1
|
Rodrigues Toledo C, Tantawy AA, Lima Fuscaldi L, Malavolta L, de Aguiar Ferreira C. EGFR- and Integrin α Vβ 3-Targeting Peptides as Potential Radiometal-Labeled Radiopharmaceuticals for Cancer Theranostics. Int J Mol Sci 2024; 25:8553. [PMID: 39126121 PMCID: PMC11313252 DOI: 10.3390/ijms25158553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The burgeoning field of cancer theranostics has witnessed advancements through the development of targeted molecular agents, particularly peptides. These agents exploit the overexpression or mutations of specific receptors, such as the Epidermal Growth Factor receptor (EGFR) and αVβ3 integrin, which are pivotal in tumor growth, angiogenesis, and metastasis. Despite the extensive research into and promising outcomes associated with antibody-based therapies, peptides offer a compelling alternative due to their smaller size, ease of modification, and rapid bioavailability, factors which potentially enhance tumor penetration and reduce systemic toxicity. However, the application of peptides in clinical settings has challenges. Their lower binding affinity and rapid clearance from the bloodstream compared to antibodies often limit their therapeutic efficacy and diagnostic accuracy. This overview sets the stage for a comprehensive review of the current research landscape as it relates to EGFR- and integrin αVβ3-targeting peptides. We aim to delve into their synthesis, radiolabeling techniques, and preclinical and clinical evaluations, highlighting their potential and limitations in cancer theranostics. This review not only synthesizes the extant literature to outline the advancements in peptide-based agents targeting EGFR and integrin αVβ3 but also identifies critical gaps that could inform future research directions. By addressing these gaps, we contribute to the broader discourse on enhancing the diagnostic precision and therapeutic outcomes of cancer treatments.
Collapse
Affiliation(s)
- Cibele Rodrigues Toledo
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
| | - Ahmed A. Tantawy
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Leonardo Lima Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Trencsényi G, Enyedi KN, Mező G, Halmos G, Képes Z. NGR-Based Radiopharmaceuticals for Angiogenesis Imaging: A Preclinical Review. Int J Mol Sci 2023; 24:12675. [PMID: 37628856 PMCID: PMC10454655 DOI: 10.3390/ijms241612675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Angiogenesis plays a crucial role in tumour progression and metastatic spread; therefore, the development of specific vectors targeting angiogenesis has attracted the attention of several researchers. Since angiogenesis-associated aminopeptidase N (APN/CD13) is highly expressed on the surface of activated endothelial cells of new blood vessels and a wide range of tumour cells, it holds great promise for imaging and therapy in the field of cancer medicine. The selective binding capability of asparagine-glycine-arginine (NGR) motif containing molecules to APN/CD13 makes radiolabelled NGR peptides promising radiopharmaceuticals for the non-invasive, real-time imaging of APN/CD13 overexpressing malignancies at the molecular level. Preclinical small animal model systems are major keystones for the evaluation of the in vivo imaging behaviour of radiolabelled NGR derivatives. Based on existing literature data, several positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radioisotopes have been applied so far for the labelling of tumour vasculature homing NGR sequences such as Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re), or Bismuth-213 (213Bi). Herein, a comprehensive overview is provided of the recent preclinical experiences with radiolabelled imaging probes targeting angiogenesis.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Kata Nóra Enyedi
- ELKH-ELTE Research Group of Peptide Chemistry, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary; (K.N.E.); (G.M.)
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Mező
- ELKH-ELTE Research Group of Peptide Chemistry, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary; (K.N.E.); (G.M.)
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| |
Collapse
|
3
|
Failla M, Floresta G, Abbate V. Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling. RSC Med Chem 2023; 14:592-623. [PMID: 37122545 PMCID: PMC10131587 DOI: 10.1039/d2md00397j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, and positron emission tomography (PET) are extensively available and routinely used for disease diagnosis and treatment. Peptide-based targeting PET probes are usually small peptides with high affinity and specificity to specific cellular and tissue targets opportunely engineered for acting as PET probes. For instance, either the radioisotope (e.g., 18F, 11C) can be covalently linked to the peptide-probe or another ligand that strongly complexes the radioisotope (e.g., 64Cu, 68Ga) through multiple coordinative bonds can be chemically conjugated to the peptide delivery moiety. The main advantages of these probes are that they are cheaper than classical antibody-based PET tracers and can be efficiently chemically modified to be radiolabelled with virtually any radionuclide making them very attractive for clinical use. The goal of this review is to report and summarize recent technologies in peptide PET-based molecular probes synthesis and radiolabelling with the most used radioisotopes in 2022.
Collapse
Affiliation(s)
- Mariacristina Failla
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Giuseppe Floresta
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
- Department of Drug and Health Sciences, University of Catania Catania Italy
| | - Vincenzo Abbate
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
4
|
Ebrahimi F, Noaparast Z, Abedi SM, Hosseinimehr SJ. Homodimer 99mTc-HYNIC-E(SSSLTVPWY) 2 peptide improved HER2-overexpressed tumor targeting and imaging. Med Oncol 2022; 39:204. [PMID: 36175805 DOI: 10.1007/s12032-022-01798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
We hypothesized that a novel design of the LTVPWY (LY) peptide might exhibit a great potential for improving binding affinity and targeting HER2-overexpressed tumors. Hence, new dimer construction of 99mTc-labeled LY [99mTc-HYNIC-E(SSSLTVPWY)2] (99mTc-DLY) was introduced. Afterward, a head-to-head comparison of in vitro and in vivo experiments was performed between 99mTc-DLY and 99mTc-HYNIC-SSSLTVPWY as the monomer analog. The blocking dosage of trastuzumab reduced the uptake of the dimer about 20% more efficiently than the monomer in the SKOV-3 cell line. A twofold increase in competitive binding affinity and biological half-life was observed for 99mTc-DLY. The ovarian-tumor-bearing mice were detected with high contrast where the tumor-to-muscle ratio of 99mTc-DLY was notably increased about 40% using a gamma camera. The biodistribution experiment revealed an approximately 10% enhancement in tumor/blood, tumor/muscle, and tumor/bone ratios for the dimer. More rapid blood clearance was another achievement of the homodimer design. Overall, 99mTc-DLY successfully affected the pharmacokinetics and consequently the visualization of HER2-overexpressing tumors.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
6
|
Effect of Peptide Receptor Radionuclide Therapy in Combination with Temozolomide against Tumor Angiogenesis in a Glioblastoma Model. Cancers (Basel) 2021; 13:cancers13195029. [PMID: 34638512 PMCID: PMC8507696 DOI: 10.3390/cancers13195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Cell adhesion receptor integrin αvβ3 is a promising biomarker for developing tumor-angiogenesis targeted theranostics. In this study, we aimed to examine the therapeutic potential of peptide receptor radionuclide therapy (PRRT) with 188Re-IDA-D-[c(RGDfK)]2 (11.1 MBq). The results showed that the tumor volume was significantly decreased by 81% compared with the vehicle-treated group in U87-MG xenografts. The quantitative in vivo anti-angiogenic responses of PRRT were obtained using 99mTc-IDA-D-[c(RGDfK)]2 SPECT and corresponded to the measured tumor volume. PRRT combined with temozolomide (TMZ) resulted in a 93% reduction in tumor volume, which was markedly greater than that of each agent used individually. In addition, histopathological characterization showed that PRRT combined with TMZ was superior to PRRT or TMZ alone, even when TMZ was used at half dose. Overall, our results indicated that integrin-targeted PRRT and TMZ combined therapy might be a new medical tool for the effective treatment of glioblastoma.
Collapse
|
7
|
Bolcaen J, Kleynhans J, Nair S, Verhoeven J, Goethals I, Sathekge M, Vandevoorde C, Ebenhan T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021; 11:7911-7947. [PMID: 34335972 PMCID: PMC8315062 DOI: 10.7150/thno.56639] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Janke Kleynhans
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Florea A, Mottaghy FM, Bauwens M. Molecular Imaging of Angiogenesis in Oncology: Current Preclinical and Clinical Status. Int J Mol Sci 2021; 22:5544. [PMID: 34073992 PMCID: PMC8197399 DOI: 10.3390/ijms22115544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is an active process, regulating new vessel growth, and is crucial for the survival and growth of tumours next to other complex factors in the tumour microenvironment. We present possible molecular imaging approaches for tumour vascularisation and vitality, focusing on radiopharmaceuticals (tracers). Molecular imaging in general has become an integrated part of cancer therapy, by bringing relevant insights on tumour angiogenic status. After a structured PubMed search, the resulting publication list was screened for oncology related publications in animals and humans, disregarding any cardiovascular findings. The tracers identified can be subdivided into direct targeting of angiogenesis (i.e., vascular endothelial growth factor, laminin, and fibronectin) and indirect targeting (i.e., glucose metabolism, hypoxia, and matrix metallo-proteases, PSMA). Presenting pre-clinical and clinical data of most tracers proposed in the literature, the indirect targeting agents are not 1:1 correlated with angiogenesis factors but do have a strong prognostic power in a clinical setting, while direct targeting agents show most potential and specificity for assessing tumour vascularisation and vitality. Within the direct agents, the combination of multiple targeting tracers into one agent (multimers) seems most promising. This review demonstrates the present clinical applicability of indirect agents, but also the need for more extensive research in the field of direct targeting of angiogenesis in oncology. Although there is currently no direct tracer that can be singled out, the RGD tracer family seems to show the highest potential therefore we expect one of them to enter the clinical routine.
Collapse
Affiliation(s)
- Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| |
Collapse
|
9
|
Liolios C, Sachpekidis C, Kolocouris A, Dimitrakopoulou-Strauss A, Bouziotis P. PET Diagnostic Molecules Utilizing Multimeric Cyclic RGD Peptide Analogs for Imaging Integrin α vβ 3 Receptors. Molecules 2021; 26:molecules26061792. [PMID: 33810198 PMCID: PMC8005094 DOI: 10.3390/molecules26061792] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023] Open
Abstract
Multimeric ligands consisting of multiple pharmacophores connected to a single backbone have been widely investigated for diagnostic and therapeutic applications. In this review, we summarize recent developments regarding multimeric radioligands targeting integrin αvβ3 receptors on cancer cells for molecular imaging and diagnostic applications using positron emission tomography (PET). Integrin αvβ3 receptors are glycoproteins expressed on the cell surface, which have a significant role in tumor angiogenesis. They act as receptors for several extracellular matrix proteins exposing the tripeptide sequence arginine-glycine-aspartic (RGD). Cyclic RDG peptidic ligands c(RGD) have been developed for integrin αvβ3 tumor-targeting positron emission tomography (PET) diagnosis. Several c(RGD) pharmacophores, connected with the linker and conjugated to a chelator or precursor for radiolabeling with different PET radionuclides (18F, 64Cu, and 68Ga), have resulted in multimeric ligands superior to c(RGD) monomers. The binding avidity, pharmacodynamic, and PET imaging properties of these multimeric c(RGD) radioligands, in relation to their structural characteristics are analyzed and discussed. Furthermore, specific examples from preclinical studies and clinical investigations are included.
Collapse
Affiliation(s)
- Christos Liolios
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Section of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis–Zografou, 15771 Athens, Greece;
- Correspondence: (C.L.); (P.B.)
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.S.); (A.D.-S.)
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Section of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis–Zografou, 15771 Athens, Greece;
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.S.); (A.D.-S.)
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
- Correspondence: (C.L.); (P.B.)
| |
Collapse
|
10
|
Chakravarty R, Rajeswari A, Shetty P, Jagadeesan KC, Ram R, Jadhav S, Sarma HD, Dash A, Chakraborty S. A simple and robust method for radiochemical separation of no-carrier-added 64Cu produced in a research reactor for radiopharmaceutical preparation. Appl Radiat Isot 2020; 165:109341. [PMID: 32745917 DOI: 10.1016/j.apradiso.2020.109341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
Abstract
Copper-64 is an excellent theranostic radiometal that is gaining renewed attention of the clinical community in the recent times. In order to meet the increasing demand of this radiometal, we have demonstrated the viability of its production via 64Zn (n,p) 64Cu reaction in a nuclear reactor. A semi-automated radiochemical separation module based on selective extraction of 64Cu as dithizonate complex was developed. The maximum available activity at the end of irradiation was ~ 700 MBq. The overall yield of 64Cu after the separation process was >85% and it could be obtained with ~12 GBq/μg specific activity, >99.9% radionuclidic purity and >98% radiochemical purity. The separated 64Cu could be utilized for preparation of a wide variety of radiopharmaceuticals.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Ardhi Rajeswari
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Priyalata Shetty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - K C Jagadeesan
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ramu Ram
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sachin Jadhav
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
11
|
Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to Enhance the Metabolic Stability of Peptide-Based PET Radiopharmaceuticals. Molecules 2020; 25:molecules25102314. [PMID: 32423178 PMCID: PMC7287708 DOI: 10.3390/molecules25102314] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022] Open
Abstract
The high affinity and specificity of peptides towards biological targets, in addition to their favorable pharmacological properties, has encouraged the development of many peptide-based pharmaceuticals, including peptide-based positron emission tomography (PET) radiopharmaceuticals. However, the poor in vivo stability of unmodified peptides against proteolysis is a major challenge that must be overcome, as it can result in an impractically short in vivo biological half-life and a subsequently poor bioavailability when used in imaging and therapeutic applications. Consequently, many biologically and pharmacologically interesting peptide-based drugs may never see application. A potential way to overcome this is using peptide analogues designed to mimic the pharmacophore of a native peptide while also containing unnatural modifications that act to maintain or improve the pharmacological properties. This review explores strategies that have been developed to increase the metabolic stability of peptide-based pharmaceuticals. It includes modifications of the C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification, PEGylation and alkyl chain incorporation, cyclization and peptide bond substitution, and where those strategies have been, or could be, applied to PET peptide-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Brendan J. Evans
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew T. King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
| | - Lidia Matesic
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia;
| | - Joanne F. Jamie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
- Correspondence: ; Tel.: +61-2-9850-8283
| |
Collapse
|
12
|
Yang J, Yang J, Wang H, Wang J, Xiong J, Qiao C, Ran C. An atom-economical design of PET tracer for imaging α vβ 3 integrin via utilizing the three-in-one function of 64Copper. Chem Commun (Camb) 2020; 56:1788-1791. [PMID: 31960841 DOI: 10.1039/c9cc08690k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, αvβ3 integrin in U87 tumor cells was imaged with a 64Cu-peptidic probe, in which the linear peptide GHRGDHG is used as a pre-ligand, while 64Cu bears three functional roles that include generation of the PET signal, coordination with two GH moieties of the pre-ligand, and cyclizing the linear pre-ligand into an active cyclic-RGD form (termed as 64Cu-Cyclo-RGD) for αvβ3 integrin.
Collapse
Affiliation(s)
- Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, China. and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China
| | - Jian Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, China. and School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, China.
| | - Junfeng Wang
- Gorden Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, China
| | - Jianping Xiong
- Program in Structural Biology, Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, China
| | - Chunhua Qiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, China.
| |
Collapse
|
13
|
Kim H, Koo HJ, Ahn J, Kim JY, Choi JY, Lee KH, Kim BT, Choe YS. Synthesis and characterization of 64Cu- and Cy5.5-labeled tetraiodothyroacetic acid derivatives for tumor angiogenesis imaging. Bioorg Med Chem 2020; 28:115212. [PMID: 31761727 DOI: 10.1016/j.bmc.2019.115212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
Abstract
It was previously reported that tetraiodothyroacetic acid (tetrac) inhibits angiogenesis by binding to the cell surface receptor for thyroid hormone on integrin αVβ3. Therefore, we synthesized and evaluated two 64Cu-labeled tetrac derivatives and a Cy5.5-labeled tetrac derivative for tumor angiogenesis imaging. Tetrac was structurally modified to conjugate with 1,4,7,10-tetraazacyclododecane-N,N',N″,N″'-tetraacetic acid (DOTA) via its hydroxy or carboxylic acid end, and the resulting DOTA-conjugated tetrac derivatives were then labeled with 64Cu. Tetrac was also conjugated with Cy5.5 via its carboxylic acid end. All three tetrac derivatives (1-3) exhibited greater inhibitory activity than tetrac against endothelial cell tube formation. The U87MG cell binding of [64Cu]2 showed a time-dependent increase over 24 h and it was inhibited by 38% at 4 h in the presence of tetrac, indicating specificity of [64Cu]2 to the thyroid hormone receptor site on integrin αVβ3. Positron emission tomography (PET) images of U87MG tumor-bearing mice injected with [64Cu]1 and [64Cu]2 revealed that high radioactivity accumulated in the tumors, and that the tumor uptake and tumor-to-nontarget uptake ratio were higher in small tumors than in large tumors. In addition, the Cy5.5-labeled tetrac derivative (3) displayed a strong near-infrared (NIR) signal in the tumors. Taken together, these results suggest that these ligands hold promise as imaging agents for visualization of tumor angiogenesis.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Hyun-Jung Koo
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jinhee Ahn
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kyung-Han Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Byung-Tae Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yearn Seong Choe
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| |
Collapse
|
14
|
Farahani AM, Maleki F, Sadeghzadeh N. The Influence of Different Spacers on Biological Profile of Peptide Radiopharmaceuticals for Diagnosis and Therapy of Human Cancers. Anticancer Agents Med Chem 2020; 20:402-416. [PMID: 31889492 DOI: 10.2174/1871520620666191231161227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cancer is the leading cause of death worldwide. Early detection can reduce the disadvantageous effects of diseases and the mortality in cancer. Nuclear medicine is a powerful tool that has the ability to diagnose malignancy without harming normal tissues. In recent years, radiolabeled peptides have been investigated as potent agents for cancer detection. Therefore, it is necessary to modify radiopeptides in order to achieve more effective agents. OBJECTIVE This review describes modifications in the structure of radioconjugates with spacers who have improved the specificity and sensitivity of the peptides that are used in oncologic diagnosis and therapy. METHODS To improve the biological activity, researchers have conjugated these peptide analogs to different spacers and bifunctional chelators. Many spacers of different kinds, such as hydrocarbon chain, amino acid sequence, and poly (ethyleneglycol) were introduced in order to modify the pharmacokinetic properties of these biomolecules. RESULTS Different spacers have been applied to develop radiolabeled peptides as potential tracers in nuclear medicine. Spacers with different charge and hydrophilicity affect the characteristics of peptide conjugate. For example, the complex with uncharged and hydrophobic spacers leads to increased liver uptake, while the composition with positively charged spacers results in high kidney retention. Therefore, the pharmacokinetics of radio complexes correlates to the structure and total charge of the conjugates. CONCLUSION Radio imaging technology has been successfully applied to detect a tumor in the earliest stage. For this purpose, the assessment of useful agents to diagnose the lesion is necessary. Developing peptide radiopharmaceuticals using spacers can improve in vitro and in vivo behavior of radiotracers leading to better noninvasive detection and monitoring of tumor growth.
Collapse
Affiliation(s)
- Arezou M Farahani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fariba Maleki
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran
| |
Collapse
|
15
|
Abstract
Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.
Collapse
|
16
|
68Ga-labeled dimeric and trimeric cyclic RGD peptides as potential PET radiotracers for imaging gliomas. Appl Radiat Isot 2019; 148:168-177. [DOI: 10.1016/j.apradiso.2019.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
|
17
|
Gao H, Luo C, Yang G, Du S, Li X, Zhao H, Shi J, Wang F. Improved in Vivo Targeting Capability and Pharmacokinetics of 99mTc-Labeled isoDGR by Dimerization and Albumin-Binding for Glioma Imaging. Bioconjug Chem 2019; 30:2038-2048. [DOI: 10.1021/acs.bioconjchem.9b00323] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes (Basel) 2018; 9:genes9110557. [PMID: 30453533 PMCID: PMC6267108 DOI: 10.3390/genes9110557] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
To date, small molecules and macromolecules, including antibodies, have been the most pursued substances in drug screening and development efforts. Despite numerous favorable features as a drug, these molecules still have limitations and are not complementary in many regards. Recently, peptide-based chemical structures that lie between these two categories in terms of both structural and functional properties have gained increasing attention as potential alternatives. In particular, peptides in a circular form provide a promising scaffold for the development of a novel drug class owing to their adjustable and expandable ability to bind a wide range of target molecules. In this review, we discuss recent progress in methodologies for peptide cyclization and screening and use of bioactive cyclic peptides in various applications.
Collapse
|
19
|
Song YS, Kim JH, Lee BC, Jung JH, Park HS, Kim SE. Biodistribution and Internal Radiation Dosimetry of 99mTc-IDA-D-[c(RGDfK)] 2 (BIK-505), a Novel SPECT Radiotracer for the Imaging of Integrin α vβ 3 Expression. Cancer Biother Radiopharm 2018; 33:396-402. [PMID: 30133309 PMCID: PMC6241326 DOI: 10.1089/cbr.2018.2505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Integrin αvβ3 is a molecular marker for the estimation of tumor angiogenesis. 99mTc-IDA-D-[c(RGDfK)]2 (also known as BIK-505) is a recently developed radiotracer for single-photon emission computed tomography, with good affinity for integrin αvβ3. In this study, the authors investigated the whole-body distribution and internal radiation dosimetry of 99mTc-IDA-D-[c(RGDfK)]2 in elderly human participants. Materials and Methods: Six healthy volunteers underwent whole-body simultaneous anterior and posterior scans, preceded by transmission scans using cobalt-57 flood source, with a dual head gamma camera system, at 0, 1, 2, 4, 8, and 24 h postinjection of 99mTc-IDA-D-[c(RGDfK)]2 (injected radioactivity [mean ± SD] = 388.7 ± 29.3 MBq). Anterior and posterior images were geometrically averaged and attenuation corrected to delineate the regions of interest in the liver, gallbladder, kidneys, urinary bladder, spleen, brain, and large intestine. Radiation dose for each organ and the effective doses (EDs) were estimated using OLINDA/EXM 1.1 software. Results: High radiation doses of renal and biliary excretion tracks such as the urinary bladder wall, upper large intestine, kidneys, liver, and gallbladder wall (19.15 ± 6.84, 19.28 ± 4.78, 15.67 ± 0.90, 9.13 ± 1.71, and 9.09 ± 2.03 μGy/MBq, respectively) were observed. The ED and effective dose equivalent were 5.08 ± 0.53 and 7.11 ± 0.58 μSv/MBq, respectively. Conclusions: Dosimetry results were comparable to other radiolabeled peptides and were considered safe and efficient for clinical usage.
Collapse
Affiliation(s)
- Yoo Sung Song
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine , Seongnam, Republic of Korea
| | - Joong Hyun Kim
- 2 Division of Chemical and Medical Metrology, Center for Ionizing Radiation, Korea Research Institute of Standards and Science , Daejeon, Republic of Korea
| | - Byung Chul Lee
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine , Seongnam, Republic of Korea.,3 Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology , Suwon, Republic of Korea
| | - Jae Ho Jung
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine , Seongnam, Republic of Korea
| | - Hyun Soo Park
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine , Seongnam, Republic of Korea.,4 Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University , Seoul, Republic of Korea
| | - Sang Eun Kim
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine , Seongnam, Republic of Korea.,3 Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology , Suwon, Republic of Korea.,4 Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
20
|
Kajouj S, Marcelis L, Mattiuzzi A, Grassin A, Dufour D, Van Antwerpen P, Boturyn D, Defrancq E, Surin M, De Winter J, Gerbaux P, Jabin I, Moucheron C. Synthesis and photophysical studies of a multivalent photoreactive Ru II-calix[4]arene complex bearing RGD-containing cyclopentapeptides. Beilstein J Org Chem 2018; 14:1758-1768. [PMID: 30112081 PMCID: PMC6071717 DOI: 10.3762/bjoc.14.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Photoactive ruthenium-based complexes are actively studied for their biological applications as potential theragnostic agents against cancer. One major issue of these inorganic complexes is to penetrate inside cells in order to fulfil their function, either sensing the internal cell environment or exert a photocytotoxic activity. The use of lipophilic ligands allows the corresponding ruthenium complexes to passively diffuse inside cells but limits their structural and photophysical properties. Moreover, this strategy does not provide any cell selectivity. This limitation is also faced by complexes anchored on cell-penetrating peptides. In order to provide a selective cell targeting, we developed a multivalent system composed of a photoreactive ruthenium(II) complex tethered to a calix[4]arene platform bearing multiple RGD-containing cyclopentapeptides. Extensive photophysical and photochemical characterizations of this Ru(II)–calixarene conjugate as well as the study of its photoreactivity in the presence of guanosine monophosphate have been achieved. The results show that the ruthenium complex should be able to perform efficiently its photoinduced cytotoxic activity, once incorporated into targeted cancer cells thanks to the multivalent platform.
Collapse
Affiliation(s)
- Sofia Kajouj
- Laboratoire de Chimie Organique et Photochimie, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/08, 1050 Bruxelles, Belgium
| | - Lionel Marcelis
- Laboratoire de Chimie Organique et Photochimie, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/08, 1050 Bruxelles, Belgium.,Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Alice Mattiuzzi
- Laboratoire de Chimie Organique, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/06, 1050 Bruxelles, Belgium
| | - Adrien Grassin
- Université Grenoble Alpes, Département de Chimie Moléculaire UMR CNRS 5250, CS 40700, 38058 Grenoble Cedex 09, France
| | - Damien Dufour
- Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles, Boulevard du Triomphe, Campus de la Plaine, CP205/05, 1050 Bruxelles, Belgium
| | - Pierre Van Antwerpen
- Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles, Boulevard du Triomphe, Campus de la Plaine, CP205/05, 1050 Bruxelles, Belgium
| | - Didier Boturyn
- Université Grenoble Alpes, Département de Chimie Moléculaire UMR CNRS 5250, CS 40700, 38058 Grenoble Cedex 09, France
| | - Eric Defrancq
- Université Grenoble Alpes, Département de Chimie Moléculaire UMR CNRS 5250, CS 40700, 38058 Grenoble Cedex 09, France
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers, University of Mons - UMONS, 20, Place du Parc, B-7000 Mons, Belgium
| | - Julien De Winter
- Organic synthesis and Mass Spectrometry Laboratory, University of Mons - UMONS, Place du Parc 23, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic synthesis and Mass Spectrometry Laboratory, University of Mons - UMONS, Place du Parc 23, B-7000 Mons, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/06, 1050 Bruxelles, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/08, 1050 Bruxelles, Belgium
| |
Collapse
|
21
|
Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about αvβ3 integrins in molecular imaging in oncology? Nucl Med Biol 2018; 62-63:31-46. [DOI: 10.1016/j.nucmedbio.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
22
|
Wang X, Zhang J, Wu H, Li Y, Conti PS, Chen K. PET imaging of Hsp90 expression in pancreatic cancer using a new 64Cu-labeled dimeric Sansalvamide A decapeptide. Amino Acids 2018; 50:897-907. [PMID: 29691700 DOI: 10.1007/s00726-018-2566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90 (Hsp90) plays a vital role in the progress of malignant disease and elevated Hsp90 expression has been reported in pancreatic cancer. In this study, we radiolabeled a dimeric Sansalvamide A derivative (Di-San A1) with 64Cu, and evaluated the feasibility of using 64Cu-Di-San A1 for PET imaging of Hsp90 expression in a mouse model of pancreatic cancer. A macrocyclic chelator NOTA (1,4,7-triazacyclononane-1,4,7-trisacetic acid) was conjugated to Di-San A1. 64Cu-Di-San A1 was successfully prepared in a radiochemical yield > 97% with a radiochemical purity > 98%. 64Cu-Di-San A1 is stable in PBS and mouse serum with > 92% of parent probe intact after 4 h incubation. The cell binding and uptake revealed that 64Cu-Di-San A1 binds to Hsp90-positive PL45 pancreatic cancer cells, and the binding can be effectively blocked by an Hsp90 inhibitor (17AAG). For microPET study, 64Cu-Di-San A1 shows good in vivo performance in terms of tumor uptake in nude mice bearing PL45 tumors. The Hsp90-specific tumor activity accumulation of 64Cu-Di-San A1 was further demonstrated by significant reduction of PL45 tumor uptake with a pre-injected blocking dose of 17AAG. The ex vivo PET imaging and biodistribution results were consistent with the quantitative analysis of PET imaging, demonstrating good tumor-to-muscle ratio (5.35 ± 0.46) of 64Cu-Di-San A1 at 4 h post-injection in PL45 tumor mouse xenografts. 64Cu-Di-San A1 allows PET imaging of Hsp90 expression in PL45 tumors, which may provide a non-invasive method to quantitatively characterize Hsp90 expression in pancreatic cancer.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.,Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jun Zhang
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hubing Wu
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yumin Li
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China. .,General Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
23
|
Hedhli J, Slania SLL, Płoska A, Czerwinski A, Konopka CJ, Wozniak M, Banach M, Dobrucki IT, Kalinowski L, Dobrucki LW. Evaluation of a dimeric-cRGD peptide for targeted PET-CT imaging of peripheral angiogenesis in diabetic mice. Sci Rep 2018; 8:5401. [PMID: 29599497 PMCID: PMC5876368 DOI: 10.1038/s41598-018-23372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/06/2018] [Indexed: 11/09/2022] Open
Abstract
The α V β3 integrin plays an important role in many physiological functions and pathological disorders. α V β3 is minimally expressed in normal quiescent endothelial cells, but significantly upregulated during neovascularization. In this study, we evaluated a 64Cu-labeled dimeric cRGD tracer targeted at α V β3 integrin and report its applicability to assess peripheral angiogenesis in diabetes mellitus (DM). We established a murine model of type-1 DM characterized by elevated glucose, glycated serum protein (GSP), and glycated hemoglobin A1c (HbA1c). We demonstrated that our imaging probe is specific to α V β3 integrin under both normo- and hyperglycemic conditions. We found that the analysis of in vivo PET-CT images correlated well with gamma well counting (GWC). Both GWC and PET-CT imaging demonstrated increased uptake of 64Cu-NOTA-PEG4-cRGD2 in the ischemic hindlimb in contrast to non-ischemic control. GWC of the distal ischemic tissue from DM mice showed significantly lower probe accumulation than in non-DM mice. The immunofluorescence staining of the ischemic tissues showed a 3-fold reduction in CD31 and 4-fold reduction in the α V β3 expression in DM vs. non-DM animals. In conclusion, we successfully demonstrated that diabetes-associated reductions in peripheral angiogenesis can be non-invasively detected with PET-CT imaging using targeted dimeric-cRGD probe.
Collapse
Affiliation(s)
- Jamila Hedhli
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephanie L L Slania
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Agata Płoska
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
| | | | - Christian J Konopka
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Lawrence W Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland.
| |
Collapse
|
24
|
Ma W, Fu F, Zhu J, Huang R, Zhu Y, Liu Z, Wang J, Conti PS, Shi X, Chen K. 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. NANOSCALE 2018; 10:6113-6124. [PMID: 29547220 PMCID: PMC7473786 DOI: 10.1039/c7nr09269e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the use of multifunctional folic acid (FA)-modified dendrimers as a platform to radiolabel with 64Cu for PET imaging of folate receptor (FR)-expressing tumors. In this study, amine-terminated generation 5 (G5) poly(amidoamine) dendrimers were sequentially modified with fluorescein isothiocyanate (FI), FA, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), followed by acetylation of the remaining dendrimer terminal amines. The as-formed multifunctional DOTA-FA-FI-G5·NHAc dendrimers were then radiolabeled with 64Cu via the DOTA chelation. We show that the FA modification renders the dendrimers with targeting specificity to cancer cells overexpressing FR in vitro. Importantly, the radiolabeled 64Cu-DOTA-FA-FI-G5·NHAc dendrimers can be used as a nanoprobe for specific targeting of FR-overexpressing cancer cells in vitro and targeted microPET imaging of the FR-expressing xenografted tumor model in vivo. The developed 64Cu-labeled multifunctional dendrimeric nanoprobe may hold great promise to be used for targeted PET imaging of different types of FR-expressing cancer.
Collapse
Affiliation(s)
- Wenhui Ma
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. and Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fanfan Fu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Rui Huang
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Yizhou Zhu
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Zhenwei Liu
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Peter S Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China. and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
25
|
Hedhli J, Czerwinski A, Schuelke M, Płoska A, Sowinski P, Hood LL, Mamer SB, Cole JA, Czaplewska P, Banach M, Dobrucki IT, Kalinowski L, Imoukhuede P, Dobrucki LW. Synthesis, Chemical Characterization and Multiscale Biological Evaluation of a Dimeric-cRGD Peptide for Targeted Imaging of α V β 3 Integrin Activity. Sci Rep 2017; 7:3185. [PMID: 28600529 PMCID: PMC5466598 DOI: 10.1038/s41598-017-03224-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Cyclic peptides containing the Arg-Gly-Asp (RGD) sequence have been shown to specifically bind the angiogenesis biomarker αVβ3 integrin. We report the synthesis, chemical characterization, and biological evaluation of two novel dimeric cyclic RGD-based molecular probes for the targeted imaging of αVβ3 activity (a radiolabeled version, 64Cu-NOTA-PEG4-cRGD2, for PET imaging, and a fluorescent version, FITC-PEG4-cRGD2, for in vitro work). We investigated the performance of this probe at the receptor, cell, organ, and whole-body levels, including its use to detect diabetes associated impairment of ischemia-induced myocardial angiogenesis. Both versions of the probe were found to be stable, demonstrated fast receptor association constants, and showed high specificity for αVβ3 in HUVECs (Kd ~ 35 nM). Dynamic PET-CT imaging indicated rapid blood clearance via kidney filtration, and accumulation within αVβ3-positive infarcted myocardium. 64Cu-NOTA-PEG4-cRGD2 demonstrated a favorable biodistribution, slow washout, and excellent performance with respect to the quality of the PET-CT images obtained. Importantly, the ratio of probe uptake in infarcted heart tissue compared to normal tissue was significantly higher in non-diabetic rats than in diabetic ones. Overall, our probes are promising agents for non-invasive quantitative imaging of αVβ3 expression, both in vitro and in vivo.
Collapse
Affiliation(s)
- Jamila Hedhli
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Matthew Schuelke
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Agata Płoska
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.,Department of Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Paweł Sowinski
- NMR Laboratory, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Lukas La Hood
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Spencer B Mamer
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Cole
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Princess Imoukhuede
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lawrence W Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA. .,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
26
|
Summer D, Grossrubatscher L, Petrik M, Michalcikova T, Novy Z, Rangger C, Klingler M, Haas H, Kaeopookum P, von Guggenberg E, Haubner R, Decristoforo C. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding. Bioconjug Chem 2017; 28:1722-1733. [PMID: 28462989 PMCID: PMC5481817 DOI: 10.1021/acs.bioconjchem.7b00182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting.
Collapse
Affiliation(s)
- Dominik Summer
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Leo Grossrubatscher
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc , Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Tereza Michalcikova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc , Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc , Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Maximilian Klingler
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Medical University Innsbruck , Innrain 80-82, A-6020 Innsbruck, Austria
| | - Piriya Kaeopookum
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria.,Ministry of Science, Technology (MOST), Thailand Institute of Nuclear Technology (TINT) , Nakhonnayok 26120, Thailand
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
27
|
Xu D, Zhao ZQ, Chen ST, Yang Y, Fang W, Liu S. Iminodiacetic acid as bifunctional linker for dimerization of cyclic RGD peptides. Nucl Med Biol 2017; 48:1-8. [PMID: 28157625 DOI: 10.1016/j.nucmedbio.2017.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
|
28
|
Imberti C, Terry SYA, Cullinane C, Clarke F, Cornish GH, Ramakrishnan NK, Roselt P, Cope AP, Hicks RJ, Blower PJ, Ma MT. Enhancing PET Signal at Target Tissue in Vivo: Dendritic and Multimeric Tris(hydroxypyridinone) Conjugates for Molecular Imaging of α vβ 3 Integrin Expression with Gallium-68. Bioconjug Chem 2017; 28:481-495. [PMID: 27966893 PMCID: PMC5314429 DOI: 10.1021/acs.bioconjchem.6b00621] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Tris(hydroxypyridinone) chelators conjugated to peptides can rapidly complex the positron-emitting isotope gallium-68 (68Ga) under mild conditions, and the resulting radiotracers can delineate peptide receptor expression at sites of diseased tissue in vivo. We have synthesized a dendritic bifunctional chelator containing nine 1,6-dimethyl-3-hydroxypyridin-4-one groups (SCN-HP9) that can coordinate up to three Ga3+ ions. This derivative has been conjugated to a trimeric peptide (RGD3) containing three peptide groups that target the αvβ3 integrin receptor. The resulting dendritic compound, HP9-RGD3, can be radiolabeled in 97% radiochemical yield at a 3-fold higher specific activity than its homologues HP3-RGD and HP3-RGD3 that contain only a single metal binding site. PET scanning and biodistribution studies show that [68Ga(HP9-RGD3)] demonstrates higher receptor-mediated tumor uptake in animals bearing U87MG tumors that overexpress αvβ3 integrin than [68Ga(HP3-RGD)] and [68Ga(HP3-RGD3)]. However, concomitant nontarget organ retention of [68Ga(HP9-RGD3)] results in low tumor to nontarget organ contrast in PET images. On the other hand, the trimeric peptide homologue containing a single tris(hydroxypyridinone) chelator, [68Ga(HP3-RGD3)], clears nontarget organs and exhibits receptor-mediated uptake in mice bearing tumors and in mice with induced rheumatoid arthritis. PET imaging with [68Ga(HP3-RGD3)] enables clear delineation of αvβ3 integrin receptor expression in vivo.
Collapse
Affiliation(s)
- Cinzia Imberti
- King’s College
London, Division of Imaging
Sciences and Biomedical Engineering, Fourth
Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Samantha Y. A. Terry
- King’s College
London, Division of Imaging
Sciences and Biomedical Engineering, Fourth
Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Carleen Cullinane
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fiona Clarke
- King’s College
London, Academic Department of Rheumatology,
Centre for Molecular and Cellular Biology of Inflammation, Faculty
of Life Sciences and Medicine, London SE1 1UL, United Kingdom
| | - Georgina H. Cornish
- King’s College
London, Academic Department of Rheumatology,
Centre for Molecular and Cellular Biology of Inflammation, Faculty
of Life Sciences and Medicine, London SE1 1UL, United Kingdom
| | - Nisha K. Ramakrishnan
- King’s College
London, Division of Imaging
Sciences and Biomedical Engineering, Fourth
Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Peter Roselt
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Andrew P. Cope
- King’s College
London, Academic Department of Rheumatology,
Centre for Molecular and Cellular Biology of Inflammation, Faculty
of Life Sciences and Medicine, London SE1 1UL, United Kingdom
| | - Rodney J. Hicks
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philip J. Blower
- King’s College
London, Division of Imaging
Sciences and Biomedical Engineering, Fourth
Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Michelle T. Ma
- King’s College
London, Division of Imaging
Sciences and Biomedical Engineering, Fourth
Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
29
|
Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev 2017; 110-111:38-51. [PMID: 27327937 PMCID: PMC5235994 DOI: 10.1016/j.addr.2016.06.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/31/2022]
Abstract
Selective receptor-targeting peptide based agents have attracted considerable attention in molecular imaging of tumor cells that overexpress corresponding peptide receptors due to their unique properties such as rapid clearance from circulation as well as high affinities and specificities for their targets. The rapid growth of chemistry modification techniques has enabled the design and development of various peptide-based imaging agents with enhanced metabolic stability, favorable pharmacokinetics, improved binding affinity and selectivity, better imaging ability as well as biosafety. Among them, many radiolabeled peptides have already been translated into the clinic with impressive diagnostic accuracy and sensitivity. This review summarizes the current status in the development of peptide-based imaging agents with an emphasis on the consideration of probe design including the identification of suitable peptides, the chemical modification of probes and the criteria for clinical translation. Specific examples in clinical trials have been provided as well with respect to their diagnostic capability compared with other FDA approved imaging agents.
Collapse
Affiliation(s)
- Xiaolian Sun
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yesen Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ting Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
30
|
Lee JW, Lee YJ, Shin UC, Kim SW, Kim BI, Lee KC, Kim JY, Park JA. Improved Pharmacokinetics Following PEGylation and Dimerization of a c(RGD-ACH-K) Conjugate Used for Tumor Positron Emission Tomography Imaging. Cancer Biother Radiopharm 2016; 31:295-301. [PMID: 27754748 DOI: 10.1089/cbr.2016.2036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Improving the in vivo pharmacokinetics (PK) of positron emission tomography (PET) radiotracers is of critical importance to tumor diagnosis and therapy. In the case of peptide-based radiotracers, the modification and addition of a linker or spacer functional group often offer faster in vivo pharmacokinetic behavior. In this study, the authors introduced two new PEGlyated dimeric c(RGD-ACH-K) conjugates, in which an aminocyclohexane carboxylic acid (ACH) is inserted into the ring chain of the cyclic RGD peptides, with a common bifunctional chelator (DOTA or NOTA) used for labeling with radiometals (including 68Ga and 64Cu). The addition of polyethylene glycol (PEG) and dimerization of c(RGD-ACH-K) affected the PK of the renal system and the tumor-targeting ability, relative to unmodified molecule. As a result, both 64Cu-DOTA-E[c(RGD-ACH-K)]2 (complex 1) and 64Cu-NOTA-E[c(RGD-ACH-K)]2 (complex 2) exhibited specific tumor-targeting properties relative to tumor-blocking control group, most likely resulting from improved in vivo tumor imaging. The in vivo tumor-to-blood ratio of the 64Cu(NOTA) complex shows better PET imaging than that of the 64Cu(DOTA) complex, which should lead to improved dosimetry and increased suitability for noninvasive monitoring of tumor growth or tumor-targeted radionuclide therapy.
Collapse
Affiliation(s)
- Ji Woong Lee
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea.,2 Department of Integrated Biomedical and Life Science, Korea University , Seoul, Republic of Korea
| | - Yong Jin Lee
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Un Chol Shin
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Suhng Wook Kim
- 2 Department of Integrated Biomedical and Life Science, Korea University , Seoul, Republic of Korea
| | - Byung Il Kim
- 3 Department of Nuclear Medicine, Korea Cancer Center Hospital , Seoul, Republic of Korea
| | - Kyo Chul Lee
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Jung Young Kim
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Ji-Ae Park
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| |
Collapse
|
31
|
Jacobson O, Kiesewetter DO, Chen X. Albumin-Binding Evans Blue Derivatives for Diagnostic Imaging and Production of Long-Acting Therapeutics. Bioconjug Chem 2016; 27:2239-2247. [DOI: 10.1021/acs.bioconjchem.6b00487] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Orit Jacobson
- Laboratory
of Molecular Imaging
and Nanomedicine (LOMIN), National Institute of Biomedical Imaging
and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Dale O. Kiesewetter
- Laboratory
of Molecular Imaging
and Nanomedicine (LOMIN), National Institute of Biomedical Imaging
and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging
and Nanomedicine (LOMIN), National Institute of Biomedical Imaging
and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
32
|
Lee JW, Park JA, Lee YJ, Shin UC, Kim SW, Kim BI, Lim SM, An GI, Kim JY, Lee KC. New Glucocyclic RGD Dimers for Positron Emission Tomography Imaging of Tumor Integrin Receptors. Cancer Biother Radiopharm 2016; 31:209-16. [PMID: 27403677 DOI: 10.1089/cbr.2016.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most studies of radiolabeled arginine-glycine-aspartic acid (RGD) peptides have shown in vitro affinity for integrin ανβ3, allowing for the targeting of receptor-positive tumors in vivo. However, major differences have been found in the pharmacokinetic profiles of different radiolabeled RGD peptide analogs. The purposes of this study were to prepare (64)Cu-DOTA-gluco-E[c(RGDfK)]2 (R8), (64)Cu-NOTA-gluco-E[c(RGDfK)]2 (R9), and (64)Cu-NODAGA-gluco-E[c(RGDfK)]2 (R10) and compare their pharmacokinetics and tumor imaging properties using small-animal positron emission tomography (PET). All three compounds were produced with high specific activity within 10 minutes. The IC50 values were similar for all the substances, and their affinities were greater than that of c(RGDyK). R8, R9, and R10 were stable for 24 hours in human and mouse serums and showed high uptake in U87MG tumors with high tumor-to-blood ratios. Compared to the control, a cyclic RGD peptide dimer without glucosamine, R10, showed low uptake in the liver. Because of their good imaging qualities and improved pharmacokinetics, (64)Cu-labeled dimer RGD conjugates (R8, R9, and R10) may have potential applications as PET radiotracers. R9 (NOTA) with highly in vivo stability consequentially showed an improved PET tumor uptake than R8 (DOTA) or R10 (NODAGA).
Collapse
Affiliation(s)
- Ji Woong Lee
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea.,2 Department of Integrated Biomedical and Life Science, Korea University , Seoul, Republic of Korea
| | - Ji-Ae Park
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Yong Jin Lee
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Un Chol Shin
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Suhng Wook Kim
- 2 Department of Integrated Biomedical and Life Science, Korea University , Seoul, Republic of Korea
| | - Byung Il Kim
- 3 Department of Nuclear Medicine, Korea Cancer Center Hospital , Seoul, Republic of Korea
| | - Sang Moo Lim
- 3 Department of Nuclear Medicine, Korea Cancer Center Hospital , Seoul, Republic of Korea
| | - Gwang Il An
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Jung Young Kim
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Kyo Chul Lee
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| |
Collapse
|
33
|
Shi J, Wang F, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. BIOPHYSICS REPORTS 2016; 2:1-20. [PMID: 27819026 PMCID: PMC5071373 DOI: 10.1007/s41048-016-0021-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022] Open
Abstract
The integrin family comprises 24 transmembrane receptors, each a heterodimeric combination of one of 18α and one of 8β subunits. Their main function is to integrate the cell adhesion and interaction with the extracellular microenvironment with the intracellular signaling and cytoskeletal rearrangement through transmitting signals across the cell membrane upon ligand binding. Integrin αvβ3 is a receptor for the extracellular matrix proteins containing arginine–glycine–aspartic (RGD) tripeptide sequence. The αvβ3 is generally expressed in low levels on the epithelial cells and mature endothelial cells, but it is highly expressed in many solid tumors. The αvβ3 levels correlate well with the potential for tumor metastasis and aggressiveness, which make it an important biological target for development of antiangiogenic drugs, and molecular imaging probes for early tumor diagnosis. Over the last decade, many radiolabeled cyclic RGD peptides have been evaluated as radiotracers for imaging tumors by SPECT or PET. Even though they are called “αvβ3-targeted” radiotracers, the radiolabeled cyclic RGD peptides are also able to bind αvβ5, α5β1, α6β4, α4β1, and αvβ6 integrins, which may help enhance their tumor uptake due to the “increased receptor population.” This article will use the multimeric cyclic RGD peptides as examples to illustrate basic principles for development of integrin-targeted radiotracers and focus on different approaches to maximize their tumor uptake and T/B ratios. It will also discuss important assays for pre-clinical evaluations of the integrin-targeted radiotracers, and their potential applications as molecular imaging tools for noninvasive monitoring of tumor metastasis and early detection of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Jiyun Shi
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Fan Wang
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Shuang Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
34
|
Comparison of biological properties of 99mTc-labeled cyclic RGD Peptide trimer and dimer useful as SPECT radiotracers for tumor imaging. Nucl Med Biol 2016; 43:661-669. [PMID: 27556955 DOI: 10.1016/j.nucmedbio.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION This study sought to evaluate a 99mTc-labeled trimeric cyclic RGD peptide (99mTc-4P-RGD3) as the new radiotracer for tumor imaging. The objective was to compare its biological properties with those of 99mTc-3P-RGD2 in the same animal model. METHODS HYNIC-4P-RGD3 was prepared by reacting 4P-RGD3 with excess HYNIC-OSu in the presence of diisopropylethylamine. 99mTc-4P-RGD3 was prepared using a kit formulation, and evaluated for its tumor-targeting capability and biodistribution properties in the BALB/c nude mice with U87MG human glioma xenografts. Planar and SPECT imaging studies were performed in athymic nude mice with U87MG glioma xenografts. For comparison purpose, 99mTc-3P-RGD2 (a αvβ3-targeted radiotracer currently under clinical evaluation for tumor imaging in cancer patients) was also evaluated in the same animal models. Blocking experiments were used to demonstrate the αvβ3 specificity of 99mTc-4P-RGD3. RESULTS 99mTc-4P-RGD3 was prepared with >95% RCP and high specific activity (~200GBq/μmol). 99mTc-4P-RGD3 and 99mTc-3P-RGD2 shared almost identical tumor uptake and similar biodistribution properties. 99mTc-4P-RGD3 had higher uptake than 99mTc-3P-RGD2 in the intestines and kidneys; but it showed better metabolic stability. The U87MG tumors were clearly visualized by SPECT with excellent contrast with 99mTc-4P-RGD3 and 99mTc-3P-RGD2. CONCLUSION Increasing peptide multiplicity from 3P-RGD2 to 4P-RGD3 offers no advantages with respect to the tumor-targeting capability. 99mTc-4P-RGD3 is as good a SPECT radiotracer as 99mTc-3P-RGD2 for imaging αvβ3-positive tumors.
Collapse
|
35
|
Ex-vivo biodistribution and micro-PET/CT imaging of 18F-FDG, 18F-FLT, 18F-FMISO, and 18F-AlF-NOTA-PRGD2 in a prostate tumor-bearing nude mouse model. Nucl Med Commun 2015; 36:914-21. [DOI: 10.1097/mnm.0000000000000339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem Rev 2015; 115:8736-834. [DOI: 10.1021/acs.chemrev.5b00056] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mrituanjay D. Pandey
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - M. Isabel Burguete
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Santiago V. Luis
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
37
|
Liu S. Radiolabeled Cyclic RGD Peptide Bioconjugates as Radiotracers Targeting Multiple Integrins. Bioconjug Chem 2015; 26:1413-38. [PMID: 26193072 DOI: 10.1021/acs.bioconjchem.5b00327] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a requirement for tumor growth and metastasis. The angiogenic process depends on vascular endothelial cell migration and invasion, and is regulated by various cell adhesion receptors. Integrins are such a family of receptors that facilitate the cellular adhesion to and migration on extracellular matrix proteins in the intercellular spaces and basement membranes. Among 24 members of the integrin family, αvβ3 is studied most extensively for its role in tumor angiogenesis and metastasis. The αvβ3 is expressed at relatively low levels on epithelial cells and mature endothelial cells, but it is highly expressed on the activated endothelial cells of tumor neovasculature and some tumor cells. This restricted expression makes αvβ3 an excellent target to develop antiangiogenic drugs and diagnostic molecular imaging probes. Since αvβ3 is a receptor for extracellular matrix proteins with one or more RGD tripeptide sequence, many radiolabeled cyclic RGD peptides have been evaluated as "αvβ3-targeted" radiotracers for tumor imaging over the past decade. This article will use the dimeric and tetrameric cyclic RGD peptides developed in our laboratories as examples to illustrate basic principles for development of αvβ3-targeted radiotracers. It will focus on different approaches to maximize the radiotracer tumor uptake and tumor/background ratios. This article will also discuss some important assays for preclinical evaluations of integrin-targeted radiotracers. In general, multimerization of cyclic RGD peptides increases their integrin binding affinity and the tumor uptake and retention times of their radiotracers. Regardless of their multiplicity, the capability of cyclic RGD peptides to bind other integrins (namely, αvβ5, α5β1, α6β4, α4β1, and αvβ6) is expected to enhance the radiotracer tumor uptake due to the increased integrin population. The results from preclinical and clinical studies clearly show that radiolabeled cyclic RGD peptides (such as (99m)Tc-3P-RGD2, (18)F-Alfatide-I, and (18)F-Alfatide-II) are useful as the molecular imaging probes for early cancer detection and noninvasive monitoring of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shuang Liu
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
38
|
Fan D, Zhang X, Zhong L, Liu X, Sun Y, Zhao H, Jia B, Liu Z, Zhu Z, Shi J, Wang F. (68)Ga-labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of orthotopic human glioblastoma. Bioconjug Chem 2015; 26:1054-1060. [PMID: 25853280 DOI: 10.1021/acs.bioconjchem.5b00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
β-Emitters can produce Cerenkov radiation that is detectable by Cerenkov luminescence imaging (CLI), allowing the combination of PET and CLI with one radiotracer for both tumor diagnosis and visual guidance during surgery. Recently, the clinical feasibility of CLI with the established therapeutic reagent Na(131)I and the PET tracer (18)F-FDG was demonstrated. (68)Ga possesses a higher Cerenkov light output than (18)F and (131)I, which would result in higher sensitivity for CLI and improve the outcome of CLI in clinical applications. However, the research on (68)Ga-based tumor-specific tracers for CLI is limited. In this study, we examined the use of (68)Ga-radiolabeled DOTA-3PRGD2 ((68)Ga-3PRGD2) for dual PET and CLI of orthotopic U87MG human glioblastoma. For this purpose, the Cerenkov efficiencies of (68)Ga and (18)F were measured with the IVIS Spectrum system (PerkinElmer, USA). The CLI signal intensity of (68)Ga was 15 times stronger than that of (18)F. PET and CLI of (68)Ga-3PRGD2 were performed in U87MG human glioblastoma xenografts. Both PET and CLI revealed a remarkable accumulation of (68)Ga-3PRGD2 in the U87MG human glioblastoma xenografts at 1 h p.i. with an extremely low background in the brain when compared with (18)F-FDG. Furthermore, (68)Ga-3PRGD2 was used for dual PET and CLI of orthotopic human glioblastoma. The orthotopic human glioblastoma was clearly visualized by both imaging modalities. In addition, the biodistribution of (68)Ga-3PRGD2 was assessed in normal mice to estimate the radiation dosimetry. The whole-body effective dose is 20.1 ± 3.3 μSv/MBq, which is equal to 3.7 mSv per whole-body PET scan with a 5 mCi injection dose. Thus, (68)Ga-3PRGD2 involves less radiation exposure in patients when compared with (18)F-FDG (7.0 mSv). The use of (68)Ga-3PRGD2 in dual PET and CLI shows great promise for tumor diagnosis and image-guided surgery.
Collapse
Affiliation(s)
| | | | | | | | - Yi Sun
- §Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing 100857, China
| | | | | | | | - Zhaohui Zhu
- §Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing 100857, China
| | - Jiyun Shi
- ∥Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Wang
- ∥Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
39
|
Evaluation of two novel ⁶⁴Cu-labeled RGD peptide radiotracers for enhanced PET imaging of tumor integrin αvβ₃. Eur J Nucl Med Mol Imaging 2015; 42:1859-68. [PMID: 26016906 DOI: 10.1007/s00259-015-3085-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Our goal was to demonstrate that suitably derivatized monomeric RGD peptide-based PET tracers, targeting integrin αvβ3, may offer advantages in image contrast, time for imaging, and low uptake in nontarget tissues. METHODS Two cyclic RGDfK derivatives, (PEG)2-c(RGDfK) and PEG4-SAA4-c(RGDfK), were constructed and conjugated to NOTA for (64)Cu labeling. Their integrin αvβ3-binding properties were determined via a competitive cell binding assay. Mice bearing U87MG tumors were intravenously injected with each of the (64)Cu-labeled peptides, and PET scans were acquired during the first 30 min, and 2 and 4 h after injection. Blocking and ex vivo biodistribution studies were carried out to validate the PET data and confirm the specificity of the tracers. RESULTS The IC50 values of NOTA-(PEG)2-c(RGDfK) and NOTA-PEG4-SAA4-c(RGDfK) were 444 ± 41 nM and 288 ± 66 nM, respectively. Dynamic PET data of (64)Cu-NOTA-(PEG)2-c(RGDfK) and (64)Cu-NOTA-PEG4-SAA4-c(RGDfK) showed similar circulation t 1/2 and peak tumor uptake of about 4 %ID/g for both tracers. Due to its marked hydrophilicity, (64)Cu-NOTA-PEG4-SAA4-c(RGDfK) provided faster clearance from tumor and normal tissues yet maintained excellent tumor-to-background ratios. Static PET scans at later time-points corroborated the enhanced excretion of the tracer, especially from abdominal organs. Ex vivo biodistribution and receptor blocking studies confirmed the accuracy of the PET data and the integrin αvβ3-specificity of the peptides. CONCLUSION Our two novel RGD-based radiotracers with optimized pharmacokinetic properties allowed fast, high-contrast PET imaging of tumor-associated integrin αvβ3. These tracers may facilitate the imaging of abdominal malignancies, normally precluded by high background uptake.
Collapse
|
40
|
Dash A, Chakraborty S, Pillai MRA, Knapp FFR. Peptide receptor radionuclide therapy: an overview. Cancer Biother Radiopharm 2015; 30:47-71. [PMID: 25710506 DOI: 10.1089/cbr.2014.1741] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) is a site-directed targeted therapeutic strategy that specifically uses radiolabeled peptides as biological targeting vectors designed to deliver cytotoxic levels of radiation dose to cancer cells, which overexpress specific receptors. Interest in PRRT has steadily grown because of the advantages of targeting cellular receptors in vivo with high sensitivity as well as specificity and treatment at the molecular level. Recent advances in molecular biology have not only stimulated advances in PRRT in a sustainable manner but have also pushed the field significantly forward to several unexplored possibilities. Recent decades have witnessed unprecedented endeavors for developing radiolabeled receptor-binding somatostatin analogs for the treatment of neuroendocrine tumors, which have played an important role in the evolution of PRRT and paved the way for the development of other receptor-targeting peptides. Several peptides targeting a variety of receptors have been identified, demonstrating their potential to catalyze breakthroughs in PRRT. In this review, the authors discuss several of these peptides and their analogs with regard to their applications and potential in radionuclide therapy. The advancement in the availability of combinatorial peptide libraries for peptide designing and screening provides the capability of regulating immunogenicity and chemical manipulability. Moreover, the availability of a wide range of bifunctional chelating agents opens up the scope of convenient radiolabeling. For these reasons, it would be possible to envision a future where the scope of PRRT can be tailored for patient-specific application. While PRRT lies at the interface between many disciplines, this technology is inextricably linked to the availability of the therapeutic radionuclides of required quality and activity levels and hence their production is also reviewed.
Collapse
Affiliation(s)
- Ashutosh Dash
- 1 Isotope Production and Applications Division, Bhabha Atomic Research Centre , Mumbai, India
| | | | | | | |
Collapse
|
41
|
Prasannan A, Debele TA, Tsai HC, Chao CC, Lin CP, Hsiue GH. Synthesis and evaluation of the targeted binding of RGD-containing PEGylated-PEI/DNA polyplex micelles as radiotracers for a tumor-targeting imaging probe. RSC Adv 2015. [DOI: 10.1039/c5ra18644g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyplex micelles with pEGFP and RGD-modified poly(ethylene glycol)-grafted polyethylenimine (E[c(RGDyK)]2-PEG-g-PEI) and were labeled with 99mTc for the in vivo study as proficient probes for molecular imaging.
Collapse
Affiliation(s)
- Adhimoorthy Prasannan
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
- Department of Chemical Engineering/R&D Center for Membrane Technology
| | - Tilahun Ayane Debele
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Chiz-Cheng Chao
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung
- Republic of China
| | - Che-Ping Lin
- Department of Chemical Engineering
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Ging-Ho Hsiue
- Department of Chemical Engineering
- National Tsing Hua University
- Hsinchu
- Republic of China
- Department of Chemical Engineering/R&D Center for Membrane Technology
| |
Collapse
|
42
|
Guo J, Lang L, Hu S, Guo N, Zhu L, Sun Z, Ma Y, Kiesewetter DO, Niu G, Xie Q, Chen X. Comparison of three dimeric 18F-AlF-NOTA-RGD tracers. Mol Imaging Biol 2014; 16:274-83. [PMID: 23982795 DOI: 10.1007/s11307-013-0668-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE RGD peptide-based radiotracers are well established as integrin αvβ3 imaging probes to evaluate tumor angiogenesis or tissue remodeling after ischemia or infarction. In order to optimize the labeling process and pharmacokinetics of the imaging probes, we synthesized three dimeric RGD peptides with or without PEGylation and performed in vivo screening. PROCEDURES Radiolabeling was achieved through the reaction of F-18 aluminum-fluoride complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Three imaging probes were synthesized as (18)F-AlF-NOTA-E[c(RGDfK)]2, (18)F-AlF-NOTA-PEG4-E[c(RGDfK)]2, and (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2. The receptor binding affinity was determined by competitive cell binding assay, and the stability was evaluated by mouse serum incubation. Tumor uptake and whole body distribution of the three tracers were compared through direct tissue sampling and PET quantification of U87MG tumor-bearing mice. RESULTS All three compounds remained intact after 120 min incubation with mouse serum. They all had a rapid and relatively high tracer uptake in U87MG tumors with good target-to-background ratios. Compared with the other two tracers, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 had the highest tumor uptake and the lowest accumulation in the liver. The integrin receptor specificity was confirmed by co-injection of unlabeled dimeric RGD peptide. CONCLUSION The rapid one-step radiolabeling strategy by the complexation of (18)F-aluminum fluoride with NOTA-peptide conjugates was successfully applied to synthesize three dimeric RGD peptides. Among the three probes developed, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 with relatively low liver uptake and high tumor accumulation appears to be a promising candidate for further translational research.
Collapse
Affiliation(s)
- Jinxia Guo
- Department of Biomedical Engineering, and Wuhan National Laboratory for Optoelectronics(WNLO), Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guo H, Miao Y. Introduction of an 8-aminooctanoic acid linker enhances uptake of 99mTc-labeled lactam bridge-cyclized α-MSH peptide in melanoma. J Nucl Med 2014; 55:2057-63. [PMID: 25453052 DOI: 10.2967/jnumed.114.145896] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The purpose of this study was to examine the effects of amino acid, hydrocarbon, and polyethylene glycol (PEG) linkers on the melanoma targeting and imaging properties of (99m)Tc-labeled lactam bridge-cyclized HYNIC-linker-Nle-CycMSHhex (hydrazinonicotinamide-linker-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2) peptides. METHODS Four novel peptides (HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex) were designed and synthesized. The melanocortin-1 receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The biodistribution of (99m)Tc(ethylenediaminediacetic acid [EDDA])-HYNIC-GGGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-GSGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-PEG2Nle-CycMSHhex, and (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h after injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were further examined because of its high melanoma uptake. RESULTS The inhibitory concentrations of 50% (IC50) for HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex were 0.7 ± 0.1, 0.8 ± 0.09, 0.4 ± 0.08, and 0.3 ± 0.06 nM, respectively, in B16/F1 melanoma cells. Among these four (99m)Tc-labeled peptides, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex displayed the highest melanoma uptake (22.3 ± 1.72 percentage injected dose/g) at 2 h after injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited high tumor-to-normal-organ uptake ratios except for the kidneys. The tumor-to-kidney uptake ratios of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were 3.29, 3.63, and 6.78 at 2, 4, and 24 h, respectively, after injection. The melanoma lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2 h after injection. CONCLUSION High melanoma uptake and fast urinary clearance of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex highlighted its potential for metastatic melanoma detection in the future.
Collapse
Affiliation(s)
- Haixun Guo
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Yubin Miao
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico; and Department of Dermatology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
44
|
Zheng Y, Ji S, Czerwinski A, Valenzuela F, Pennington M, Liu S. FITC-conjugated cyclic RGD peptides as fluorescent probes for staining integrin αvβ3/αvβ5 in tumor tissues. Bioconjug Chem 2014; 25:1925-41. [PMID: 25312799 PMCID: PMC4240344 DOI: 10.1021/bc500452y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
This study sought to evaluate FITC-conjugated
cyclic RGD peptides
(FITC-RGD2, FITC-3P-RGD2, and FITC-Galacto-RGD2) as fluorescent probes for in vitro assays of integrin αvβ3/αvβ5 expression in tumor tissues. FITC-RGD2, FITC-3P-RGD2, and FITC-Galacto-RGD2 were prepared, and their
integrin αvβ3/αvβ5 binding affinity was determined using the displacement
assay against 125I-echistatin bound to U87MG glioma cells.
IC50 values of FITC-Galacto-RGD2, FITC-3P-RGD2, and FITC-RGD2 were calculated to be 28 ±
8, 32 ± 7, and 89 ± 17 nM, respectively. The integrin αvβ3/αvβ5 binding affinity followed a general trend: FITC-Galacto-RGD2 ∼ FITC-3P-RGD2 > FITC-RGD2.
The xenografted tumor-bearing models were established by subcutaneous
injection of 5 × 106 tumor cells into shoulder flank
(U87MG, A549, HT29, and PC-3) or mammary fat pad (MDA-MB-435) of each
athymic nude mouse. Three to six weeks after inoculation, the tumor
size was 0.1–0.3 g. Tumors were harvested for integrin αvβ3/αvβ5 staining, as well as hematoxylin and eosin (H&E) staining. Six
human carcinoma tissues (colon cancer, pancreatic cancer, lung adenocarcinoma,
squamous cell lung cancer, gastric cancer, and esophageal cancer)
were obtained from recently diagnosed cancer patients. Human carcinoma
slides were deparaffinized in xylene, rehydrated with ethanol, and
then used for integrin αvβ3/αvβ5 staining, as well as H&E staining.
It was found that the tumor staining procedures with FITC-conjugated
cyclic RGD peptides were much simpler than those with the fluorescence-labeled
integrin αvβ3 antibodies. Since
FITC-RGD2, FITC-3P-RGD2, and FITC-Galacto-RGD2 were able to co-localize with the fluorescence-labeled integrin
β3 antibody, their tumor localization and tumor cell
binding are integrin αvβ3-specific.
Quantification of the fluorescent intensity in five xenografted tumors
(U87MG, MDA-MB-435, A549, HT29, and PC-3) and six human carcinoma
tissues revealed an excellent linear relationship between the relative
integrin αvβ3/αvβ5 expression levels determined with FITC-Galacto-RGD2 and those obtained with the fluorescence-labeled anti-human
integrin β3 antibody. There was also an excellent
linear relationship between the tumor uptake (%ID/g) of 99mTc-3P-RGD2 (an integrin αvβ3/αvβ5-targeted radiotracer)
and the relative integrin αvβ3/αvβ5 expression levels from the quantification
of fluorescent intensity in the tumor tissues stained with FITC-Galacto-RGD2. These results suggest that FITC-conjugated cyclic RGD peptides
might be useful to correlate the in vitro findings with the in vivo
imaging data from an integrin αvβ3/αvβ5-targeted radiotracer. The
results from this study clearly showed that the FITC-conjugated cyclic
RGD peptides (particularly FITC-3P-RGD2 and FITC-Galacto-RGD2) are useful fluorescent probes for assaying relative integrin
αvβ3/αvβ5 expression levels in tumor tissues.
Collapse
Affiliation(s)
- Yumin Zheng
- Department of Nuclear Medicine, China-Japan Friendship Hospital , Beijing, 100029, China
| | | | | | | | | | | |
Collapse
|
45
|
Zheng Y, Ji S, Tomaselli E, Yang Y, Liu S. Comparison of biological properties of (111)In-labeled dimeric cyclic RGD peptides. Nucl Med Biol 2014; 42:137-45. [PMID: 25459111 DOI: 10.1016/j.nucmedbio.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION In this study two (111)In-labeled dimeric cyclic RGD peptides, (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2), were evaluated as radiotracers for breast tumor imaging. The objective was to evaluate the impact of SAA, PEG2 and 1,2,3-triazole linkers as compare to PEG4 on the tumor uptake and excretion kinetics of (111)In radiotracers. METHODS DOTA-Galacto-RGD2 was prepared by conjugation of Galacto-RGD2 with DOTA-OSu in the presence of diisopropylethylamine. Its integrin αvβ3 binding affinity was determined using a whole-cell displacement assay against (125)I-echistatin bound to U87MG glioma cells, and was compared with those of c(RGDfK), DOTA-3P-RGD2 and DOTA-3P-RGK2 (a nonsense peptide conjugate with "scrambled" RGK sequences). (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) were prepared and evaluated for their tumor-targeting capability and biodistribution properties in athymic nude mice bearing MDA-MB-435 breast tumor xenografts. Planar imaging studies were performed to demonstrate the utility of (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) for breast tumor imaging. RESULTS IC50 values of DOTA-Galacto-RGD2, DOTA-3P-RGD2, and DOTA-3P-RGK2 were calculated to be 27±2, 29±4, 596±48nM, respectively. The tumor uptake values of (111)In(DOTA-Galacto-RGD2) (6.79±0.98, 6.56±0.56, 4.17±0.61 and 1.09±0.13 %ID/g at 1, 4, 24 and 72hours p.i., respectively) were almost identical to those of (111)In(DOTA-3P-RGD2) (6.17±1.65, 5.94±0.84, 3.40±0.50 and 0.99±0.20 %ID/g, respectively). (111)In(DOTA-Galacto-RGD2) had a faster clearance from blood and muscle than (111)In(DOTA-3P-RGD2), leading to higher tumor/blood and tumor/muscle ratios. (111)In(DOTA-3P-RGD2) had lower liver uptake and better tumor/liver ratios than (111)In(DOTA-Galacto-RGD2). The tumor uptake of (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) was both integrin αvβ3 and RGD-specific. Imaging data suggest that (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) are useful as radiotracers for imaging integrin αvβ3-positive breast tumors. CONCLUSION The results from this study suggest that replacing PEG4 linkers between two RGD moieties with a pair of SAA, PEG2 and 1,2,3-triazole groups has little impact on integrin αvβ3 binding affinity and tumor uptake of (111)In-labeled dimeric cyclic RGD peptides. Despite the subtle differences in their excretion kinetics from noncancerous tissues, (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) are useful radiotracers for imaging integrin αvβ3-positive breast tumors.
Collapse
Affiliation(s)
- Yumin Zheng
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; School of Health Sciences, Purdue University, IN 47907, USA
| | - Shundong Ji
- School of Health Sciences, Purdue University, IN 47907, USA
| | | | - Yong Yang
- School of Health Sciences, Purdue University, IN 47907, USA
| | - Shuang Liu
- School of Health Sciences, Purdue University, IN 47907, USA.
| |
Collapse
|
46
|
Stott Reynolds TJ, Schehr R, Liu D, Xu J, Miao Y, Hoffman TJ, Rold TL, Lewis MR, Smith CJ. Characterization and evaluation of DOTA-conjugated Bombesin/RGD-antagonists for prostate cancer tumor imaging and therapy. Nucl Med Biol 2014; 42:99-108. [PMID: 25459113 DOI: 10.1016/j.nucmedbio.2014.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Here we present the metallation, characterization, in vivo and in vitro evaluations of dual-targeting, peptide-based radiopharmaceuticals with utility for imaging and potentially treating prostate tumors by virtue of their ability to target the αVβ3 integrin or the gastrin releasing peptide receptor (GRPr). METHODS [RGD-Glu-6Ahx-RM2] (RGD: Arg-Gly-Asp; Glu: glutamic acid; 6-Ahx: 6-amino hexanoic acid; RM2: (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2)) was conjugated to a DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) bifunctional chelator (BFCA) purified via reversed-phase high-performance liquid chromatography (RP-HPLC), characterized by electrospray ionization-mass spectrometry (ESI-MS), and radiolabeled with (111)In or (177)Lu. Natural-metallated compounds were assessed for binding affinity for the αVβ3 integrin or GRPr in human glioblastoma U87-MG and prostate PC-3 cell lines and stability prior to in vivo evaluation in normal CF-1 mice and SCID mice xenografted with PC-3 cells. RESULTS Competitive displacement binding assays with PC-3 and U87-MG cells revealed high to moderate binding affinity for the GRPr or the αVβ3 integrin (IC50 range of 5.39±1.37 nM to 9.26±0.00 nM in PC-3 cells, and a range of 255±47 nM to 321±85 nM in U87-MG cells). Biodistribution studies indicated high tumor uptake in PC-3 tumor-bearing mice (average of 7.40±0.53% ID/g at 1h post-intravenous injection) and prolonged retention of tracer (mean of 4.41±0.91% ID/g at 24h post-intravenous injection). Blocking assays corroborated the specificity of radioconjugates for each target. Micro-single photon emission computed tomography (microSPECT) confirmed favorable radiouptake profiles in xenografted mice at 20h post-injection. CONCLUSIONS [RGD-Glu-[(111)In-DO3A]-6-Ahx-RM2] and [RGD-Glu-[(177)Lu- DO3A]-6-Ahx-RM2] show favorable pharmacokinetic and radiouptake profiles, meriting continued evaluation for molecular imaging in murine U87-MG/PC-3 xenograft models and radiotherapy studies with (177)Lu and (90)Y conjugates. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE These heterovalent, peptide-targeting ligands perform comparably with many mono- and multivalent conjugates with the potential benefit of increased sensitivity for detecting cancer cells exhibiting differential expression of target receptors.
Collapse
Affiliation(s)
- Tamila J Stott Reynolds
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Veterinary Pathobiology, Comparative Medicine Program, University of Missouri College of Veterinary Medicine, Columbia, MO, United States, 65211.
| | - Rebecca Schehr
- Veterinary Research Scholars Program, University of Missouri College of Veterinary Medicine, Columbia, MO, United States, 65211
| | - Dijie Liu
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Radiology, University of Missouri School of Medicine, Columbia, MO, United States, 65211
| | - Jingli Xu
- College of Pharmacy, University of New Mexico, Albuquerque, NM, United States, 87131
| | - Yubin Miao
- College of Pharmacy, University of New Mexico, Albuquerque, NM, United States, 87131; Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM, United States, 87131; Department of Dermatology, University of New Mexico, Albuquerque, NM, United States, 87131
| | - Timothy J Hoffman
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, United States, 65211; Department of Chemistry, University of Missouri, Columbia, MO, United States, 65211
| | - Tammy L Rold
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, United States, 65211
| | - Michael R Lewis
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Radiology, University of Missouri School of Medicine, Columbia, MO, United States, 65211
| | - Charles J Smith
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Radiology, University of Missouri School of Medicine, Columbia, MO, United States, 65211; University of Missouri Research Reactor Center, University of Missouri, Columbia, MO, United States, 65211.
| |
Collapse
|
47
|
Pandya DN, Bhatt N, An GI, Ha YS, Soni N, Lee H, Lee YJ, Kim JY, Lee W, Ahn H, Yoo J. Propylene Cross-Bridged Macrocyclic Bifunctional Chelator: A New Design for Facile Bioconjugation and Robust 64Cu Complex Stability. J Med Chem 2014; 57:7234-43. [DOI: 10.1021/jm500348z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Darpan N. Pandya
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Nikunj Bhatt
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Gwang Il An
- Molecular
Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Yeong Su Ha
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Nisarg Soni
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Hochun Lee
- Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873, South Korea
| | - Yong Jin Lee
- Molecular
Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Jung Young Kim
- Molecular
Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Woonghee Lee
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Heesu Ahn
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Jeongsoo Yoo
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| |
Collapse
|
48
|
Yang Y, Ji S, Liu S. Impact of multiple negative charges on blood clearance and biodistribution characteristics of 99mTc-labeled dimeric cyclic RGD peptides. Bioconjug Chem 2014; 25:1720-9. [PMID: 25144854 PMCID: PMC4166031 DOI: 10.1021/bc500309r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
This
study sought to evaluate the impact of multiple negative charges
on blood clearance kinetics and biodistribution properties of 99mTc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu
in the presence of diisopropylethylamine. Their IC50 values
were determined to be 31 ± 5 and 41 ± 6 nM, respectively,
against 125I-echistatin bound to U87MG glioma cells in
a whole-cell displacement assay. Complexes [99mTc(HYNIC-P6G-RGD2)(tricine)(TPPTS)] (99mTc-P6G-RGD2)
and [99mTc(HYNIC-P6D-RGD2)(tricine)(TPPTS)]
(99mTc-P6D-RGD2) were prepared in high radiochemical
purity (RCP > 95%) and specific activity (37–110 GBq/μmol).
They were evaluated in athymic nude mice bearing U87MG glioma xenografts
for their biodistribution. The most significant difference between 99mTc-P6D-RGD2 and 99mTc-P6G-RGD2 was their blood radioactivity levels and tumor uptake. The
initial blood radioactivity level for 99mTc-P6D-RGD2 (4.71 ± 1.00%ID/g) was ∼5× higher than that
of 99mTc-P6G-RGD2 (0.88 ± 0.05%ID/g), but
this difference disappeared at 60 min p.i. 99mTc-P6D-RGD2 had much lower tumor uptake (2.20–3.11%ID/g) than 99mTc-P6G-RGD2 (7.82–9.27%ID/g) over a 2
h period. Since HYNIC-P6D-RGD2 and HYNIC-P6G-RGD2 shared a similar integrin αvβ3 binding affinity (41 ± 6 nM versus 31 ± 5 nM), the difference
in their blood activity and tumor uptake is most likely related to
the nine negative charges and high protein binding of 99mTc-P6D-RGD2. Despite its low uptake in U87MG tumors, the
tumor uptake of 99mTc-P6D-RGD2 was integrin
αvβ3-specific. SPECT/CT studies
were performed using 99mTc-P6G-RGD2 in athymic
nude mice bearing U87MG glioma and MDA-MB-231 breast cancer xenografts.
The SPECT/CT data demonstrated the tumor-targeting capability of 99mTc-P6G-RGD2, and its tumor uptake depends on
the integrin αvβ3 expression levels
on tumor cells and neovasculature. It was concluded that the multiple
negative charges have a significant impact on the blood clearance
kinetics and tumor uptake of 99mTc-labeled dimeric cyclic
RGD peptides.
Collapse
Affiliation(s)
- Yong Yang
- School of Health Sciences, Purdue University , 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
49
|
Li G, Wang X, Zong S, Wang J, Conti PS, Chen K. MicroPET imaging of CD13 expression using a (64)Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm 2014; 11:3938-46. [PMID: 25054774 DOI: 10.1021/mp500354x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD13 receptor as a tumor vasculature biomarker has attracted great attention in cancer research. Through phage display screening, NGR-containing peptides have been characterized as specific ligands binding to CD13 receptor. In this study, a (64)Cu-labeled dimeric NGR peptide based on sarcophagine cage was synthesized and evaluated for micropositron emission tomography (PET) imaging of CD13 expression in vivo. Macrocyclic chelating agent (sarcophagine cage) was conjugated with two azide moieties, followed by mixing with an alkyne-containing NGR peptide to rapidly provide the Sar-NGR2 peptide by click chemistry. Radiolabeling of Sar-NGR2 with (64)Cu was achieved in >90% decay-corrected yield with radiochemical purity of >99%. The cell uptake study showed that (64)Cu-Sar-NGR2 binds to CD13-positive HT-1080 cells, but not to CD13-negative MCF-7 cells. MicroPET imaging results revealed that (64)Cu-Sar-NGR2 exhibits good tumor uptake in CD13-positive HT-1080 xenografts and significantly lower tumor uptake in CD13-negative MCF-7 xenografts. The CD13-specific binding of (64)Cu-Sar-NGR2 was further verified by significant reduction of tumor uptake in HT-1080 tumor xenografts with coinjection of a nonradiolabeled NGR peptide. The biodistribution results demonstrated good tumor/muscle ratio (8.28 ± 0.37) of (64)Cu-Sar-NGR2 at 24 h pi in HT-1080 tumor xenografts, which is in agreement with the quantitative analysis of microPET imaging. In conclusion, sarcophagine cage has been successfully applied to the construction of a (64)Cu-labeled dimeric NGR-containing peptide. In vitro and in vivo studies demonstrated that (64)Cu-Sar-NGR2 is a promising PET probe for imaging CD13 expression in living mice.
Collapse
Affiliation(s)
- Guoquan Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California , Los Angeles, California 90033, United States
| | | | | | | | | | | |
Collapse
|
50
|
Hernandez R, Valdovinos HF, Yang Y, Chakravarty R, Hong H, Barnhart TE, Cai W. (44)Sc: an attractive isotope for peptide-based PET imaging. Mol Pharm 2014; 11:2954-61. [PMID: 25054618 PMCID: PMC4128785 DOI: 10.1021/mp500343j] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The
overexpression of integrin αvβ3 has
been linked to tumor aggressiveness and metastasis in several
cancer types. Because of its high affinity, peptides containing the
arginine–glycine–aspartic acid (RGD) motif have been
proven valuable vectors for noninvasive imaging of integrin αvβ3 expression and for targeted radionuclide
therapy. In this study, we aim to develop a 44Sc-labeled
RGD-based peptide for in vivo positron emission tomography
(PET) imaging of integrin αvβ3 expression
in a preclinical cancer model. High quality 44Sc (t1/2, 3.97 h; β+ branching ratio,
94.3%) was produced inexpensively in a cyclotron, via proton irradiation
of natural Ca metal targets, and separated by extraction chromatography.
A dimeric cyclic-RGD peptide, (cRGD)2, was conjugated to
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and
radiolabeled with 44Sc in high yield (>90%) and specific
activity (7.4 MBq/nmol). Serial PET imaging of mice bearing U87MG
tumor xenografts showed elevated 44Sc-DOTA-(cRGD)2 uptake in the tumor tissue of 3.93 ± 1.19, 3.07 ± 1.17,
and 3.00 ± 1.25 %ID/g at 0.5, 2, and 4 h postinjection, respectively
(n = 3), which were validated by ex vivo biodistribution experiments. The integrin αvβ3 specificity of the tracer was corroborated, both in vitro and in vivo, by competitive cell
binding and receptor blocking assays. These results parallel previously
reported studies showing similar tumor targeting and pharmacokinetic
profiles for dimeric cRGD peptides labeled with 64Cu or 68Ga. Our findings, together with the advantageous radionuclidic
properties of 44Sc, capitalize on the relevance of this
isotope as an attractive alternative isotope to more established radiometals
for small molecule-based PET imaging, and as imaging surrogate of 47Sc in theranostic applications.
Collapse
Affiliation(s)
- Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | |
Collapse
|