1
|
Xu T, Wang Q, Wang Q, Sun L. Coupling High-Field Asymmetric Waveform Ion Mobility Spectrometry with Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Top-Down Proteomics. Anal Chem 2023; 95:9497-9504. [PMID: 37254456 PMCID: PMC10540249 DOI: 10.1021/acs.analchem.3c00551] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has emerged as an essential technique for top-down proteomics (TDP), providing superior separation efficiency and high detection sensitivity for proteoform analysis. Here, we aimed to further enhance the performance of CZE-MS/MS for TDP via coupling online gas-phase proteoform fractionation using high-field asymmetric waveform ion mobility spectrometry (FAIMS). When the compensation voltage (CV) of FAIMS was changed from -50 to 30 V, the median mass of identified proteoforms increased from less than 10 kDa to about 30 kDa, suggesting that FAIMS can efficiently fractionate proteoforms by their size. CZE-FAIMS-MS/MS boosted the number of proteoform identifications from a yeast sample by nearly 3-fold relative to CZE-MS/MS alone. It particularly benefited the identification of relatively large proteoforms, improving the number of proteoforms in a mass range of 20-45 kDa by 6-fold compared to CZE-MS/MS alone. FAIMS fractionation gained nearly 20-fold better signal-to-noise ratios of randomly selected proteoforms than no FAIMS. We expect that CZE-FAIMS-MS/MS will be a useful tool for further advancing the sensitivity and coverage of TDP. This work shows the first example of coupling CE with ion mobility spectrometry (IMS) for TDP.
Collapse
Affiliation(s)
- Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Hariri H, Pellicelli M, St-Arnaud R. Nfil3, a target of the NACA transcriptional coregulator, affects osteoblast and osteocyte gene expression differentially. Bone 2020; 141:115624. [PMID: 32877713 DOI: 10.1016/j.bone.2020.115624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 10/25/2022]
Abstract
Intermittent administration of PTH(1-34) has a profound osteoanabolic effect on the skeleton. At the cellular level, osteoblasts and osteocytes are two crucial cell types that respond to PTH stimulation in bone. The transcriptional cofactor Nascent polypeptide Associated Complex and coregulator alpha (NACA) is a downstream target of the PTH-Gαs-PKA axis in osteoblasts. NACA functions as a transcriptional cofactor affecting bZIP factor-mediated transcription of target promoters in osteoblasts, such as Osteocalcin (Bglap2). Here, we used RNA-Seq and ChIP-Seq against NACA in PTH-treated MC3T3-E1 osteoblastic cells to identify novel targets of the PTH-activated NACA. Our approach identified Nuclear factor interleukin-3-regulated (Nfil3) as a target promoter of this pathway. Knockdown of Naca reduced the response of Nfil3 to PTH(1-34) stimulation. In silico analysis of the Nfil3 promoter revealed potential binding sites for NACA (located within the ChIP fragment) and CREB. We show that following PTH stimulation, phosphorylated-CREB binds the proximal promoter of Nfil3 in osteoblasts. The activity of the Nfil3 promoter (-818/+182 bp) is regulated by CREB and this activation relies on the presence of NACA. In addition, we show that knockdown of Nfil3 enhances the expression of osteoblastic differentiation markers in MC3T3-E1 cells while it represses osteocytic marker gene expression in IDG-SW3 cells. These results show that the PTH-induced NACA axis regulates Nfil3 expression and suggest that NFIL3 acts as a transcriptional repressor in osteoblasts while it exhibits differential activity as an activator in osteocytes.
Collapse
Affiliation(s)
- Hadla Hariri
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec H4A 0A9, Canada; Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Martin Pellicelli
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec H4A 0A9, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec H4A 0A9, Canada; Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada; Department of Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
3
|
Addison WN, Pellicelli M, St-Arnaud R. Dephosphorylation of the transcriptional cofactor NACA by the PP1A phosphatase enhances cJUN transcriptional activity and osteoblast differentiation. J Biol Chem 2019; 294:8184-8196. [PMID: 30948508 DOI: 10.1074/jbc.ra118.006920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
The transcriptional cofactor nascent polypeptide-associated complex and co-regulator α (NACA) regulates osteoblast maturation and activity. NACA functions, at least in part, by binding to Jun proto-oncogene, AP-1 transcription factor subunit (cJUN) and potentiating the transactivation of AP-1 targets such as osteocalcin (Bglap) and matrix metallopeptidase 9 (Mmp9). NACA activity is modulated by phosphorylation carried out by several kinases, but a phosphatase regulating NACA's activity remains to be identified. Here, we used affinity purification with MS in HEK293T cells to isolate NACA complexes and identified protein phosphatase 1 catalytic subunit α (PP1A) as a NACA-associated Ser/Thr phosphatase. NACA interacted with multiple components of the PP1A holoenzyme complex: the PPP1CA catalytic subunit and the regulatory subunits PPP1R9B, PPP1R12A and PPP1R18. MS analysis revealed that NACA co-expression with PPP1CA causes dephosphorylation of NACA at Thr-89, Ser-151, and Thr-174. NACA Ser/Thr-to-alanine variants displayed increased nuclear localization, and NACA dephosphorylation was associated with specific recruitment of novel NACA interactants, such as basic transcription factor 3 (BTF3) and its homolog BTF3L4. NACA and PP1A cooperatively potentiated cJUN transcriptional activity of the AP-1-responsive MMP9-luciferase reporter, which was abolished when Thr-89, Ser-151, or Thr-174 were substituted with phosphomimetic aspartate residues. We confirmed the NACA-PP1A interaction in MC3T3-E1 osteoblastic cells and observed that NACA phosphorylation status at PP1A-sensitive sites is important for the regulation of AP-1 pathway genes and for osteogenic differentiation and matrix mineralization. These results suggest that PP1A dephosphorylates NACA at specific residues, impacting cJUN transcriptional activity and osteoblast differentiation and function.
Collapse
Affiliation(s)
| | | | - René St-Arnaud
- Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Surgery, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Aweida D, Rudesky I, Volodin A, Shimko E, Cohen S. GSK3-β promotes calpain-1-mediated desmin filament depolymerization and myofibril loss in atrophy. J Cell Biol 2018; 217:3698-3714. [PMID: 30061109 PMCID: PMC6168250 DOI: 10.1083/jcb.201802018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation by protein kinase GSK3-β is essential for desmin filament depolymerization by calpain-1 and the resulting myofibril destruction in muscle atrophy. Myofibril breakdown is a fundamental cause of muscle wasting and inevitable sequel of aging and disease. We demonstrated that myofibril loss requires depolymerization of the desmin cytoskeleton, which is activated by phosphorylation. Here, we developed a mass spectrometry–based kinase-trap assay and identified glycogen synthase kinase 3-β (GSK3-β) as responsible for desmin phosphorylation. GSK3-β inhibition in mice prevented desmin phosphorylation and depolymerization and blocked atrophy upon fasting or denervation. Desmin was phosphorylated by GSK3-β 3 d after denervation, but depolymerized only 4 d later when cytosolic Ca2+ levels rose. Mass spectrometry analysis identified GSK3-β and the Ca2+-specific protease, calpain-1, bound to desmin and catalyzing its disassembly. Consistently, calpain-1 down-regulation prevented loss of phosphorylated desmin and blocked atrophy. Thus, phosphorylation of desmin filaments by GSK3-β is a key molecular event required for calpain-1–mediated depolymerization, and the subsequent myofibril destruction. Consequently, GSK3-β represents a novel drug target to prevent myofibril breakdown and atrophy.
Collapse
Affiliation(s)
- Dina Aweida
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Inga Rudesky
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | - Eitan Shimko
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Shenhav Cohen
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Pellicelli M, Hariri H, Miller JA, St-Arnaud R. Lrp6 is a target of the PTH-activated αNAC transcriptional coregulator. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:61-71. [PMID: 29413898 DOI: 10.1016/j.bbagrm.2018.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022]
Abstract
In the nucleus of differentiated osteoblasts, the alpha chain of nascent polypeptide associated complex (αNAC) interacts with cJUN transcription factors to regulate the expression of target genes, including Osteocalcin (Bglap2). PTH induces the phosphorylation of αNAC on serine 99 through a Gαs-PKA dependent pathway. This leads to activation of αNAC and expression of Bglap2. To identify additional target genes regulated by PTH-activated αNAC, we performed ChIP-Seq against αNAC in PTH-treated MC3T3-E1 cells. This identified Low density lipoprotein receptor-Related Protein 6 (Lrp6) as a potential αNAC target. LRP6 acts as a co-receptor for the PTH receptor to allow optimal activation of PTH signaling. PTH increased Lrp6 mRNA levels in primary osteoblasts. Conventional quantitative ChIP confirmed the ChIP-Seq results. To assess whether αNAC plays a critical role in PTH-stimulated Lrp6 expression, we knocked-down Naca expression in MC3T3-E1 cells. Reduction of αNAC levels decreased basal expression of Lrp6 by 30% and blocked the stimulation of Lrp6 expression by PTH. We cloned the proximal mouse Lrp6 promoter (-2523/+120 bp) upstream of the luciferase reporter. Deletion and point mutations analysis in electrophoretic mobility shift assays and transient transfections identified a functional αNAC binding site centered around -343 bp. ChIP and ChIP-reChIP against JUND and αNAC showed that they cohabit on the proximal Lrp6 promoter. Luciferase assays confirmed that PTH-activated αNAC potentiated JUND-mediated Lrp6 transcription and Jund knockdown abolished this response. This study identified a novel αNAC target gene induced downstream of PTH signaling and represents the first characterization of the regulation of Lrp6 transcription in osteoblasts.
Collapse
Affiliation(s)
- Martin Pellicelli
- Research Centre, Shriners Hospitals for Children - Canada, H4A 0A9, Canada
| | - Hadla Hariri
- Research Centre, Shriners Hospitals for Children - Canada, H4A 0A9, Canada; Department of Human Genetics, McGill University, H3A 1A1, Canada
| | - Julie A Miller
- Research Centre, Shriners Hospitals for Children - Canada, H4A 0A9, Canada; Department of Human Genetics, McGill University, H3A 1A1, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospitals for Children - Canada, H4A 0A9, Canada; Department of Human Genetics, McGill University, H3A 1A1, Canada; Department of Surgery, McGill University, H3A 1A1, Canada; Department of Medicine, McGill University, H3A 1A1, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec H3H 2R9, Canada.
| |
Collapse
|
6
|
Jamil M, Wang W, Xu M, Tu J. Exploring the roles of basal transcription factor 3 in eukaryotic growth and development. Biotechnol Genet Eng Rev 2015; 31:21-45. [PMID: 26428578 DOI: 10.1080/02648725.2015.1080064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Basal transcription factor 3 (BTF3) has been reported to play a significant part in the transcriptional regulation linking with eukaryotes growth and development. Alteration in the BTF3 gene expression patterns or variation in their activities adds to the explanation of different signaling pathways and regulatory networks. Moreover, BTF3s often respond to numerous stresses, and subsequently they are involved in regulation of various mechanisms. BTF3 proteins also function through protein-protein contact, which can assist us to identify the multifaceted processes of signaling and transcriptional regulation controlled by BTF3 proteins. In this review, we discuss current advances made in starting to explore the roles of BTF3 transcription factors in eukaryotes especially in plant growth and development.
Collapse
Affiliation(s)
- Muhammad Jamil
- a College of Agriculture and Biotechnology, Institute of Crop Science , Zhejiang University , Yu-Hang-Tang Rd. 866, Hangzhou 310058 , China.,b Department of Biotechnology and Genetic Engineering , Kohat University of Science and Technology , Kohat 26000 , Pakistan
| | - Wenyi Wang
- a College of Agriculture and Biotechnology, Institute of Crop Science , Zhejiang University , Yu-Hang-Tang Rd. 866, Hangzhou 310058 , China
| | - Mengyun Xu
- a College of Agriculture and Biotechnology, Institute of Crop Science , Zhejiang University , Yu-Hang-Tang Rd. 866, Hangzhou 310058 , China
| | - Jumin Tu
- a College of Agriculture and Biotechnology, Institute of Crop Science , Zhejiang University , Yu-Hang-Tang Rd. 866, Hangzhou 310058 , China
| |
Collapse
|
7
|
Abstract
Endoplasmic reticulum (ER) stress is an intricate mechanism that mediates numerous responses during brain ischemia, thus being essential to determine the fate of neurons. In recent years, studies of the mechanisms of brain ischemic injury have centered on ER stress, glutamate excitotoxicity, dysfunction of mitochondria, inflammatory reactions, calcium overload and death receptor pathways. The role of ER stress is highly important. In addition to resulting in neuronal cell death through calcium toxicity and apoptotic pathways, ER stress also triggers a series of adaptive responses including unfolded protein response (UPR), autophagy, the expression of pro-survival proteins and the enhancement of ER self-repair ability, leading to less ischemic brain damage. This paper provides an overview of recent advances in understanding of the relations between ER stress and brain ischemia.
Collapse
Affiliation(s)
- Yingchao Su
- a Department of Neurology, the Second Affiliated Hospital of Harbin Medical University , Harbin 150086 , China
| | - Feng Li
- a Department of Neurology, the Second Affiliated Hospital of Harbin Medical University , Harbin 150086 , China
| |
Collapse
|
8
|
GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis 2015; 6:e1719. [PMID: 25880086 PMCID: PMC4650556 DOI: 10.1038/cddis.2015.90] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/09/2015] [Accepted: 03/02/2015] [Indexed: 02/06/2023]
Abstract
The signaling pathway leading to the endoplasmic reticulum (ER) stress responses has not been fully elucidated. Here we showed that glycogen synthase kinase-3β (GSK-3β)-dependent downregulation of γ-taxilin and nascent polypeptide-associated complex α-subunit (αNAC) mediates hypoxia-induced unfolded protein responses (UPRs) and the subsequent apoptotic and autophagic pathways. The degradation of γ-taxilin or αNAC was sufficient to initiate UPRs in normoxic cells. However, the ER stress signaling pathways initiated by γ-taxilin or αNAC were distinct, triggering different ER stress sensors and activating different downstream pathways. Hypoxia caused GSK-3β-dependent tau hyperphosphorylation and cleavage in neuronal cells, but γ-taxilin ablation induced tau hyperphosphorylation alone and αNAC ablation induced neither changes. Notably, downregulation of γ-taxilin and αNAC occurs in the brain of patients with Alzheimer's disease. These results suggest that GSK-3β-dependent downregulation of γ-taxilin and αNAC, which differently activate the UPRs, merge to regulate hypoxia-induced ER stress responses and provide a new insight into the pathogenesis of neurodegenerative diseases.
Collapse
|
9
|
Hekmatnejad B, Akhouayri O, Jafarov T, St-Arnaud R. SUMOylated αNAC potentiates transcriptional repression by FIAT. J Cell Biochem 2014; 115:866-73. [PMID: 24375853 DOI: 10.1002/jcb.24729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 11/12/2022]
Abstract
The transcriptional coregulator αNAC (Nascent polypeptide associated complex And Coregulator alpha) and the transcriptional repressor FIAT (Factor Inhibiting ATF4-mediated Transcription) interact but the biological relevance of this interaction remains unclear. The activity of αNAC is extensively modulated by post-translational modifications (PTMs). We identified a novel αNAC PTM through covalent attachment of the Small Ubiquitin-like MOdifier (SUMO1). Recombinant αNAC was a SUMO1 target in in vitro SUMOylation assays and we confirmed that αNAC is conjugated to SUMO1 in cultured osteoblasts and in calvarial tissue. The amino acid sequence of αNAC contains one copy of the composite "phospho-sumoyl switch" motif that couples sequential phosphorylation and SUMOylation. We found that αNAC is selectively SUMOylated at lysine residue 127 within the motif and that SUMOylation is enhanced when a phosphomimetic mutation is introduced at the nearby serine residue 132. SUMOylation did not alter the DNA-binding capacity of αNAC. The S132D, hyper-SUMOylated αNAC mutant specifically interacted with histone deacetylase-2 (HDAC2) and enhanced the inhibitory activity of FIAT on ATF4-mediated transcription from the Osteocalcin gene promoter. This effect required binding of SUMOylated αNAC to the target promoter. We propose that maximal transcriptional repression by FIAT requires its interaction with SUMOylated, HDAC2-interacting αNAC.
Collapse
Affiliation(s)
- Bahareh Hekmatnejad
- Research Unit, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada, H3G 1A6; Department of Human Genetics, McGill University, Montreal, Quebec, Canada, H3A 1B1
| | | | | | | |
Collapse
|
10
|
The PTH-Gαs-protein kinase A cascade controls αNAC localization to regulate bone mass. Mol Cell Biol 2014; 34:1622-33. [PMID: 24550008 DOI: 10.1128/mcb.01434-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of PTH to its receptor induces Gα(s)-dependent cyclic AMP (cAMP) accumulation to turn on effector kinases, including protein kinase A (PKA). The phenotype of mice with osteoblasts specifically deficient for Gα(s) is mimicked by a mutation leading to cytoplasmic retention of the transcriptional coregulator αNAC, suggesting that Gαs and αNAC form part of a common genetic pathway. We show that treatment of osteoblasts with PTH(1-34) or the PKA-selective activator N(6)-benzoyladenosine cAMP (6Bnz-cAMP) leads to translocation of αNAC to the nucleus. αNAC was phosphorylated by PKA at serine 99 in vitro. Phospho-S99-αNAC accumulated in osteoblasts exposed to PTH(1-34) or 6Bnz-cAMP but not in treated cells expressing dominant-negative PKA. Nuclear accumulation was abrogated by an S99A mutation but enhanced by a phosphomimetic residue (S99D). Chromatin immunoprecipitation (ChIP) analysis showed that PTH(1-34) or 6Bnz-cAMP treatment leads to accumulation of αNAC at the Osteocalcin (Ocn) promoter. Altered gene dosages for Gα(s) and αNAC in compound heterozygous mice result in reduced bone mass, increased numbers of osteocytes, and enhanced expression of Sost. Our results show that αNAC is a substrate of PKA following PTH signaling. This enhances αNAC translocation to the nucleus and leads to its accumulation at target promoters to regulate transcription and affect bone mass.
Collapse
|
11
|
El-Hoss J, Arabian A, Dedhar S, St-Arnaud R. Inactivation of the integrin-linked kinase (ILK) in osteoblasts increases mineralization. Gene 2013; 533:246-52. [PMID: 24095779 DOI: 10.1016/j.gene.2013.09.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/05/2013] [Accepted: 09/20/2013] [Indexed: 11/16/2022]
Abstract
In osteoblasts, Integrin-Linked Kinase (ILK)-dependent phosphorylation of the cJUN transcriptional coactivator, αNAC, induces the nuclear accumulation of the coactivator and potentiates cJUN-dependent transcription. Mutation of the ILK phosphoacceptor site within the αNAC protein leads to cytoplasmic retention of the coactivator and cell-autonomous increases in osteoblastic activity. In order to gain further insight into the ILK-αNAC signaling cascade, we inactivated ILK using RNA knockdown in osteoblastic cells and engineered mice with specific ablation of ILK in osteoblasts. ILK knockdown in MC3T3-E1 osteoblast-like cells reduced phosphorylation of its downstream target glycogen synthase kinase 3β (GSK3β), which led to cytoplasmic retention of αNAC and increased mineralization with augmented expression of the osteoblastic differentiation markers, pro-α1(I) collagen (col1A1), Bone Sialoprotein (Bsp) and Osteocalcin (Ocn). Cultured ILK-deficient primary osteoblasts also showed increased cytoplasmic αNAC levels, and augmented mineralization with higher Runx2, Col1a1 and Bsp expression. Histomorphometric analysis of bones from mutant mice with ILK-deficient osteoblasts (Col1-Cre;Ilk(-/fl)) revealed transient changes, with increased bone volume in newborn animals that was corrected by two weeks of age. Our data suggest that the ILK-αNAC cascade acts to reduce the pace of osteoblast maturation. We propose that in vivo, functional redundancy is able to compensate for the loss of ILK activity, leading to the absence of an obvious phenotype when osteoblast-specific Ilk-deficient mice reach puberty.
Collapse
Affiliation(s)
- Jad El-Hoss
- Research Unit, Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada; Department of Human Genetics, McGill University, Montreal, Quebec H3A 2T5, Canada
| | | | | | | |
Collapse
|
12
|
Jafarov T, Alexander JWM, St-Arnaud R. αNAC interacts with histone deacetylase corepressors to control Myogenin and Osteocalcin gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1208-16. [PMID: 23092676 DOI: 10.1016/j.bbagrm.2012.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/27/2023]
Abstract
In the nucleus of differentiated osteoblasts, the DNA-binding αNAC protein acts as a transcriptional coactivator of the Osteocalcin gene. Chromatin immunoprecipitation-microarray assays (ChIP-chip) showed that αNAC binds the Osteocalcin promoter but also identified the Myogenin promoter as an αNAC target. Here, we confirm these array data using quantitative ChIP and further detected that αNAC binds to these promoters in myoblasts. Since these genes are differentially regulated during osteoblastogenesis or myogenesis, these results suggest cell- and promoter-context specific functions for αNAC. We hypothesized that αNAC dynamically recruits corepressors to inhibit Myogenin expression in cells committing to the osteoblastic lineage or to inhibit Osteocalcin transcription in differentiating myoblasts. Using co-immunoprecipitation assays, we detected complexes between αNAC and the corepressors HDAC1 and HDAC3, in myoblasts and osteoblasts. Sequential ChIP confirmed HDAC1 recruitment by αNAC at the Osteocalcin and Myogenin promoters. Interaction with the corepressors was detectable in pre-osteoblasts and in myoblasts but disappeared as the cells differentiate. Treatment with an HDAC inhibitor caused de-repression of Osteocalcin expression in myoblasts. Overexpression of αNAC in myoblasts inhibits expression of Myogenin and differentiation. However, overexpression of an N-terminus truncated αNAC mutant allowed myoblasts to express Myogenin and differentiate, and this mutant did not interact with HDAC1 or HDAC3. This study identified an additional DNA-binding target and novel protein-protein interactions for αNAC. We propose that αNAC plays a role in regulating gene transcription during mesenchymal cell differentiation by differentially recruiting corepressors at target promoters.
Collapse
|
13
|
Pellegrin S, Heesom KJ, Satchwell TJ, Hawley BR, Daniels G, van den Akker E, Toye AM. Differential proteomic analysis of human erythroblasts undergoing apoptosis induced by epo-withdrawal. PLoS One 2012; 7:e38356. [PMID: 22723854 PMCID: PMC3377639 DOI: 10.1371/journal.pone.0038356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/08/2012] [Indexed: 01/12/2023] Open
Abstract
The availability of Erythropoietin (Epo) is essential for the survival of erythroid progenitors. Here we study the effects of Epo removal on primary human erythroblasts grown from peripheral blood CD34(+) cells. The erythroblasts died rapidly from apoptosis, even in the presence of SCF, and within 24 hours of Epo withdrawal 60% of the cells were Annexin V positive. Other classical hallmarks of apoptosis were also observed, including cytochrome c release into the cytosol, loss of mitochondrial membrane potential, Bax translocation to the mitochondria and caspase activation. We adopted a 2D DIGE approach to compare the proteomes of erythroblasts maintained for 12 hours in the presence or absence of Epo. Proteomic comparisons demonstrated significant and reproducible alterations in the abundance of proteins between the two growth conditions, with 18 and 31 proteins exhibiting altered abundance in presence or absence of Epo, respectively. We observed that Epo withdrawal induced the proteolysis of the multi-functional proteins Hsp90 alpha, Hsp90 beta, SET, 14-3-3 beta, 14-3-3 gamma, 14-3-3 epsilon, and RPSA, thereby targeting multiple signaling pathways and cellular processes simultaneously. We also observed that 14 proteins were differentially phosphorylated and confirmed the phosphorylation of the Hsp90 alpha and Hsp90 beta proteolytic fragments in apoptotic cells using Nano LC mass spectrometry. Our analysis of the global changes occurring in the proteome of primary human erythroblasts in response to Epo removal has increased the repertoire of proteins affected by Epo withdrawal and identified proteins whose aberrant regulation may contribute to ineffective erythropoiesis.
Collapse
Affiliation(s)
- Stéphanie Pellegrin
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Kate J. Heesom
- Proteomics Facility, University of Bristol, University Walk, Bristol, United Kingdom
| | - Timothy J. Satchwell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Bethan R. Hawley
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Geoff Daniels
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, United Kingdom
| | | | - Ashley M. Toye
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, United Kingdom
| |
Collapse
|
14
|
St-Arnaud R, Hekmatnejad B. Combinatorial control of ATF4-dependent gene transcription in osteoblasts. Ann N Y Acad Sci 2012; 1237:11-8. [PMID: 22082360 DOI: 10.1111/j.1749-6632.2011.06197.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Osteoblast-specific gene transcription requires interaction between bone cell-specific transcription factors and more widely expressed transcriptional regulators. This is particularly evident for the basic domain-leucine zipper factor activating transcription factor 4 (ATF4), whose activity can be enhanced or inhibited through interaction with other leucine zipper proteins, intermediate filament proteins, components of the basic transcriptional machinery, nuclear matrix attachment molecules, or ubiquitously expressed transcription factors. We discuss the results supporting the relevance of these interactions and present the first evidence of a functional interaction between ATF4, FIAT (factor-inhibiting ATF4-mediated transcription), and αNAC (nascent polypeptide-associated complex and coactivator alpha), three proteins that have been previously shown to associate using various protein-protein interaction assays.
Collapse
Affiliation(s)
- René St-Arnaud
- Genetics Unit, Shriners Hospital for Children, Montreal, Canada.
| | | |
Collapse
|
15
|
Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from Cell Biology and Animal Models. Front Mol Neurosci 2011; 4:40. [PMID: 22110425 PMCID: PMC3217193 DOI: 10.3389/fnmol.2011.00040] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/23/2011] [Indexed: 12/13/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3′ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity, and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knockout mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior, and neuronal fate determination and provide insights into possible therapeutic interventions.
Collapse
|
16
|
Mashidori T, Shirataki H, Kamai T, Nakamura F, Yoshida KI. Increased alpha-taxilin protein expression is associated with the metastatic and invasive potential of renal cell cancer. ACTA ACUST UNITED AC 2011; 32:103-10. [PMID: 21551945 DOI: 10.2220/biomedres.32.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intracellular vesicle trafficking is the principal transportation system in eukaryotic cells, and is considered to be involved in a variety of processes related to cell proliferation. A protein named alpha-taxilin has been identified as a binding partner of the syntaxin family, which coordinates intracellular vesicle trafficking. To clarify the role of alpha-taxilin in renal cell carcinoma (RCC), we investigated alpha-taxilin protein expression in clear cell RCC tissues. We analyzed alphataxilin protein in matched sets of tumor and non-tumor tissues from the surgical specimens of 52 Japanese RCC patients by Western blotting. We also studied the relation between alpha-taxilin protein expression in tumor tissues and various clinicopathological features. The alpha-taxilin protein level was higher in tumor tissues than in non-tumor tissues (P < 0.05). Increased expression of alpha-taxilin protein in primary tumors was related to local invasion (P < 0.001), pathological vessel invasion (P < 0.001), and metastasis (P < 0.0001). Kaplan-Meier plots of survival for patients with low versus high alpha-taxilin expression revealed that high expression in tumor tissues was associated with shorter overall survival in all patients (P < 0.05) and with shorter disease-free survival in patients without metastasis (P < 0.01). These findings suggest that alpha-taxilin influences the metastatic and invasive potential of RCC.
Collapse
Affiliation(s)
- Tomoko Mashidori
- Department of Urology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | | | | | | | | |
Collapse
|
17
|
Singh P, Gan CS, Guo T, Phang HQ, Sze SK, Koh CG. Investigation of POPX2 phosphatase functions by comparative phosphoproteomic analysis. Proteomics 2011; 11:2891-900. [PMID: 21656682 DOI: 10.1002/pmic.201100044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 01/13/2023]
Abstract
Identifying the substrates and biochemical pathway regulated by phosphatases has always been more challenging than finding those regulated by kinases. Here, we report the use of phosphoproteomic methods to analyse the pathways regulated by POPX2 (partner of PIX 2) phosphatase. POPX2 is a serine/threonine phosphatase, found in many cancer types. The levels of the POPX2 have been found to be up-regulated in the more invasive breast cancer cells compared with non-invasive ones. Our observations also suggest that POPX2 level is positively correlated with cell motility. Thus, finding substrates or pathways regulated by POPX2 will help to elucidate the regulatory mechanism of cancer cell motility and invasiveness. We have also developed and validated a protocol using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) to enrich the phosphopeptides followed by LC-MS/MS to allow comparison between the phosphoproteomes of control and POPX2 overexpressing cells. With this approach, we were able to identify a biochemical pathway through which POPX2 exerts its apparent cellular function: the regulation of activity of glycogen synthase kinase-3, which in turn modulates extracellular signal-regulated kinase and cell motility.
Collapse
Affiliation(s)
- Pritpal Singh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | | | | | | | |
Collapse
|
18
|
Sutherland C. What Are the bona fide GSK3 Substrates? Int J Alzheimers Dis 2011; 2011:505607. [PMID: 21629754 PMCID: PMC3100594 DOI: 10.4061/2011/505607] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 03/09/2011] [Indexed: 01/07/2023] Open
Abstract
Nearly 100 proteins are proposed to be substrates for GSK3, suggesting that this enzyme is a fundamental regulator of almost every process in the cell, in every tissue in the body. However, it is not certain how many of these proposed substrates are regulated by GSK3 in vivo. Clearly, the identification of the physiological functions of GSK3 will be greatly aided by the identification of its bona fide substrates, and the development of GSK3 as a therapeutic target will be highly influenced by this range of actions, hence the need to accurately establish true GSK3 substrates in cells. In this paper the evidence that proposed GSK3 substrates are likely to be physiological targets is assessed, highlighting the key cellular processes that could be modulated by GSK3 activity and inhibition.
Collapse
Affiliation(s)
- Calum Sutherland
- Biomedical Research Institute, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
19
|
Liu Y, Hu Y, Li X, Niu L, Teng M. The crystal structure of the human nascent polypeptide-associated complex domain reveals a nucleic acid-binding region on the NACA subunit . Biochemistry 2010; 49:2890-6. [PMID: 20214399 DOI: 10.1021/bi902050p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In archaea and eukaryotes, the nascent polypeptide-associated complex (NAC) is one of the cytosolic chaperones that contact the nascent polypeptide chains as they emerge from the ribosome and assist in post-translational processes. The eukaryotic NAC is a heterodimer, and its two subunits form a stable complex through a dimerizing domain called the NAC domain. In addition to acting as a protein translation chaperone, the NAC subunits also function individually in transcriptional regulation. Here we report the crystal structure of the human NAC domain, which reveals the manner of human NAC dimerization. On the basis of the structure, we identified a region in the NAC domain of the human NAC alpha-subunit as a new nucleic acid-binding region, which is blocked from binding nucleic acids in the heterodimeric complex by a helix region in the beta-subunit.
Collapse
Affiliation(s)
- Yiwei Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
20
|
Abstract
The basic domain-leucine zipper transcription factor activating transcription factor 4 (ATF4) regulates most functions of the osteoblast. It is therefore not surprising that its activity should be regulated through several mechanisms. Factor inhibiting ATF4-mediated transcription (FIAT) is a leucine zipper nuclear molecule lacking a basic domain for DNA binding that interacts with ATF4 to repress its transcriptional activity. FIAT expression was monitored in parallel with ATF4 during osteoblastogenesis. The mechanism of ATF4 repression by FIAT was investigated through structure-function analysis. The physiological significance of FIAT expression in osteoblasts was studied through silencing FIAT in osteoblasts by RNA interference, as well as through characterization of two genetic mouse models: FIAT transgenic mice which overexpress FIAT in osteoblasts, and FIAT knockout mice. Studies to date show that FIAT and ATF4 are co-expressed in osteoblasts, and that FIAT inhibition of matrix mineralization requires dimerization with ATF4 through the second leucine zipper. Furthermore, transgenic mice overexpressing FIAT exhibit osteopenia. The phenotype of FIAT knockout mice is still under evaluation but the salient aspects are discussed here. Taken together, the results accumulated to date support the hypothesis that FIAT is a transcriptional repressor that modulates osteoblast function.
Collapse
Affiliation(s)
- René St-Arnaud
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec, Canada H3G 1A6.
| | | |
Collapse
|
21
|
Nuclear alpha NAC influences bone matrix mineralization and osteoblast maturation in vivo. Mol Cell Biol 2010; 30:43-53. [PMID: 19884350 DOI: 10.1128/mcb.00378-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nascent-polypeptide-associated complex and coactivator alpha (alpha NAC) is a protein shuttling between the nucleus and the cytoplasm. Upon phosphorylation at residue serine 43 by integrin-linked kinase, alpha NAC is translocated to the nuclei of osteoblasts, where it acts as an AP-1 coactivator to increase osteocalcin gene transcription. To determine the physiological role of nuclear alpha NAC, we engineered a knock-in mouse model with a serine-to-alanine mutation at position 43 (S43A). The S43A mutation resulted in a decrease in the amount of nuclear alpha NAC with reduced osteocalcin gene promoter occupancy, leading to a significant decrease in osteocalcin gene transcription. The S43A mutant bones also expressed decreased levels of alpha(1)(I) collagen mRNA and as a consequence had significantly less osteoid tissue. Transient transfection assays and chromatin immunoprecipitation confirmed the alpha(1)(I) collagen gene as a novel alpha NAC target. The reduced quantity of bone matrix in S43A mutant bones was mineralized faster, as demonstrated by the significantly reduced mineralization lag time, producing a lower volume of immature, woven-type bone characterized by poor lamellation and an increase in the number of osteocytes. Accordingly, the expression of the osteocyte differentiation marker genes DMP-1 (dentin matrix protein 1), E11, and SOST (sclerostin) was increased. The accelerated mineralization phenotype was cell autonomous, as osteoblasts isolated from the calvaria of S43A mutant mice mineralized their matrix faster than did wild-type cells. Thus, inhibition of alpha NAC nuclear translocation results in an osteopenic phenotype caused by reduced expression of osteocalcin and type I collagen, accelerated mineralization, and immature woven-bone formation.
Collapse
|
22
|
Xu C, Kim NG, Gumbiner BM. Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 2009; 8:4032-9. [PMID: 19923896 DOI: 10.4161/cc.8.24.10111] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3) plays important roles in numerous signaling pathways that regulate a variety of cellular processes including cell proliferation, differentiation, apoptosis and embryonic development. In the canonical Wnt signaling pathway, GSK3 phosphorylation mediates proteasomal targeting and degradation of beta-catenin via the destruction complex. We recently reported a biochemical screen that discovered multiple additional protein substrates whose stability is regulated by Wnt signaling and/or GSK3 and these have important implications for Wnt/GSK3 regulation of different cellular processes.(1) In this article, we also present a bio-informatics based screen for proteins whose stability may be controlled by GSK3 and beta-Trcp, the SCF E3 ubiquitin ligase that is responsible for beta-catenin degradation in the Wnt signaling pathway. Furthermore, we review various GSK3 regulated proteolysis substrates described in the literature. We propose that GSK3 phosphorylation dependent proteolysis is a widespread mechanism that the cell employs to regulate a variety of cell processes in response to signals.
Collapse
Affiliation(s)
- Chong Xu
- Graduate Program of Molecular, Cellular and Developmental Biology, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
23
|
alphaNAC depletion as an initiator of ER stress-induced apoptosis in hypoxia. Cell Death Differ 2009; 16:1505-14. [PMID: 19609276 DOI: 10.1038/cdd.2009.90] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Accumulation of unfolded proteins triggers endoplasmic reticulum (ER) stress and is considered a part of the cellular responses to hypoxia. The nascent polypeptide-associated complex (NAC) participates in the proper maturation of newly synthesized proteins. However, thus far, there have been no comprehensive studies on NAC involvement in hypoxic stress. Here, we show that hypoxia activates glycogen synthase kinase-3beta (GSK-3beta) and that the activated GSK-3beta destabilizes alphaNAC with the subsequent apoptosis of the cell. Hypoxia of various cell types and the mouse ischemic brain was associated with rapid downregulation of alphaNAC and ER stress responses involving PERK, ATF4, gamma-taxilin, elF2alpha, Bip, and CHOP. Depletion of alphaNAC by RNA interference specifically activated ER stress responses and caused mitochondrial dysfunction, which resulted in apoptosis through caspase activation. Interestingly, we found that the hypoxic conditions activated GSK-3beta, and that GSK-3beta inhibition prevented alphaNAC protein downregulation in hypoxic cells and rescued the cells from apoptosis. In addition, alphaNAC overexpression increased the viability of hypoxic cells. Taken together, these results suggest that alphaNAC degradation triggers ER stress responses and initiates apoptotic processes in hypoxic cells, and that GSK-3beta may participate upstream in this mechanism.
Collapse
|
24
|
Yu VWC, Akhouayri O, St-Arnaud R. FIAT is co-expressed with its dimerization target ATF4 in early osteoblasts, but not in osteocytes. Gene Expr Patterns 2009; 9:335-40. [PMID: 19232401 PMCID: PMC2692570 DOI: 10.1016/j.gep.2009.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 10/25/2022]
Abstract
FIAT represses osteocalcin gene transcription by heterodimerizing with ATF4 and preventing it from binding to DNA. We report here the expression profiles of FIAT and ATF4 during osteoblastogenesis. Messenger RNA levels for the osteoblast transcriptional regulators Satb2, Runx2, Fiat, and Atf4 were quantified using real-time reverse-transcription PCR (RT-qPCR) and respective protein levels monitored by immunodetection in differentiating primary osteoblast cultures. Satb2, Fiat, and Atf4 mRNA levels remained constant throughout the differentiation sequence, whereas Runx2 transcript levels were significantly increased by 12 days post-confluency. Using immunofluorescence, the SATB2, RUNX2, and ATF4 signals appeared to increase as a function of time in culture. FIAT protein expression was readily detected in early cultures, but signal intensity decreased thereafter. When immunoblotting was used to quantify the relative amounts of FIAT and ATF4 proteins, the expression levels of the two proteins were found to be inversely correlated. The decrease in FIAT protein levels coincided with increased binding of ATF4 to the osteocalcin gene promoter, and with increased osteocalcin expression measured by RT-qPCR or immunoblotting. Immunohistochemistry of long bones from mice at E16.5 and 2 days post-natal revealed that both proteins are initially expressed in osteoblasts. In adult bone, FIAT was detected in osteocytes, while ATF4 expression was observed in active osteoblasts and lining cells, but not in osteocytes. Taken together, these data support the idea that a stoichiometric excess of ATF4 over FIAT in mature osteoblasts releases ATF4 from sequestration by FIAT, thereby allowing ATF4 homodimerization and subsequent transactivation of the osteocalcin gene.
Collapse
Affiliation(s)
- Vionnie W. C. Yu
- Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
- Department of Human Genetics, McGill University, Montreal, (Quebec) Canada H3A 2T5
| | - Omar Akhouayri
- Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
| | - René St-Arnaud
- Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
- Department of Human Genetics, McGill University, Montreal, (Quebec) Canada H3A 2T5
- Department of Surgery, McGill University, Montreal, (Quebec) Canada H3A 2T5
| |
Collapse
|
25
|
Kaido M, Inoue Y, Takeda Y, Sugiyama K, Takeda A, Mori M, Tamai A, Meshi T, Okuno T, Mise K. Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:671-81. [PMID: 17555275 DOI: 10.1094/mpmi-20-6-0671] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the alpha chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rautajoki KJ, Marttila EM, Nyman TA, Lahesmaa R. Interleukin-4 Inhibits Caspase-3 by Regulating Several Proteins in the Fas Pathway during Initial Stages of Human T Helper 2 Cell Differentiation. Mol Cell Proteomics 2007; 6:238-51. [PMID: 17114647 DOI: 10.1074/mcp.m600290-mcp200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-4 (IL-4) is the main cytokine that polarizes activated naïve CD4+ T cells in the T helper 2 (Th2) direction. IL-4 also regulates the subsequent stages of Th2 cell-mediated diseases, such as allergies. We conducted a proteomics study to identify IL-4-induced differences during the initial stages of T helper cell differentiation. Primary CD4+ T lymphocytes were isolated from human cord blood, activated through CD3 and CD28, and cultured in the presence or absence of IL-4. Soluble proteins were separated by two-dimensional electrophoresis and visualized by staining with autoradiography, which indicated that at least 20 proteins might be regulated by IL-4. From this minimum of 20 stained proteins, altogether 35 proteins were identified using tandem mass spectrometry. Interestingly the fragmented form of GDP dissociation inhibitor expressed in lymphocytes/Rho GDP dissociation inhibitor 2 (Ly-GDI), a known target of Caspase-3, was observed to be down-regulated in IL-4-treated cells. It was shown in further studies that IL-4 decreases Caspase-3 activity and cell death in these cells. Neutralizing Fas-Fas ligand interaction led to decreased Caspase-3 activity and lowered Ly-GDI fragmentation. We further characterized the effects of IL-4 on the expression of main regulators in the Fas-mediated pathway. We demonstrated that IL-4 decreases expression of Fas receptor and increases expression of Bid, Bcl-2, and Bcl-xL. Importantly IL-4 significantly up-regulated the short form of c-FLIP, although the levels of c-FLIP long were unaltered after IL-4 induction. Taken together, our results indicate that IL-4 inhibits caspase activity during the initial stages of human Th2 cell differentiation by regulating expression of several key players in the Fas-induced pathway.
Collapse
Affiliation(s)
- Kirsi J Rautajoki
- Turku Centre for Biotechnology, University of Turku and Abo Akademi, Tykistökatu 6A, 5th floor, FIN-20521 Turku, Finland.
| | | | | | | |
Collapse
|
27
|
Akhouayri O, St-Arnaud R. Differential mechanisms of transcriptional regulation of the mouse osteocalcin gene by Jun family members. Calcif Tissue Int 2007; 80:123-31. [PMID: 17308994 DOI: 10.1007/s00223-006-0102-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 10/11/2006] [Indexed: 01/08/2023]
Abstract
The osteocalcin gene encodes an osteoblast-specific protein that is induced with the onset of mineralization at late stages of differentiation. Several transcriptional regulators have been characterized that control the transcription of osteocalcin, including activator protein 1 (AP-1) family members such as the Fra2/JunD heterodimer. We have previously shown that the c-Jun homodimer activates transcription from the murine osteocalcin proximal promoter and that this response is potentiated by the alpha chain of the nascent polypeptide-associated complex (alphaNAC) transcriptional coactivator. We now further explore the mechanisms involved and show that c-Jun binds two cryptic AP-1 sites within the proximal promoter of osteocalcin and that this binding is strictly alphaNAC-dependent. Chromatin immunoprecipitation (ChIP) confirmed that c-Jun occupies its binding sites within the osteocalcin 5'-flanking region in living osteoblasts. Interestingly, the ChIP assay revealed that both JunB and JunD also bind the osteocalcin promoter. JunD, but not JunB, stimulated osteocalcin gene transcription in transient transfection assays, but this effect was not potentiated by alphaNAC. Thus, the c-Jun and JunD family members utilize distinct mechanisms that implicate differential interaction with transcriptional coactivators to regulate osteocalcin expression.
Collapse
Affiliation(s)
- O Akhouayri
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montréal, Québec, Canada H3G 1A6
| | | |
Collapse
|
28
|
Andersen KM, Semple CA, Hartmann-Petersen R. Characterisation of the nascent polypeptide-associated complex in fission yeast. Mol Biol Rep 2007; 34:275-81. [PMID: 17211518 DOI: 10.1007/s11033-006-9043-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 12/12/2006] [Indexed: 11/28/2022]
Abstract
The nascent polypeptide-associated complex (NAC) is an abundant and phylogenetically conserved protein complex. It is composed of two subunits and interacts with nascent polypeptide chains emerging from the ribosome. It has been proposed to protect the nascent chains from premature interaction with other cell proteins, but has also been found to associate with DNA junctions, and to be involved in other processes including transcription regulation and mitochondrial protein import.Here, we characterize NAC in fission yeast. We find that NAC is associated with ribosomes, while a significant fraction remains in a free form. The NAC alpha subunit contains a ubiquitin-associated (UBA) domain, which is found in several proteins involved in the ubiquitin-proteasome pathway for protein degradation. However, NAC does not associate with ubiquitin chains and mutants lacking NAC did not exhibit any obvious defects in protein degradation. Accordingly, we find that the NAC UBA domain belongs to an ancient and distinct subgroup of the UBA family. In contrast to the situation with budding yeast, fission yeast cells devoid of NAC were not temperature sensitive. However, they displayed resistance to the amino acid analogue canavanine, in accordance with the idea that NAC is involved in protein quality control.
Collapse
Affiliation(s)
- Katrine M Andersen
- Institute for Molecular Biology and Physiology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen Ø, Denmark
| | | | | |
Collapse
|
29
|
Hoffrogge R, Beyer S, Hübner R, Mikkat S, Mix E, Scharf C, Schmitz U, Pauleweit S, Berth M, Zubrzycki IZ, Christoph H, Pahnke J, Wolkenhauer O, Uhrmacher A, Völker U, Rolfs A. 2-DE profiling of GDNF overexpression-related proteome changes in differentiating ST14A rat progenitor cells. Proteomics 2007; 7:33-46. [PMID: 17146836 DOI: 10.1002/pmic.200600614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Targeted differentiation of neural progenitor cells (NPCs) is a challenge for treatment of neurodegenerative diseases by cell replacement therapy and cell signalling manipulation. Here, we applied a proteome profiling approach to the rat striatal progenitor model cell line ST14A in order to elucidate cellular differentiation processes. Native cells and cells transfected with the glial cell line-derived neurotrophic factor (GDNF) gene were investigated at the proliferative state and at seven time points up to 72 h after induction of differentiation. 2-DE combined with MALDI-MS was used to create a reference 2-DE-map of 652 spots of which 164 were identified and assigned to 155 unique proteins. For identification of protein expression changes during cell differentiation, spot patterns of triplicate gels were matched to the 2-DE-map. Besides proteins that display expression changes in native cells, we also noted 43 protein-spots that were differentially regulated by GDNF overexpression in more than four time points of the experiment. The expression patterns of putative differentiation markers such as annexin 5 (ANXA5), glucosidase II beta subunit (GLU2B), phosphatidylethanolamine-binding protein 1 (PEBP1), myosin regulatory light chain 2-A (MLRA), NASCENT polypeptide-associated complex alpha (NACA), elongation factor 2 (EF2), peroxiredoxin-1 (PRDX1) and proliferating cell nuclear antigen (PCNA) were verified by Western blotting. The results reflect the large rearrangements of the proteome during the differentiation process of NPCs and their strong modification by neurotrophic factors like GDNF.
Collapse
Affiliation(s)
- Raimund Hoffrogge
- Department of Neurology, Medical Faculty, Neurobiological Laboratory, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Boucher MJ, Selander L, Carlsson L, Edlund H. Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem 2006; 281:6395-403. [PMID: 16407209 DOI: 10.1074/jbc.m511597200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor IPF1/PDX1 plays a crucial role in both pancreas development and maintenance of beta-cell function. Targeted disruption of this transcription factor in beta-cells leads to diabetes, whereas reduced expression levels affect insulin expression and secretion. Therefore, it is essential to determine molecular mechanisms underlying the regulation of this key transcription factor on mRNA levels and, most importantly, on protein levels. Here we show that a minor portion of IPF1/PDX1 is phosphorylated on serine 61 and/or serine 66 in pancreatic beta-cells. This phosphorylated form of IPF1/PDX1 preferentially accumulates following proteasome inhibition, an effect that is prevented by inhibition of glycogen synthase kinase 3 (GSK3) activity. Oxidative stress, which is associated with the diabetic state, (i) increases IPF1/PDX1 Ser61 and/or Ser66 phosphorylation and (ii) increases the degradation rate and decreases the half-life of IPF-1/PDX-1 protein. In addition, we provide evidence that GSK3 activity participates in oxidative stress-induced effects on beta-cells. Thus, this current study uncovers a new mechanism that might contribute to diminished levels of IPF1/PDX1 protein and beta-cell dysfunction during the progression of diabetes.
Collapse
Affiliation(s)
- Marie-Josée Boucher
- Umeå Center for Molecular Medicine, University of Umeå, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
31
|
Akhouayri O, Quélo I, St-Arnaud R. Sequence-specific DNA binding by the alphaNAC coactivator is required for potentiation of c-Jun-dependent transcription of the osteocalcin gene. Mol Cell Biol 2005; 25:3452-60. [PMID: 15831452 PMCID: PMC1084295 DOI: 10.1128/mcb.25.9.3452-3460.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 10/14/2004] [Accepted: 01/11/2005] [Indexed: 11/20/2022] Open
Abstract
Since the c-Jun coactivator alphaNAC was initially identified in a differential screen for genes expressed in differentiated osteoblasts, we examined whether the osteocalcin gene, a specific marker of terminal osteoblastic differentiation, could be a natural target for the coactivating function of alphaNAC. We had also previously shown that alphaNAC can specifically bind DNA in vitro, but it remained unclear whether the DNA-binding function of alphaNAC is expressed in vivo or if it is required for coactivation. We have identified an alphaNAC binding site within the murine osteocalcin gene proximal promoter region and demonstrated that recombinant alphaNAC or alphaNAC from ROS17/2.8 nuclear extracts can specifically bind this element. Using transient transfection assays, we have shown that alphaNAC specifically potentiated the c-Jun-dependent transcription of the osteocalcin promoter and that this activity specifically required the DNA-binding domain of alphaNAC. Chromatin immunoprecipitation confirmed that alphaNAC occupies its binding site on the osteocalcin promoter in living osteoblastic cells expressing osteocalcin. Inhibition of the expression of endogenous alphaNAC in osteoblastic cells by use of RNA interference provoked a decrease in osteocalcin gene transcription. Our results show that the osteocalcin gene is a target for the alphaNAC coactivating function, and we propose that alphaNAC is specifically targeted to the osteocalcin promoter through its DNA-binding activity as a means to achieve increased specificity in gene transcription.
Collapse
Affiliation(s)
- Omar Akhouayri
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montréal, Québec, Canada H3G 1A6
| | | | | |
Collapse
|
32
|
Lopez S, Stuhl L, Fichelson S, Dubart-Kupperschmitt A, St Arnaud R, Galindo JR, Murati A, Berda N, Dubreuil P, Gomez S. NACA is a positive regulator of human erythroid-cell differentiation. J Cell Sci 2005; 118:1595-605. [PMID: 15784678 DOI: 10.1242/jcs.02295] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously identified the transcript encoding NACA (the α chain of the nascent-polypeptide-associated complex) as a cytokine-modulated specific transcript in the human TF-1 erythroleukemic cell line. This protein was already known to be a transcriptional co-activator that acts by potentiating AP-1 activity in osteoblasts, and is known to be involved in the targeting of nascent polypeptides. In this study, we investigate the role of NACA in human hematopoiesis.
Protein distribution analyses indicate that NACA is expressed in undifferentiated TF-1 cells and in human-cord-blood-derived CD34+ progenitor cells. Its expression is maintained during in vitro erythroid differentiation but, in marked contrast, its expression is suppressed during their megakaryocytic or granulocytic differentiation. Ectopic expression of NACA in CD34+ cells under culture conditions that induce erythroid-lineage differentiation leads to a marked acceleration of erythroid-cell differentiation. Moreover, ectopic expression of NACA induces erythropoietin-independent differentiation of TF-1 cells, whereas downregulation of NACA by RNA interference abolishes the induction of hemoglobin production in these cells and diminishes glycophorin-A (GPA) expression by CD34+ progenitors cultured under erythroid differentiation conditions. Altogether, these results characterize NACA as a new factor involved in the positive regulation of human erythroid-cell differentiation.
Collapse
Affiliation(s)
- Sophie Lopez
- UMR599 INSERM, 27 Blvd Leï Roure, 13009 Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yoshida K, Nogami S, Satoh S, Tanaka-Nakadate S, Hiraishi H, Terano A, Shirataki H. Interaction of the taxilin family with the nascent polypeptide-associated complex that is involved in the transcriptional and translational processes. Genes Cells 2005; 10:465-76. [PMID: 15836775 DOI: 10.1111/j.1365-2443.2005.00848.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
alpha-Taxilin is a novel binding partner of the syntaxin family, which is implicated in intracellular vesicle traffic. We have here found that alpha-taxilin interacts with the nascent polypeptide-associated complex (NAC), which is involved in transferring growing nascent polypeptide chains to appropriate co-translationally acting factors. NAC is composed of two subunits, alpha- and betaNACs. Both these subunits bound to alpha-taxilin through its C-terminal coiled-coil region in dose-dependent and saturable manners. The interactions of alpha-taxilin with alphaNAC and NAC but not with betaNAC were inhibited by syntaxin-4, indicating that alpha-taxilin binds to NAC mainly through its interaction with alphaNAC. When alphaNAC was over-expressed in COS-7 cells, alphaNAC was distributed in the cytosol and nucleus. However, co-expression of the alpha-taxilin fragment containing the alphaNAC-binding region eliminated the nuclear distribution of over-expressed alphaNAC. Moreover, other taxilin family members, beta- and gamma-taxilins, also bound to alphaNAC and thereby affected the nuclear distribution of over-expressed alphaNAC. Taken together with the evidence that alphaNAC functions in the nucleus as a transcriptional coactivator, our results raise the possibility that the taxilin family is involved not only in the translational process through its interaction with NAC but also in the transcriptional process through its interaction with alphaNAC alone.
Collapse
Affiliation(s)
- Kenji Yoshida
- Division of Molecular and Cell Biology, Institute for Medical Science, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu-machi, Tochigi 321-0293, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Quélo I, Gauthier C, St-Arnaud R. Casein kinase II phosphorylation regulates alphaNAC subcellular localization and transcriptional coactivating activity. Gene Expr 2005; 12:151-63. [PMID: 16128000 PMCID: PMC6009118 DOI: 10.3727/000000005783992070] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The subcellular localization of the alphaNAC coactivator is regulated, but the signaling pathways controlling its nucleocytoplasmic shuttling and coactivation function are not completely characterized. We report here that casein kinase II (CK2) phosphorylated alphaNAC on several phosphoacceptor sites, especially in an amino-terminal cluster. Deletion or mutation of the clustered CK2 sites induced nuclear accumulation of alphaNAC in cells. alphaNAC also localized to the nucleus when endogenous CK2 activity was inhibited by quercetin or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). These observations suggested that phosphorylation by CK2 might play a signaling role in the nuclear export of alphaNAC. Interestingly, inhibition of the chromosome region maintenance 1 (CRM1) exportin by leptomycin B (LMB) led to accumulation of alphaNAC in the nucleus. We conclude that CK2 phosphorylation of the N-terminal cluster corresponds to the signal for alphaNAC's nuclear export via a CRM1-dependent pathway. Finally, the nuclear accumulation of the protein resulting from the lack of CK2 phosphorylation mediated a slight but significant increase of the alphaNAC coactivating function on AP-1 transcriptional activity. Thus, alphaNAC's exit from the nucleus and capacity to potentiate transcription appear dependent on its phosphorylation status.
Collapse
Affiliation(s)
- Isabelle Quélo
- *Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
| | - Claude Gauthier
- *Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
| | - René St-Arnaud
- *Genetics Unit, Shriners Hospital for Children, Montreal (Quebec) Canada H3G 1A6
- †Departments of Medicine, Surgery and Human Genetics, McGill University, Montreal (Quebec), Canada H3A 2T5
| |
Collapse
|
35
|
Quélo I, Gauthier C, Hannigan GE, Dedhar S, St-Arnaud R. Integrin-linked Kinase Regulates the Nuclear Entry of the c-Jun Coactivator α-NAC and Its Coactivation Potency. J Biol Chem 2004; 279:43893-9. [PMID: 15299025 DOI: 10.1074/jbc.m406310200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the integrin-linked kinase (ILK) was shown to increase c-Jun-dependent transcription. We now show that this effect of ILK involves the c-Jun transcriptional coactivator, nascent polypeptide-associated complex and coactivator alpha (alpha-NAC). ILK phosphorylated alpha-NAC on residue Ser-43 upon adhesion of cells to fibronectin. Co-expression of constitutively active ILK with alpha-NAC led to the nuclear accumulation of the coactivator. Conversely, alpha-NAC remained in the cytoplasm of cells transfected with a dominant-negative ILK mutant, and a mutated alpha-NAC at phosphoacceptor position Ser-43 (S43A) also localized outside of the nucleus. The S43A alpha-NAC mutant could not potentiate the effect of ILK on c-Jun-dependent transcription. We conclude that ILK-dependent phosphorylation of alpha-NAC induced the nuclear accumulation of the coactivator and that phosphorylation of alpha-NAC by ILK is required for the potentiation of c-Jun-mediated responses by the kinase. The results represent one of the rare examples of a transcriptional coactivator shuttling between the cytosol and the nucleus.
Collapse
Affiliation(s)
- Isabelle Quélo
- Genetics Unit, Shriners Hospital for Children Montréal, Québec H3G 1A6, Canada
| | | | | | | | | |
Collapse
|