1
|
Pal S, Dolai S, Deepa S, Garai K. Investigation of Domain Interaction in the Apolipoprotein E Isoforms by HDX-MS. J Mol Biol 2025; 437:169036. [PMID: 40010433 DOI: 10.1016/j.jmb.2025.169036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Involvement of apoE4 in the pathology of Alzheimer's disease (AD) is hypothesized to arise from its unique structural properties, most importantly the interactions between the N- and C-terminal domains. However, structural understanding of the domain interaction is still lacking. Here, we use Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) to study domain interactions by measuring the effect of the C-terminal domain (CTD) on the solvent accessibility of the N-terminal domain (NTD) in both apoE3 and apoE4. Our results indicate that the presence of CTD enhances the solvent accessibility of all the four helices in the NTD in apoE4, but only two helices, specifically Helix-1 and 4 in apoE3. Therefore, the allosteric changes in the conformational ensemble of the NTD induced by the CTD is more extensive in apoE4 than in apoE3. Moreover, strong pH dependence suggests role of the salt bridges in the interdomain interactions. Since the NTD harbors the receptor binding region, the destabilizing effect of CTD on it provides a structural basis for the role of interdomain interactions on the pathological functions of apoE4. Furthermore, we propose HDX-MS as a methodology for screening and assessing the efficacy of 'structure corrector' molecules targeting apoE4 to mitigate its pathological effects in AD.
Collapse
Affiliation(s)
- Sudip Pal
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Subhrajyoti Dolai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - S Deepa
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India.
| |
Collapse
|
2
|
Reddick I, Celis G, Pal S, Nguyen JTV, Saraswathi D, Garai K, Narayanaswami V. Conformational features of guinea pig apolipoprotein E offer insights into functioning of human apolipoprotein E. Arch Biochem Biophys 2025; 769:110421. [PMID: 40221014 DOI: 10.1016/j.abb.2025.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Apolipoprotein (apo) E is a major cholesterol transport protein in the plasma and brain of humans, with the APOE ε4 allele (coding for R112) associated with a higher risk for cardiovascular and Alzheimer's diseases (CVD and AD, respectively) compared to APOE ε3 (coding for C112). The molecular basis underlying the link between APOE ε4 and CVD/AD is poorly understood. Here apoE from Cavia porcellus (guinea pig, GP), which is 72 % identical to human apoE4 but lacking residues 193-197 and 246-252, a feature noted in all hystricomorph apoE, was used as a model to understand the role of apoE4. Western blot with anti-human apoE antibody revealed cross reactivity with bacterially expressed recombinant GP apoE. GP apoE solubilized phospholipids far more efficiently than apoE3/E4 but promoted macrophage cholesterol efflux to a similar extent. The overall secondary structure and tetrameric organization of GP apoE were broadly similar to those of apoE3/E4. Guanidine HCl-induced denaturation revealed a biphasic unfolding pattern indicative of a two-domain architecture for GP apoE. Hydrogen-deuterium exchange coupled to mass spectrometry of GP apoE revealed mixed EX1/EX2 kinetics similar to that noted for apoE4, with peak broadening indicative of the presence of partially folded intermediate states. Limited proteolysis reveals more resistance to cleavage compared to apoE3/E4. Taken together, the findings suggest that the CT domain modulates the lipid-binding ability of apoE and attenuates the overall dynamics of the protein, which bears direct relevance in regulation of lipoprotein metabolism with implications in amyloid-related neurodegeneration.
Collapse
Affiliation(s)
- Issac Reddick
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - George Celis
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - Sudip Pal
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally, Hyderabad, 500019, India
| | - J Truc-Vy Nguyen
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - Deepa Saraswathi
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally, Hyderabad, 500019, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally, Hyderabad, 500019, India.
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA.
| |
Collapse
|
3
|
Yi X, Bai L, Chen K, He Y, Chen J. Normolipidemic lipoprotein glomerulopathy with IgA nephropathy - ApoE Kyoto mutation: a case report. Diagn Pathol 2025; 20:36. [PMID: 40186270 PMCID: PMC11971798 DOI: 10.1186/s13000-025-01636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Lipoprotein glomerulopathy (LPG), a rare genetic metabolic kidney disease with poor prognosis, is caused by mutations in the apolipoprotein E (ApoE) gene and is usually accompanied by hyperlipidemia. Lipoprotein glomerulopathy can be complicated by other glomerulopathies, such as membranous nephropathy, lupus nephritis, and immunoglobulin A nephropathy (IgAN), which have been mainly reported in Japan. Herein, we present the first case of a patient with LPG with IgAN from Chongqing, China. In contrast to previous cases, this patient lacked hyperlipidemia and ApoE was a Kyoto mutation. CASE PRESENTATION A 38-year-old man was admitted to our hospital due to proteinuria and hematuria, which was found during urine examination. Renal function and blood lipid and lipoprotein levels were normal. After renal biopsy, the patient was diagnosed of LPG with IgAN. Analysis of the ApoE gene showed a heterozygous C→T transition in exon 3, resulting in a change in the 25th amino acid from arginine to cysteine (Kyoto mutation). Genetic analysis of the family showed that this mutation was inherited from his father and passed on to his daughter. Serum ApoE was 14.4 mg/dL. Combined with the above findings, the patient was diagnosed with LPG accompanied by IgAN. After 18 months of enalapril treatment without lipid-lowering therapy, the patient's renal function and blood lipid levels were stable and urine protein levels were significantly ameliorated. CONCLUSION We presented a rare case of LPG (Kyoto) with IgAN without abnormal blood lipids and other typical clinical manifestations. Therefore, for patients with unremarkable clinical manifestations, renal biopsy is of great value for definite diagnosis of disease.
Collapse
Affiliation(s)
- Xiangling Yi
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lihua Bai
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
4
|
Basavaraju P, Moorthi PV, Meyyazhagan A, Devaraj I, Babu K, Panza E, Orlacchio A. Effects of APOE isoforms in diabetic nephropathy patients of South India. Acta Diabetol 2025; 62:487-497. [PMID: 39417844 PMCID: PMC12055913 DOI: 10.1007/s00592-024-02374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a grave complication and the most common renal dysfunction of diabetes mellitus. Genetic factors, including Apolipoprotein E (APOE) isoforms, have been implicated in the pathogenesis of DN. METHODS A total of 577 type 2 Diabetes mellitus subjects were categorized into diabetes non-nephropathic (Controls: n = 321), diabetes nephropathic (DN: n = 256) groups. Demographic, clinical, and biochemical parameters including age, BMI, lipid profiles (TC, LDL-C, HDL-C, TG), glucose metabolism (plasma glucose, HbA1c, serum insulin), renal function (UACR, PCR), and blood pressure (SBP, DBP) were assessed. APOE variant frequencies were determined using restriction fragment length polymorphism (RFLP) analysis, validated against Hardy-Weinberg equilibrium (HWE), and statistically correlated with each clinical and biochemical parameter. RESULTS The DN group had an increased prevalence of hypertension, fatty liver, and dyslipidemia compared to the Control group. Biochemical analyses revealed elevated levels of TC (213.41 mg/dL vs. 189.32 mg/dL), LDL-C (134.46 mg/dL vs. 107.56 mg/dL), and reduced HDL-C (58.13 mg/dL vs. 65.32 mg/dL) in DN cases compared to Controls (all p < 0.0001). The APOE variants distribution showed a significant increase in E2 allele frequency (69.1% vs. 15.3%) and corresponding homozygous genotype (E2/2: 42.2% vs. 5.6%) in DN cohorts. CONCLUSION The study found a higher frequency of E2 allele in the DN group compared to Controls, though no statistically significant risk of DN was linked to this allele. The results suggest a potential association for APOE polymorphisms, requiring broader studies to clarify the role of APOE polymorphisms in DN susceptibility.
Collapse
Affiliation(s)
- Preethi Basavaraju
- Biomaterial and Nano-materials Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Puthamohan Vinayaga Moorthi
- Biomaterial and Nano-materials Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arun Meyyazhagan
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Piazza L. Severi - Edificio B, Piano 1, Sant'Andrea delle Fratte, Perugia, 06132, Italy
| | - Ilakkiyapavai Devaraj
- Biomaterial and Nano-materials Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kavipriya Babu
- Biomaterial and Nano-materials Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Piazza L. Severi - Edificio B, Piano 1, Sant'Andrea delle Fratte, Perugia, 06132, Italy.
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
5
|
Zhang S, Fan L, Li Z, Liu T, Jing X, Guo Q. A boy and his mother with lipoprotein glomerulopathy: Two case reports and literature review. Medicine (Baltimore) 2025; 104:e41628. [PMID: 39993083 PMCID: PMC11857006 DOI: 10.1097/md.0000000000041628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
RATIONALE Lipoprotein glomerulopathy (LPG) is a rare genetic kidney disorder. Here, we report a boy and his mother with LPG. PATIENT CONCERNS A 6-year-old boy was admitted to our hospital with a history of 6 months of experiencing foamy urine without apparent cause. DIAGNOSES Urinalysis revealed 3+ protein and 2+ occult blood. A 24-hour urinary protein quantification measured 1110 mg. Other laboratory tests revealed that the level of serum albumin was 43.6 g/L, triglycerides 4.31 mmol/L were elevated, and high-density lipoprotein cholesterol 0.71 mmol/L were reduced, whereas total cholesterol and low-density lipoprotein cholesterol levels were normal. Renal biopsy revealed glomerular capillary loop expansion with lipoprotein thrombi on light microscopy, variable-sized vacuoles within the capillary loops on electron microscopy, positive Oil Red O staining, and positive immunofluorescence staining for ApoE. The mother of the patient had a history of uremia 5 years ago. Genetic testing confirmed a deletion of 9 nucleotides (CAAGCTGCG) in exon 4 of the ApoE gene at positions c.480-488 of the boy and his mother, resulting in a deletion of 3 amino acids (Lys143-Arg145del) in the ApoE amino acid sequence at positions 143-145, which was same variant as ApoE Tokyo/Maebashi. INTERVENTIONS The boy showed significant improvement after treatment with fenofibrate and telmisartan, with urine protein turning negative after 1 week and blood lipid levels returning to normal after 4 weeks. OUTCOMES During 1 year follow-up period, the results of urine routine examination and blood lipid profile remained within normal ranges. LESSONS LPG is a rare and easily misdiagnosed kidney disease with no clinical characteristics. Early diagnosis by kidney biopsy and whole gene test is conducive to early detection and diagnosis, reducing missed diagnosis and misdiagnosis, and improving the long-term prognosis of patients.
Collapse
Affiliation(s)
- Shuya Zhang
- The Pediatric Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The Pediatric Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lulu Fan
- The Pediatric Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The Pediatric Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziwei Li
- The Pediatric Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The Pediatric Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tiantian Liu
- The Pediatric Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The Pediatric Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoping Jing
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qingyin Guo
- The Pediatric Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The Pediatric Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Nedelkov D, Tsokolas ZE, Rodrigues MS, Sible I, Han SD, Kerman BE, Renteln M, Mack WJ, Pascoal TA, Yassine HN. Increased cerebrospinal fluid and plasma apoE glycosylation is associated with reduced levels of Alzheimer's disease biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629619. [PMID: 39763949 PMCID: PMC11702616 DOI: 10.1101/2024.12.20.629619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
The apolipoprotein E ( APOE ) ε4 allele is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE is glycosylated with an O-linked Core-1 sialylated glycan at several sites, yet the impact and function of this glycosylation on AD biomarkers remains unclear. We examined apoE glycosylation in a cohort of cerebrospinal fluid (CSF, n=181) and plasma (n= 178) samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) stratified into 4 groups: cognitively normal (CN), Mild Cognitive Impairment (MCI), progressors and non-progressors based on delayed word recall performance over 4 years. We observed decreasing glycosylation from apoE2 > apoE3 > apoE4 in CSF, and in plasma (apoE3 > apoE4). ApoE glycosylation was reduced in the MCI compared with CN groups, and in progressors compared to non-progressors. In CSF, higher apoE glycosylation associated cross-sectionally with lower total tau (t-tau), p-tau181, and with higher Aβ 1-42 . Similar associations of apoE glycosylation with higher Aβ 1-42 were observed in plasma. In CSF, greater apoE4 glycosylation was associated with lower t-tau and p-tau181. Over a 6-year period, higher baseline levels of CSF apoE glycosylation predicted lower rates of increase in CSF t-tau and p-tau181 and lower rates of decrease in CSF Aβ 1-42 . These results indicate strong associations of apoE glycosylation with biomarkers of AD pathology independent of apoE genotype, warranting a deeper understanding of the functional role of apoE glycosylation on AD tau pathology.
Collapse
|
7
|
Moon HJ, Luo Y, Chugh D, Zhao L. Human apolipoprotein E glycosylation and sialylation: from structure to function. Front Mol Neurosci 2024; 17:1399965. [PMID: 39169951 PMCID: PMC11335735 DOI: 10.3389/fnmol.2024.1399965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid β (Aβ) and downstream Aβ pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Yan Luo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Diksha Chugh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
8
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
9
|
ShaMa A, Huang Y, Ma C, Xu C, Hu J, Li Z, Zeng C. Influence of apolipoprotein E gene polymorphisms on coronary artery disease in patients undergoing coronary angiography. Heliyon 2024; 10:e33690. [PMID: 39040314 PMCID: PMC11260916 DOI: 10.1016/j.heliyon.2024.e33690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Objective Previous studies have shown that apolipoprotein E (ApoE) gene polymorphisms have an impact on coronary artery disease(CAD). However, many studies have small sample sizes and different conclusions. The purpose was to retrospectively study the influence of ApoE gene polymorphisms on CAD. Methods This study assessed the influence of different ApoE genotypes on coronary heart disease in patients who received coronary angiography and used multivariate logistic regression to assess the influence of different ApoE genotypes on CAD. Results Patients with different ApoE genotypes had no obvious differences in the incidence of hypertension, diabetes or obesity(P > 0.05). Patients with ε2/ε2 had higher incidence of hypertriglyceridemia than patients with other ApoE genotypes, while patients with ε3/ε3 had a lower incidence of hypertriglyceridemia than those with ε3/ε4,ε4/ε4, ε2/ε3 and ε2/ε2(P < 0.05). Patients with ε3/ε4, ε4/ε4, ε3/ε3 and ε2/ε2 had no significant differences in the severity or incidence of CAD (P > 0.05). ε2/ε4 and ε2/ε3 reduced the risk of high LDL-C, and reduced the severity and incidence of coronary heart(P < 0.05). ε2/ε3 reduced risk of premature coronary artery disease(PCAD)(P < 0.05). ε2/ε3 reduced risk of CAD in patients age <45,age at 60-74 and age ≥74, while ε2/ε4 reduced risk of CAD in patients age ≥74(P < 0.05). Conclusion Patients with ε3/ε4, ε4/ε4,ε3/ε3 and ε2/ε2 had no significant differences in the severity and occurrence of CAD. Compared to the isoform ε3 (ε3/ε3), isoform ε4 did not increased the severity and occurrence of CAD. Compared with ApoE other genotypes, ε2/ε3 and ε2/ε4 reduced the risk of high LDL-C and the severity and occurrence of CAD.
Collapse
Affiliation(s)
- Azhi ShaMa
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yingying Huang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chunlan Ma
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chunmei Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jingyue Hu
- Department of Neurology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhuxin Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China
- Department of Cardiology, Chongqing General Hospital, Chongqing, PR China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China
| |
Collapse
|
10
|
Ohgita T, Sakai K, Fukui N, Namba N, Nakano M, Kiguchi Y, Morita I, Oyama H, Yamaki K, Nagao K, Kobayashi N, Saito H. Generation of novel anti-apoE monoclonal antibodies that selectively recognize apoE isoforms. FEBS Lett 2024; 598:902-914. [PMID: 38529702 DOI: 10.1002/1873-3468.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 03/27/2024]
Abstract
Apolipoprotein E (apoE) is a regulator of lipid metabolism, cholesterol transport, and the clearance and aggregation of amyloid β in the brain. The three human apoE isoforms apoE2, apoE3, and apoE4 only differ in one or two residues. Nevertheless, the functions highly depend on the isoform types and lipidated states. Here, we generated novel anti-apoE monoclonal antibodies (mAbs) and obtained an apoE4-selective mAb whose epitope is within residues 110-117. ELISA and bio-layer interferometry measurements demonstrated that the dissociation constants of mAbs are within the nanomolar range. Using the generated antibodies, we successfully constructed sandwich ELISA systems, which can detect all apoE isoforms or selectively detect apoE4. These results suggest the usability of the generated anti-apoE mAbs for selective detection of apoE isoforms.
Collapse
Affiliation(s)
- Takashi Ohgita
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Japan
| | - Koto Sakai
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Nodoka Fukui
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Norihiro Namba
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Miyu Nakano
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Yuki Kiguchi
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Japan
| | - Izumi Morita
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Japan
| | - Hiroyuki Oyama
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Japan
| | - Kouya Yamaki
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Japan
| | - Kohjiro Nagao
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Norihiro Kobayashi
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| |
Collapse
|
11
|
Yi W, Lv D, Sun Y, Mu J, Lu X. Role of APOE in glaucoma. Biochem Biophys Res Commun 2024; 694:149414. [PMID: 38145596 DOI: 10.1016/j.bbrc.2023.149414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Glaucoma is a chronic blinding eye disease caused by the progressive loss of retinal ganglion cells (RGCs). Currently, no clinically approved treatment can directly improve the survival rate of RGCs. The Apolipoprotein E (APOE) gene is closely related to the genetic risk of numerous neurodegenerative diseases and has become a hot topic in the field of neurodegenerative disease research in recent years. The optic nerve and retina are extensions of the brain's nervous system. The pathogenesis of retinal degenerative diseases is closely related to the degenerative diseases of the nerves in the brain. APOE consists of three alleles, ε4, ε3, and ε2, in a single locus. They have varying degrees of risk for glaucoma. APOE4 and the APOE gene deletion (APOE-/-) can reduce RGC loss. By contrast, APOE3 and the overall presence of APOE genes (APOE+/+) result in significant loss of RGC bodies and axons, increasing the risk of glaucoma RGCs death. Currently, there is no clear literature indicating that APOE2 is beneficial or harmful to glaucoma. This study summarises the mechanism of different APOE genes in glaucoma and speculates that APOE targeted intervention may be a promising method for protecting against RGCs loss in glaucoma.
Collapse
Affiliation(s)
- Wenhua Yi
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China.
| | - De Lv
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Yue Sun
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China.
| | - Jingyu Mu
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China.
| | - Xuejing Lu
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China; Ineye Hospital of Chengdu University of TCM, Chengdu City, Sichuan province, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu City, Sichuan province, China; Retinal Image Technology and Chronic Vascular Disease Prevention&Control and Collaborative Innovation Center, Chengdu City, Sichuan province, China.
| |
Collapse
|
12
|
Asiamah EA, Feng B, Guo R, Yaxing X, Du X, Liu X, Zhang J, Cui H, Ma J. The Contributions of the Endolysosomal Compartment and Autophagy to APOEɛ4 Allele-Mediated Increase in Alzheimer's Disease Risk. J Alzheimers Dis 2024; 97:1007-1031. [PMID: 38306054 DOI: 10.3233/jad-230658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer's disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Collapse
Affiliation(s)
- Ernest Amponsah Asiamah
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Baofeng Feng
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xu Yaxing
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xiaofeng Du
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xin Liu
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Huixian Cui
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Jun Ma
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| |
Collapse
|
13
|
Xu H, Fu J, Mohammed Nazar RB, Yang J, Chen S, Huang Y, Bao T, Chen X. Investigation of the Relationship between Apolipoprotein E Alleles and Serum Lipids in Alzheimer's Disease: A Meta-Analysis. Brain Sci 2023; 13:1554. [PMID: 38002514 PMCID: PMC10670160 DOI: 10.3390/brainsci13111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Prior studies have yielded mixed findings concerning the association between apolipoprotein E(APOE)-ε4 and serum lipids in patients with Alzheimer's disease (AD) and healthy individuals. Some studies suggested a relationship between APOEε4 and serum lipids in patients with AD and healthy individuals, whereas others proposed that the APOEε4 allele affects lipids only in patients with AD. Our study aimed to investigate whether APOE alleles have a distinct impact on lipids in AD. We conducted a comprehensive search of the PubMed and Embase databases for all related studies that investigate APOE and serum lipids of AD from the inception to 30 May 2022. Elevated total cholesterol (TC) and low-density lipoprotein (LDL) levels were found in APOEε4 allele carriers compared with non-carriers. No significant differences were found for high-density lipoprotein (HDL) and triglyceride (TG) levels in APOEε4 allele carriers compared to non-carriers. Notably, elevated TC and LDL levels showed considerable heterogeneity between patients with AD and healthy controls. A network meta-analysis did not find a distinct effect of carrying one or two APOEε4 alleles on lipid profiles. Higher TC and LDL levels were found in APOEε4 allele carriers compared with non-carriers, and the difference was more significant in patients with AD than in healthy controls.
Collapse
Affiliation(s)
- Huaxue Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Risna Begam Mohammed Nazar
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Sihui Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Yan Huang
- Management Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (T.B.)
| | - Ting Bao
- Management Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (T.B.)
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| |
Collapse
|
14
|
Vitali C, Pavanello C, Turri M, Lund-Katz S, Phillips MC, Catapano AL, Baragetti A, Norata GD, Veglia F, Calabresi L. Apolipoprotein E isoforms differentially affect LCAT-dependent cholesterol esterification. Atherosclerosis 2023; 382:117266. [PMID: 37725860 DOI: 10.1016/j.atherosclerosis.2023.117266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AND AIMS LCAT esterifies cholesterol in both HDL (α-activity) and apoB-containing lipoproteins (β-activity). The main activator of LCAT β-activity is apoE, which in humans exists in 3 main different isoforms (E2, E3 and E4). Here, to gather insights into the potential role of LCAT in apoB-containing lipoprotein metabolism, we investigated the ability of apoE isoforms to promote LCAT-mediated cholesterol esterification. METHODS We evaluated the plasma cholesterol esterification rate (CER) in 311 individuals who express functional LCAT and either apoE2, apoE3, or apoE4 and in 28 individuals who also carried LCAT mutations causing selective loss of LCAT α-activity (Fish-Eye Disease (FED)-causing mutations). The association of carrier status with CER was determined using an adjusted linear regression model. The kinetic of LCAT activity towards reconstituted HDLs (rHDLs) containing each apoE isoform was determined using the Michaelis-Menten model. RESULTS Plasma CER was ∼20% higher in apoE2 carriers compared to apoE3 carriers, and ∼30% higher in apoE2 carriers compared to apoE4 carriers. After adjusting for age, sex, total cholesterol, HDL-C, apoA-I, apoB, chronic kidney disease diagnosis, zygosity, and LCAT concentration, CER remained significantly different among carriers of the three apoE isoforms. The same trend was observed in carriers of FED-causing mutations. rHDLs containing apoE2 were associated with a lower affinity but higher maximal esterification rate, compared to particles containing apoE3 or apoE4. CONCLUSION The present results suggest that the apoE2 isoform is associated with a higher LCAT-mediated cholesterol esterification. This observation may contribute to the characterization of the peculiar functional properties of apoE2.
Collapse
Affiliation(s)
- Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Marta Turri
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Sissel Lund-Katz
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Phillips
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Andrea Baragetti
- IRCCS Multimedica, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
15
|
Yang LG, March ZM, Stephenson RA, Narayan PS. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol Metab 2023; 34:430-445. [PMID: 37357100 PMCID: PMC10365028 DOI: 10.1016/j.tem.2023.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of lipid metabolism has emerged as a central component of many neurodegenerative diseases. Variants of the lipid transport protein, apolipoprotein E (APOE), modulate risk and resilience in several neurodegenerative diseases including late-onset Alzheimer's disease (LOAD). Allelic variants of the gene, APOE, alter the lipid metabolism of cells and tissues and have been broadly associated with several other cellular and systemic phenotypes. Targeting APOE-associated metabolic pathways may offer opportunities to alter disease-related phenotypes and consequently, attenuate disease risk and impart resilience to multiple neurodegenerative diseases. We review the molecular, cellular, and tissue-level alterations to lipid metabolism that arise from different APOE isoforms. These changes in lipid metabolism could help to elucidate disease mechanisms and tune neurodegenerative disease risk and resilience.
Collapse
Affiliation(s)
- Linda G Yang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zachary M March
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Roxan A Stephenson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.; National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer's disease and potential therapeutic targets. Front Aging Neurosci 2023; 15:1199434. [PMID: 37333457 PMCID: PMC10272394 DOI: 10.3389/fnagi.2023.1199434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The most prevalent genetic risk factor for Alzheimer's disease (AD) is Apolipoprotein E (ApoE), a gene located on chromosome 19 that encodes three alleles (e2, e3, and e4) that give rise to the ApoE subtypes E2, E3, and E4, respectively. E2 and E4 have been linked to increased plasma triglyceride concentrations and are known to play a critical role in lipoprotein metabolism. The prominent pathological features of AD mainly include senile plaques formed by amyloid β (Aβ42) aggregation and neuronal fibrous tangles (NFTs), and the deposited plaques are mainly composed of Aβ hyperphosphorylation and truncated head. In the central nervous system, the ApoE protein is primarily derived from astrocytes, but ApoE is also produced when neurons are stressed or affected by certain stress, injury, and aging conditions. ApoE4 in neurons induces Aβ and tau protein pathologies, leading to neuroinflammation and neuronal damage, impairing learning and memory functions. However, how neuronal ApoE4 mediates AD pathology remains unclear. Recent studies have shown that neuronal ApoE4 may lead to greater neurotoxicity, which increases the risk of AD development. This review focuses on the pathophysiology of neuronal ApoE4 and explains how neuronal ApoE4 mediates Aβ deposition, pathological mechanisms of tau protein hyperphosphorylation, and potential therapeutic targets.
Collapse
|
17
|
Abeer MI, Abdulhasan A, Haguar Z, Narayanaswami V. Isoform-specific modification of apolipoprotein E by 4-hydroxynonenal: protective role of apolipoprotein E3 against oxidative species. FEBS J 2023; 290:3006-3025. [PMID: 36661393 PMCID: PMC11296219 DOI: 10.1111/febs.16729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
High levels of 4-hydroxynonenal (HNE), arising from lipid peroxidation, and HNE-modified proteins have been identified in postmortem brains of ageing and Alzheimer's disease (AD) patients. The goal of this study is to understand the effect of HNE modification on the structure and function of recombinant apolipoprotein E3 (apoE3) and apolipoprotein E4 (apoE4), which play a critical role in brain cholesterol homeostasis. The two isoforms differ in a single amino acid at position 112: Cys in apoE3 and Arg in apoE4. Immunoblot with HNE-specific antibody indicates HNE modification of apoE3 and apoE4 with a major band at ~ 36 kDa, while LC-MS/MS revealed Michael addition at His140 (60-70% abundance) and His299 (3-5% abundance) in apoE3 and apoE4, and Cys112 adduct in apoE3 (75% abundance). Circular dichroism spectroscopy revealed no major differences in the overall secondary structure or helical content between unmodified and HNE-modified apoE. HNE modification did not affect their ability to promote cholesterol efflux from J774.1 macrophages. However, it led to a 3-fold decrease in their ability to bind lipids and 25-50% decrease in the ability of cerebral cortex endothelial cells to uptake lipoproteins bearing HNE-modified HNE-apoE3 or HNE-apoE4 as noted by fluorescence microscopy and flow cytometry. Taken together, the data indicate that HNE modification impairs lipid binding and cellular uptake of both isoforms, and that apoE3, bearing a Cys, offers a protective role by sequestering lipid peroxidation products that would otherwise cause indiscriminate damage to biomolecules. ApoE4, lacking Cys, is unable to protect against oxidative damage that is commensurate with ageing.
Collapse
Affiliation(s)
- Muhammad I Abeer
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Abbas Abdulhasan
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Zahraa Haguar
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| |
Collapse
|
18
|
Meuret CJ, Hu Y, Smadi S, Bantugan MA, Xian H, Martinez AE, Krauss RM, Ma QL, Nedelkov D, Yassine HN. An association of CSF apolipoprotein E glycosylation and amyloid-beta 42 in individuals who carry the APOE4 allele. Alzheimers Res Ther 2023; 15:96. [PMID: 37221560 PMCID: PMC10204298 DOI: 10.1186/s13195-023-01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
Carrying the apolipoprotein E (ApoE) Ɛ4 allele is associated with an increased risk of cerebral amyloidosis and late-onset Alzheimer's disease, but the degree to which apoE glycosylation affects its development is not clear. In a previous pilot study, we identified distinct total and secondary isoform-specific cerebral spinal fluid (CSF) apoE glycosylation profiles, with the E4 isoform having the lowest glycosylation percentage (E2 > E3 > E4). In this work, we extend the analysis to a larger cohort of individuals (n = 106), utilizing matched plasma and CSF samples with clinical measures of AD biomarkers. The results confirm the isoform-specific glycosylation of apoE in CSF, resulting from secondary CSF apoE glycosylation patterns. CSF apoE glycosylation percentages positively correlated with CSF Aβ42 levels (r = 0.53, p < 0.0001). These correlations were not observed for plasma apoE glycosylation. CSF total and secondary apoE glycosylation percentages also correlated with the concentration of CSF small high-density lipoprotein particles (s-HDL-P), which we have previously shown to be correlated with CSF Aβ42 levels and measures of cognitive function. Desialylation of apoE purified from CSF showed reduced Aβ42 degradation in microglia with E4 > E3 and increased binding affinity to heparin. These results indicate that apoE glycosylation has a new and important role in influencing brain Aβ metabolism and can be a potential target of treatment.
Collapse
Affiliation(s)
- Cristiana J Meuret
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Yueming Hu
- Isoformix Inc., 9830 S. 51. St. Suite B-113, Phoenix, AZ, 85044, USA
| | - Sabrina Smadi
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Mikaila Ann Bantugan
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Haotian Xian
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Ashley E Martinez
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | | | - Qiu-Lan Ma
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Dobrin Nedelkov
- Isoformix Inc., 9830 S. 51. St. Suite B-113, Phoenix, AZ, 85044, USA.
| | - Hussein N Yassine
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA.
| |
Collapse
|
19
|
Turri M, Conti E, Pavanello C, Gastoldi F, Palumbo M, Bernini F, Aprea V, Re F, Barbiroli A, Emide D, Galimberti D, Tremolizzo L, Zimetti F, Calabresi L. Plasma and cerebrospinal fluid cholesterol esterification is hampered in Alzheimer's disease. Alzheimers Res Ther 2023; 15:95. [PMID: 37210544 PMCID: PMC10199596 DOI: 10.1186/s13195-023-01241-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate cholesterol esterification and HDL subclasses in plasma and cerebrospinal fluid (CSF) of Alzheimer's disease (AD) patients. METHODS The study enrolled 70 AD patients and 74 cognitively normal controls comparable for age and sex. Lipoprotein profile, cholesterol esterification, and cholesterol efflux capacity (CEC) were evaluated in plasma and CSF. RESULTS AD patients have normal plasma lipids but significantly reduced unesterified cholesterol and unesterified/total cholesterol ratio. Lecithin:cholesterol acyltransferase (LCAT) activity and cholesterol esterification rate (CER), two measures of the efficiency of the esterification process, were reduced by 29% and 16%, respectively, in the plasma of AD patients. Plasma HDL subclass distribution in AD patients was comparable to that of controls but the content of small discoidal preβ-HDL particles was significantly reduced. In agreement with the reduced preβ-HDL particles, cholesterol efflux capacity mediated by the transporters ABCA1 and ABCG1 was reduced in AD patients' plasma. The CSF unesterified to total cholesterol ratio was increased in AD patients, and CSF CER and CEC from astrocytes were significantly reduced in AD patients. In the AD group, a significant positive correlation was observed between plasma unesterified cholesterol and unesterified/total cholesterol ratio with Aβ1-42 CSF content. CONCLUSION Taken together our data indicate that cholesterol esterification is hampered in plasma and CSF of AD patients and that plasma cholesterol esterification biomarkers (unesterified cholesterol and unesterified/total cholesterol ratio) are significantly associated to disease biomarkers (i.e., CSF Aβ1-42).
Collapse
Affiliation(s)
- Marta Turri
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | - Elisa Conti
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | - Francesco Gastoldi
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | | | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Vittoria Aprea
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Alberto Barbiroli
- Dipartimento Di Scienze Per Gli Alimenti, La Nutrizione E L'Ambiente, Università Degli Studi Di Milano, Milano, Italy
| | - Davide Emide
- Dipartimento Di Scienze Per Gli Alimenti, La Nutrizione E L'Ambiente, Università Degli Studi Di Milano, Milano, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy.
| |
Collapse
|
20
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Wang HL, Zhang CL, Qiu YM, Chen AQ, Li YN, Hu B. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench. Aging Dis 2021; 12:1898-1919. [PMID: 34881076 PMCID: PMC8612614 DOI: 10.14336/ad.2021.0514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Cerebral microbleeds (CMBs) are a disorder of cerebral microvessels that are characterized as small (<10 mm), hypointense, round or ovoid lesions seen on T2*-weighted gradient echo MRI. There is a high prevalence of CMBs in community-dwelling healthy older people. An increasing number of studies have demonstrated the significance of CMBs in stroke, dementia, Parkinson's disease, gait disturbances and late-life depression. Blood-brain barrier (BBB) dysfunction is considered to be the event that initializes CMBs development. However, the pathogenesis of CMBs has not yet been clearly elucidated. In this review, we introduce the pathogenesis of CMBs, hypertensive vasculopathy and cerebral amyloid angiopathy, and review recent research that has advanced our understanding of the mechanisms underlying BBB dysfunction and CMBs presence. CMBs-associated risk factors can exacerbate BBB breakdown through the vulnerability of BBB anatomical and functional changes. Finally, we discuss potential pharmacological approaches to target the BBB as therapy for CMBs.
Collapse
Affiliation(s)
| | | | | | - An-qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Gao H, Zheng W, Li C, Xu H. Isoform-Specific Effects of Apolipoprotein E on Hydrogen Peroxide-Induced Apoptosis in Human Induced Pluripotent Stem Cell (iPSC)-Derived Cortical Neurons. Int J Mol Sci 2021; 22:ijms222111582. [PMID: 34769014 PMCID: PMC8584079 DOI: 10.3390/ijms222111582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Hydrogen peroxide (H2O2)-induced neuronal apoptosis is critical to the pathology of Alzheimer's disease (AD) as well as other neurodegenerative diseases. The neuroprotective effects of apolipoprotein (ApoE) isoforms against apoptosis and the underlying mechanism remains controversial. Here, we have generated human cortical neurons from iPSCs and induced apoptosis with H2O2. We show that ApoE2 and ApoE3 pretreatments significantly attenuate neuronal apoptosis, whereas ApoE4 has no neuroprotective effect and higher concentrations of ApoE4 even display toxic effect. We further identify that ApoE2 and ApoE3 regulate Akt/FoxO3a/Bim signaling pathway in the presence of H2O2. We propose that ApoE alleviates H2O2-induced apoptosis in human iPSC-derived neuronal culture in an isoform specific manner. Our results provide an alternative mechanistic explanation on how ApoE isoforms influence the risk of AD onset as well as a promising therapeutic target for diseases involving neuronal apoptosis in the central nervous system.
Collapse
Affiliation(s)
- Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China;
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China;
| | - Cheng Li
- Department of Immunology, China Medical University, Shenyang 110122, China;
| | - He Xu
- Department of Histology and Embryology, Faculty of Medicine, Shenzhen University, Shenzhen 518061, China
- Correspondence:
| |
Collapse
|
23
|
Yin YW, Sheng YJ, Wang M, Ma YQ, Ding HM. Interaction of serum proteins with SARS-CoV-2 RBD. NANOSCALE 2021; 13:12865-12873. [PMID: 34254633 DOI: 10.1039/d1nr02687a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a worldwide public health crisis. When the SARS-CoV-2 enters the biological fluids in the human body, different types of biomolecules (in particular proteins) may adsorb on its surface and alter its infection ability. Although great efforts have recently been devoted to the interaction of specific antibodies with the SARS-CoV-2, it still remains largely unknown how the other serum proteins affect the infection of the SARS-CoV-2. In this work, we systematically investigate the interaction of serum proteins with the SARS-CoV-2 RBD by molecular docking and all-atom molecular dynamics simulations. It is found that non-specific immunoglobulins (Ig) indeed cannot effectively bind to the SARS-CoV-2 RBD while human serum albumin (HSA) may have some potential in blocking its infection (to ACE2). More importantly, we find that the RBD can cause significant structural changes in Apolipoprotein E (ApoE), by which SARS-CoV-2 may hijack the metabolic pathway of ApoE to facilitate its cell entry. The present study enhances the understanding of the role of protein corona in the bio-behaviors of SARS-CoV-2, which may aid the more precise and personalized treatment for COVID-19 infection in the clinic.
Collapse
Affiliation(s)
- Yue-Wen Yin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | | | |
Collapse
|
24
|
Benitez Amaro A, Solanelles Curco A, Garcia E, Julve J, Rives J, Benitez S, Llorente Cortes V. Apolipoprotein and LRP1-Based Peptides as New Therapeutic Tools in Atherosclerosis. J Clin Med 2021; 10:jcm10163571. [PMID: 34441867 PMCID: PMC8396846 DOI: 10.3390/jcm10163571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein (Apo)-based mimetic peptides have been shown to reduce atherosclerosis. Most of the ApoC-II and ApoE mimetics exert anti-atherosclerotic effects by improving lipid profile. ApoC-II mimetics reverse hypertriglyceridemia and ApoE-based peptides such as Ac-hE18A-NH2 reduce cholesterol and triglyceride (TG) levels in humans. Conversely, other classes of ApoE and ApoA-I mimetic peptides and, more recently, ApoJ and LRP1-based peptides, exhibit several anti-atherosclerotic actions in experimental models without influencing lipoprotein profile. These other mimetic peptides display at least one atheroprotective mechanism such as providing LDL stability against mechanical modification or conferring protection against the action of lipolytic enzymes inducing LDL aggregation in the arterial intima. Other anti-atherosclerotic effects exerted by these peptides also include protection against foam cell formation and inflammation, and induction of reverse cholesterol transport. Although the underlying mechanisms of action are still poorly described, the recent findings suggest that these mimetics could confer atheroprotection by favorably influencing lipoprotein function rather than lipoprotein levels. Despite the promising results obtained with peptide mimetics, the assessment of their stability, atheroprotective efficacy and tissue targeted delivery are issues currently under progress.
Collapse
Affiliation(s)
- Aleyda Benitez Amaro
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | | | - Eduardo Garcia
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | - Josep Julve
- Metabolic Basis of Cardiovascular Risk Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jose Rives
- Biochemistry Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08016 Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Correspondence: (S.B.); or (V.L.C.)
| | - Vicenta Llorente Cortes
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
- CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (S.B.); or (V.L.C.)
| |
Collapse
|
25
|
Kacperczyk M, Kmieciak A, Kratz EM. The Role of ApoE Expression and Variability of Its Glycosylation in Human Reproductive Health in the Light of Current Information. Int J Mol Sci 2021; 22:ijms22137197. [PMID: 34281251 PMCID: PMC8268793 DOI: 10.3390/ijms22137197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein E (ApoE), a 34-kDa glycoprotein, as part of the high-density lipoprotein (HDL), has antioxidant, anti-inflammatory and antiatherogenic properties. The variability of ApoE expression in the course of some female fertility disorders (endometriosis, POCS), and other gynecological pathologies such as breast cancer, choriocarcinoma, endometrial adenocarcinoma/hyperplasia and ovarian cancer confirm the multidirectional biological function of ApoE, but the mechanisms of its action are not fully understood. It is also worth taking a closer look at the associations between ApoE expression, the type of its genotype and male fertility disorders. Another important issue is the variability of ApoE glycosylation. It is documented that the profile and degree of ApoE glycosylation varies depending on where it occurs, the type of body fluid and the place of its synthesis in the human body. Alterations in ApoE glycosylation have been observed in the course of diseases such as preeclampsia or breast cancer, but little is known about the characteristics of ApoE glycans analyzed in human seminal and blood serum/plasma in the context of male reproductive health. A deeper analysis of ApoE glycosylation in the context of female and male fertility will both enable us to broaden our knowledge of the biochemical and cellular mechanisms in which glycans participate, having a direct or indirect relationship with the fertilization process, and also give us a chance of contributing to the enrichment of the diagnostic panel in infertile women and men, which is particularly important in procedures involved in assisted reproductive techniques. Moreover, understanding the mechanisms of glycoprotein glycosylation related to the course of various diseases and conditions, including infertility, and the interactions between glycans and their specific ligands may provide us with an opportunity to interfere with their course and thus develop new therapeutic strategies. This brief overview details some of the recent advances, mainly from the last decade, in understanding the associations between ApoE expression and some female and male fertility problems, as well as selected female gynecological diseases and male reproductive tract disorders. We were also interested in how ApoE glycosylation changes influence biological processes in the human body, with special attention to human fertility.
Collapse
|
26
|
Waldie S, Sebastiani F, Moulin M, Del Giudice R, Paracini N, Roosen-Runge F, Gerelli Y, Prevost S, Voss JC, Darwish TA, Yepuri N, Pichler H, Maric S, Forsyth VT, Haertlein M, Cárdenas M. ApoE and ApoE Nascent-Like HDL Particles at Model Cellular Membranes: Effect of Protein Isoform and Membrane Composition. Front Chem 2021; 9:630152. [PMID: 33996741 PMCID: PMC8117676 DOI: 10.3389/fchem.2021.630152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Apolipoprotein E (ApoE), an important mediator of lipid transportation in plasma and the nervous system, plays a large role in diseases such as atherosclerosis and Alzheimer's. The major allele variants ApoE3 and ApoE4 differ only by one amino acid. However, this difference has major consequences for the physiological behaviour of each variant. In this paper, we follow (i) the initial interaction of lipid-free ApoE variants with model membranes as a function of lipid saturation, (ii) the formation of reconstituted High-Density Lipoprotein-like particles (rHDL) and their structural characterisation, and (iii) the rHDL ability to exchange lipids with model membranes made of saturated lipids in the presence and absence of cholesterol [1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) with and without 20 mol% cholesterol]. Our neutron reflection results demonstrate that the protein variants interact differently with the model membranes, adopting different protein conformations. Moreover, the ApoE3 structure at the model membrane is sensitive to the level of lipid unsaturation. Small-angle neutron scattering shows that the ApoE containing lipid particles form elliptical disc-like structures, similar in shape but larger than nascent or discoidal HDL based on Apolipoprotein A1 (ApoA1). Neutron reflection shows that ApoE-rHDL do not remove cholesterol but rather exchange saturated lipids, as occurs in the brain. In contrast, ApoA1-containing particles remove and exchange lipids to a greater extent as occurs elsewhere in the body.
Collapse
Affiliation(s)
- Sarah Waldie
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden.,Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Federica Sebastiani
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Martine Moulin
- Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Rita Del Giudice
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Nicolò Paracini
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Felix Roosen-Runge
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble, France.,Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - John C Voss
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Nageshwar Yepuri
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz, Austria
| | | | - V Trevor Forsyth
- Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France.,Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Michael Haertlein
- Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Marité Cárdenas
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| |
Collapse
|
27
|
Edlund AK, Chen K, Lee W, Protas H, Su Y, Reiman E, Caselli R, Nielsen HM. Plasma Apolipoprotein E3 and Glucose Levels Are Associated in APOE ɛ3/ɛ4 Carriers. J Alzheimers Dis 2021; 81:339-354. [PMID: 33814450 PMCID: PMC8203224 DOI: 10.3233/jad-210065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Altered cerebral glucose metabolism, especially prominent in APOE ɛ4 carriers, occurs years prior to symptoms in Alzheimer's disease (AD). We recently found an association between a higher ratio of plasma apolipoprotein E4 (apoE4) over apoE3, and cerebral glucose hypometabolism in cognitively healthy APOE ɛ3/ɛ4 subjects. Plasma apoE does not cross the blood-brain barrier, hence we speculate that apoE is linked to peripheral glucose metabolism which is known to affect glucose metabolism in the brain. OBJECTIVE Explore potential associations between levels of plasma insulin and glucose with previously acquired plasma apoE, cerebral metabolic rate of glucose (CMRgl), gray matter volume, and neuropsychological test scores. METHODS Plasma insulin and glucose levels were determined by ELISA and a glucose oxidase assay whereas apoE levels were earlier quantified by mass-spectrometry in 128 cognitively healthy APOE ɛ3/ɛ4 subjects. Twenty-five study subjects had previously undergone FDG-PET and structural MRI. RESULTS Lower plasma apoE3 associated with higher plasma glucose but not insulin in male subjects and subjects with a body mass index above 25. Negative correlations were found between plasma glucose and CMRgl in the left prefrontal and bilateral occipital regions. These associations may have functional implications since glucose levels in turn were negatively associated with neuropsychological test scores. CONCLUSION Plasma apoE3 but not apoE4 may be involved in insulin-independent processes governing plasma glucose levels. Higher plasma glucose, which negatively affects brain glucose metabolism, was associated with lower plasma apoE levels in APOE ɛ3/ɛ4 subjects. High plasma glucose and low apoE levels may be a hazardous combination leading to an increased risk of AD.
Collapse
Affiliation(s)
- Anna K Edlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Wendy Lee
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Eric Reiman
- Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Division of Neurogenomics, Translational Genomics Research Institute, Phoenix, AZ, USA.,Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Richard Caselli
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
28
|
Husain MA, Laurent B, Plourde M. APOE and Alzheimer's Disease: From Lipid Transport to Physiopathology and Therapeutics. Front Neurosci 2021; 15:630502. [PMID: 33679311 PMCID: PMC7925634 DOI: 10.3389/fnins.2021.630502] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by extracellular amyloid β (Aβ) and intraneuronal tau protein aggregations. One risk factor for developing AD is the APOE gene coding for the apolipoprotein E protein (apoE). Humans have three versions of APOE gene: ε2, ε3, and ε4 allele. Carrying the ε4 allele is an AD risk factor while carrying the ε2 allele is protective. ApoE is a component of lipoprotein particles in the plasma at the periphery, as well as in the cerebrospinal fluid (CSF) and in the interstitial fluid (ISF) of brain parenchyma in the central nervous system (CNS). ApoE is a major lipid transporter that plays a pivotal role in the development, maintenance, and repair of the CNS, and that regulates multiple important signaling pathways. This review will focus on the critical role of apoE in AD pathogenesis and some of the currently apoE-based therapeutics developed in the treatment of AD.
Collapse
Affiliation(s)
- Mohammed Amir Husain
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
29
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
30
|
Flowers SA, Grant OC, Woods RJ, Rebeck GW. O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology 2020; 30:74-85. [PMID: 31616924 PMCID: PMC7335482 DOI: 10.1093/glycob/cwz084] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/25/2023] Open
Abstract
The O-glycoprotein apolipoprotein E (APOE), the strongest genetic risk factor for Alzheimer's disease, associates with lipoproteins. Cerebrospinal fluid (CSF) APOE binds only high-density lipoproteins (HDLs), while plasma APOE attaches to lipoproteins of diverse sizes with binding fine-tuned by the C-terminal loop. To better understand the O-glycosylation on this critical molecule and differences across tissues, we analyzed the O-glycosylation on APOE isolated from the plasma and CSF of aged individuals. Detailed LC-MS/MS analyses allowed the identification of the glycosite and the attached glycan and site occupancy for all detectable glycosites on APOE and further three-dimensional modeling of physiological glycoforms of APOE. APOE is O-glycosylated at several sites: Thr8, Thr18, Thr194, Ser197, Thr289, Ser290 and Ser296. Plasma APOE held more abundant (20.5%) N-terminal (Thr8) sialylated core 1 (Neu5Acα2-3Galβ1-3GalNAcα1-) glycosylation compared to CSF APOE (0.1%). APOE was hinge domain glycosylated (Thr194 and Ser197) in both CSF (27.3%) and plasma (10.3%). CSF APOE held almost 10-fold more abundant C-terminal (Thr289, Ser290 and Ser296) glycosylation (36.8% of CSF peptide283-299 was glycosylated, 3.8% of plasma peptide283-299), with sialylated and disialylated (Neu5Acα2-3Galβ1-3(Neu5Acα2-6) GalNAcα1-) core 1 structures. Modeling suggested that C-terminal glycosylation, particularly the branched disialylated structure, could interact across domains including the receptor-binding domain. These data, although limited by sample size, suggest that there are tissue-specific APOE glycoforms. Sialylated glycans, previously shown to improve HDL binding, are more abundant on the lipid-binding domain of CSF APOE and reduced in plasma APOE. This indicates that APOE glycosylation may be implicated in lipoprotein-binding flexibility.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| | - Oliver C Grant
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Robert J Woods
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| |
Collapse
|
31
|
APOE in the normal brain. Neurobiol Dis 2020; 136:104724. [PMID: 31911114 DOI: 10.1016/j.nbd.2019.104724] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
The APOE4 protein affects the primary neuropathological markers of Alzheimer's disease (AD): amyloid plaques, neurofibrillary tangles, and gliosis. These interactions have been investigated to understand the strong effect of APOE genotype on risk of AD. However, APOE genotype has strong effects on processes in normal brains, in the absence of the hallmarks of AD. We propose that CNS APOE is involved in processes in the normal brains that in later years apply specifically to processes of AD pathogenesis. We review the differences of the APOE protein found in the CNS compared to the plasma, including post-translational modifications (glycosylation, lipidation, multimer formation), focusing on ways that the common APOE isoforms differ from each other. We also review structural and functional studies of young human brains and control APOE knock-in mouse brains. These approaches demonstrate the effects of APOE genotype on microscopic neuron structure, gross brain structure, and behavior, primarily related to the hippocampal areas. By focusing on the effects of APOE genotype on normal brain function, approaches can be pursued to identify biomarkers of APOE dysfunction, to promote normal functions of the APOE4 isoform, and to prevent the accumulation of the pathologic hallmarks of AD with aging.
Collapse
|
32
|
Martínez-Magaña JJ, Genis-Mendoza AD, Tovilla-Zarate CA, González-Castro TB, Juárez-Rojop IE, Hernández-Díaz Y, Martinez-Hernandez AG, Garcia-Ortíz H, Orozco L, López-Narvaez ML, Nicolini H. Association between APOE polymorphisms and lipid profile in Mexican Amerindian population. Mol Genet Genomic Med 2019; 7:e958. [PMID: 31557780 PMCID: PMC6825948 DOI: 10.1002/mgg3.958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Apolipoprotein E (ApoE) is a glycoprotein that plays an important role in lipid homeostasis at both cerebral and systemic levels. Moreover, the differential distribution of APOE gene alleles among different populations, means that ApoE isoforms could have different effects on lipids metabolism. The present study aims to evaluate the relationship between APOE gene alleles and the lipid profile in a Mexican Amerindian (MA) population. METHODS This study included 1997 MA individuals of different ethnicities distributed throughout different states of Mexico. All individuals underwent anthropometric measurements as well as laboratory tests including fasting glucose (FG), total cholesterol (TC), triglycerides, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). TaqMan® probe genotyping assays were used to genotype APOE. The Kruskal-Wallis test was performed to determine the correlation between APOE gene alleles and genotypes and the biochemical variables measured. RESULTS Among the biochemical variables analyzed, only the HDL-C and LDL-C levels showed statistical differences (p-value < .05) between individuals carrying different APOE alleles. For HDL-C, individuals carrying the E2 allele had higher HDL-C levels, followed by individuals carrying the E3 allele and carriers of the E4 allele presented the lowest levels of HDL-C (E2 > E3 > E4). This relationship was inversed for LDL-C levels (E2 < E3 < E4). Nevertheless, the difference of HDL-C levels between APOE-E3 and APOE-E4 carriers remained only in obese individuals. CONCLUSIONS Our results suggest that APOE gene genotypes play an important role in the differential modulation of lipid profiles in the MA population with obesity.
Collapse
Affiliation(s)
- José J Martínez-Magaña
- National Institute of Genomic Medicine (Instituto Nacional de Medicina Genómica INMEGEN), Laboratory of Genomics of Psychiatric Diseases, Neurodegenerative and Addictions, Ministry of Health, Mexico City, Mexico
| | - Alma D Genis-Mendoza
- National Institute of Genomic Medicine (Instituto Nacional de Medicina Genómica INMEGEN), Laboratory of Genomics of Psychiatric Diseases, Neurodegenerative and Addictions, Ministry of Health, Mexico City, Mexico
| | - Carlos A Tovilla-Zarate
- Comalcalco Multidisciplinary Academic Division, Autonomous Juárez University of Tabasco (Universidad Juárez Autónoma de Tabasco), Comalcalco, Tabasco, Mexico
| | - Thelma B González-Castro
- Multidisciplinary Academic Division of Jalpa de Méndez, Autonomous Juárez University of Tabasco (Universidad Juárez Autónoma de Tabasco), Jalpa de Méndez, Tabasco, Mexico
| | - Isela Esther Juárez-Rojop
- Academic Division of Health Sciences, Autonomous Juárez University of Tabasco (Universidad Juárez Autónoma de Tabasco), Villahermosa, Tabasco, Mexico
| | - Yazmín Hernández-Díaz
- Multidisciplinary Academic Division of Jalpa de Méndez, Autonomous Juárez University of Tabasco (Universidad Juárez Autónoma de Tabasco), Jalpa de Méndez, Tabasco, Mexico
| | - Angélica G Martinez-Hernandez
- National Institute of Genomic Medicine (INMEGEN), Laboratory of Immunogenomics and Metabolic Diseases, Ministry of Health, Mexico City, Mexico
| | - Humberto Garcia-Ortíz
- National Institute of Genomic Medicine (INMEGEN), Laboratory of Immunogenomics and Metabolic Diseases, Ministry of Health, Mexico City, Mexico
| | - Lorena Orozco
- National Institute of Genomic Medicine (INMEGEN), Laboratory of Immunogenomics and Metabolic Diseases, Ministry of Health, Mexico City, Mexico
| | | | - Humberto Nicolini
- National Institute of Genomic Medicine (Instituto Nacional de Medicina Genómica INMEGEN), Laboratory of Genomics of Psychiatric Diseases, Neurodegenerative and Addictions, Ministry of Health, Mexico City, Mexico
| |
Collapse
|
33
|
Picard C, Poirier A, Bélanger S, Labonté A, Auld D, Poirier J. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in Alzheimer's disease: A genetic and proteomic multi-cohort study. PLoS One 2019; 14:e0220254. [PMID: 31437157 PMCID: PMC6705826 DOI: 10.1371/journal.pone.0220254] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a hepatic enzyme that regulates circulating low-density lipoprotein (LDL) cholesterol levels by binding to LDL receptors (LDLR) and promoting their degradation. Although PCSK9 inhibitors were shown to reduce the risk of cardiovascular disease, a warning was issued concerning their possible impact on cognitive functions. In Alzheimer's disease (AD), it is believed that cognitive impairment is associated with cholesterol metabolism alterations, which could involve PCSK9. The main objective of this study is to determine if PCSK9 plays a significant role in the pre-symptomatic phase of the disease when the pathophysiological markers of AD unfolds and, later, when cognitive symptoms emerge. METHODS AND FINDINGS To test if PCSK9 is associated with AD pathology, we measured its expression levels in 65 autopsy confirmed AD brains and 45 age and gender matched controls. Messenger ribonucleic acid (mRNA) were quantified using real-time polymerase chain reaction (RT-PCR) and protein levels were quantified using enzyme-linked immunosorbent assay (ELISA). PCSK9 was elevated in frontal cortices of AD subjects compared to controls, both at the mRNA and protein levels. LDLR protein levels were unchanged in AD frontal cortices, despite and upregulation at the mRNA level. To verify if PCSK9 dysregulation was observable before the onset of AD, we measured its expression in the cerebrospinal fluid (CSF) of 104 "at-risk" subjects and contrasted it with known apolipoproteins levels and specific AD biomarkers using ELISAs. Positive correlations were found between CSF PCSK9 and apolipoprotein E (APOE), apolipoprotein J (APOJ or CLU), apolipoprotein B (APOB), phospho Tau (pTau) and total Tau. To investigate if PCSK9 levels were driven by genetic variants, we conducted an expression quantitative trait loci (eQTL) study using bioinformatic tools and found two polymorphisms in strong association. Further investigation of these variants in two independent cohorts showed a female specific association with AD risk and with CSF Tau levels in cognitively impaired individuals. CONCLUSIONS PCSK9 levels differ between control and AD brains and its protein levels correlate with those of other lipoproteins and AD biomarkers even before the onset of the disease. PCSK9 regulation seems to be under tight genetic control in females only, with specific variants that could predispose to increased AD risk.
Collapse
Affiliation(s)
- Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Alexandre Poirier
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | | | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Montréal, Québec, Canada
| | - Daniel Auld
- Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - on behalf of the PREVENT-AD Research Group
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
34
|
Lee S, Parekh T, King SM, Reed B, Chui HC, Krauss RM, Yassine HN. Low-Density Lipoprotein Particle Size Subfractions and Cerebral Amyloidosis. J Alzheimers Dis 2019; 68:983-990. [DOI: 10.3233/jad-181252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sung Lee
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Trusha Parekh
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah M. King
- Children’s Hospital Oakland Research Institute and University of California San Francisco, San Francisco, CA, USA
| | - Bruce Reed
- Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA
| | - Helena C. Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ronald M. Krauss
- Children’s Hospital Oakland Research Institute and University of California San Francisco, San Francisco, CA, USA
| | - Hussein N. Yassine
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
35
|
The Genetic Variability of APOE in Different Human Populations and Its Implications for Longevity. Genes (Basel) 2019; 10:genes10030222. [PMID: 30884759 PMCID: PMC6471373 DOI: 10.3390/genes10030222] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Human longevity is a complex phenotype resulting from the combinations of context-dependent gene-environment interactions that require analysis as a dynamic process in a cohesive ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E (APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which refers to their effect in age-related Alzheimer's disease (AD) and cardiovascular disease (CVD). In this case, the available literature on APOE and its involvement in longevity is described according to an anthropological and population genetics perspective. This aims to highlight the evolutionary history of this gene, how its participation in several biological pathways relates to human longevity, and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the globe. Its potential adaptive role will be described along with implications for the study of longevity in different human groups. This review also presents an updated overview of the worldwide distribution of APOE alleles based on modern day data from public databases and ancient DNA samples retrieved from literature in the attempt to understand the spatial and temporal frame in which present-day patterns of APOE variation evolved.
Collapse
|
36
|
Czaplińska M, Ćwiklińska A, Sakowicz-Burkiewicz M, Wieczorek E, Kuchta A, Kowalski R, Kortas-Stempak B, Dębska-Ślizień A, Jankowski M, Król E. Apolipoprotein E gene polymorphism and renal function are associated with apolipoprotein E concentration in patients with chronic kidney disease. Lipids Health Dis 2019; 18:60. [PMID: 30851738 PMCID: PMC6408819 DOI: 10.1186/s12944-019-1003-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/01/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) associates with complex lipoprotein disturbances resulting in high cardiovascular risk. Apolipoprotein E (APOE) is a polymorphic protein with three common isoforms (E2; E3; E4) that plays a crucial role in lipoprotein metabolism, including hepatic clearance of chylomicrons and very low-density lipoprotein (VLDL) remnants, and reverse cholesterol transport. It demonstrates anti-atherogenic properties but data concerning the link between polymorphism and level of APOE in CKD patients are inconclusive. The aim of our research was to assess the relationship between APOE gene polymorphism and APOE concentration and its redistribution among lipoproteins along with CKD progression. METHODS 90 non-dialysed CKD patients were included into the study. Real time PCR was used for APOE genotyping. APOE level was measured in serum and in isolated lipoprotein fractions (VLDL; IDL + HDL; HDL). Kidney function was assessed using eGFR CKD-EPI formula. RESULTS The population was divided into three APOE genotype subgroups: E2(ε2ε3), E3(ε3ε3) and E4(ε3ε4). The highest APOE level was observed for the E2 subgroup (p < 0.001). APOE concentration positively correlated with eGFR value in the E2 subgroup (r = 0.7, p < 0.001) but inversely in the E3 subgroup (r = - 0.29, p = 0.02).). A lower concentration of APOE in the E2 subgroup was associated with its diminished contents in HDL and IDL + LDL particles. In the E3 subgroup, the higher concentration of APOE was related to the increased number of non-HDL lipoproteins. CONCLUSION In patients with CKD, APOE genotype as well as renal function are associated with the concentration of APOE and its redistribution among lipoprotein classes.
Collapse
Affiliation(s)
- Monika Czaplińska
- Clinic & Chair of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Agnieszka Ćwiklińska
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | | | - Ewa Wieczorek
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Robert Kowalski
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Barbara Kortas-Stempak
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Clinic & Chair of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Ewa Król
- Clinic & Chair of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| |
Collapse
|
37
|
Tsuchiya S, Sawada S, Takeda K, Takahashi K, Nakajima T, Kohata M, Kurosawa S, Satake C, Imai J, Kikuchi K, Aiba S, Katagiri H. Eruptive xanthomas in a patient with soft-drink diabetic ketosis and apolipoprotein E4/2. Endocr J 2019; 66:107-114. [PMID: 30393272 DOI: 10.1507/endocrj.ej18-0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Soft-drink diabetic ketosis, characterized by acute onset ketosis induced by excessive ingestion of sugar-containing drinks, is often seen in obese, young patients, even with undiagnosed type 2 diabetes. We herein report a 15-year-old obese patient with the apolipoprotein E4/2 phenotype, in whom eruptive xanthomas lead to a diagnosis of soft-drink diabetic ketosis. He developed multiple asymptomatic yellowish papules on the auricles, back, buttocks and the extensor surfaces of the elbows and knees. He initially visited a dermatology clinic and his blood triglyceride and HbA1c levels were found to be 6,490 mg/dL and 16.5%, respectively. He was referred to our hospital for treatment of hyperglycemia and hypertyriglyceridemia. On admission, he had ketonuria and increased blood levels of 3-hydroxybutylate and acetoacetate. He habitually drank 1-3 litters of sweet beverages daily to quench his thirst. Therefore, "soft-drink diabetic ketosis" was diagnosed. Severe hypertriglyceridemia was considered to have been a consequence of impaired insulin action and his apolipoprotein E4/2 phenotype. We treated the diabetic ketosis and hypertriglyceridemia with intensive insulin therapy and a fat-restricted diet. At discharge, he no longer required insulin therapy and his blood glucose levels were controlled with metformin and voglibose. Along with amelioration of the hyperglycemia, triglyceride levels decreased to 247 mg/dL without administration of anti-hyperlipidemia agents. The eruptive xanthoma lesions gradually diminished in size and number and eventually disappeared by 12 months. This case provides an instructive example of eruptive xanthomas serving as a sign of severe dysregulation, not only of lipid, but also glucose, metabolism.
Collapse
Affiliation(s)
- Satoko Tsuchiya
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Shojiro Sawada
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Kana Takeda
- Department of Dermatology, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Kenji Takahashi
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Takeko Nakajima
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Masato Kohata
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Satoko Kurosawa
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Chihiro Satake
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Junta Imai
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Katsuko Kikuchi
- Department of Dermatology, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Hideki Katagiri
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
38
|
Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nat Commun 2018; 9:3083. [PMID: 30082772 PMCID: PMC6079066 DOI: 10.1038/s41467-018-05322-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/24/2018] [Indexed: 01/06/2023] Open
Abstract
Cholesterol homeostasis has a pivotal function in regulating immune cells. Here we show that apolipoprotein E (apoE) deficiency leads to the accumulation of cholesterol in the cell membrane of dendritic cells (DC), resulting in enhanced MHC-II-dependent antigen presentation and CD4+ T-cell activation. Results from WT and apoE KO bone marrow chimera suggest that apoE from cells of hematopoietic origin has immunomodulatory functions, regardless of the onset of hypercholesterolemia. Humans expressing apoE4 isoform (ε4/3–ε4/4) have increased circulating levels of activated T cells compared to those expressing WT apoE3 (ε3/3) or apoE2 isoform (ε2/3–ε2/2). This increase is caused by enhanced antigen-presentation by apoE4-expressing DCs, and is reversed when these DCs are incubated with serum containing WT apoE3. In summary, our study identifies myeloid-produced apoE as a key physiological modulator of DC antigen presentation function, paving the way for further explorations of apoE as a tool to improve the management of immune diseases. Cholesterol homeostasis can modulate immunity via multiple pathways. Here the authors show that apolipoprotein E, an important regulator of cholesterol, produced by myeloid cells can regulate T cell activation by controlling the antigen presentation activity of dendritic cells in both humans and mice.
Collapse
|
39
|
Woody SK, Zhou H, Ibrahimi S, Dong Y, Zhao L. Human ApoE ɛ2 Promotes Regulatory Mechanisms of Bioenergetic and Synaptic Function in Female Brain: A Focus on V-type H+-ATPase. J Alzheimers Dis 2018; 53:1015-31. [PMID: 27340853 DOI: 10.3233/jad-160307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Humans possess three major isoforms of the apolipoprotein E (ApoE) gene encoded by three alleles: ApoE ɛ2 (ApoE2), ApoE ɛ3 (ApoE3), and ApoE ɛ4 (ApoE4). It is established that the three ApoE isoforms confer differential susceptibility to Alzheimer's disease (AD); however, an in-depth molecular understanding of the underlying mechanisms is currently unavailable. In this study, we examined the cortical proteome differences among the three ApoE isoforms using 6-month-old female, human ApoE2, ApoE3, and ApoE4 gene-targeted replacement mice and two-dimensional proteomic analyses. The results reveal that the three ApoE brains differ primarily in two areas: cellular bioenergetics and synaptic transmission. Of particular significance, we show for the first time that the three ApoE brains differentially express a key component of the catalytic domain of the V-type H+-ATPase (Atp6v), a proton pump that mediates the concentration of neurotransmitters into synaptic vesicles and thus is crucial in synaptic transmission. Specifically, our data demonstrate that ApoE2 brain exhibits significantly higher levels of the B subunit of Atp6v (Atp6v1B2) when compared to both ApoE3 and ApoE4 brains, with ApoE4 brain exhibiting the lowest expression. Our additional analyses show that Atp6v1B2 is significantly impacted by aging and AD pathology and the data suggest that Atp6v1B2 deficiency could be involved in the progressive loss of synaptic integrity during early development of AD. Collectively, our findings indicate that human ApoE isoforms differentially modulate regulatory mechanisms of bioenergetic and synaptic function in female brain. A more efficient and robust status in both areas-in which Atp6v may play a role-could serve as a potential mechanism contributing to the neuroprotective and cognition-favoring properties associated with the ApoE2 genotype.
Collapse
Affiliation(s)
- Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Helen Zhou
- Obstetrics and Gynecology Department, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Shaher Ibrahimi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Yafeng Dong
- Obstetrics and Gynecology Department, University of Kansas School of Medicine, Kansas City, KS, USA.,Pathology and Laboratory Department, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA.,Neuroscience Graduate Program, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
40
|
Ray A, Ahalawat N, Mondal J. Atomistic Insights into Structural Differences between E3 and E4 Isoforms of Apolipoprotein E. Biophys J 2018; 113:2682-2694. [PMID: 29262361 DOI: 10.1016/j.bpj.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
Among various isoforms of Apolipoprotein E (ApoE), the E4 isoform (ApoE4) is considered to be the strongest risk factor for Alzheimer's disease, whereas the E3 isoform (ApoE3) is neutral to the disease. Interestingly, the sequence of ApoE4 differs from its wild-type ApoE3 by a single amino acid C112R in the 299-amino-acid-long sequence. Hence, the puzzle remains: how a single-amino-acid difference between the ApoE3 and ApoE4 sequences can give rise to structural dissimilarities between the two isoforms, which can potentially lead to functional differences with significant pathological consequences. The major obstacle in addressing this question has been the lack of a 3D atomistic structure of ApoE4 to date. In this work, we resolve the issue by computationally modeling a plausible atomistic 3D structure of ApoE4. Our microsecond-long atomistic simulations elucidate key structural differences between monomeric ApoE3 and ApoE4, which renders ApoE4 thermodynamically less stable, less structured, and topologically less rigid compared to ApoE3. Consistent with an experimental report of the molten globule state of ApoE4, simulations identify multiple partially folded intermediates for ApoE4, which are implicated in the stronger aggregation propensity of ApoE4.
Collapse
Affiliation(s)
- Angana Ray
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Navjeet Ahalawat
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India.
| |
Collapse
|
41
|
Wang H, Rempel DL, Giblin D, Frieden C, Gross ML. Peptide-Level Interactions between Proteins and Small-Molecule Drug Candidates by Two Hydrogen-Deuterium Exchange MS-Based Methods: The Example of Apolipoprotein E3. Anal Chem 2017; 89:10687-10695. [PMID: 28901129 DOI: 10.1021/acs.analchem.7b01121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe a platform utilizing two methods based on hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (MS) to characterize interactions between a protein and a small-molecule ligand. The model system is apolipoprotein E3 (apoE3) and a small-molecule drug candidate. We extended PLIMSTEX (protein-ligand interactions by mass spectrometry, titration, and H/D exchange) to the regional level by incorporating enzymatic digestion to acquire binding information for peptides. In a single experiment, we not only identified putative binding sites, but also obtained affinities of 6.0, 6.8, and 10.6 μM for the three different regions, giving an overall binding affinity of 7.4 μM. These values agree well with literature values determined by accepted methods. Unlike those methods, PLIMSTEX provides site-specific binding information. The second approach, modified SUPREX (stability of unpurified proteins from rates of H/D exchange) coupled with electrospray ionization (ESI), allowed us to obtain detailed understanding about apoE unfolding and its changes upon ligand binding. Three binding regions, along with an additional site, which may be important for lipid binding, show increased stability (less unfolding) upon ligand binding. By employing a single parameter, ΔC1/2%, we compared relative changes of denaturation between peptides. This integrated platform provides information orthogonal to commonly used HDX kinetics experiments, providing a general and novel approach for studying protein-ligand interactions.
Collapse
Affiliation(s)
- Hanliu Wang
- Department of Chemistry, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States.,Analytical Research and Development, Pfizer Incorporated , Chesterfield, Missouri 63017, United States
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Daryl Giblin
- Department of Chemistry, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis , 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
42
|
Frieden C, Wang H, Ho CMW. A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain-domain interactions. Proc Natl Acad Sci U S A 2017; 114:6292-6297. [PMID: 28559318 PMCID: PMC5474821 DOI: 10.1073/pnas.1705080114] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relative to the apolipoprotein E (apoE) E3 allele of the APOE gene, apoE4 strongly increases the risk for the development of late-onset Alzheimer's disease. However, apoE4 differs from apoE3 by only a single amino acid at position 112, which is arginine in apoE4 and cysteine in apoE3. It remains unclear why apoE3 and apoE4 are functionally different. Described here is a proposal for understanding the functional differences between these two isoforms with respect to lipid binding. A mechanism is proposed that is based on the full-length monomeric structure of the protein, on hydrogen-deuterium exchange mass spectrometry data, and on the role of intrinsically disordered regions to control protein motions. It is proposed that lipid binds between the N-terminal and C-terminal domains and that separation of the two domains, along with the presence of intrinsically disordered regions, controls this process. The mechanism explains why apoE3 differs from apoE4 with respect to different lipid-binding specificities, why lipid increases the binding of apoE to its receptor, and why specific residues are conserved.
Collapse
Affiliation(s)
- Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110;
| | - Hanliu Wang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Chris M W Ho
- Drug Design Methodologies LLC, St. Louis, MO 63103
| |
Collapse
|
43
|
Tudorache IF, Trusca VG, Gafencu AV. Apolipoprotein E - A Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Features. Comput Struct Biotechnol J 2017; 15:359-365. [PMID: 28660014 PMCID: PMC5476973 DOI: 10.1016/j.csbj.2017.05.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Apolipoprotein E (apoE), a 34 kDa glycoprotein, mediates hepatic and extrahepatic uptake of plasma lipoproteins and cholesterol efflux from lipid-laden macrophages. In humans, three structural different apoE isoforms occur, with subsequent functional changes and pathological consequences. Here, we review data supporting the involvement of apoE structural domains and isoforms in normal and altered lipid metabolism, cardiovascular and neurodegenerative diseases, as well as stress-related pathological states. Studies using truncated apoE forms provided valuable information regarding the regions and residues responsible for its properties. ApoE3 renders protection against cardiovascular diseases by maintaining lipid homeostasis, while apoE2 is associated with dysbetalipoproteinemia. ApoE4 is a recognized risk factor for Alzheimer's disease, although the exact mechanism of the disease initiation and progression is not entirely elucidated. ApoE is also implicated in infections with herpes simplex type-1, hepatitis C and human immunodeficiency viruses. Interacting with both viral and host molecules, apoE isoforms differently interfere with the viral life cycle. ApoE exerts anti-inflammatory effects, switching macrophage phenotype from the proinflammatory M1 to the anti-inflammatory M2, suppressing CD4+ and CD8+ lymphocytes, and reducing IL-2 production. The anti-oxidative properties of apoE are isoform-dependent, modulating the levels of various molecules (Nrf2 target genes, metallothioneins, paraoxonase). Mimetic peptides were designed to exploit apoE beneficial properties. The "structure correctors" which convert apoE4 into apoE3-like molecules have pharmacological potential. Despite no successful strategy is yet available for apoE-related disorders, several promising candidates deserve further improvement and exploitation.
Collapse
Key Words
- AD, Alzheimer's disease
- ApoE
- ApoE, Apolipoprotein E
- CVD, cardiovascular disease
- HCV, hepatitis C virus
- HDL, high-density lipoprotein
- HIV, human immunodeficiency virus
- HLP, phospholipid transfer protein
- HSPGs, heparan sulfate proteoglycans
- HSV-1, herpes simplex virus type-1
- Isoform
- LDL, low density lipoprotein
- LPG, lipoprotein glomerulopathy
- LPL, lipoprotein lipase
- Mimetic peptide
- NS5A, nonstructural protein 5A
- PLTP, type III hyperlipoproteinemia
- Structural domain
- TG, triglyceride
- Truncated molecule
- VLDL, very-low-density lipoprotein
Collapse
Affiliation(s)
| | | | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B. P. Hasdeu Street, Sector 5, 050568 Bucharest, Romania
| |
Collapse
|
44
|
Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry. Proc Natl Acad Sci U S A 2017; 114:968-973. [PMID: 28096372 DOI: 10.1073/pnas.1617523114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer's disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen-deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.
Collapse
|
45
|
Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl) 2016; 94:739-46. [PMID: 27277824 PMCID: PMC4921111 DOI: 10.1007/s00109-016-1427-y] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Abstract
Apolipoprotein (apo) E was initially described as a lipid transport protein and major ligand for low density lipoprotein (LDL) receptors with a role in cholesterol metabolism and cardiovascular disease. It has since emerged as a major risk factor (causative gene) for Alzheimer's disease and other neurodegenerative disorders. Detailed understanding of the structural features of the three isoforms (apoE2, apoE3, and apoE4), which differ by only a single amino acid interchange, has elucidated their unique functions. ApoE2 and apoE4 increase the risk for heart disease: apoE2 increases atherogenic lipoprotein levels (it binds poorly to LDL receptors), and apoE4 increases LDL levels (it binds preferentially to triglyceride-rich, very low density lipoproteins, leading to downregulation of LDL receptors). ApoE4 also increases the risk for neurodegenerative diseases, decreases their age of onset, or alters their progression. ApoE4 likely causes neurodegeneration secondary to its abnormal structure, caused by an interaction between its carboxyl- and amino-terminal domains, called domain interaction. When neurons are stressed or injured, they synthesize apoE to redistribute cholesterol for neuronal repair or remodeling. However, because of its altered structure, neuronal apoE4 undergoes neuron-specific proteolysis, generating neurotoxic fragments (12-29 kDa) that escape the secretory pathway and cause mitochondrial dysfunction and cytoskeletal alterations, including tau phosphorylation. ApoE4-associated pathology can be prevented by small-molecule structure correctors that block domain interaction by converting apoE4 to a molecule that resembles apoE3 both structurally and functionally. Structure correctors are a potential therapeutic approach to reduce apoE4 pathology in both cardiovascular and neurological disorders.
Collapse
Affiliation(s)
- Robert W Mahley
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.
- Departments of Pathology and Medicine, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
46
|
Mahley RW. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arterioscler Thromb Vasc Biol 2016; 36:1305-15. [PMID: 27174096 DOI: 10.1161/atvbaha.116.307023] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022]
Abstract
ApoE on high-density lipoproteins is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). Normally produced mostly by astrocytes, apoE is also produced under neuropathologic conditions by neurons. ApoE on high-density lipoproteins is critical in redistributing cholesterol and phospholipids for membrane repair and remodeling. The 3 main structural isoforms differ in their effectiveness. Unlike apoE2 and apoE3, apoE4 has markedly altered CNS metabolism, is associated with Alzheimer disease and other neurodegenerative disorders, and is expressed at lower levels in brain and cerebrospinal fluid. ApoE4-expressing cultured astrocytes and neurons have reduced cholesterol and phospholipid secretion, decreased lipid-binding capacity, and increased intracellular degradation. Two structural features are responsible for apoE4 dysfunction: domain interaction, in which arginine-61 interacts ionically with glutamic acid-255, and a less stable conformation than apoE3 and apoE2. Blocking domain interaction by gene targeting (replacing arginine-61 with threonine) or by small-molecule structure correctors increases CNS apoE4 levels and lipid-binding capacity and decreases intracellular degradation. Small molecules (drugs) that disrupt domain interaction, so-called structure correctors, could prevent the apoE4-associated neuropathology by blocking the formation of neurotoxic fragments. Understanding how to modulate CNS cholesterol transport and metabolism is providing important insights into CNS health and disease.
Collapse
Affiliation(s)
- Robert W Mahley
- From the Gladstone Institute of Neurological Disease, San Francisco, CA; and Departments of Pathology and Medicine, University of California, San Francisco.
| |
Collapse
|
47
|
Phillips MC. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 2015; 66:616-23. [PMID: 25328986 DOI: 10.1002/iub.1314] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/09/2014] [Indexed: 11/09/2022]
Abstract
Apolipoprotein (apo) E is a 299-residue protein which functions as a key regulator of plasma lipid levels. Human apoE exists as three common isoforms and the parent form, apoE3, operates optimally in promoting clearance of triglyceride (TG)-rich lipoproteins and is associated with normal plasma lipid levels. This result occurs because apoE3 possesses both the requisite lipid-binding ability and affinity for the low density lipoprotein receptor (LDLR) to mediate appropriate lipolytic processing and endocytosis of TG-rich lipoprotein remnant particles. ApoE2 which differs from apoE3 by the single amino acid substitution Arg158Cys located near the LDLR recognition site exhibits impaired binding to the receptor and an inability to promote clearance of TG-rich lipoprotein remnant particles; this isoform is associated with Type-III hyperlipoproteinemia. ApoE4 which differs from apoE3 by the single amino acid substitution Cys112Arg is also associated with dyslipidemia although binding of this isoform to the LDLR is unaffected. The amino acid substitution affects the organization and stability of both the N-terminal helix bundle domain and separately folded C-terminal domain so that apoE4 has enhanced lipid binding ability. As a consequence, apoE4 binds better than apoE3 to the surface of very low density lipoprotein (VLDL) particles and impairs their lipolytic processing in the circulation so that apoE4 is associated with a more pro-atherogenic lipoprotein-cholesterol distribution (higher VLDL-cholesterol/high density lipoprotein-cholesterol ratio). This review summarizes current understanding of the structural differences between apoE2, apoE3, and apoE4, and the molecular mechanisms responsible for the alterations in lipoprotein metabolism resulting from this polymorphism of apoE. Detailed knowledge of how expression of structurally distinct apoE variants modifies lipoprotein metabolism provides a basis for developing ways to manipulate the functionality of apoE in vivo.
Collapse
Affiliation(s)
- Michael C Phillips
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 11-130 Translational Research Center, Philadelphia, PA, USA
| |
Collapse
|
48
|
Analysis of differentially expressed novel post-translational modifications of plasma apolipoprotein E in Taiwanese females with breast cancer. J Proteomics 2015; 126:252-62. [PMID: 26079612 DOI: 10.1016/j.jprot.2015.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 05/07/2015] [Accepted: 05/24/2015] [Indexed: 12/22/2022]
Abstract
APOE ε2 or ε4 alleles being used as indicators of breast cancer risk are controversial in Taiwanese females. We provide a concept for relative comparisons of post-translational modifications (PTMs) of plasma apolipoprotein E (ApoE) between normal controls and breast cancer patients to investigate the association of ApoE with breast cancer risk. APOE polymorphisms (ApoE isoforms) were not assessed in this study. The relative modification ratio (%) of 15 targeted and 21 modified peptides were evaluated by 1D SDS-PAGE, in-gel digestion, and label-free nano-LC/MS to compare normal controls with breast cancer patients. Plasma levels of the ApoE protein did not significantly differ between normal controls and breast cancer patients. Eleven sites with novel PTMs were identified from 7 pairs of differentially expressed targeted and modified peptides according to the relative modification ratio including methylation at the E3 (↑1.45-fold), E7 (↑1.45-fold), E11 (↑1.19-fold), E77 (↑2.02-fold), E87 (↑2.02-fold), and Q98 (↑1.62-fold) residues; dimethylation at the Q187 (↑1.44-fold) residue; dihydroxylation at the R92 (↑1.25-fold), K95 (↑1.25-fold), and R103 (↑1.25-fold) residues; and glycosylation at the S129 (↑1.14-fold) residue. The clustered methylation and dihydroxylation of plasma ApoE proteins may play a role in breast cancer.
Collapse
|
49
|
Mizuguchi C, Hata M, Dhanasekaran P, Nickel M, Okuhira K, Phillips MC, Lund-Katz S, Saito H. Fluorescence study of domain structure and lipid interaction of human apolipoproteins E3 and E4. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1716-24. [PMID: 25281910 DOI: 10.1016/j.bbalip.2014.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/06/2014] [Accepted: 09/24/2014] [Indexed: 12/19/2022]
Abstract
Human apolipoprotein E (apoE) isoforms exhibit different conformational stabilities and lipid-binding properties that give rise to altered cholesterol metabolism among the isoforms. Using Trp-substituted mutations and site- directed fluorescence labeling, we made a comprehensive comparison of the conformational organization of the N- and C-terminal domains and lipid interactions between the apoE3 and apoE4 isoforms. Trp fluorescence measurements for selectively Trp-substituted variants of apoE isoforms demonstrated that apoE4 adopts less stable conformations in both the N- and C-terminal domains compared to apoE3. Consistent with this, the conformational reorganization of the N-terminal helix bundle occurs at lower guanidine hydrochloride concentration in apoE4 than in apoE3 as monitored by fluorescence resonance energy transfer (FRET) from Trp residues to acrylodan attached at the N-terminal helix. Upon binding of apoE3 and apoE4 variants to egg phosphatidylcholine small unilamellar vesicles, similar changes in Trp fluorescence or FRET efficiency were observed for the isoforms, indi- cating that the opening of the N-terminal helix bundle occurs similarly in apoE3 and apoE4. Introduction of mutations into the C-terminal domain of the apoE isoforms to prevent self-association and maintain the monomeric state resulted in great increase in the rate of binding of the C-terminal helices to a lipid surface. Overall, our results demonstrate that the different conformational organizations of the N- and C-terminal domains have a minor effect on the steady-state lipid-binding behavior of apoE3 and apoE4: rather, self-association property is a critical determinant in the kinetics of lipid binding through the C-terminal helices of apoE isoforms.
Collapse
|
50
|
Association of the apolipoprotein E 2 allele with concurrent occurrence of endometrial hyperplasia and endometrial carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:593658. [PMID: 25741405 PMCID: PMC4337044 DOI: 10.1155/2015/593658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/19/2015] [Indexed: 01/16/2023]
Abstract
Genes encoding proteins with antioxidant properties may influence susceptibility to endometrial hyperplasia (EH) and endometrial carcinoma (ECa). Patients with EH (n = 89), EH concurrent with ECa (n = 76), ECa (n = 186), and healthy controls (n = 1110) were genotyped for five polymorphic variants in the genes involved in metabolism of lipoproteins (APOE Cys112Arg and Arg158Cys), iron (HFE Cys282Tyr and His63Asp), and catecholamines (COMT Val158Met). Patients and controls were matched by ethnicity (all Caucasians), age, body mass index (BMI), and incidence of hypertension and diabetes. The frequency of the APOE E 2 allele (158Cys) was higher in patients with EH + ECa than in controls (P = 0.0012, P(Bonferroni) = 0.018, OR = 2.58, 95% CI 1.49-4.45). The APOE E 4 allele (112Arg) was more frequently found in patients with EH than in controls and HFE minor allele G (63Asp) had a protective effect in the ECa group, though these results appeared to be nonsignificant after correction for multiple comparisons. The results of the study indicate that E 2 allele might be associated with concurrent occurrence of EH and ECa.
Collapse
|