration in orthotopic liver cancer model. Conclusion YQ23 treatment may be a potential therapeutic strategy to sensitize chemotherapy in HCC.
Collapse
Affiliation(s)
- Xiang Qi
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Bing L Wong
- New β Innovation Limited, 18/F Chevalier Commercial Centre, Hong Kong, China
| | - Sze Hang Lau
- New β Innovation Limited, 18/F Chevalier Commercial Centre, Hong Kong, China
| | - Kevin Tak-Pan Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Sui Yi Kwok
- New β Innovation Limited, 18/F Chevalier Commercial Centre, Hong Kong, China
| | - Chris Kin-Wai Sun
- New β Innovation Limited, 18/F Chevalier Commercial Centre, Hong Kong, China
| | - Fei Chuen Tzang
- New β Innovation Limited, 18/F Chevalier Commercial Centre, Hong Kong, China
| | - Yan Shao
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chang Xian Li
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Wei Geng
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chang Chun Ling
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yuen Yuen Ma
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Xiao Bing Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Hui Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Jiang Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Wai Ho Yeung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
43
|
Wrobeln A, Laudien J, Groß-Heitfeld C, Linders J, Mayer C, Wilde B, Knoll T, Naglav D, Kirsch M, Ferenz KB. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur J Pharm Biopharm 2017; 115:52-64. [DOI: 10.1016/j.ejpb.2017.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 01/28/2023]
|
44
|
Rikihisa N, Watanabe S, Saito Y, Sakai H. Artificial Red Blood Cells as Potential Photosensitizers in Dye Laser Treatment Against Port-Wine Stains. J Funct Biomater 2017; 8:jfb8020014. [PMID: 28406466 PMCID: PMC5491995 DOI: 10.3390/jfb8020014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 01/15/2023] Open
Abstract
We suggest a novel method that uses artificial blood cells (hemoglobin vesicles, Hb-Vs) as photosensitizers in dye laser treatment (at 595-nm wavelength) for port-wine stains (i.e., capillary malformations presenting as red birthmarks) based on the results of animal experiments. As compared with human red blood cells, Hb-Vs have the same absorbance of 595 nm wavelength light and produce the same level of heat following dye laser irradiation. Small sized Hb-Vs (250 nm) distribute in the plasma phase in blood and tend to flow in the marginal zone of microvessels. Intravenous injections of Hb-Vs caused the dilatation of microvessels, and dye laser treatment with Hb-Vs destroyed the vessel wall effectively. Following the intravenous injection of Hb-Vs, the microvessels contained more Hb that absorbed laser photons and produced heat. This extra Hb tended to flow near the endothelial cells, which were the target of the laser treatment. These attributes of Hb-Vs will potentially contribute to enhancing the efficacy of dye laser treatment for port-wine stains. Hemoglobin is a type of porphyrin. Thus, our proposed treatment may have aspects of photodynamic therapy using porphyrin that leads to a cytotoxicity effect by active oxygen.
Collapse
Affiliation(s)
- Naoaki Rikihisa
- Chiba Rosai Hospital, 1-16 Tatsumidaihigashi, Ichihara, Chiba 290003, Japan.
| | - Shoji Watanabe
- Saitama Children's Medical Center, 1-2 Shintoshin Chuo-ku Saitama, Saitama 330877, Japan.
| | - Yoshiaki Saito
- The Laboratory of Pathology, Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai Hatano, Kanagawa 2578523, Japan.
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 6340813, Japan.
| |
Collapse
|
45
|
Kitagishi H, Mao Q, Kitamura N, Kita T. HemoCD as a Totally Synthetic Artificial Oxygen Carrier: Improvements in the Synthesis and O 2 /CO Discrimination. Artif Organs 2017; 41:372-380. [PMID: 28326558 DOI: 10.1111/aor.12870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/09/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022]
Abstract
HemoCD, which is composed of an iron(II)porphyrin such as 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinatoiron(II) (Fe(II)TPPS) and a cyclodextrin (CD) dimer having a pyridine linker, represents a synthetic hemoglobin (Hb) model compound that exhibits reversible oxygen (O2 ) binding ability in aqueous solution at an ambient temperature. Therefore, hemoCD has the potential to be used as a totally synthetic artificial oxygen carrier. In this article, we describe the improvements of hemoCD related to its synthesis and O2 /CO selectivity. The synthesis procedure of the CD dimer of hemoCD was re-examined, and the CD dimer was successively synthesized from inexpensive β-CD with a 38% yield (three-steps), which enabled us to obtain the CD dimer in gram-quantities. The O2 /CO selectivity of hemoCD was also markedly improved using an iron(II)porphyrin having a carboxylate group at the distal site of hemoCD.
Collapse
Affiliation(s)
- Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Naoya Kitamura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Takahiro Kita
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
46
|
Wrobeln A, Schlüter KD, Linders J, Zähres M, Mayer C, Kirsch M, Ferenz KB. Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:723-730. [DOI: 10.1080/21691401.2017.1284858] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anna Wrobeln
- Institute for Physiological Chemistry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Jürgen Linders
- Institute for Physical Chemistry, University of Duisburg-Essen, CeNIDE, Essen, Germany
| | - Manfred Zähres
- Institute for Physical Chemistry, University of Duisburg-Essen, CeNIDE, Essen, Germany
| | - Christian Mayer
- Institute for Physical Chemistry, University of Duisburg-Essen, CeNIDE, Essen, Germany
| | - Michael Kirsch
- Institute for Physiological Chemistry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katja B. Ferenz
- Institute for Physiological Chemistry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
47
|
Arkosi M, Scurtu F, Vulpoi A, Silaghi-Dumitrescu R, Kurtz D. Copolymerization of recombinant Phascolopsis gouldii hemerythrin with human serum albumin for use in blood substitutes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:218-223. [PMID: 28034322 DOI: 10.1080/21691401.2016.1269118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemerythrin is an oxygen-carrying protein found in marine invertebrates and may be a promising alternative to hemoglobin for use in blood substitutes, primarily due to its negligible peroxidative toxicity. Previous studies have shown that glutaraldehyde-induced copolymerization of hemoglobin with bovine serum albumin increases the half-life of the active oxy form of hemoglobin (i.e. decreases the auto-oxidation rate). Here, we describe a protocol for glutaraldehyde copolymerization of Hr with human serum albumin and the dioxygen-binding properties of the co-polymerized products. The copolymerization with HSA results in alteration of hemerythrin's dioxygen-binding properties in directions that may be favorable for use in blood substitutes.
Collapse
Affiliation(s)
- Mariann Arkosi
- a Department of Chemistry , "Babeş-Bolyai" University , Cluj-Napoca , Romania
| | - Florina Scurtu
- a Department of Chemistry , "Babeş-Bolyai" University , Cluj-Napoca , Romania
| | - Adriana Vulpoi
- b Interdisciplinary Research Institute on Bio-Nano-Sciences, "Babeş-Bolyai" University , Cluj-Napoca , Romania
| | | | - Donald Kurtz
- c Department of Chemistry , University of Texas at San Antonio, San Antonio , TX , USA
| |
Collapse
|
48
|
Sułkowski L, Pawełczak B, Chudzik M, Maciążek-Jurczyk M. Characteristics of the Protoporphyrin IX Binding Sites on Human Serum Albumin Using Molecular Docking. Molecules 2016; 21:molecules21111519. [PMID: 27869697 PMCID: PMC6273174 DOI: 10.3390/molecules21111519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 12/03/2022] Open
Abstract
Human serum albumin (HSA) is the main plasma protein responsible for a distribution of drugs in the human circulatory system. The binding to HSA is one of the factors that determines both the pharmacological actions and the side effects of drugs. The derivative of heme, protoporphyrin IX (PpIX), is a hydrophobic photosensitizer widely used in photodynamic diagnosis and therapy of various malignant disorders. Using absorption and fluorescence spectroscopy, it has been demonstrated that PpIX forms complexes with HSA. Its binding sites in the tertiary structure of HSA were found in the subdomains IB and IIA. PpIX binds to HSA in one class of binding sites with the association constant of 1.68 × 105 M−1 and 2.30 × 105 M−1 for an excitation at wavelength λex = 280 nm and 295 nm, respectively. The binding interactions between HSA and PpIX have been studied by means of molecular docking simulation using the CLC Drug Discovery Workbench (CLC DDWB) computer program. PpIX creates a strong ‘sandwich-type’ complex between its highly conjugated porphine system and aromatic side chains of tryptophan and tyrosine. In summary, fluorescent studies on binding interactions between HSA and PpIX have been confirmed by the results of computer simulation.
Collapse
Affiliation(s)
- Leszek Sułkowski
- Department of General and Vascular Surgery, Regional Specialist Hospital, Bialska 104/118, 42-218 Częstochowa, Poland.
| | - Bartosz Pawełczak
- Department of Physical Pharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Mariola Chudzik
- Department of Physical Pharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
49
|
Taguchi K, Nagao S, Yamasaki K, Sakai H, Seo H, Maruyama T, Otagiri M. Biological Responsiveness and Metabolic Performance of Liposome-Encapsulated Hemoglobin (Hemoglobin-Vesicles) in Apolipoprotein E-Deficient Mice after Massive Intravenous Injection. Biol Pharm Bull 2016; 38:1606-16. [PMID: 26424021 DOI: 10.1248/bpb.b15-00420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hemoglobin-vesicle (HbV), a vesicle in which a concentrated human hemoglobin solution is encapsulated, was developed as an artificial oxygen carrier. Although HbV has a favorable safety, metabolic, and excretion performance in healthy animals, the effect of a massive amount of HbV, which also contains a large amount of a lipid component including cholesterol, on physiological response and metabolic performance under hyperlipidemic conditions is unclear. The aim of this study was to evaluate whether administration of HbV causes toxicity in apolipoprotein E-deficient mice (hyperlipidemic model mice). Apolipoprotein E-deficient mice were given a single injection of HbV (2000 mg hemoglobin/kg), and physiological responses and metabolic profiles were monitored for 14 d thereafter. All the mice tolerated the massive amount of HbV and survived, and adequate biocompatibility was observed. Serum biochemical parameters indicate that liver and kidney function were not remarkably affected, and morphological changes in the liver and spleen were negligible. Lipid parameters in serum were significantly increased until 3 d after HbV administration, but recovered within 7 d after the administration. In a pharmacokinetic study, HbV was mainly found distributed in the liver and spleen, and disappeared from the body within 14 d. In conclusion, even under conditions of hyperlipidemia, a massive dose of HbV and its components resulted in favorable biological compatibility, metabolic, and excretion profiles. These findings provide further support for the safety of HbV for clinical use.
Collapse
|
50
|
Hemoglobin-mimetic oxygen adsorbent prepared via self-assembly of cysteinyl bolaamphiphiles. Colloids Surf B Biointerfaces 2016; 142:360-366. [DOI: 10.1016/j.colsurfb.2016.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/30/2016] [Accepted: 03/03/2016] [Indexed: 01/28/2023]
|