1
|
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken) 2020; 5:e1291. [PMID: 33052041 PMCID: PMC9780431 DOI: 10.1002/cnr2.1291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. RECENT FINDINGS An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. CONCLUSION MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future.
Collapse
Affiliation(s)
- Foram U. Vaidya
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Vinita Mishra
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | | | | | - Ajay Kumar
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| |
Collapse
|
2
|
Harguindey S, Alfarouk K, Polo Orozco J, Fais S, Devesa J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H +-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020; 21:E7475. [PMID: 33050492 PMCID: PMC7589677 DOI: 10.3390/ijms21207475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Department of Pharmacology, Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
3
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|
4
|
Avnet S, Lemma S, Cortini M, Pellegrini P, Perut F, Zini N, Kusuzaki K, Chano T, Grisendi G, Dominici M, De Milito A, Baldini N. Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance. Oncotarget 2018; 7:63408-63423. [PMID: 27566564 PMCID: PMC5325373 DOI: 10.18632/oncotarget.11503] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Current therapy of osteosarcoma (OS), the most common primary bone malignancy, is based on a combination of surgery and chemotherapy. Multidrug resistance mediated by P-glycoprotein (P-gp) overexpression has been previously associated with treatment failure and progression of OS, although other mechanisms may also play a role. We considered the typical acidic extracellular pH (pHe) of sarcomas, and found that doxorubicin (DXR) cytotoxicity is reduced in P-gp negative OS cells cultured at pHe 6.5 compared to standard 7.4. Short-time (24-48 hours) exposure to low pHe significantly increased the number and acidity of lysosomes, and the combination of DXR with omeprazole, a proton pump inhibitor targeting lysosomal acidity, significantly enhanced DXR cytotoxicity. In OS xenografts, the combination treatment of DXR and omeprazole significantly reduced tumor volume and body weight loss. The impaired toxicity of DXR at low pHe was not associated with increased autophagy or lysosomal acidification, but rather, as shown by SNARF staining, with a reversal of the pH gradient at the plasma membrane (ΔpHcm), eventually leading to a reduced DXR intracellular accumulation. Finally, the reversal of ΔpHcm in OS cells promoted resistance not only to DXR, but also to cisplatin and methotrexate, and, to a lesser extent, to vincristine. Altogether, our findings show that, in OS cells, short-term acidosis induces resistance to different chemotherapeutic drugs by a reversal of ΔpHcm, suggesting that buffer therapies or regimens including proton pump inhibitors in combination to low concentrations of conventional anticancer agents may offer novel solutions to overcome drug resistance.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paola Pellegrini
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Francesca Perut
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicoletta Zini
- CNR - National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy.,Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children and Adults, University-hospital of Modena e Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-hospital of Modena e Reggio Emilia, Modena, Italy
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Singh MS, Tammam SN, Shetab Boushehri MA, Lamprecht A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res 2017; 126:2-30. [PMID: 28760489 DOI: 10.1016/j.phrs.2017.07.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
Multidrug resistance (MDR) is associated with a wide range of pathological changes at different cellular and intracellular levels. Nanoparticles (NPs) have been extensively exploited as the carriers of MDR reversing payloads to resistant tumor cells. However, when properly formulated in terms of chemical composition and physicochemical properties, NPs can serve as beyond delivery systems and help overcome MDR even without carrying a load of chemosensitizers or MDR reversing molecular cargos. Whether serving as drug carriers or beyond, a wise design of the nanoparticulate systems to overcome the cellular and intracellular alterations underlying the resistance is imperative. Within the current review, we will initially discuss the cellular changes occurring in resistant cells and how such changes lead to chemotherapy failure and cancer cell survival. We will then focus on different mechanisms through which nanosystems with appropriate chemical composition and physicochemical properties can serve as MDR reversing units at different cellular and intracellular levels according to the changes that underlie the resistance. Finally, we will conclude by discussing logical grounds for a wise and rational design of MDR reversing nanoparticulate systems to improve the cancer therapeutic approaches.
Collapse
Affiliation(s)
- Manu S Singh
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Department of Pharmaceutical Technology, German University of Cairo, Egypt
| | | | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France.
| |
Collapse
|
6
|
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Polo Orozco JD, Devesa P, Rauch C, Orive G, Anitua E, Roger S, Reshkin SJ. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 2017; 43:157-179. [PMID: 28193528 DOI: 10.1016/j.semcancer.2017.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
During the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR). Importantly, there is increasing data showing that different ion channels contribute to mediate significant aspects of cancer pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-centric oncological paradigm into the opposite metabolic and homeostatic acid-base situation found in human neurodegenerative diseases (HNDDs), which opens novel concepts in the prevention and treatment of HNDDs through the utilization of a cohort of neural and non-neural derived hormones and human growth factors.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain.
| | - Daniel Stanciu
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain
| | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain and Scientific Director of Foltra Medical Centre, Teo, Spain
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Pablo Devesa
- Research and Development, Medical Centre Foltra, Teo, Spain
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham,College Road, Sutton Bonington, LE12 5RD, UK
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, 01006 Vitoria, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute ImasD, S.L. C/Jacinto Quincoces, 39, 01007 Vitoria, Spain
| | - Sébastien Roger
- Inserm UMR1069, University François-Rabelais of Tours,10 Boulevard Tonnellé, 37032 Tours, France; Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
7
|
Mathieu V, Chantôme A, Lefranc F, Cimmino A, Miklos W, Paulitschke V, Mohr T, Maddau L, Kornienko A, Berger W, Vandier C, Evidente A, Delpire E, Kiss R. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cell Mol Life Sci 2015; 72:3731-46. [PMID: 25868554 DOI: 10.1007/s00018-015-1902-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/10/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 µM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl(-) and the decreased HCO3 (-) concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na-K-2Cl electroneutral cotransporter or Cl(-)/HCO3 (-) anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells.
Collapse
Affiliation(s)
- Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050, Brussels, Belgium.
| | - Aurélie Chantôme
- Inserm UMR 1069, Université François Rabelais and network "Ion channels and cancer - Canceropole Grand Ouest", Tours, France
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Walter Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lucia Maddau
- Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christophe Vandier
- Inserm UMR 1069, Université François Rabelais and network "Ion channels and cancer - Canceropole Grand Ouest", Tours, France
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN, USA
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050, Brussels, Belgium
| |
Collapse
|
8
|
Abdallah HM, Al-Abd AM, El-Dine RS, El-Halawany AM. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review. J Adv Res 2014; 6:45-62. [PMID: 25685543 PMCID: PMC4293676 DOI: 10.1016/j.jare.2014.11.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 01/10/2023] Open
Abstract
Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. P-glycoprotein (P-gp) is a member of the ATP-dependent membrane transport proteins; it is known to pump substrates out of cells in ATP-dependent mechanism. The over-expression of P-gp in tumor cells reduces the intracellular drug concentrations, which decreases the cytotoxicity of a broad spectrum of antitumor drugs. Accordingly, P-gp inhibitors/blockers are potential enhancer for the cellular bioavailability of several clinically important anticancer drugs such as, anthracyclines, taxanes, vinca alkaloids, and podophyllotoxins. Besides several chemically synthesized P-gp inhibitors/blockers, some naturally occurring compounds and plant extracts were reported for their modulation of multidrug resistance; however, this review will focus only on major classes of naturally occurring inhibitors viz., flavonoids, coumarins, terpenoids, alkaloids and saponins.
Collapse
Affiliation(s)
- Hossam M Abdallah
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia ; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed M Al-Abd
- Pharmacology Department, Medical Division, National Research Center, Giza, Egypt ; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riham Salah El-Dine
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ali M El-Halawany
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia ; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
9
|
Importance of the difference in surface pressures of the cell membrane in doxorubicin resistant cells that do not express Pgp and ABCG2. Cell Biochem Biophys 2014; 66:499-512. [PMID: 23314884 PMCID: PMC3726932 DOI: 10.1007/s12013-012-9497-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-glycoprotein (Pgp) represents the archetypal mechanism of drug resistance. But Pgp alone cannot expel drugs. A small but growing body of works has demonstrated that the membrane biophysical properties are central to Pgp-mediated drug resistance. For example, a change in the membrane surface pressure is expected to support drug–Pgp interaction. An interesting aspect from these models is that under specific conditions, the membrane is predicted to take over Pgp concerning the mechanism of drug resistance especially when the surface pressure is high enough, at which point drugs remain physically blocked at the membrane level. However it remains to be determined experimentally whether the membrane itself could, on its own, affect drug entry into cells that have been selected by a low concentration of drug and that do not express transporters. We demonstrate here that in the case of the drug doxorubicin, alteration of the surface pressure of membrane leaflets drive drug resistance.
Collapse
|
10
|
Harguindey S, Arranz JL, Polo Orozco JD, Rauch C, Fais S, Cardone RA, Reshkin SJ. Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs--an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med 2013; 11:282. [PMID: 24195657 PMCID: PMC3826530 DOI: 10.1186/1479-5876-11-282] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/25/2013] [Indexed: 02/04/2023] Open
Abstract
In recent years an increasing number of publications have emphasized the growing importance of hydrogen ion dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying the initiation and progression of the neoplastic process has been recently described by different research groups as a new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/↓pHe, or “proton reversal”). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their death through apoptosis. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). An elevated NHE1 activity can be correlated with both an increase in cell pH and a decrease in the extracellular pH of tumors, and such proton reversal is associated with the origin, local growth, activation and further progression of the metastatic process. Consequently, NHE1 pharmaceutical inhibition by new and potent NHE1 inhibitors represents a potential and highly selective target in anticancer therapy. Cariporide, being one of the better studied specific and powerful NHE1 inhibitors, has proven to be well tolerated by humans in the cardiological context, however some side-effects, mainly related to drug accumulation and cerebrovascular complications were reported. Thus, cariporide could become a new, slightly toxic and effective anticancer agent in different human malignancies.
Collapse
Affiliation(s)
- Salvador Harguindey
- Instituto de Biología Clínica y Metabolismo (IBCM), Postas 13-01004, Vitoria, Spain.
| | | | | | | | | | | | | |
Collapse
|
11
|
Banković J, Andrä J, Todorović N, Podolski-Renić A, Milošević Z, Miljković D, Krause J, Ruždijić S, Tanić N, Pešić M. The elimination of P-glycoprotein over-expressing cancer cells by antimicrobial cationic peptide NK-2: the unique way of multi-drug resistance modulation. Exp Cell Res 2013; 319:1013-27. [PMID: 23298945 DOI: 10.1016/j.yexcr.2012.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022]
Abstract
Most chemotherapeutics harm normal cells causing severe side effects and induce the development of resistance in cancer cells. Antimicrobial peptides (AMPs), recognized as anti-cancer agents, may overcome these limitations. The most studied mechanism underlying multi-drug resistance (MDR) is the over-expression of cell membrane transporter P-glycoprotein (P-gp), which extrudes a variety of hydrophobic drugs. Additionally, P-gp contributes to cell membrane composition and increases the net negative charge on cell surface. We postulated that NK-lysin derived cationic peptide NK-2 might discriminate and preferentially eliminate P-gp over-expressing cancer cells. To test this hypothesis, we employed MDR non-small cell lung carcinoma (NCI-H460/R) and colorectal carcinoma (DLD1-TxR) cell lines with high P-gp expression. MDR cancer cells that survived NK-2 treatment had decreased P-gp expression and were more susceptible to doxorubicin. We found that NK-2 more readily eliminated P-gp high-expressing cells. Acting in 'carpet-like' manner NK-2 co-localized with P-gp on the MDR cancer cell membrane. The inhibition of P-gp reduced the NK-2 effect in MDR cancer cells and, vice versa, NK-2 decreased P-gp transport activity. In conclusion, NK-2 could modulate MDR in unique way, eliminating the P-gp high-expressing cells from heterogeneous cancers and making them more vulnerable to classical drug treatment.
Collapse
Affiliation(s)
- Jasna Banković
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kucka M, Kretschmannova K, Murano T, Wu CP, Zemkova H, Ambudkar SV, Stojilkovic SS. Dependence of multidrug resistance protein-mediated cyclic nucleotide efflux on the background sodium conductance. Mol Pharmacol 2010; 77:270-9. [PMID: 19903828 PMCID: PMC2812068 DOI: 10.1124/mol.109.059386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 11/09/2009] [Indexed: 11/22/2022] Open
Abstract
Anterior pituitary cells fire action potentials and release cyclic nucleotides both spontaneously and in response to agonist stimulation, but the relationship between electrical activity and cyclic nucleotide efflux has not been studied. In these cells, a tetrodotoxin-resistant background N(+) conductance is critical for firing of action potentials, and multidrug resistance proteins (MRPs) MRP4 and MRP5 contribute to cyclic nucleotide efflux. Here, we show that abolition of the background Na(+) conductance in rat pituitary cells by complete or partial replacement of extracellular Na(+) with organic cations or sucrose induced a rapid and reversible hyperpolarization of cell membranes and inhibition of action potential firing, accompanied by a rapid inhibition of cyclic nucleotide efflux. Valinomycin-induced hyperpolarization of plasma membranes also inhibited cyclic nucleotide efflux, whereas depolarization of cell membranes induced by the inhibition of Ca(2+) influx or stimulation of Na(+) influx by gramicidin was accompanied by a facilitation of cyclic nucleotide efflux. In contrast, inhibition of cyclic nucleotide efflux by probenecid did not affect the background Na(+) conductance. In human embryonic kidney 293 cells stably transfected with human MRP4 or MRP5, replacement of bath Na(+) with organic cations also hyperpolarized the cell membranes and inhibited cyclic nucleotide efflux. In these cells, the Na(+)/H(+) antiporter monensin did not affect the membrane potential and was practically ineffective in altering cyclic nucleotide efflux. In both pituitary and MRP4- and MRP5-expressing cells, 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571) inhibited cyclic nucleotide efflux. These results indicate that the MRP4/5-mediated cyclic nucleotide efflux can be rapidly modulated by membrane potential determined by the background Na(+) conductance.
Collapse
Affiliation(s)
- Marek Kucka
- National Institute of Child Health and Human Development, Bethesda, MD 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Panagiotopoulou V, Richardson G, Jensen OE, Rauch C. On a biophysical and mathematical model of Pgp-mediated multidrug resistance: understanding the “space–time” dimension of MDR. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:201-11. [DOI: 10.1007/s00249-009-0555-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/05/2009] [Accepted: 10/09/2009] [Indexed: 11/28/2022]
|
14
|
Roepe PD. Molecular and physiologic basis of quinoline drug resistance in Plasmodium falciparum malaria. Future Microbiol 2009; 4:441-55. [PMID: 19416013 PMCID: PMC2724744 DOI: 10.2217/fmb.09.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
30 years before the discovery of the pfcrt gene, altered cellular drug accumulation in drug-resistant malarial parasites had been well documented. Heme released from catabolized hemoglobin was thought to be a key target for quinoline drugs, and additional modifications to quinoline drug structure in order to improve activity against chloroquine-resistant malaria were performed in a few laboratories. However, parasite cell culture methods were still in their infancy, assays for drug susceptibility were not well standardized, and the power of malarial genetics was decades away. The last 10 years have witnessed explosive progress in elucidation of the biochemistry of chloroquine resistance. This review briefly summarizes that progress, and discusses where additional work is needed.
Collapse
Affiliation(s)
- Paul D Roepe
- Department of Chemistry and Department of Biochemistry, Cellular & Molecular Biology, and Center for Infectious Disease, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
15
|
Rauch C. Toward a mechanical control of drug delivery. On the relationship between Lipinski's 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: a comparison to published data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:829-46. [PMID: 19296096 DOI: 10.1007/s00249-009-0429-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/17/2009] [Accepted: 02/23/2009] [Indexed: 11/30/2022]
Abstract
Based on molecular and physiological resemblance, the mechanism that controls drug bioavailability and toxicity also shares strong similarities to the one that controls drug resistance. In both cases, this mechanism relies on the expression of drug transporters and the physico-chemical properties of drugs, which together alter the intracellular accumulation of chemicals in cells or tissues. However, a parameter that is central and has received great attention in the field of bioavailability, but almost none in the field of drug resistance, is the molecular weight of drugs. In the former area, it is well known that to achieve a reasonable bioavailability, drugs must have-among other properties-a molecular weight less than 500, known as Lipinski's 2nd rule. Accordingly, it is worth questioning whether a similar rule exists in the field of drug resistance and what subsequent mechanism would control the membrane permeability to drugs as a function of their molecular weight. I demonstrate here that cytosolic pH fixes the molecular weight of drugs entering cells, by altering the cell membrane mechanical properties and that, both cytosolic pH and membrane mechanical properties are needed and sufficient to explain doxorubicin resistance levels in different cancerous cell lines. Finally, I discuss the efficiency of a drug handling activity by transporters in MDR and suggest ways to control drug delivery mechanically. In addition, and for the first time, the literal expression of a Law similar to Lipinski's 2nd rule will be described as a function of cytosolic pH and lipid number asymmetry.
Collapse
Affiliation(s)
- Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
16
|
Harguindey S, Orive G, Cacabelos R, Hevia EM, de Otazu RD, Arranz JL, Anitua E. An integral approach to the etiopathogenesis of human neurodegenerative diseases (HNDDs) and cancer. Possible therapeutic consequences within the frame of the trophic factor withdrawal syndrome (TFWS). Neuropsychiatr Dis Treat 2008; 4:1073-84. [PMID: 19337452 PMCID: PMC2646641 DOI: 10.2147/ndt.s3800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A novel and integral approach to the understanding of human neurodegenerative diseases (HNDDs) and cancer based upon the disruption of the intracellular dynamics of the hydrogen ion (H(+)) and its physiopathology, is advanced. From an etiopathological perspective, the activity and/or deficiency of different growth factors (GFs) in these pathologies are studied, and their relationships to intracellular acid-base homeostasis reviewed. Growth and trophic factor withdrawal in HNDDs indicate the need to further investigate the potential utilization of certain GFs in the treatment of Alzheimer disease and other neurodegenerative diseases. Platelet abnormalities and the therapeutic potential of platelet-derived growth factors in these pathologies, either through platelet transfusions or other clinical methods, are considered. Finally, the etiopathogenic mechanisms of apoptosis and antiapoptosis in HNDDs and cancer are viewed as opposite biochemical and biological disorders of cellular acid-base balance and their secondary effects on intracellular signaling pathways and aberrant cell metabolism are considered in the light of the both the seminal and most recent data available. The "trophic factor withdrawal syndrome" is described for the first time in English-speaking medical literature, as well as a Darwinian-like interpretation of cellular behavior related to specific and nonspecific aspects of cell biology.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c/o Postas 13, 01004 Vitoria, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Odening KE, Li W, Rutz R, Laufs S, Fruehauf S, Fishelson Z, Kirschfink M. Enhanced complement resistance in drug-selected P-glycoprotein expressing multi-drug-resistant ovarian carcinoma cells. Clin Exp Immunol 2008; 155:239-48. [PMID: 19040611 DOI: 10.1111/j.1365-2249.2008.03817.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Multi-drug resistance (MDR) is a major obstacle in cancer chemotherapy. There are contrasting data on a possible correlation between the level of expression of the drug transporter P-glycoprotein (P-gp) and susceptibility to complement-dependent cytotoxicity (CDC). We therefore investigated the sensitivity of human ovarian carcinoma cells and their P-gp expressing MDR variants to complement. Chemoselected P-gp expressing MDR cells showed increased resistance to CDC associated with overexpression of membrane-bound complement regulatory proteins (mCRP) and increased release of the soluble inhibitors C1 inhibitor and factor I. MDR1 gene transfection alone did not alter the susceptibility of P-gp expressing A2780-MDR and SKOV3-MDR cells to CDC. However, subsequent vincristine treatment conferred an even higher resistance to complement to these cells, again associated with increased expression of mCRP. Blocking the function of P-gp with verapamil, cyclosporine A or the anti-P-gp-antibody MRK16 had no impact on their complement resistance, whereas blocking of mCRP enhanced their susceptibility to complement. These results suggest that enhanced resistance of chemoselected MDR ovarian carcinoma cells to CDC is not conferred by P-gp, but is due at least partly to overexpression of mCRP, probably induced by treatment with the chemotherapeutic agents.
Collapse
Affiliation(s)
- K E Odening
- Department of Internal Medicine III, Cardiology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Coley HM, Labeed FH, Thomas H, Hughes MP. Biophysical characterization of MDR breast cancer cell lines reveals the cytoplasm is critical in determining drug sensitivity. Biochim Biophys Acta Gen Subj 2006; 1770:601-8. [PMID: 17270349 DOI: 10.1016/j.bbagen.2006.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/27/2006] [Accepted: 12/12/2006] [Indexed: 11/25/2022]
Abstract
Dielectrophoresis (DEP) was used to examine a panel of MCF-7 cell lines comprising parental MCF-7 cells and MDR derivatives: MCF-7TaxR (paclitaxel-resistant, P-glycoprotein (P-gp) positive), MCF-7DoxR (doxorubicin-resistant MRP2 positive) plus MCF-7MDR1 (MDR1 transfected, P-gp positive). MCF-7DoxR and MCF-7MDR1 were broadly cross-resistant to natural product anticancer agents, whereas MCF-7TaxR cells were not, contrary to P-gp expression. Whilst DEP revealed modest membrane changes in MDR sub-lines, we saw significant changes in their cytoplasmic conductivity: MCF-7TaxR<MCF-7<MCF-7MDR1<MCF-7DoxR (range 0.14-0.40 S/m). Cytoplasmic conductivity is affected by the movement of molecules e.g. as in intracellular trafficking MCF-7TaxR showed a reduced membrane potential, whereas MCF-7DoxR and MCF-7MDR1 showed an increase. Thus, altered membrane potential is associated with an MDR phenotype, but in a complex manner. DEP data suggest a model whereby relative increases in cytoplasmic conductivity are correlated with MDR, whilst relative decreases equate with a sensitised phenotype e.g. MCF-7TaxR. Moreover, extent of anthracycline accumulation was inversely related to cytoplasmic conductivity. These data are representative of a model where drug sensitivity is associated with low ionic conductance (reduced cellular trafficking and ion transport) and substantial anthracycline accumulation. For classical MDR i.e. MCF-7MDR1, we saw the reverse picture. Thus, the drug resistance phenotypes of this panel of MCF-7 lines can be delineated by assessment of cytoplasmic biophysical properties using DEP.
Collapse
Affiliation(s)
- Helen M Coley
- Division of Oncology, Postgraduate Medical School, School, University of Surrey, Guildford, Surrey GU2 7WG, UK.
| | | | | | | |
Collapse
|
19
|
Grishanova AY, Melnikova EV, Kaledin VI, Nikolin VP, Lyakhovich VV. Possible role of P-glycoprotein in cyclophosphamide resistance of transplanted mouse RLS lymphosarcoma. Bull Exp Biol Med 2006; 139:611-4. [PMID: 16224562 DOI: 10.1007/s10517-005-0358-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The causes of different sensitivity of mouse LS lymphosarcoma and its resistant RLS variant to cyclophosphamide were studied. Division of LS and RLS cells stops in the G2/M phase 24 h after cyclophosphamide treatment, but this stop lasts for more than 48 h in LS cells and less than 24 h in RLS cells. DNA fragmentation, a marker of apoptosis, is observed only in LS cells starting from 24 h after cyclophosphamide treatment. LS and RLS strains do not differ by the expression of bcl-2, bcl-6, bax, bad, mdr1a, mdr1b genes and P-glycoprotein protein. The strains differ by transport activity of P-glycoprotein, tested by SYTO 16 substrate release from cells: activity of P-glycoprotein in RLS cells was 2-fold higher than in LS cells. Presumably, the resistance of RLS tumor to cyclophosphamide-induced apoptosis is a result of inhibition of the apoptotic cascade by P-glycoprotein which is functionally more active in these cells than in LS cells.
Collapse
Affiliation(s)
- A Yu Grishanova
- Institute of Molecular Biology and Biophysics, Siberian Division of Russian Academy of Sciences, Novosibirsk.
| | | | | | | | | |
Collapse
|
20
|
Abstract
This report describes the pH measurement of individual acidic organelles isolated from the human leukemia CCRF-CEM and CEM/C2 cells. These cells were allowed to endocytose fluorescein tetramethylrhodamine dextran (FRD), a ratiometric probe that has fluorescein as a pH-dependent fluorophore and tetramethylrhodamine as a pH-independent fluorophore. Isolated organelle fractions from these cells were then subjected to capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) analysis. The detection of individual organelle fluorescence at two different wavelengths, selected on the basis of the emission range of the FRD probe, gives a fluorescence intensity ratio used to calculate the pH from a calibration curve. This curve was constructed from CE-LIF measurements of individual liposomes loaded with several pH buffer standards. The respective median pH values are 5.1 +/- 0.2 in CEM/C2 cells and 6.1 +/- 0.4 in CCRF-CEM cells. These measurements compare well with pixel-based epifluorescence microscopy measurements of whole cells where the corresponding average pH values are 5.0 +/- 0.6 (n = 15) and 6.2 +/- 0.7 (n = 15). A pH comparison between the two cell types suggests that the lower pH in the CEM/C2 cells may be relevant to the protonation and sequestration of weak base anticancer drugs such as doxorubicin. The determination of the pH of individual vesicles, liposomes, and acidic organelles is a new resource for measuring and investigating the role of the acid-base properties of subcellular-size compartments.
Collapse
Affiliation(s)
- Yun Chen
- Department of Chemistry, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
21
|
Tian K, Jurukovski V, Wang XP, Kaplan MH, Xu H. Epigenetic regulation of WTH3 in primary and cultured drug-resistant breast cancer cells. Cancer Res 2005; 65:10024-31. [PMID: 16267028 DOI: 10.1158/0008-5472.can-05-1944] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies showed that the WTH3 gene functioned as a negative regulator during multidrug resistance (MDR) development in vitro. To understand whether this gene is also involved in clinical drug resistance, hypermethylation at its promoter region observed in cultured MDR MCF7/AdrR cells was examined in primary drug-resistant breast cancer epithelial cells isolated from effusions of breast cancer patients. The results showed that this event also occurred in drug-resistant breast cancer epithelial cells and a newly induced drug-resistant cell line, MCF7/inR. Interestingly, we found that a CpG (CpG 23) that was close to the TATA-like box was constantly methylated in the WTH3 promoter of drug-resistant breast cancer epithelial and cultured MDR cells. Mutagenic study suggested that this CpG site had a functional effect on promoter activity. We also discovered that MCF7/AdrR cells treated with trichostatin A, a histone deacetylase inhibitor, exhibited higher WTH3, but lower MDR1, expression. A reverse correlation between WTH3 and MDR1 gene expression was also observed in MCF7/AdrR, and its non-MDR parental cell line, MCF7/WT. This result indicated that both DNA methylation and histone deacetylase could act in concert to inhibit WTH3 and consequently stimulate MDR1 expression. This hypothesis was supported by data obtained from introducing the WTH3 transgene into MDR cell lines, which reduced endogenous MDR1 expression. Therefore, our studies suggested that the behavior of WTH3 in primary drug-resistant breast cancer epithelial cells was similar to that in a model system where epigenetic regulation of the WTH3 gene was linked to the MDR phenotype.
Collapse
Affiliation(s)
- Kegui Tian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
22
|
Harguindey S, Orive G, Luis Pedraz J, Paradiso A, Reshkin SJ. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin--one single nature. Biochim Biophys Acta Rev Cancer 2005; 1756:1-24. [PMID: 16099110 DOI: 10.1016/j.bbcan.2005.06.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 06/30/2005] [Indexed: 12/01/2022]
Abstract
Looked at from the genetic point-of-view cancer represents a daunting and, frankly, confusing multiplicity of diseases (at least 100) that require an equally large variety of therapeutic strategies and substances designed to treat the particular tumor. However, when analyzed phenotypically cancer is a relatively uniform disease of very conserved 'hallmark' behaviors across the entire spectrum of tissue and genetic differences [D. Hanahan, R.A. Weinberg, Hallmarks of cancer, Cell 100 (2000) 57-70]. This suggests that cancers do, indeed, share common biochemical and physiological characteristics that are independent of the varied genetic backgrounds, and that there may be a common mechanism underlying both the neoplastic transformation/progression side and the antineoplastic/therapy side of oncology. The challenge of modern oncology is to integrate all the diverse experimental data to create a physiological/metabolic/energetic paradigm that can unite our thinking in order to understand how both neoplastic progression and therapies function. This reductionist view gives the hope that, as in chemistry and physics, it will possible to identify common underlying driving forces that define a tumor and will permit, for the first time, the actual calculated manipulation of their state. That is, a rational therapeutic design. In the present review, we present evidence, obtained from a great number of studies, for a fundamental, underlying mechanism involved in the initiation and evolution of the neoplastic process. There is an ever growing body of evidence that all the important neoplastic phenotypes are driven by an alkalization of the transformed cell, a process which seems specific for transformed cells since the same alkalinization has no effect in cells that have not been transformed. Seen in that light, different fields of cancer research, from etiopathogenesis, cancer cell metabolism and neovascularization, to multiple drug resistance (MDR), selective apoptosis, modern cancer chemotherapy and the spontaneous regression of cancer (SRC) all appear to have in common a pivotal characteristic, the aberrant regulation of hydrogen ion dynamics [S. Harguindey, J.L. Pedraz, R. García Cañero, J. Pérez de Diego, E.J. Cragoe Jr., Hydrogen ion-dependent oncogenesis and parallel new avenues to cancer prevention and treatment using a H+-mediated unifying approach: pH-related and pH-unrelated mechanisms, Crit. Rev. Oncog. 6 (1) (1995) 1-33]. Cancer cells have an acid-base disturbance that is completely different than observed in normal tissues and that increases in correspondence with increasing neoplastic state: an interstitial acid microenvironment linked to an intracellular alkalosis.
Collapse
|
23
|
Tian K, Jurukovski V, Yuan L, Shan J, Xu H. WTH3, which encodes a small G protein, is differentially regulated in multidrug-resistant and sensitive MCF7 cells. Cancer Res 2005; 65:7421-8. [PMID: 16103095 DOI: 10.1158/0008-5472.can-05-0658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The WTH3 gene's biological characteristics and relationship to multidrug resistance (MDR) were investigated further. Results showed that WTH3 was mainly located in the cytosol and capable of binding to GTP. In addition, WTH3's promoter function was significantly attenuated in MDR (MFC7/AdrR) relative to non-MDR (MCF7/WT) cells. Advanced analyses indicated that two mechanisms could be involved in WTH3's down-regulation: DNA methylation and trans-element modulations. It was found that the 5' end portion of a CpG island in WTH3's promoter was hypermethylated in MCF7/AdrR but not MCF7/WT cells, which could have a negative effect on the WTH3 promoter. This idea was supported by the observation that a 45-bp sequence (DMR45) in this differentially methylated region positively influenced promoter activity. We also discovered that different nuclear proteins in MCF7/AdrR and MCF7/WT cells bound to methylated or nonmethylated DMR45. Moreover, a sequence containing a unique repeat that was also a positive cis-element for the promoter was attached by different transcription factors depending on whether they were prepared from MCF7/AdrR or MCF7/WT cells. These molecular changes, apparently induced by drug treatment, resulted in WTH3's down regulation in MDR cells. Therefore, present studies support previous observations that WTH3, as a negative regulator, participates in MDR development in MCF7/AdrR cells.
Collapse
Affiliation(s)
- Kegui Tian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
24
|
Miraglia E, Viarisio D, Riganti C, Costamagna C, Ghigo D, Bosia A. Na+/H+ exchanger activity is increased in doxorubicin-resistant human colon cancer cells and its modulation modifies the sensitivity of the cells to doxorubicin. Int J Cancer 2005; 115:924-9. [PMID: 15729714 DOI: 10.1002/ijc.20959] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multidrug resistant (MDR) tumor cells exhibit an altered pH gradient across different cell compartments, which favors a reduced intracellular accumulation of antineoplastic drugs and a decreased therapeutic effect. In our study, we have observed that the activity and expression of Na+/H+ exchanger (NHE), which is involved in the homeostasis of intracellular pH (pHi), are increased in doxorubicin-resistant (HT29-dx) human colon carcinoma cells in comparison with doxorubicin-sensitive HT29 cells. The pH(i) was significantly higher in HT29-dx cells, which accumulated less doxorubicin than HT29 cells. The NHE inhibitor 5-(N-ethyl-N-isopropyl)amiloride (EIPA) significantly reduced the pHi value and increased the intracellular accumulation of doxorubicin in both cell populations: in the presence of EIPA HT29-dx cells accumulated as much drug as control HT29 cells. On the other hand, monensin, a Na+/H+ ionophore mimicking NHE activation, and phorbol 12-myristate 13-acetate (PMA), which stimulates NHE, significantly increased the pHi and decreased the drug accumulation in HT29 cells to values similar to those observed in control HT29-dx cells. EIPA potentiated the cytotoxic effect of doxorubicin in HT29 cells, and made HT29-dx cells as sensitive to the cytotoxic effect of the drug as control HT29 cells. Instead, PMA and monensin made HT29 cells as insensitive to doxorubicin as HT29-dx cells. These results suggest that in MDR cells the higher cytosolic pH is likely to decrease drug accumulation, and that such resistance can be reverted by inhibiting the NHE activity. This result opens the possibility to revert MDR with the clinical use of NHE inhibitors.
Collapse
Affiliation(s)
- Erica Miraglia
- Department of Genetics, Biology and Biochemistry, University of Torino, and Research Center on Experimental Medicine (CeRMS), Torino, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Villa AM, Doglia SM. Mitochondria in tumor cells studied by laser scanning confocal microscopy. JOURNAL OF BIOMEDICAL OPTICS 2004; 9:385-394. [PMID: 15065906 DOI: 10.1117/1.1646414] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present here a confocal fluorescence microscopy study of mitochondria in sensitive and resistant carcinoma cells by using two potentiometric probes of mitochondria, rhodamine 123 (R123) and dimethylaminostyryl-methylpyridiniumiodine. We have found that active mitochondria in sensitive MCF-7 and multidrug resistant MCF-7/DX carcinoma cells are very different in localization and morphology. In sensitive cells active mitochondria are found in the perinuclear region, whereas in the multidrug resistance (MDR) subline they are confined to the cell periphery. Interestingly, the MDR revertant verapamil has been found to restore in MCF-7/DX cells the same pattern of active mitochondria seen in sensitive cells. We have also studied R123 in human lung carcinoma A549 cells, which display a low responsivity to doxorubicin, and overexpress the lung resistance-related protein. In addition to perinuclear mitochondria, peripheral mitochondria with weaker fluorescence can be seen in this cell line. Interestingly, in the two examined carcinoma lines we have been able to recognize by image analysis a common new star-lobed morphology. Our results indicate that in resistant carcinoma cells two populations of mitochondria coexist with different localization, morphology, and activity.
Collapse
Affiliation(s)
- Anna Maria Villa
- INFM-UdR Milano Bicocca and Dipartimento di Biotecnologie e Bioscienze, Universita degli Studi di Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | |
Collapse
|
26
|
Henning T, Kraus M, Brischwein M, Otto AM, Wolf B. Relevance of tumor microenvironment for progression, therapy and drug development. Anticancer Drugs 2004; 15:7-14. [PMID: 15090737 DOI: 10.1097/00001813-200401000-00002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor interstitium exhibits a microenvironment that differs from corresponding normal tissues. Tumor phenotype shows, for example, an elevated intracellular pH (pHi), a lowered extracellular pH (pHe), a low oxygen concentration and low glucose levels. These differences are caused by cell biological (so called intrinsic) factors, e.g. a higher acidification rate, as well as by more systemic (extrinsic) factors, e.g. poor tumor vascularization. They represent important factors for invasiveness, immune suppression and proliferation, and they imply possibilities for diagnosis, prognosis and therapy. We have developed an experimental data-based computer model, which has simulated the potential role of metabolic effects on tumor progression. We show an experiment on cellular metabolism demonstrating the immunosuppressive impact of low pHe on peripheral blood mononuclear cells. Finally, we review important findings on the tumor microenvironment leading to possibilities for therapy which are currently evolving and which promise higher effectiveness for cancer therapy.
Collapse
Affiliation(s)
- Tobias Henning
- Heinz-Nixdorf-Lehrstuhl für Medizinische Elektronik, Technische Universität München, München, Germany
| | | | | | | | | |
Collapse
|
27
|
Cai J, Gros P. Overexpression, purification, and functional characterization of ATP-binding cassette transporters in the yeast, Pichia pastoris. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:63-76. [PMID: 12586381 DOI: 10.1016/s0005-2736(02)00718-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is a large gene family that has been highly conserved throughout evolution. The physiological importance of these membrane transporters is highlighted by the large variety of substrates they transport, and by the observation that mutations in many of them cause heritable diseases in human. Likewise, overexpression of certain ABC transporters, such as P-glycoprotein and members of the multidrug resistance associated protein (MRP) family, is associated with multidrug resistance in various cells and organisms. Understanding the structure and molecular mechanisms of transport of the ABC transporters in normal tissues and their possibly altered function in human diseases requires large amounts of purified and active proteins. For this, efficient expression systems are needed. The methylotrophic yeast Pichia pastoris has proven to be an efficient and inexpensive experimental model for high-level expression of many proteins, including ABC transporters. In the present review, we will summarize recent advances on the use of this system for the expression, purification, and functional characterization of P-glycoprotein and two members of the MRP subfamily.
Collapse
Affiliation(s)
- Jie Cai
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
28
|
Ursos LMB, Roepe PD. Chloroquine resistance in the malarial parasite, Plasmodium falciparum. Med Res Rev 2002; 22:465-91. [PMID: 12210555 DOI: 10.1002/med.10016] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Malarial parasites remain a health problem of staggering proportions. Worldwide, they infect about 500 million, incapacitate tens of millions, and kill approximately 2.5 million (mostly children) annually. Four species infect humans, but most deaths are caused by one particular species, Plasmodium falciparum. The rising number of malarial deaths is due in part to increased drug resistance in P. falciparum. There are many varieties of antimalarial drug resistance, and there may very well be several molecular level contributions to each variety. This is because there are a number of different drugs with different mechanisms of action in use, and more than one molecular event may sometimes be relevant for resistance to any one class of drugs. Thus, "multidrug" resistance in a clinical setting likely entails complex combinations of overlapping resistance pathways, each specific for one class of drug, that then add together to confer the particular multidrug resistance phenotype. Nonetheless, rapid progress has been made in recent years in elucidating mechanisms of resistance to specific classes of antimalarial drugs. As one example, resistance to the antimalarial drug chloroquine, which has been the mainstay therapy for decades, is becoming well understood. This article focuses on recent advances in determining the molecular mechanism of chloroquine resistance, with particular attention to the biochemistry and biophysics of the P. falciparum digestive vacuole, wherein changes in pH have recently been found to be associated with chloroquine resistance.
Collapse
Affiliation(s)
- Lyann M B Ursos
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Program in Tumor Biology, Georgetown University, 37th and O Streets, Washington, D.C. 20057-1227, USA
| | | |
Collapse
|
29
|
Perek N, Koumanov F, Denoyer D, Boudard D, Dubois F. Modulation of the multidrug resistance of glioma by glutathione levels depletion--interaction with Tc-99M-Sestamibi and Tc-99M-Tetrofosmin. Cancer Biother Radiopharm 2002; 17:291-302. [PMID: 12136521 DOI: 10.1089/10849780260179251] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the effect of glutathione (GSH) depletion on the chemosensitivity of human malignant glioma cell lines: G111, G5 and G152. All the cell lines showed a multidrug resistant (MDR) phenotype associated with MRP1 expression, high intracellular levels of GSH, and depolarized plasma membranes. Tc-99M-Sestamibi (MIBI) and Tc-99M-Tetrofosmin (Tfos) were used for monitoring the MDR mechanisms. Modulation of GSH content was performed with butoxysulfoximide (BSO) pre-treatment alone or in combination with GSH ethyl ester. MIBI and Tfos accumulation in the cells was inversely correlated to the GSH content, a higher accumulation was found after BSO pre-treatment and addition of GSH ethyl ester reversed this process. BSO could therefore play a role as a chemosensitizing drug and thus help to overcome MDR. However, higher accumulation of MIBI and Tfos was observed even in the sensitive cells suggesting another effect of BSO on the cell physiological characteristics. No sign of apoptosis has been found indicating a possible direct effect on the plasma membrane fluidity and permeability. MIBI and Tfos don't follow the expected behavior of a MDR probe in the glioma cells and given the particular morpho-physiological characteristics of these types of tumors, Tfos could be rather used as a marker of the tumor growth and proliferation.
Collapse
Affiliation(s)
- Nathalie Perek
- Department of Biophysics and Image Treatment, Faculty of Medicine, Jacques Lisfranc, Saint Etienne, France.
| | | | | | | | | |
Collapse
|
30
|
Harguindey S. Integrating fields of cancer research through pivotal mechanisms and synthetic final pathways: a unifying and creative overview. Med Hypotheses 2002; 58:444-52. [PMID: 12323109 DOI: 10.1054/mehy.2001.1415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
From cancer etiopathogenesis to selective apoptosis, from multiple drug resistance to oncogen activation and from the phenomena of spontaneous regression of cancer to certain aspects of cancer chemotherapy, all these subfields of biology and oncology research share some deep-seated, both basic and clinical, essential features and characteristics. Certain apoptosis-inducing agents of unrelated families, ranging from ether lipids to Na(+)/H(+)-antiporter inhibitors to Delta(9)-tetrahydrocannabinol all have been reported to induce selective cancer-cell death. Behind a wide array of intermediary factors and mechanisms involved in their activity, they seem to share common pivotal and/or final pathways in inducing cell death mediated by a 'pathological' accumulation of intracellular hydrogen ions as a mechanism underlying core changes in intracellular signaling pathways. An H(+)-concentration initial perspective indicates that from pathogenesis to apoptosis and multiple drug resistance, as well as oncogen activity, tumor progression and even the phenomenon of spontaneous regression, all can be interpreted from their deep (H(+))-related basic and clinical essential characteristics. This speculative review discusses the potential integration of these previously disparate subfields of cancer research, through a model which also seems to lead toward improving understanding of the fundamental nature of malignant processes. It is concluded that this synthetic and universal approach allows advancement toward a combining of different areas of oncology into deeper and more comprehensive forms of rational understanding, with the hope of paving the way towards more selective, effective and all-encompassing forms of treatment.
Collapse
Affiliation(s)
- S Harguindey
- Department of Clinical Oncology, Clinica USP-La Esperanza, Vitoria, Spain.
| |
Collapse
|
31
|
Porcelli AM, Scotlandi K, Strammiello R, Gislimberti G, Baldini N, Rugolo M. Intracellular pH regulation in U-2 OS human osteosarcoma cells transfected with P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:125-38. [PMID: 11853886 DOI: 10.1016/s0167-4889(01)00173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms responsible for intracellular pH regulation in the U2-OS osteosarcoma cell line were investigated by loading with 2',7'-bis(2-carboxyethyl)-5(6) carboxyfluorescein ester and manipulation of Cl(-) and Na(+) gradients, both in HEPES- and HCO(3)(-)/CO(2)-buffered media. Both acidification and alkalinisation were poorly sensitive to 4,4'-diisothiocyanate dihydrostilbene-2,2'-disulfonic acid, inhibitor of the anion exchanger, but sensitive to amiloride, inhibitor of the Na(+)/H(+) exchanger. In addition to the amiloride-sensitive Na(+)/H(+) exchanger, another H(+) extruding mechanism was detected in U-2 OS cells, the Na(+)-dependent HCO(3)(-)/Cl(-) exchanger. No significant difference in resting pH(i) and in the rate of acidification or alkalinisation was observed in clones obtained from U-2 OS cells by transfection with the MDR1 gene and overexpressing P-glycoprotein. However, both V(max) and K' values for intracellular [H(+)] of the Na(+)/H(+) exchanger were significantly reduced in MDR1-transfected clones, in the absence and/or presence of drug selection, in comparison to vector-transfected or parental cell line. NHE1, NHE5 and at a lower extent NHE2 mRNA were detected in similar amount in all U2-OS clones. It is concluded that, although overexpression of P-glycoprotein did not impair pH(i) regulation in U-2 OS cells, the kinetic parameters of the Na(+)/H(+) exchanger were altered, suggesting a functional relationship between the two membrane proteins.
Collapse
Affiliation(s)
- Anna Maria Porcelli
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Skatrud PL. The impact of multiple drug resistance (MDR) proteins on chemotherapy and drug discovery. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2002; 58:99-131. [PMID: 12079203 DOI: 10.1007/978-3-0348-8183-8_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Transportation of molecules across the cell membrane in living organisms is a critical aspect of life. Transportation includes importation of nutrients from the environment and exportation of toxic compounds. When export includes therapeutic compounds, then the practice of clinical medicine may become compromised. Often efflux of therapeutic compounds is mediated by a large superfamily of proteins referred to as multidrug resistance (MDR) proteins. The initial sections of this chapter are focused on MDR proteins and their negative impact on clinical medicine in cancer chemotherapy as well as infectious diseases mediated by bacteria, fungi and parasites. A brief description of major classes of MDR proteins found in microbes is followed by a more exhaustive treatment of ABC transporters in lower eukaryotes and parasites as well as cancerous mammalian cells. Later sections deal with potential and real positive aspects and applications brought about by a growing knowledge of MDR proteins. Examples described include improved antibiotic production, leveraging MDR proteins in drug discovery, new therapeutic options, dual therapy in treatment of cancer and infectious diseases, and finally MDR proteins as targets for new classes of therapeutic compounds.
Collapse
Affiliation(s)
- Paul L Skatrud
- Elanco Animal Health Science, Eli Lilly and Company, Greenfield, Indiana 46140, USA.
| |
Collapse
|
33
|
Gollapud S, Gupta S. Anti-P-glycoprotein antibody-induced apoptosis of activated peripheral blood lymphocytes: a possible role of P-glycoprotein in lymphocyte survival. J Clin Immunol 2001; 21:420-30. [PMID: 11811787 DOI: 10.1023/a:1013177710941] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
P-glycoprotein (P-gp) is a 170-kDa glycoprotein encoded by the MDR-1 gene. In tumor cells overexpression of P-gp is associated with resistance to chemotherapy-induced apoptosis. P-gp is also expressed on cells of the immune system; however, its role in lymphocyte physiology remains unclear. Therefore, in this investigation, we examined a possible role of P-gp in the survival of in vitro activated peripheral blood mononuclear cells (MNCs). MNCs were activated with anti-CD3 monoclonal antibody (mAb) for 96 hr in the presence or absence of anti-P-gp mAb or isotype control and examined for apoptosis by TUNEL assay. Activation of caspase was determined by colorimetric assay. Activated lymphocytes (96 hr) are resistant to apoptosis. However, anti-P-gp mAb-induced apoptosis in anti-CD3 activated MNC. Induction of apoptosis was associated with increased expression of CD95L; activation of caspase 3, however, did not affect the expression of Bcl-2 and Bcl-xL. Furthermore, both recombinant Fas-Fc fusion protein, a blocker of CD95-CD95L interactions, and Z-DEVD-FMK, a cell-permeable caspase 3 inhibitor, reversed anti-P-gp-induced apoptosis. These data demonstrate that anti-P-gp mAb promotes apoptosis in activated T lymphocytes by up-regulating CD95L expression and via CD95-CD95L interactions and suggest a possible role of P-gp in lymphocyte survival.
Collapse
Affiliation(s)
- S Gollapud
- Department of Medicine, University of California, Irvine 92697, USA
| | | |
Collapse
|
34
|
Castaing M, Loiseau A, Dani M. Designing multidrug-resistance modulators circumventing the reverse pH gradient in tumours. J Pharm Pharmacol 2001; 53:1021-8. [PMID: 11480537 DOI: 10.1211/0022357011776270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Multidrug-resistant tumours often exhibit a reverse pH gradient (acid outside), as they have an acid extracellular pH (pHe) and a neutral alkaline intracellular pH (pHi). This study was designed to test the hypothesis that the ability of lipophilic drugs to mediate multidrug resistance (MDR) reversal by interacting with the membrane phospholipids may be correlated with pH in resistant tumours. The permeation properties of five MDR modulators were therefore studied at 37 degrees C by quantifying their ability to induce the leakage of Sulfan blue through unilamellar anionic liposomes, over the range pH 6.5-7.7, and in the absence of any membrane potential (pHe = pHi). The dye leakage induced by two calcium blockers (diltiazem and verapamil) and two antiparasitic agents (thioacridine derivative and mepacrine) was found to significantly increase with the pH of the medium (P < 0.001), whereas that induced by a non-ionic detergent (Triton X-100) showed almost no pH-dependent variations. This process was a cooperative one (0.8 < Hill coefficient < 8.5) and the permeation doses inducing 50% dye leakage (PD50) ranged from 1.6 to 36.0 mM. The permeation ability of the MDR modulators (log(1/PD50)) significantly increased with their octanol-buffer distributions (logD) (slope = 0.35+/-0.06; y intercept = 1.65 +/- 0.14; P < 0.0001) and significantly decreased with their net electric charge (z) (slope = -0.48+/-0.07; y intercept = 2.85+/-0.08; P < 0.0001). A highly significant multiple correlation was found to exist between the variations of log(1/PD50) with those of logD and z (dlog(1/PD50)/dlogD = 0.21 +/- 0.05; dlog(1/PD50)/dz = -0.34+/-0.07; y intercept = 2.27+/-0.17; P < 0.000001). The results provide evidence that in resistant tumours (acid pHe and neutral alkaline pHi), the MDR reversal might be enhanced by favourable drug-membrane interactions if the modulators are designed in the form of highly lipophilic (logP approximately equals 4) mono-basic drugs with a near neutral pKa (pKa approximately equals 7-8).
Collapse
Affiliation(s)
- M Castaing
- GERCTOP-ESA6009, Faculté de Pharmacie, Marseille, France.
| | | | | |
Collapse
|
35
|
Keppler CJ, Ringwood AH. Expression of P-glycoprotein in southeastern oysters, Crassostrea virginica. MARINE ENVIRONMENTAL RESEARCH 2001; 52:81-96. [PMID: 11488357 DOI: 10.1016/s0141-1136(00)00263-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
These studies provide important fundamental information regarding the expression of P-glycoprotein (p-gp) in southeastern oysters (Crassostrea virginica). Using rhodamine transport studies, p-gp activity was detected in newly fertilized embryos. A monoclonal antibody (C219) was used to evaluate p-gp expression in oyster tissues. On the basis of laboratory studies, p-gp expression tended to be higher in gill tissues than mantle tissues, and was generally not related to salinity differences. Seasonal studies were conducted with oysters collected monthly for 1 year from Lighthouse Creek, an unpolluted site. There was a general pattern of higher p-gp expression in the warmer months and lower expression in the colder months. In contrast, total gill protein concentrations decreased during the warmer months and increased during the colder months. These studies indicate that there are seasonal patterns in p-gp expression which may represent an adaptive response to natural stressors associated with summer conditions.
Collapse
Affiliation(s)
- C J Keppler
- University of Charleston, Grice Marine Biological Laboratory, SC 29412, USA.
| | | |
Collapse
|
36
|
Zhang JT. The multi-structural feature of the multidrug resistance gene product P-glycoprotein: implications for its mechanism of action (hypothesis). Mol Membr Biol 2001; 18:145-52. [PMID: 11463206 DOI: 10.1080/09687680110048831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
P-glycoprotein is a member of the ATP-binding cassette (ABC) transport superfamily. It plays an important role in the development of multidrug resistance in cancers by effluxing a wide variety of anticancer drugs. A large amount of information on the structure and function of P-glycoprotein has been accumulated over recent years from studies using molecular, biochemical, and biophysical approaches. It remains unclear, however, how this protein folds in membranes and how it transports such a wide variety of hydrophobic compounds. This paper highlights the recent progress in the structural and biogenesis aspects of P-glycoprotein. A model mechanism of P-glycoprotein action is proposed as a hypothesis that is based on recent progress in studying the topological folding of P-glycoprotein.
Collapse
Affiliation(s)
- J T Zhang
- Department of Pharmacology and Toxicology, Indiana University Cancer Center and Walther Oncology Institute, Indiana University School of Medicine, Indianapolis 46202, USA.
| |
Collapse
|
37
|
Schuldes H, Dolderer JH, Zimmer G, Knobloch J, Bickeböller R, Jonas D, Woodcock BG. Reversal of multidrug resistance and increase in plasma membrane fluidity in CHO cells with R-verapamil and bile salts. Eur J Cancer 2001; 37:660-7. [PMID: 11290442 DOI: 10.1016/s0959-8049(00)00450-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Studies with multidrug resistance modifiers indicate that perturbations of the cell membrane structure may influence P-glycoprotein (P-gp)-mediated drug transport. We describe studies of plasma membrane order using electron-paramagnetic resonance (EPR) in resistant (CH(R)C5) and sensitive (AUXB1) chinese hamster ovary cells treated with R-verapamil and bile salts. Cell growth rates were determined in presence of doxorubicin mitomycin and cisplatin. The plasma membrane order in untreated resistant cells was higher than in the sensitive cells. Both the bile salt taurochenodeoxycholate (TCDC; 0.2-1.6 mM) and R-verapamil (1-3 microM) lowered the membrane order in the CH(R)C5 cells to that in the sensitive cells and reversed the resistance to doxorubicin and mitomycin. The bile salt tauroursodeoxycholate (TUDC; 0.2-3 mM) did not lower membrane order and did not sensitise CH(R)C5 cells. Neither R-verapamil, TCDC nor TUDC reduced the membrane order of the sensitive cells AUXB1 cells. These results support the view that changes in multidrug resistance in Chinese hamster ovary cells and P-gp function are associated with alterations in the fluidity of the plasma membrane.
Collapse
Affiliation(s)
- H Schuldes
- Cellular Research Laboratory, Urological Clinic, Center of Surgery, J.-W. Goethe-University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Main, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The seminal observations that (a) chloroquine-resistant Plasmodium falciparum strains accumulate less drug than more sensitive parasites, and (b) chloroquine resistance could be modulated in vitro by the classic multidrug-resistance (MDR) modulator verapamil, suggested not only that parasite resistance to multiple drugs may be similar to the MDR phenotype described in mammalian cancer cells, but that homologous proteins may be involved. These findings prompted search for MDR-like genes in the parasite. To date, three full-length ABC transporter genes have been isolated from P. falciparum: two P-glycoprotein-like homologues, pfmdr1 and pfmdr2, and a homologue of the yeast GCN20 gene, pfgcn20.
Collapse
Affiliation(s)
- S A Peel
- Department of Molecular Diagnostics and Pathogenesis, Division of Retrovirology Walter Reed Army Institute of Research, Rockville, MD, USA.
| |
Collapse
|
39
|
Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000; 11:265-83. [PMID: 11033070 DOI: 10.1016/s0928-0987(00)00114-7] [Citation(s) in RCA: 736] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, there has been an increased understanding of P-glycoprotein (P-GP)-mediated pharmacokinetic interactions. In addition, its role in modifying the bioavailability of orally administered drugs via induction or inhibition has been also been demonstrated in various studies. This overview presents a background on some of the commonly documented mechanisms of multidrug resistance (MDR), reversal using modulators of MDR, followed by a discussion on the functional aspects of P-GP in the context of the pharmacokinetic interactions when multiple agents are coadministered. While adverse pharmacokinetic interactions have been documented with first and second generation MDR modulators, certain newer agents of the third generation class of compounds have been less susceptible in eliciting pharmacokinetic interactions. Although the review focuses on P-GP and the pharmacology of MDR reversal using MDR modulators, relevance of these drug transport proteins in the context of pharmacokinetic implications (drug absorption, distribution, clearance, and interactions) will also be discussed.
Collapse
Affiliation(s)
- R Krishna
- Department of Advanced Therapeutics, British Columbia Cancer Agency, BC V5Z 4E6, Vancouver, Canada.
| | | |
Collapse
|
40
|
Dzekunov SM, Ursos LM, Roepe PD. Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine. Mol Biochem Parasitol 2000; 110:107-24. [PMID: 10989149 DOI: 10.1016/s0166-6851(00)00261-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the first single cell-level analysis of digestive vacuolar pH for representative chloroquine resistant (strain Dd2) versus sensitive (strain HB3) malarial parasites. Human red blood cells harboring intact intraerythrocytic parasites were attached to glass substrate, continuously perfused with appropriate buffer, and pH was analyzed via single cell imaging and photometry techniques. We find that digestive vacuolar pH (pH(vac)) is near 5.6 for HB3 parasites. Surprisingly, we also find that pH(vac) of Dd2 is more acidic relative to HB3. Notably, in vitro pH titration of hematin confirms a very steep transition between soluble heme (capable of binding chloroquine) and insoluble heme (not capable of binding chloroquine, but still capable of polymerization to hemozoin) with a distinct midpoint at pH 5.6. We suggest the similarity between the hematin pH titration midpoint and the measured value of HB3 pH(vac) is not coincidental, and that decreased pH(vac) for Dd2 titrates limited initial drug target (i.e. soluble heme) to lower concentration. That is, changes in pH(vac) for drug resistant Dd2 relative to drug sensitive HB3 are consistent with lowering drug target levels, but not directly lowering vacuolar concentrations of drug via the predictions of weak base partitioning theory. Regardless, lowering either would of course decrease the efficiency of drug/target interaction and hence the net cellular accumulation of drug over time, as is typically observed for resistant parasites. These observations contrast sharply with the common expectation that decreased chloroquine accumulation in drug resistant malarial parasites is likely linked to elevated pH(vac,) but nonetheless illustrate important differences in vacuolar ion transport for drug resistant malarial parasites. In the accompanying paper (Ursos, L. et al., following paper this issue) we describe how pH(vac) is affected by exposure to chloroquine and verapamil for HB3 versus Dd2.
Collapse
Affiliation(s)
- S M Dzekunov
- Department of Chemistry and Program in Tumor Biology, Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
41
|
Fischer B, Müller B, Fischer KG, Baur N, Kreutz W. Acidic pH inhibits non-MHC-restricted killer cell functions. Clin Immunol 2000; 96:252-63. [PMID: 10964544 DOI: 10.1006/clim.2000.4904] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunotherapeutic strategies in advanced stages of solid tumors have generally met with little success. Various mechanisms have been discussed permitting the escape of tumor cells from an effective antitumoral immune response. Solid tumors are known to develop regions with acidic interstitial pH. In a recent study performed in the human system, we were able to demonstrate that non-MHC-restricted cytotoxicity is inhibited by an acidic microenvironment. To get more insight into the mechanisms leading to this reduced cytotoxic activity, we have now investigated the influence of an acidic extracellular pH (pH(e)) on the killing process in detail. Unstimulated PBMC and LAK cells were used as effector cells. Both populations are able to kill tumor cells in a MHC-independent manner via perforin/granzymes or TNFalpha, whereas only IL-2-activated cells can use the killing pathway via Fas/FasL. We studied the influence of a declining pH(e) on the different killing pathways against TNFalpha-sensitive and -resistant, as well as Fas-positive and -negative, target cells. Experiments in the absence of extracellular Ca(2+) were used to discriminate the Ca(2+)-dependent perforin-mediated killing. Here we show that the release of perforin/granzyme-containing granules, the secretion of TNFalpha, and also the cytotoxic action of Fas/FasL interaction or of membrane-bound TNFalpha were considerably inhibited by declining pH(e). Furthermore, the secretion of the activating cytokine IFNgamma, as well as the release of the down-regulating cytokines IL-10 and TGF-beta(1), was strictly influenced by surrounding pH. As a pH(e) of 5.8 resulted in a nearly complete loss of cytotoxic effector cell functions without affecting their viability, we investigated the influence of pH(e) on basic cellular functions, e.g. , mitochondrial activity and regulation of intracellular pH. We found an increasing inhibition of both functions with declining pH(e). Therefore, an acidic pH(e) obviously impairs fundamental cellular regulation, which finally prevents the killing process. In summary, our data show a strict pH(e) dependence of various killer cell functions. Thus, an acidic microenvironment within solid tumors may contribute to the observed immunosuppression in vivo, compromising antitumoral defense and immunotherapy in general, respectively.
Collapse
Affiliation(s)
- B Fischer
- Institut für Biophysik und Strahlenbiologie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 23, Freiburg i. Br., D-79104, Germany
| | | | | | | | | |
Collapse
|
42
|
Abstract
P-glycoprotein (P-gp) is an energy dependent drug pump responsible for multidrug resistance (MDR) in human cancers. While it is irrefutable that P-gp can efflux xenobiotics out of cells, the biological function of P-gp in multicellular organisms has yet to be firmly established. The question of what, if anything, P-gp does when not effluxing drugs has been raised by recent reports indicating that P-gp may regulate apoptosis, chloride channel activity, cholesterol metabolism and immune cell function. There is now a lively debate regarding the possible role of P-gp in regulating cell differentiation, proliferation and survival.
Collapse
Affiliation(s)
- R W Johnstone
- Cellular Cytotoxicity Laboratory, The Austin Research Institute, Australia, Victoria.
| | | | | | | |
Collapse
|
43
|
Chen Y, Simon SM. In situ biochemical demonstration that P-glycoprotein is a drug efflux pump with broad specificity. J Cell Biol 2000; 148:863-70. [PMID: 10704438 PMCID: PMC2174548 DOI: 10.1083/jcb.148.5.863] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1999] [Accepted: 01/27/2000] [Indexed: 11/23/2022] Open
Abstract
While P-glycoprotein (Pgp) is the most studied protein involved in resistance to anti-cancer drugs, its mechanism of action is still under debate. Studies of Pgp have used cell lines selected with chemotherapeutics which may have developed many mechanisms of resistance. To eliminate the confounding effects of drug selection on understanding the action of Pgp, we studied cells transiently transfected with a Pgp-green fluorescent protein (GFP) fusion protein. This method generated a mixed population of unselected cells with a wide range of Pgp-GFP expression levels and allowed simultaneous measurements of Pgp level and drug accumulation in living cells. The results showed that Pgp-GFP expression was inversely related to the accumulation of chemotherapeutic drugs. The reduction in drug concentration was reversed by agents that block multiple drug resistance (MDR) and by the UIC2 anti-Pgp antibody. Quantitative analysis revealed an inverse linear relationship between the fluorescence of Pgp-GFP and MDR dyes. This suggests that Pgp levels alone limit drug accumulation by active efflux; cooperativity between enzyme, substrate, or inhibitor molecules is not required. Additionally, Pgp-GFP expression did not change cellular pH. Our study demonstrates the value of using GFP fusion proteins for quantitative biochemistry in living cells.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Cellular Biophysics, Rockefeller University, New York 10021
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York 10021
| |
Collapse
|
44
|
Takahashi M, Misawa Y, Watanabe N, Kawanishi T, Tanaka H, Shigenobu K, Kobayashi Y. Role of P-glycoprotein in human natural killer-like cell line-mediated cytotoxicity. Exp Cell Res 1999; 253:396-402. [PMID: 10585262 DOI: 10.1006/excr.1999.4696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cells express the highest amount of P-glycoprotein (Pgp), a product of the multidrug resistance (MDR) 1 gene, among lymphoid cells, and our previous studies demonstrated that Pgp is required for NK cell-mediated cytotoxicity. In this study we examined the role of Pgp in NK cell-mediated cytotoxicity using a human NK-like cell line, i.e., YTN cells and two MDR reversing agents, nicardipine and its structural analog, AHC-93. These two agents inhibited the Pgp function (rhodamine-123 excretion) as well as cell-mediated cytotoxicity, confirming that Pgp is critical for NK cell-mediated cytotoxicity. As revealed by video-rate ultraviolet laser-scanning confocal microscopy, AHC-93 did not inhibit the increase in the intracellular calcium concentration upon binding to target cells, whereas nicardipine did, as reported previously. These two reagents relocated acridine orange dye from lysosomes to the cytoplasm at concentrations similar to those required for the inhibition of cell-mediated cytotoxicity. These results suggest that Pgp is directly or indirectly involved in pH regulation in lysosomes, but not in calcium homeostasis.
Collapse
Affiliation(s)
- M Takahashi
- Faculty of Science, Toho University, 2-2-1 Miyama, Chiba, 274, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Gillies RJ, Schornack PA, Secomb TW, Raghunand N. Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1999; 1:197-207. [PMID: 10935474 PMCID: PMC1508079 DOI: 10.1038/sj.neo.7900037] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1999] [Accepted: 05/27/1999] [Indexed: 12/11/2022]
Abstract
A characteristic of solid tumors is their heterogeneous distribution of blood flow, with significant hypoxia and acidity in low-flow regions. We review effects of heterogeneous tumor perfusion are reviewed and propose a conceptual model for its cause. Hypoxic-acidic regions are resistant to chemo- and radiotherapy and may stimulate progression to a more metastatic phenotype. In normal tissues, hypoxia and acidity induce angiogenesis, which is expected to improve perfusion. However, aggressive tumors can have high local microvessel density simultaneously with significant regions of hypoxia and acidosis. A possible explanation for this apparent contradiction is that the mechanisms regulating growth and adaptation of vascular networks are impaired. According to a recent theory for structural adaptation of vascular networks, four interrelated adaptive responses can work as a self-regulating system to produce a mature and efficient blood distribution system in normal tissues. It is proposed that heterogeneous perfusion in tumors may result from perturbation of this system. Angiogenesis may increase perfusion heterogeneity in tumors by increasing the disparity between parallel low- and high-resistance flow pathways. This conceptual model provides a basis for future rational therapies. For example, it indicates that selective destruction of tumor vasculature may increase perfusion efficiency and improve therapeutic efficacy.
Collapse
Affiliation(s)
- R J Gillies
- Arizona Cancer Center, University of Arizona, Tucson 85724-5024, USA.
| | | | | | | |
Collapse
|
46
|
Eytan GD, Kuchel PW. Mechanism of action of P-glycoprotein in relation to passive membrane permeation. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 190:175-250. [PMID: 10331240 DOI: 10.1016/s0074-7696(08)62148-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review presents a survey of studies of the movement of chemotherapeutic drugs into cells, their extrusion from multidrug-resistant (MDR) cells overexpressing P-glycoprotein (Pgp), and the mode of sensitization of MDR cells to anticancer drugs by Pgp modulators. The consistent features of the kinetics from studies of the operation of Pgp in cells were combined in a computer model that enables the simulation of experimental scenarios. MDR-type drugs are hydrophobic and positively charged and as such bind readily to negatively charged phospholipid head groups of the membrane. Transmembrane movement of MDR-type drugs, such as doxorubicin, occurs by a flip-flop mechanism with a lifetime of about 1 min rather than by diffusion down a gradient present in the lipid core. A long residence time of a drug in the membrane leaflet increases the probability that P-glycoprotein will remove it from the cell. In a manner similar to ion-transporting ATPases, such as Na+,K(+)-ATPase, Pgp transports close to one drug molecule per ATP molecule hydrolyzed. Computer simulation of cellular pharmacokinetics, based on partial reactions measured in vitro, show that the efficiency of Pgp, in conferring MDR on cells, depends on the pumping capacity of Pgp and its affinity toward the specific drug, the transmembrane movement rate of the drug, the affinity of the drug toward its pharmacological cellular target, and the affinity of the drug toward intracellular trapping sites. Pgp activities present in MDR cells allow for the efficient removal of drugs, whether directly from the cytoplasm or from the inner leaflet of the plasma membrane. A prerequisite for a successful modulator, capable of overcoming cellular Pgp, is the rapid passive transbilayer movement, allowing it to reenter the cell immediately and thus successfully occupy the Pgp active site(s).
Collapse
Affiliation(s)
- G D Eytan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
47
|
Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999; 39:361-98. [PMID: 10331089 DOI: 10.1146/annurev.pharmtox.39.1.361] [Citation(s) in RCA: 1518] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Considerable evidence has accumulated indicating that the multidrug transporter or P-glycoprotein plays a role in the development of simultaneous resistance to multiple cytotoxic drugs in cancer cells. In recent years, various approaches such as mutational analyses and biochemical and pharmacological characterization have yielded significant information about the relationship of structure and function of P-glycoprotein. However, there is still considerable controversy about the mechanism of action of this efflux pump and its function in normal cells. This review summarizes current research on the structure-function analysis of P-glycoprotein, its mechanism of action, and facts and speculations about its normal physiological role.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Cell Membrane/metabolism
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Humans
- Neoplasms/genetics
- Neoplasms/metabolism
- Protein Conformation
- Structure-Activity Relationship
Collapse
Affiliation(s)
- S V Ambudkar
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Raghunand N, Martínez-Zaguilán R, Wright SH, Gillies RJ. pH and drug resistance. II. Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs. Biochem Pharmacol 1999; 57:1047-58. [PMID: 10796075 DOI: 10.1016/s0006-2952(99)00021-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Resistance to chemotherapeutic agents is a major cause of treatment failure in patients with cancer. The primary mechanism leading to a multidrug-resistant phenotype is assumed to be plasma-membrane localized overexpression of drug efflux transporters, such as P-glycoprotein (P-gp). However, acidic intracellular organelles can also participate in resistance to chemotherapeutic drugs. In this study, we investigated, both experimentally and theoretically, the effect of acidic vesicle turnover on drug resistance. We have developed a general model to account for multiple mechanisms of resistance to weakly basic organic cations, e.g. anthracyclines and Vinca alkaloids. The model predicts that lower cytosolic concentrations of drugs can be achieved through a combination of high endosomal turnover rates, a low endosomal pH, and an alkaline-inside pH gradient between cytosol and the extracellular fluid. Measured values for these parameters have been inserted into the model. Computations using conservative values of all parameters indicate that turnover of acidic vesicles can be an important contributor to the drug-resistant phenotype, especially if vesicles contain an active uptake system, such as H+/cation exchange. Even conservative estimates of organic cation-proton antiport activity would be sufficient to make endosomal drug extrusion a potent mechanism of resistance to weakly basic drugs. The effectiveness of such a drug export mechanism would be comparable to drug extrusion via drug pumps such as P-gp. Thus, turnover of acidic vesicles can be an important factor in chemoresistance, especially in cells that do not overexpress plasma membrane-bound drug pumps like P-glycoprotein.
Collapse
Affiliation(s)
- N Raghunand
- Department of Biochemistry, University of Arizona Health Sciences Center, Tucson 85724-5042, USA
| | | | | | | |
Collapse
|
49
|
Martínez-Zaguilán R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, Smith D, Dalton WS, Gillies RJ. pH and drug resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochem Pharmacol 1999; 57:1037-46. [PMID: 10796074 DOI: 10.1016/s0006-2952(99)00022-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major obstacle for the effective treatment of cancer is the phenomenon of multidrug resistance (MDR) exhibited by many tumor cells. Many, but not all, MDR cells exhibit membrane-associated P-glycoprotein (P-gp), a drug efflux pump. However, most mechanisms of MDR are complex, employing P-gp in combination with other, ill-defined activities. Altered cytosolic pH (pHi) has been implicated to play a role in drug resistance. In the current study, we investigated mechanisms of pHi regulation in drug-sensitive (MCF-7/S) and drug-resistant human breast cancer cells. Of the drug-resistant lines, one contained P-gp (MCF-7/DOX; also referred to as MCF-7/D40) and one did not (MCF-7/MITOX). The resting steady-state pHi was similar in the three cell lines. In addition, in all the cell lines, HCO3- slightly acidified pHi and increased the rates of pHi recovery after an acid load, indicating the presence of anion exchanger (AE) activity. These data indicate that neither Na+/H+ exchange nor AE is differentially expressed in these cell lines. The presence of plasma membrane vacuolar-type H+-ATPase (pmV-ATPase) activity in these cell lines was then investigated. In the absence of Na+ and HCO3-, MCF-7/S cells did not recover from acid loads, whereas MCF-7/MITOX and MCF-7/DOX cells did. Furthermore, recovery of pHi was inhibited by bafilomycin A1 and NBD-Cl, potent V-ATPase inhibitors. Attempts to localize V-ATPase immunocytochemically at the plasma membranes of these cells were unsuccessful, indicating that V-ATPase is not statically resident at the plasma membrane. Consistent with this was the observation that release of endosomally trapped dextran was more rapid in the drug-resistant, compared with the drug-sensitive cells. Furthermore, the drug-resistant cells entrapped doxorubicin into intracellular vesicles whereas the drug-sensitive cells did not. Hence, it is hypothesized that the measured pmV-ATPase activity in the drug-resistant cells is a consequence of rapid endomembrane turnover. The potential impact of this behavior on drug resistance is examined in a companion manuscript.
Collapse
Affiliation(s)
- R Martínez-Zaguilán
- Department of Biochemistry, University of Arizona Health Sciences Center, Tucson 85724-5042, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
For years, P-glycoprotein (P-gp) has been purported to be a membrane transporter capable of selectively transporting many (but not all) lipophilic anticancer drugs with diverse chemical structures. Because the alleged functions of P-gp provide a straightforward, near-perfect explanation for the molecular mechanism of multidrug resistance associated with P-gp overexpression. However, the exact molecular mechanism for P-gp's purported function has never been clearly understood since its initial discovery some 20 yr ago. In this paper, I develop a novel working hypothesis regarding the mechanism of P-gp's action and suggest that P-gp is an energy-dependent efflux pump only for certain conjugated metabolites (probably sulfates) of the lipophilic anticancer drugs but not for the parent compounds, as was always claimed. According to this hypothesis, P-gp overexpression in most cases is not the "culprit" but instead an "accomplice" in P-gp-associated multidrug resistance. The culprit is probably the enhanced function of the metabolizing enzymes for the lipophilic anticancer drugs. This hypothesis also predicts that one of the important physiological functions of P-gp is to be part of an intracellular machinery (together with the phase I and II metabolizing enzymes) for the metabolism, detoxification, and disposition of lipophilic endogenous chemicals as well as xenobiotics, including cytotoxic anticancer drugs. There exists a considerable body of circumstantial evidence in the literature that lends strong support to this mechanistic hypothesis of P-gp's action as well as to the predicted physiological functions of P-gp. It will be of considerable interest to examine this novel hypothesis experimentally.
Collapse
Affiliation(s)
- B T Zhu
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, USA
| |
Collapse
|