1
|
Miyano K, Kajikawa M. Ca 2+ -binding-region-dependent cell surface localization of NADPH oxidase Nox5. FEBS Lett 2023; 597:702-713. [PMID: 36653838 DOI: 10.1002/1873-3468.14577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Six gene splice variants of superoxide-generating NADPH oxidase 5 (Nox5) have been identified in humans, and they differ in the sequence of their N-terminal cytoplasmic domains, which comprise four EF-hand motifs. Here, we demonstrated that the Ca2+ -dependent association and dissociation between the N- and C-terminal cytoplasmic domains of the Nox5β variant are affected by the alanine substitution of the conserved Ile-113 or Leu-115 at the connecting loop between the third and fourth EF-hand motifs. These substitutions impair the cell surface localization of Nox5β. In addition, the Nox5ε/S variant, lacking all EF-hand motifs, does not localize to the plasma membrane. Thus, the Ca2+ -sensitive intramolecular interaction determines the Nox5 subcellular localization, that is, whether Nox5 variants generate superoxide in the extracellular or intracellular space.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Natural Sciences, Kawasaki Medical School, Okayama, Japan
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
2
|
Bechor E, Zahavi A, Berdichevsky Y, Pick E. The molecular basis of Rac-GTP action-promoting binding of p67 phox to Nox2 by disengaging the β hairpin from downstream residues. J Leukoc Biol 2021; 110:219-237. [PMID: 33857329 DOI: 10.1002/jlb.4hi1220-855rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/11/2022] Open
Abstract
p67phox fulfils a key role in the assembly/activation of the NADPH oxidase by direct interaction with Nox2. We proposed that Rac-GTP serves both as a carrier of p67phox to the membrane and an inducer of a conformational change enhancing its affinity for Nox2. This study provides evidence for the latter function: (i) oxidase activation was inhibited by p67phox peptides (106-120) and (181-195), corresponding to the β hairpin and to a downstream region engaged in intramolecular bonds with the β hairpin, respectively; (ii) deletion of residues 181-193 and point mutations Q115R or K181E resulted in selective binding of p67phox to Nox2 peptide (369-383); (iii) both deletion and point mutations led to a change in p67phox , expressed in increased apparent molecular weights; (iv) p67phox was bound to p67phox peptide (181-195) and to a cluster of peptides (residues 97-117), supporting the participation of selected residues within these sequences in intramolecular bonds; (v) p67phox failed to bind to Nox2 peptide (369-383), following interaction with Rac1-GTP, but a (p67phox -Rac1-GTP) chimera exhibited marked binding to the peptide, similar to that of p67phox deletion and point mutants; and (vi) size exclusion chromatography of the chimera revealed its partition in monomeric and polymeric forms, with binding to Nox2 peptide (369-383) restricted to polymers. The molecular basis of Rac-GTP action entails unmasking of a previously hidden Nox2-binding site in p67phox , following disengagement of the β hairpin from more C-terminal residues. The domain in Nox2 binding the "modified" p67phox comprises residues within the 369-383 sequence in the cytosolic dehydrogenase region.
Collapse
Affiliation(s)
- Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Zahavi
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Abstract
The superoxide (O2·-)-generating NADPH oxidase complex of phagocytes comprises a membrane-associated heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of NOX2 and p22phox) and four cytosolic regulatory proteins, p47phox, p67phox, p40phox, and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2·- generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome, a process known as NADPH oxidase assembly. A consequent conformational change in NOX2 initiates the electron flow along a redox gradient, from NADPH to molecular oxygen (O2), leading to the one-electron reduction of O2 to O2·-. Historically, methodological difficulties in the study of the assembled complex derived from stimulated cells, due to its lack of stability, led to the design of "cell-free" systems (also known as "broken cells" or in vitro systems). In a major paradigm shift, the cell-free systems have as their starting point NADPH oxidase components derived from resting (unstimulated) phagocytes, or as in the predominant method at present, recombinant proteins representing the components of the NADPH oxidase complex. In cell-free systems, membrane receptor stimulation and the signal transduction sequence are absent, the accent being placed on the actual process of assembly, all of which takes place in vitro. Thus, a mixture of the individual components of the NADPH oxidase is exposed in vitro to an activating agent, the most common being anionic amphiphiles, resulting in the formation of a complex between cytochrome b 558 and the cytosolic components and O2·- generation in the presence of NADPH. Alternative activating pathways require posttranslational modification of oxidase components or modifying the phospholipid milieu surrounding cytochrome b 558. Activation is commonly quantified by measuring the primary product of the reaction, O2·-, trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of rates of O2·- production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the performance of structure-function studies, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
|
4
|
Kaito Y, Kataoka R, Mihara T, Takechi K, Takahira A, Watanabe S, Han F, Tamura M. Phosphorylation of Ser-525 in βPix impairs Nox1-activating ability in Caco-2 cells. Arch Biochem Biophys 2018; 638:58-65. [PMID: 29242061 DOI: 10.1016/j.abb.2017.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
βPix activates Nox1, an O2--generating NADPH oxidase, through Rac activation. In this study, we found that S525E mutation of βPix eliminated its Nox1-activating ability in transfected Caco-2 cells. Unexpectedly, affinity for Rac was not diminished but rather enhanced by S525E mutation, and guanine nucleotide exchange factor (GEF) activity was not altered. The N-terminal fragment (amino acids 1-400) showed similar Rac-binding and GEF activity to wild-type βPix. In contrast, the C-terminal fragment (amino acids 408-646) had higher Rac-binding activity, particularly for Rac-GTP, than wild-type βPix, and showed no GEF activity. These data suggest that a second Rac-binding site within the C-terminal region is opened by phosphorylation of Ser-525. The site may bind not only Rac-GDP but also Rac-GTP released from the N-terminal catalytic region, which interrupts Rac-GTP translocation to the membrane where Nox1 resides. If one considers that S340E mutation enhances Nox1 activation (Kaito et al., 2014), the present study suggests that βPix can also play an inhibitory role in O2- production, depending on the sites of phosphorylation.
Collapse
Affiliation(s)
- Yuuki Kaito
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryosuke Kataoka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Mihara
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kento Takechi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Akira Takahira
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shuhei Watanabe
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Fei Han
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Minoru Tamura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
5
|
Masoud R, Serfaty X, Erard M, Machillot P, Karimi G, Hudik E, Wien F, Baciou L, Houée-Levin C, Bizouarn T. Conversion of NOX2 into a constitutive enzyme in vitro and in living cells, after its binding with a chimera of the regulatory subunits. Free Radic Biol Med 2017; 113:470-477. [PMID: 29079525 DOI: 10.1016/j.freeradbiomed.2017.10.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022]
Abstract
During the phagocytosis of pathogens by phagocyte cells, the NADPH oxidase complex is activated to produce superoxide anion, a precursor of microbial oxidants. The activated NADPH oxidase complex from phagocytes consists in two transmembrane proteins (Nox2 and p22phox) and four cytosolic proteins (p40phox, p47phox, p67phox and Rac1-2). In the resting state of the cells, these proteins are dispersed in the cytosol, the membrane of granules and the plasma membrane. In order to synchronize the assembly of the cytosolic subunits on the membrane components of the oxidase, a fusion of the cytosolic proteins p47phox, p67phox and Rac1 named trimera was constructed. The trimera investigated in this paper is composed of the p47phox segment 1-286, the p67phox segment 1-212 and the mutated Rac1(Q61L). We demonstrate that the complex trimera-cyt b558 is functionally comparable to the one containing the separated subunits. Each of the subunits p47phox, p67phox and Rac1Q61L has kept its own activating property. The trimera is produced in an activated conformation as seen by circular dichroism. However, the presence of amphiphile is still necessary in a cell-free system to trigger superoxide anion production. The COS7gp91-p22 cells expressing the trimera produce continuously superoxide anion at high rate. This constitutive activity in cells can be of particular interest for understanding the NADPH oxidase functioning independently of signaling pathways.
Collapse
Affiliation(s)
- Rawand Masoud
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Xavier Serfaty
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Marie Erard
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Paul Machillot
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Gilda Karimi
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Elodie Hudik
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Frank Wien
- Synchrotron SOLEIL, campus Paris Saclay, Gif-sur-Yvette, France
| | - Laura Baciou
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Chantal Houée-Levin
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Tania Bizouarn
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France.
| |
Collapse
|
6
|
Tamura M, Kunihiro S, Hamashima Y, Yoshioka Y, Tone S, Kameda K. An improved superoxide-generating nanodevice for oxidative stress studies in cultured cells. ACTA ACUST UNITED AC 2015. [PMID: 28626696 PMCID: PMC5466258 DOI: 10.1016/j.btre.2015.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our previously developed O2−-generating tool was unstable in culture medium. A new nanodevice, Device II, was prepared by cross-linking of the original device. The new nanodevice was much more stable in culture medium than the original device. Device II efficiently induced cell death mainly through apoptosis.
The effects of reactive oxygen species on cells have attracted great attention from both physiological and pathological aspects. Superoxide (O2−) is the primary reactive oxygen species formed in animals. We previously developed an O2−-generating nanodevice consisting of NADPH oxidase 2 (Nox2) and modulated activating factors. However, the device was subsequently found to be unstable in a standard culture medium. Here we improved the device in stability by cross-linking. This new nanodevice, Device II, had a half-life of 3 h at 37 °C in the medium. Device II induced cell death in 80% of HEK293 cells after 24 h of incubation. Superoxide dismutase alone did not diminish the effect of the device, but eliminated the effect when used together with catalase, confirming that the cell death was caused by H2O2 derived from O2−. Flow cytometric analyses revealed that Device II induced caspase-3 activation in HEK293 cells, suggesting that the cell death proceeded largely through apoptosis.
Collapse
Key Words
- Caspase-3
- EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
- MEM, Eagle’s minimal essential medium
- NV, DEVD-NucView488
- Nanodevice
- Nox, NADPH oxidase
- PBS, phosphate-buffered saline
- PI, propidium iodide
- PIPES, piperazine-N,N′-bis(ethanesulfonic acid)
- ROS, reactive oxygen species
- RacQ61L, Rac(Q61L, C189S)
- SOD, superoxide dismutase
- Superoxide
- cyt.b558, cytochrome b558
- p67N–p47N, p67phox(1-210)-p47phox(1-286)
- sulfo-NHSN, -hydroxysulfosuccinimide
Collapse
Affiliation(s)
- Minoru Tamura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Sachio Kunihiro
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yuki Hamashima
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yuki Yoshioka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shigenobu Tone
- Deparetment of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Kenji Kameda
- INCS, Shigenobu Station, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
7
|
Masoud R, Bizouarn T, Houée-Levin C. Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study. Redox Biol 2014; 3:16-24. [PMID: 25462061 PMCID: PMC4221629 DOI: 10.1016/j.redox.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/02/2014] [Accepted: 10/12/2014] [Indexed: 01/26/2023] Open
Abstract
The NADPH oxidase Nox2, a multi-subunit enzyme complex comprising membrane and cytosolic proteins, catalyzes a very intense production of superoxide ions O2•−, which are transformed into other reactive oxygen species (ROS). In vitro, it has to be activated by addition of amphiphiles like arachidonic acid (AA). It has been shown that the membrane part of phagocyte NADPH oxidase is present in lipid rafts rich in cholesterol. Cholesterol plays a significant role in the development of cardio-vascular diseases that are always accompanied by oxidative stress. Our aim was to investigate the influence of cholesterol on the activation process of NADPH oxidase. Our results clearly show that, in a cell-free system, cholesterol is not an efficient activator of NADPH oxidase like arachidonic acid (AA), however it triggers a basal low superoxide production at concentrations similar to what found in neutrophile. A higher concentration, if present during the assembly process of the enzyme, has an inhibitory role on the production of O2•−. Added cholesterol acts on both cytosolic and membrane components, leading to imperfect assembly and decreasing the affinity of cytosolic subunits to the membrane ones. Added to the cytosolic proteins, it retains their conformations but still allows some conformational change induced by AA addition, indispensable to activation of NADPH oxidase. Natural cholesterol is important for the NADPH oxidase function. Added cholesterol alone activates slightly the NADPH oxidase. Cholesterol addition lowers the AA dependent activity of NADPH oxidase. Added cholesterol acts on both cytosolic and membrane components.
Collapse
Affiliation(s)
- Rawand Masoud
- Laboratoire de chimie physique, UMR 8000, Université Paris Sud-CNRS, Orsay 91405, France
| | - Tania Bizouarn
- Laboratoire de chimie physique, UMR 8000, Université Paris Sud-CNRS, Orsay 91405, France
| | - Chantal Houée-Levin
- Laboratoire de chimie physique, UMR 8000, Université Paris Sud-CNRS, Orsay 91405, France.
| |
Collapse
|
8
|
Matono R, Miyano K, Kiyohara T, Sumimoto H. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production. J Biol Chem 2014; 289:24874-84. [PMID: 25056956 DOI: 10.1074/jbc.m114.581785] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The phagocyte NADPH oxidase Nox2, heterodimerized with p22(phox) in the membrane, is dormant in resting cells but becomes activated upon cell stimulation to produce superoxide, a precursor of microbicidal oxidants. Nox2 activation requires two switches to be turned on simultaneously: a conformational change of the cytosolic protein p47(phox) and GDP/GTP exchange on the small GTPase Rac. These proteins, in an active form, bind to their respective targets, p22(phox) and p67(phox), leading to productive oxidase assembly at the membrane. Although arachidonic acid (AA) efficiently activates Nox2 both in vivo and in vitro, the mechanism has not been fully understood, except that AA induces p47(phox) conformational change. Here we show that AA elicits GDP-to-GTP exchange on Rac at the cellular level, consistent with its role as a potent Nox2 activator. However, even when constitutively active forms of p47(phox) and Rac1 are both expressed in HeLa cells, superoxide production by Nox2 is scarcely induced in the absence of AA. These active proteins also fail to effectively activate Nox2 in a cell-free reconstituted system without AA. Without affecting Rac-GTP binding to p67(phox), AA induces the direct interaction of Rac-GTP-bound p67(phox) with the C-terminal cytosolic region of Nox2. p67(phox)-Rac-Nox2 assembly and superoxide production are both abrogated by alanine substitution for Tyr-198, Leu-199, and Val-204 in the p67(phox) activation domain that localizes the C-terminal to the Rac-binding domain. Thus the "third" switch (AA-inducible interaction of p67(phox)·Rac-GTP with Nox2) is required to be turned on at the same time for Nox2 activation.
Collapse
Affiliation(s)
- Rumi Matono
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kei Miyano
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuya Kiyohara
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Pick E. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: outsourcing a key task. Small GTPases 2014; 5:e27952. [PMID: 24598074 PMCID: PMC4114928 DOI: 10.4161/sgtp.27952] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
The superoxide-generating NADPH oxidase of phagocytes consists of the membrane-associated cytochrome b 558 (a heterodimer of Nox2 and p22(phox)) and 4 cytosolic components: p47(phox), p67(phox), p40(phox), and the small GTPase, Rac, in complex with RhoGDI. Superoxide is produced by the NADPH-driven reduction of molecular oxygen, via a redox gradient located in Nox2. Electron flow in Nox2 is initiated by interaction with cytosolic components, which translocate to the membrane, p67(phox) playing the central role. The participation of Rac is expressed in the following sequence: (1) Translocation of the RacGDP-RhoGDI complex to the membrane; (2) Dissociation of RacGDP from RhoGDI; (3) GDP to GTP exchange on Rac, mediated by a guanine nucleotide exchange factor; (4) Binding of RacGTP to p67(phox); (5) Induction of a conformational change in p67(phox), promoting interaction with Nox2. The particular involvement of Rac in NADPH oxidase assembly serves as a paradigm for signaling by Rho GTPases, in general.
Collapse
Affiliation(s)
- Edgar Pick
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research; Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| |
Collapse
|
10
|
Abstract
The superoxide (O2 (∙-))-generating NADPH oxidase complex of phagocytes comprises a membrane-imbedded heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of Nox2 and p22 (phox) ) and four cytosolic regulatory proteins, p47 (phox) , p67 (phox) , p40 (phox) , and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2 (∙-) generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by specific signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome. A consequent conformational change in Nox2 initiates the electron "flow" along a redox gradient, from NADPH to oxygen, leading to the one-electron reduction of molecular oxygen to O2 (∙-). Methodological difficulties in the dissection of this complex mechanism led to the design "cell-free" systems (also known as "broken cells" or in vitro systems). In these, membrane receptor stimulation and all or part of the signal transduction sequence are missing, the accent being placed on the actual process of "NADPH oxidase assembly," thus on the formation of the complex between cytochrome b 558 and the cytosolic components and the resulting O2 (∙-) generation. Cell-free assays consist of a mixture of the individual components of the NADPH oxidase complex, derived from resting phagocytes or in the form of purified recombinant proteins, exposed in vitro to an activating agent (distinct from and unrelated to whole cell stimulants), in the presence of NADPH and oxygen. Activation is commonly quantified by measuring the primary product of the reaction, O2 (∙-), trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of the linear rate of O2 (∙-) production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
Affiliation(s)
- Edgar Pick
- The Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Kawano M, Ishii R, Yoshioka Y, Fukuda T, Tamura M. C-terminal truncation of Noxa1 greatly enhances its ability to activate Nox2 in a pure reconstitution system. Arch Biochem Biophys 2013; 538:164-70. [PMID: 24008014 DOI: 10.1016/j.abb.2013.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/20/2022]
Abstract
Noxa1 activates Nox2 together with Noxo1 and Rac in a pure reconstitution system, but the resulting activity is considerably lower than that induced by p67(phox) and p47(phox). In this study, we found that C-terminal-truncated forms of Noxa1 exhibited higher activities than full-length Noxa1. Of the truncations examined, Noxa1(1-225) showed the highest ability for activation. Kinetic studies revealed that Noxa1(1-225) had a threefold higher Vmax value than full-length Noxa1 with a similar EC50 value. The affinities of Noxo1 and RacQ61L were not much altered by the truncation. Conversely, the affinity of FAD for the Nox2 complex was enhanced after the truncation. In the absence of Noxo1, Noxa1(1-225) showed much higher activity with a lower EC50 than full-length Noxa1. Noxa1(1-225) showed comparable activity to that of p67(phox) with either Noxo1 or p47(phox), although the stability was lower than that with p67(phox) and p47(phox). These findings indicate that the role of the C-terminal half of Noxa1 is autoinhibition. The data suggest a two-step autoinhibition mechanism, comprising self-masking to interrupt the binding to the oxidase, and holding of the activation domain in a suboptimal position to the oxidase. This study reveals that when both types of inhibition are released, Noxa1 achieves high-level superoxide production.
Collapse
Affiliation(s)
- Masahito Kawano
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | |
Collapse
|
12
|
Kawano M, Miyamoto K, Kaito Y, Sumimoto H, Tamura M. Noxa1 as a moderate activator of Nox2-based NADPH oxidase. Arch Biochem Biophys 2012; 519:1-7. [PMID: 22244833 DOI: 10.1016/j.abb.2011.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 12/15/2022]
Abstract
Noxa1 was discovered as an activating factor for Nox1, an O(2)(-)-generating enzyme. Subsequent studies have shown that Noxa1 is colocalized with Nox2 in several cell types, including vascular cells. Nox2 activation by Noxa1 has been examined in reconstituted model cells. However, little is known about the kinetic properties of Noxa1 in Nox2 activation. In the present study, we used purified cyt.b(558) (Nox2 plus p22(phox)), Rac(Q61L), and Noxo1 to examine the ability of Noxa1 to activate Nox2. In the pure reconstitution system, Noxa1 activated Nox2 with lower efficiency than p67(phox), a canonical activator of Nox2. The EC(50) value of Noxa1 was considerably higher than that of p67(phox). The V(max) value with Noxa1 and Noxo1 was one-third of that with p67(phox) and p47(phox). The EC(50) value of Noxo1 or Rac(Q61L) was also higher when Noxa1 was used. The affinity of FAD for the oxidase and the stability of the active complex were remarkably low when Noxa1 and Noxo1 were used compared with p67(phox) and p47(phox). The stability was not improved by fusion of Noxa1 with Rac(Q61L). These findings show that Noxa1 has quite different kinetic properties from p67(phox) and suggest that Noxa1 may function as a moderate activator of Nox2.
Collapse
Affiliation(s)
- Masahito Kawano
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | |
Collapse
|
13
|
Ueyama T, Nakakita J, Nakamura T, Kobayashi T, Kobayashi T, Son J, Sakuma M, Sakaguchi H, Leto TL, Saito N. Cooperation of p40(phox) with p47(phox) for Nox2-based NADPH oxidase activation during Fcγ receptor (FcγR)-mediated phagocytosis: mechanism for acquisition of p40(phox) phosphatidylinositol 3-phosphate (PI(3)P) binding. J Biol Chem 2011; 286:40693-705. [PMID: 21956105 DOI: 10.1074/jbc.m111.237289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During activation of the phagocyte (Nox2-based) NADPH oxidase, the cytoplasmic Phox complex (p47(phox)-p67(phox)-p40(phox)) translocates and associates with the membrane-spanning flavocytochrome b(558). It is unclear where (in cytoplasm or on membranes), when (before or after assembly), and how p40(phox) acquires its PI(3)P-binding capabilities. We demonstrated that in addition to conformational changes induced by H(2)O(2) in the cytoplasm, p40(phox) acquires PI(3)P-binding through direct or indirect membrane targeting. We also found that p40(phox) is essential when p47(phox) is partially phosphorylated during FcγR-mediated oxidase activation; however, p40(phox) is less critical when p47(phox) is adequately phosphorylated, using phosphorylation-mimicking mutants in HEK293(Nox2/FcγRIIa) and RAW264.7(p40/p47KD) cells. Moreover, PI binding to p47(phox) is less important when the autoinhibitory PX-PB1 domain interaction in p40(phox) is disrupted or when p40(phox) is targeted to membranes. Furthermore, we suggest that high affinity PI(3)P binding of the p40(phox) PX domain is critical during its accumulation on phagosomes, even when masked by the PB1 domain in the resting state. Thus, in addition to mechanisms for directly acquiring PI(3)P binding in the cytoplasm by H(2)O(2), p40(phox) can acquire PI(3)P binding on targeted membranes in a p47(phox)-dependent manner and functions both as a "carrier" of the cytoplasmic Phox complex to phagosomes and an "adaptor" of oxidase assembly on phagosomes in cooperation with p47(phox), using positive feedback mechanisms.
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mizrahi A, Berdichevsky Y, Casey PJ, Pick E. A prenylated p47phox-p67phox-Rac1 chimera is a Quintessential NADPH oxidase activator: membrane association and functional capacity. J Biol Chem 2010; 285:25485-99. [PMID: 20529851 DOI: 10.1074/jbc.m110.113779] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superoxide-generating NADPH oxidase complex of resting phagocytes includes cytochrome b(559), a membrane-associated heterodimer composed of two subunits (Nox2 and p22(phox)), and four cytosolic proteins (p47(phox), p67(phox), Rac, and p40(phox)). Upon stimulation, the cytosolic components translocate to the membrane, as the result of a series of interactions among the cytosolic components and among the cytosolic components and cytochrome b(559) and its phospholipid environment. We described the construction of a tripartite chimera (trimera) consisting of strategic domains of p47(phox), p67(phox), and Rac1, in which interactions among cytosolic components were replaced by fusion (Berdichevsky, Y., Mizrahi, A., Ugolev, Y., Molshanski-Mor, S., and Pick, E. (2007) J. Biol. Chem. 282, 22122-22139). We now fused green fluorescent protein (GFP) to the N terminus of the trimera and found the following. 1) The GFP-p47(phox)-p67(phox)-Rac1 trimera activates the oxidase in amphiphile-dependent and -independent (anionic phospholipid-enriched membrane) cell-free systems. 2) Geranylgeranylation of the GFP-trimera makes it a potent oxidase activator in unmodified (native) membranes and in the absence of amphiphile. 3) Prenylated GFP-trimera binds spontaneously to native membranes (as assessed by gel filtration and in-line fluorometry), forming a tight complex capable of NADPH-dependent, activator-independent superoxide production at rates similar to those measured in canonical cell-free systems. 4) Prenylation of the GFP-trimera supersedes completely the dependence of oxidase activation on the p47(phox) phox homology domain and, partially, on the Rac1 polybasic domain, but the requirement for Trp(193) in p47(phox) persists. Prenylated GFP-p47(phox)-p67(phox)-Rac1 trimera acts as a quintessential single molecule oxidase activator of potential use in high throughput screening of inhibitors.
Collapse
Affiliation(s)
- Ariel Mizrahi
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
15
|
Abstract
In the plasma membrane fraction from Caco-2 human colon carcinoma cells, active Nox1 (NADPH oxidase 1) endogenously co-localizes with its regulatory components p22phox, NOXO1, NOXA1 and Rac1. NADPH-specific superoxide generating activity was reduced by 80% in the presence of either a flavoenzyme inhibitor DPI (diphenyleneiodonium) or NADP+. The plasma membranes from PMA-stimulated cells showed an increased amount of Rac1 (19.6 pmol/mg), as compared with the membranes from unstimulated Caco-2 cells (15.1 pmol/mg), but other components did not change before and after the stimulation by PMA. Spectrophotometric analysis found approx. 36 pmol of FAD and 43 pmol of haem per mg of membrane and the turnover of superoxide generation in a cell-free system consisting of the membrane and FAD was 10 mol/s per mol of haem. When the constitutively active form of Rac, Rac1(Q61L) or GTP-bound Rac1 was added exogenously to the membrane, O2−-producing activity was enhanced up to 1.5-fold above the basal level, but GDP-loaded Rac1 did not affect superoxide-generating kinetics. A fusion protein [NOXA1N–Rac1(Q61L)] between truncated NOXA1(1–211) and Rac1-(Q61L) exhibited a 6-fold increase of the basal Nox1 activity, but NOXO1N(1–292) [C-terminal truncated NOXO1(1–292)] alone showed little effect on the activity. The activated forms of Rac1 and NOXA1 are essentially involved in Nox1 activation and their interactions might be responsible for regulating the O2−-producing activity in Caco-2 cells.
Collapse
|
16
|
Berdichevsky Y, Mizrahi A, Ugolev Y, Molshanski-Mor S, Pick E. Tripartite chimeras comprising functional domains derived from the cytosolic NADPH oxidase components p47phox, p67phox, and Rac1 elicit activator-independent superoxide production by phagocyte membranes: an essential role for anionic membrane phospholipids. J Biol Chem 2007; 282:22122-39. [PMID: 17548354 DOI: 10.1074/jbc.m701497200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superoxide-generating NADPH oxidase is converted to an active state by the assembly of a membrane-localized cytochrome b(559) with three cytosolic components: p47(phox), p67(phox), and GTPase Rac1 or Rac2. Assembly involves two sets of protein-protein interactions: among cytosolic components and among cytosolic components and cytochrome b(559) within its lipid habitat. We circumvented the need for interactions among cytosolic components by constructing a recombinant tripartite chimera (trimera) consisting of the Phox homology (PX) and Src homology 3 (SH3) domains of p47(phox), the tetratricopeptide repeat and activation domains of p67(phox), and full-length Rac1. Upon addition to phagocyte membrane, the trimera was capable of oxidase activation in vitro in the presence of an anionic amphiphile. The trimera had a higher affinity (lower EC(50)) for and formed a more stable complex (longer half-life) with cytochrome b(559) compared with the combined individual components, full-length or truncated. Supplementation of membrane with anionic but not neutral phospholipids made activation by the trimera amphiphile-independent. Mutagenesis, truncations, and domain replacements revealed that oxidase activation by the trimera was dependent on the following interactions: 1) interaction with anionic membrane phospholipids via the poly-basic stretch at the C terminus of the Rac1 segment; 2) interaction with p22(phox) via Trp(193) in the N-terminal SH3 domain of the p47(phox) segment, supplementing the electrostatic attraction; and 3) an intrachimeric bond among the p67(phox) and Rac1 segments complementary to their physical fusion. The PX domain of the p47(phox) segment and the insert domain of the Rac1 segment made only minor contributions to oxidase assembly.
Collapse
Affiliation(s)
- Yevgeny Berdichevsky
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
17
|
Paclet MH, Berthier S, Kuhn L, Garin J, Morel F. Regulation of phagocyte NADPH oxidase activity: identification of two cytochrome b558 activation states. FASEB J 2007; 21:1244-55. [PMID: 17227953 DOI: 10.1096/fj.06-6852com] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of the phagocyte NADPH oxidase (phox) requires the association of cytosolic proteins (p67-phox, p47-phox, p40-phox, and Rac1/2) with the membrane cytochrome b558, leading to a hemoprotein conformation change. To clarify this mechanism, the phagocyte NADPH oxidase complex was isolated through cytochrome b558 purification after three chromatographic steps. The purified neutrophil complex was constitutively active in the absence of an amphiphile agent with a maximum turnover (125 mol O2(-) x s(-1) x mol heme b(-1)), indicating that cytochrome b558 has been activated by cytosolic proteins and is in an "open conformation," able to transfer a maximum rate of electrons. In contrast, the phox complex prepared with B lymphocyte cytosol shows a lower constitutive turnover (approximately 50 mol O2(-) x s(-1) x mol heme b(-1)). Analysis of phox complex components by Western blot and mass spectrometry showed the presence of cytosolic factors (especially p67-phox) and structural proteins (moesin, ezrin). To investigate the difference in activity of phox complexes, we evaluated the effect of MRP8 and MRP14, specifically expressed in neutrophils, on the activity of the B lymphocyte complex. MRPs induce the switch between the partially and the fully "open" cytochrome b558 conformation. Moreover, their effect was independent of p67-phox. Data point out two potential cytochrome b558 activation states.
Collapse
Affiliation(s)
- Marie-Hélène Paclet
- GREPI EA 2938, Laboratory Enzymologie/DBPC, CHU Grenoble BP 217, 38043, Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
18
|
Mizrahi A, Berdichevsky Y, Ugolev Y, Molshanski-Mor S, Nakash Y, Dahan I, Alloul N, Gorzalczany Y, Sarfstein R, Hirshberg M, Pick E. Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships. J Leukoc Biol 2006; 79:881-95. [PMID: 16641134 DOI: 10.1189/jlb.1005553] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phagocytes generate superoxide (O2*-) by an enzyme complex known as reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Its catalytic component, responsible for the NADPH-driven reduction of oxygen to O2*-, is flavocytochrome b559, located in the membrane and consisting of gp91phox and p22phox subunits. NADPH oxidase activation is initiated by the translocation to the membrane of the cytosolic components p47phox, p67phox, and the GTPase Rac. Cytochrome b559 is converted to an active form by the interaction of gp91phox with p67phox, leading to a conformational change in gp91phox and the induction of electron flow. We designed a new family of NADPH oxidase activators, represented by chimeras comprising various segments of p67phox and Rac1. The prototype chimera p67phox (1-212)-Rac1 (1-192) is a potent activator in a cell-free system, also containing membrane p47phox and an anionic amphiphile. Chimeras behave like bona fide GTPases and can be prenylated, and prenylated (p67phox -Rac1) chimeras activate the oxidase in the absence of p47phox and amphiphile. Experiments involving truncations, mutagenesis, and supplementation with Rac1 demonstrated that the presence of intrachimeric bonds between the p67phox and Rac1 moieties is an absolute requirement for the ability to activate the oxidase. The presence or absence of intrachimeric bonds has a major impact on the conformation of the chimeras, as demonstrated by fluorescence resonance energy transfer, small angle X-ray scattering, and gel filtration. Based on this, a "propagated wave" model of NADPH oxidase activation is proposed in which a conformational change initiated in Rac is propagated to p67phox and from p67phox to gp91phox.
Collapse
Affiliation(s)
- Ariel Mizrahi
- The Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ueyama T, Geiszt M, Leto TL. Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 2006; 26:2160-74. [PMID: 16507994 PMCID: PMC1430270 DOI: 10.1128/mcb.26.6.2160-2174.2006] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several Nox family NADPH oxidases function as multicomponent enzyme systems. We explored determinants of assembly of the multicomponent oxidases Nox1 and Nox3 and examined the involvement of Rac1 in their regulation. Both enzymes are supported by p47phox and p67phox or homologous regulators called Noxo1 and Noxa1, although Nox3 is less dependent on these cofactors for activity. Plasma membrane targeting of Noxa1 depends on Noxo1, through tail-to-tail interactions between these proteins. Noxa1 can support Nox1 without Noxo1, when targeted to the plasma membrane by fusing membrane-binding sequences from Rac1 (amino acids 183 to 192) to the C terminus of Noxa1. However, membrane targeting of Noxa1 is not sufficient for activation of Nox1. Both the Noxo1-independent and -dependent Nox1 systems involve Rac1, since they are affected by Rac1 mutants or Noxa1 mutants defective in Rac binding or short interfering RNA-mediated Rac1 silencing. Nox1 or Nox3 expression promotes p22phox transport to the plasma membrane, and both oxidases are inhibited by mutations in the p22phox binding sites (SH3 domains) of the Nox organizers (p47phox or Noxo1). Regulation of Nox3 by Rac1 was also evident from the effects of mutant Rac1 or mutant Nox3 activators (p67phox or Noxa1) or Rac1 silencing. In the absence of Nox organizers, the Nox activators (p67phox or Noxa1) colocalize with Rac1 within ruffling membranes, independently of their ability to bind Rac1. Thus, Rac1 regulates both oxidases through the Nox activators, although it does not appear to direct the subcellular localization of these activators.
Collapse
Affiliation(s)
- Takehiko Ueyama
- The Molecular Defenses Section, Laboratory of Host Defenses, NIH, NIAID, Twinbrook II, Room 203, 12441 Parklawn Dr., Bethesda, MD 20892, USA
| | | | | |
Collapse
|
20
|
Miyano K, Ueno N, Takeya R, Sumimoto H. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 2006; 281:21857-21868. [PMID: 16762923 DOI: 10.1074/jbc.m513665200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the non-phagocytic superoxide-producing NADPH oxidase Nox1, complexed with p22(phox) at the membrane, requires its regulatory soluble proteins Noxo1 and Noxa1. However, the role of the small GTPase Rac remained to be clarified. Here we show that Rac directly participates in Nox1 activation via interacting with Noxa1. Electropermeabilized HeLa cells, ectopically expressing Nox1, Noxo1, and Noxa1, produce superoxide in a GTP-dependent manner, which is abrogated by expression of a mutant Noxa1(R103E), defective in Rac binding. Superoxide production in Nox1-expressing HeLa and Caco-2 cells is decreased by depletion or sequestration of Rac; on the other hand, it is enhanced by expression of the constitutively active Rac1(Q61L), but not by that of a mutant Rac1 with the A27K substitution, deficient in binding to Noxa1. We also demonstrate that Nox1 activation requires membrane recruitment of Noxa1, which is normally mediated via Noxa1 binding to Noxo1, a protein tethered to the Nox1 partner p22(phox): the Noxa1-Noxo1 and Noxo1-p22(phox) interactions are both essential for Nox1 activity. Rac likely facilitates the membrane localization of Noxa1: although Noxa1(W436R), defective in Noxo1 binding, neither associates with the membrane nor activates Nox1, the effects of the W436R substitution are restored by expression of Rac1(Q61L). The Rac-Noxa1 interaction also serves at a step different from the Noxa1 localization, because the binding-defective Noxa1(R103E), albeit targeted to the membrane, does not support superoxide production by Nox1. Furthermore, a mutant Noxa1 carrying the substitution of Ala for Val-205 in the activation domain, which is expected to undergo a conformational change upon Rac binding, fully localizes to the membrane but fails to activate Nox1.
Collapse
Affiliation(s)
- Kei Miyano
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Noriko Ueno
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582
| | - Ryu Takeya
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hideki Sumimoto
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
21
|
Tamura M, Nagasawa T, Tange T, Miyano K, Kobayashi SI, Nakai T, Miura S. A new type of O2−-generating tool for oxidative stress studies by remodeling neutrophil NADPH oxidase. J Biotechnol 2005; 120:421-9. [PMID: 16140409 DOI: 10.1016/j.jbiotec.2005.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/06/2005] [Accepted: 06/22/2005] [Indexed: 02/04/2023]
Abstract
The effects of reactive oxygen species on cells have attracted much attention in relation to redox regulation and oxidative stress-related diseases. Superoxide (O(2)(-)) is the reactive oxygen species primarily formed in biological systems. However, no convenient O(2)(-)-generating device has been available for use in cell or tissue culture. The neutrophil NADPH oxidase, a professional enzyme for killing bacteria, has a high ability to produce O(2)(-). However, the cell-free activation process requires several protein factors and an anionic amphiphile, and moreover, the activation is transient. To utilize the enzyme as an O(2)(-) generator, we improved the cell-free activation method by remodeling regulatory components, optimizing lipid composition, and modifying the mixing conditions. We established a new method to produce an active enzyme that is stable, efficient, and preservable. As an application, we examined the effect of the device on cultured HEK293 cells and observed that it caused cell death. This system has several advantages over the xanthine oxidase system often used. The new device will be useful for studies of oxidative stress and related diseases.
Collapse
Affiliation(s)
- Minoru Tamura
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Miyano K, Kitahara H, Ohmi S, Kakinuma K, Tamura M. Inactivation of neutrophil NADPH oxidase upon dilution and its prevention by cross-link and fusion of phox proteins. Arch Biochem Biophys 2004; 431:129-37. [PMID: 15464735 DOI: 10.1016/j.abb.2004.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 08/09/2004] [Indexed: 11/15/2022]
Abstract
Activation of the phagocyte NADPH oxidase involves assembly of p47(phox), p67(phox), Rac, and flavocytochrome b(558), and the activation can be triggered in a cell-free system with an anionic amphiphile. We find that the activated oxidase in a pure cell-free system was rapidly inactivated upon dilution. When the activated oxidase was treated with a chemical cross-linker, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, the half-life of the oxidase in dilution was extended from 1min to 4h at 25 degrees C. The cross-linked oxidase was resistant to inhibition by inactive flavin analogs, indicating that cross-linking prevents flavin exchange. When a fusion protein p67N-p47N plus RacQ61L was added, flavocytochrome b(558) became spontaneously active. Cross-linking of this mixture produced an oxidase that was extremely stable to dilution (t(1/2)=6.6h). Western blotting analysis showed the presence of a cross-link between p67N-p47N and RacQ61L. These results suggest that covalently linked phox components prevents FAD loss and stabilizes the longevity of the stoichiometric complex, extending the lifespan of the active oxidase.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | |
Collapse
|
23
|
Gauss KA, Bunger PL, Larson TC, Young CJ, Nelson-Overton LK, Siemsen DW, Quinn MT. Identification of a novel tumor necrosis factor alpha-responsive region in the NCF2 promoter. J Leukoc Biol 2004; 77:267-78. [PMID: 15513967 DOI: 10.1189/jlb.0604329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phagocyte reduced nicotinamide adenine dinucleotide phosphate oxidase is a multiprotein enzyme that catalyzes the production of microbicidal oxidants. Although oxidase assembly involves association of several membrane and cytosolic oxidase proteins, one of the cytosolic cofactors, p67phox, appears to play a more prominent role in final activation of the enzyme complex. Based on the importance of p67phox, we investigated transcriptional regulation of the p67phox gene [neutrophil cytosolic factor 2 (NCF2)] and demonstrated previously that activator protein-1 (AP-1) was essential for basal transcriptional activity. As p67phox can be up-regulated by tumor necrosis factor alpha (TNF-alpha), which activates AP-1, we hypothesized that TNF-alpha might regulate NCF2transcription via AP-1. In support of this hypothesis, we show here that NCF2 promoter-reporter constructs are up-regulated by TNF-alpha but only when AP-1 factors were coexpressed. Consistent with this observation, we also demonstrate that NCF2 mRNA and p67phox protein are up-regulated by TNF-alpha in various myeloid cell lines as well as in human monocytes. It was surprising that mutagenesis of the AP-1 site in NCF2 promoter constructs did not eliminate TNF-alpha induction, suggesting additional elements were involved in this response and that AP-1 might play a more indirect role. Indeed, we used NCF2 promoter-deletion constructs to map a novel TNF-alpha-responsive region (TRR) located between -56 and -16 bp upstream of the translational start site and demonstrated its importance in vivo using transcription factor decoy analysis. Furthermore, DNase footprinting verified specific binding of factor(s) to the TRR with AP-1 binding indirectly to this region. Thus, we have identified a novel NCF2 promoter/enhancer domain, which is essential for TNF-alpha-induced up-regulation of p67phox.
Collapse
Affiliation(s)
- Katherine A Gauss
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Stimulated phagocytes undergo a burst in respiration whereby molecular oxygen is converted to superoxide anion through the action of an NADPH-dependent oxidase. The multicomponent phagocyte oxidase is unassembled and inactive in resting cells but assembles at the plasma or phagosomal membrane upon phagocyte activation. Oxidase components include flavocytochrome b558, an integral membrane heterodimer comprised of gp91phox and p22phox, and three cytosolic proteins, p47phox, p67phox, and Rac1 or Rac2, depending on the species and phagocytic cell. In a sense, the phagocyte oxidase is spatially regulated, with critical elements segregated in the membrane and cytosol but ready to undergo nearly immediate assembly and activation in response to stimulation. To achieve such spatial regulation, the individual components in the resting phagocyte adopt conformations that mask potentially interactive structural domains that might mediate productive intermolecular associations and oxidase assembly. In response to stimulation, post-translational modifications of the oxidase components release these constraints and thereby render potential interfaces accessible and interactive, resulting in translocation of the cytosolic elements to the membrane where the functional oxidase is assembled and active. This review summarizes data on the structural features of the phagocyte oxidase components and on the agonist-dependent conformational rearrangements that contribute to oxidase assembly and activation.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, D160 MTF, 2501 Crosspark Road, Coralville, IA 52241, USA.
| |
Collapse
|
25
|
Nisimoto Y, Ogawa H, Miyano K, Tamura M. Activation of the flavoprotein domain of gp91phox upon interaction with N-terminal p67phox (1-210) and the Rac complex. Biochemistry 2004; 43:9567-75. [PMID: 15260500 DOI: 10.1021/bi0400249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of truncated forms of His(6)-tagged gp91phox were expressed, solubilized, and purified in the presence of 30 microM FAD. The truncated gp91phox with the longest sequence in the C-terminal region (221-570) (gp91C) showed the highest activity (turnover rate, 0.92) for NADPH diaphorase in the presence of either 0.3% Triton X-100 or 0.5% Genapol X-80. Activity was not inhibited by superoxide dismutase but was blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium. The flavinated gp91C contained approximately 0.9 mol of FAD/mol of protein (MW 46 kDa) and 12% alpha-helix content. In the absence of p47phox, p67phox showed considerable activation of gp91C in the presence of Rac. Carboxyl-terminal truncated p67phox (1-210) (p67N), which is the minimal active fragment, was fused with Rac or Q61LRac. The fusion protein p67N-Rac (or p67N-Q61LRac) showed a 2-fold higher stimulatory effect on NBT reductase activity of gp91C than the combination of the individual cytosolic p67N and Rac proteins. In contrast, Rac-p67N, a fusion with the opposite orientation, showed a smaller significant effect on the enzyme activity. The EC(50) values for p67phox, p67N, p67N-Rac, and Rac-p67N were 8.00. 4.35, 2.56, and 15.2 microM, respectively, while the K(m) value for NADPH in the presence and absence of the cytosolic components was almost the same (40-55 microM). In the presence of Rac, p67N or p67phox bound to gp91C with a molar ratio of approximately 1:1 but neither p67N nor Rac alone showed significant binding.
Collapse
Affiliation(s)
- Yukio Nisimoto
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | | | | | | |
Collapse
|
26
|
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76:760-81. [PMID: 15240752 DOI: 10.1189/jlb.0404216] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play an essential role in the body's innate defense against pathogens and are one of the primary mediators of the inflammatory response. To defend the host, neutrophils use a wide range of microbicidal products, such as oxidants, microbicidal peptides, and lytic enzymes. The generation of microbicidal oxidants by neutrophils results from the activation of a multiprotein enzyme complex known as the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is responsible for transferring electrons from NADPH to O2, resulting in the formation of superoxide anion. During oxidase activation, cytosolic oxidase proteins translocate to the phagosome or plasma membrane, where they assemble around a central membrane-bound component known as flavocytochrome b. This process is highly regulated, involving phosphorylation, translocation, and multiple conformational changes. Originally, it was thought that the NADPH oxidase was restricted to phagocytes and used solely in host defense. However, recent studies indicate that similar NADPH oxidase systems are present in a wide variety of nonphagocytic cells. Although the nature of these nonphagocyte NADPH oxidases is still being defined, it is clear that they are functionally distinct from the phagocyte oxidases. It should be noted, however, that structural features of many nonphagocyte oxidase proteins do seem to be similar to those of their phagocyte counterparts. In this review, key structural and functional features of the neutrophil NADPH oxidase and its protein components are described, including a consideration of transcriptional and post-translational regulatory features. Furthermore, relevant details about structural and functional features of various nonphagocyte oxidase proteins will be included for comparison.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman 59717-3610, USA.
| | | |
Collapse
|
27
|
Cross AR, Segal AW. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. BIOCHIMICA ET BIOPHYSICA ACTA 2004; 1657:1-22. [PMID: 15238208 PMCID: PMC2636547 DOI: 10.1016/j.bbabio.2004.03.008] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 03/16/2004] [Accepted: 03/16/2004] [Indexed: 02/06/2023]
Abstract
The NADPH oxidase is an electron transport chain in "professional" phagocytic cells that transfers electrons from NADPH in the cytoplasm, across the wall of the phagocytic vacuole, to form superoxide. The electron transporting flavocytochrome b is activated by the integrated function of four cytoplasmic proteins. The antimicrobial function of this system involves pumping K+ into the vacuole through BKCa channels, the effect of which is to elevate the vacuolar pH and activate neutral proteases. A number of homologous systems have been discovered in plants and lower animals as well as in man. Their function remains to be established.
Collapse
Affiliation(s)
- Andrew R. Cross
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anthony W. Segal
- Centre for Molecular Medicine, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
28
|
Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher MC, Pick E. Dual Role of Rac in the Assembly of NADPH Oxidase, Tethering to the Membrane and Activation of p67. J Biol Chem 2004; 279:16007-16. [PMID: 14761978 DOI: 10.1074/jbc.m312394200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH oxidase activation involves the assembly of membrane-localized cytochrome b559 with the cytosolic components p47phox, p67phox, and the small GTPase Rac. Assembly is mimicked by a cell-free system consisting of membranes and cytosolic components, activated by an anionic amphiphile. We reported that a chimeric construct, consisting of residues 1-212 of p67phox and full-length Rac1, activates the oxidase in vitro in an amphiphile-dependent manner, and when prenylated, in the absence of amphiphile and p47phox. We subjected chimera p67phox-(1-212)-Rac1 to mutational analysis and found that: 1) replacement of a single basic residue at the C terminus of the Rac1 moiety by glutamine is sufficient for loss of activity by the non-prenylated chimera; replacement of all six basic residues by glutamines is required for loss of activity by the prenylated chimera. 2) A V204A mutation in the activation domain of the p67phox moiety leads to a reduction in activity. 3) Mutating residues, known to participate in the interaction between free p67phox and Rac1, in the p67phox-(R102E) or Rac1 (A27K, G30S) moieties of the chimera, leads to a marked decrease in activity, indicating a requirement for intrachimeric bonds, in addition to the engineered fusion. 4) Chimeras, inactive because of mutations A27K or G30S in the Rac1 moiety, are reactivated by supplementation with exogenous Rac1-GTP but not with exogenous p67phox. This demonstrates that Rac has a dual role in the assembly of NADPH oxidase. One is to tether p67phox to the membrane; the other is to induce an "activating" conformational change in p67phox.
Collapse
Affiliation(s)
- Rive Sarfstein
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nagasawa T, Ebisu K, Inoue Y, Miyano K, Tamura M. A new role of Pro-73 of p47phox in the activation of neutrophil NADPH oxidase. Arch Biochem Biophys 2003; 416:92-100. [PMID: 12859985 DOI: 10.1016/s0003-9861(03)00296-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The PX domain of p47phox is thought to be involved in autoinhibition. However, when the domain was deleted, the ability to activate the phagocyte NADPH oxidase was markedly diminished. We have mutated the proline-rich region of the PX domain and examined the mutants for the ability to activate. Substitution of Gln for Pro-73 of p47phox(1-286) (P73Q) resulted in a considerably lower activity than the wild type and P73Q had a much lower affinity for the oxidase complex. Whereas, Gln substitution for Pro-76 (P76Q) showed a slightly enhanced activation and the mutant had a slightly higher affinity for the complex than the wild type. Affinity for p67phox(1-210) was slightly decreased either by P73Q or P76Q. Optimal SDS concentration for the activation was lowered by these mutations. Binding of PX domain with phosphatidylinositol-3,4-bisphosphate was diminished by P73Q mutation. The results in this study suggest that Pro-73 has a role in interaction with the catalytic component cytochrome b558.
Collapse
Affiliation(s)
- Teruaki Nagasawa
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, 790-8577, Ehime, Japan
| | | | | | | | | |
Collapse
|
30
|
Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism. J Biol Chem 2002; 277:18605-10. [PMID: 11896062 DOI: 10.1074/jbc.m202114200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the superoxide-generating NADPH oxidase of phagocytes is the result of the assembly of a membrane-localized flavocytochrome (cytochrome b(559)) with the cytosolic components p47(phox), p67(phox), and the small GTPase Rac. Activation can be reproduced in an in vitro system in which cytochrome b(559)-containing membranes are mixed with cytosolic components in the presence of an anionic amphiphile. We proposed that the essential event in activation is the interaction between p67(phox) and cytochrome b(559) and that Rac and p47(phox) serve as carriers for p67(phox) to the membrane. When prenylated, Rac can fulfill the carrier function by itself, supporting oxidase activation by p67(phox) in the absence of p47(phox) and amphiphile. We now show that a single chimeric protein, consisting of residues 1-212 of p67(phox) and full-length Rac1 (residues 1-192), prenylated in vitro and exchanged to GTP, becomes a potent oxidase activator in the absence of any other component or stimulus. Oxidase activation by prenylated chimera p67(phox) (1-212)-Rac1 (1-192) is accompanied by its spontaneous association with membranes. Prenylated chimeras p67(phox) (1-212)-Rac1 (178-192) and p67(phox) (1-212)-Rac1 (189-192), containing specific C-terminal regions of Rac1, are inactive; the activity of the first but not of the second chimera can be rescued by supplementation with exogenous nonprenylated Rac1-GTP. An analysis of prenylated p67(phox)-Rac1 chimeras suggests that the basic requirements for oxidase activation are: (i) a "two signals" membrane-localizing motif present in Rac, comprising the prenyl group and a C-terminal polybasic sequence and (ii) an intrachimeric or extrachimeric protein-protein interaction between p67(phox) and Rac1, causing a conformational change in the "activation domain" in p67(phox).
Collapse
Affiliation(s)
- Yara Gorzalczany
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|