1
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
2
|
Zhou Y, Phelps GA, Mangrum MM, McLeish J, Phillips EK, Lou J, Ancajas CF, Rybak JM, Oelkers PM, Lee RE, Best MD, Reynolds TB. The small molecule CBR-5884 inhibits the Candida albicans phosphatidylserine synthase. mBio 2024; 15:e0063324. [PMID: 38587428 PMCID: PMC11077991 DOI: 10.1128/mbio.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gregory A. Phelps
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Jeffrey M. Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter M. Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael D. Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Woo J, Jung S, Kim S, Li Y, Chung H, Roubtsova TV, Zhang H, Caseys C, Kliebenstein D, Kim KN, Bostock RM, Lee YH, Dickman MB, Choi D, Park E, Dinesh-Kumar SP. Attenuation of phytofungal pathogenicity of Ascomycota by autophagy modulators. Nat Commun 2024; 15:1621. [PMID: 38424448 PMCID: PMC10904834 DOI: 10.1038/s41467-024-45839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autophagy in eukaryotes functions to maintain homeostasis by degradation and recycling of long-lived and unwanted cellular materials. Autophagy plays important roles in pathogenicity of various fungal pathogens, suggesting that autophagy is a novel target for development of antifungal compounds. Here, we describe bioluminescence resonance energy transfer (BRET)-based high-throughput screening (HTS) strategy to identify compounds that inhibit fungal ATG4 cysteine protease-mediated cleavage of ATG8 that is critical for autophagosome formation. We identified ebselen (EB) and its analogs ebselen oxide (EO) and 2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PT) as inhibitors of fungal pathogens Botrytis cinerea and Magnaporthe oryzae ATG4-mediated ATG8 processing. The EB and its analogs inhibit spore germination, hyphal development, and appressorium formation in Ascomycota pathogens, B. cinerea, M. oryzae, Sclerotinia sclerotiorum and Monilinia fructicola. Treatment with EB and its analogs significantly reduced fungal pathogenicity. Our findings provide molecular insights to develop the next generation of antifungal compounds by targeting autophagy in important fungal pathogens.
Collapse
Affiliation(s)
- Jongchan Woo
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seungmee Jung
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yurong Li
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A & M University, College Station, TX, USA
- Corteva Agriscience, Johnston, IA, USA
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tatiana V Roubtsova
- Department of Plant Pathology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Honghong Zhang
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A & M University, College Station, TX, USA
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Celine Caseys
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Dan Kliebenstein
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Kyung-Nam Kim
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Richard M Bostock
- Department of Plant Pathology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A & M University, College Station, TX, USA
| | - Doil Choi
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Eunsook Park
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA.
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
4
|
Ngo HM, Thai MT, Kahveci T. QuTIE: quantum optimization for target identification by enzymes. BIOINFORMATICS ADVANCES 2023; 3:vbad112. [PMID: 37786534 PMCID: PMC10541652 DOI: 10.1093/bioadv/vbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023]
Abstract
Summary Target identification by enzymes (TIE) problem aims to identify the set of enzymes in a given metabolic network, such that their inhibition eliminates a given set of target compounds associated with a disease while incurring minimum damage to the rest of the compounds. This is a NP-hard problem, and thus optimal solutions using classical computers fail to scale to large metabolic networks. In this article, we develop the first quantum optimization solution, called QuTIE (quantum optimization for target identification by enzymes), to this NP-hard problem. We do that by developing an equivalent formulation of the TIE problem in quadratic unconstrained binary optimization form. We then map it to a logical graph, and embed the logical graph on a quantum hardware graph. Our experimental results on 27 metabolic networks from Escherichia coli, Homo sapiens, and Mus musculus show that QuTIE yields solutions that are optimal or almost optimal. Our experiments also demonstrate that QuTIE can successfully identify enzyme targets already verified in wet-lab experiments for 14 major disease classes. Availability and implementation Code and sample data are available at: https://github.com/ngominhhoang/Quantum-Target-Identification-by-Enzymes.
Collapse
Affiliation(s)
- Hoang M Ngo
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, United States
| | - My T Thai
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Tamer Kahveci
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
5
|
Benítez D, Franco J, Sardi F, Leyva A, Durán R, Choi G, Yang G, Kim T, Kim N, Heo J, Kim K, Lee H, Choi I, Radu C, Shum D, No JH, Comini MA. Drug-like molecules with anti-trypanothione synthetase activity identified by high throughput screening. J Enzyme Inhib Med Chem 2022; 37:912-929. [PMID: 35306933 PMCID: PMC8942522 DOI: 10.1080/14756366.2022.2045590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Trypanothione synthetase (TryS) catalyses the synthesis of N1,N8-bis(glutathionyl)spermidine (trypanothione), which is the main low molecular mass thiol supporting several redox functions in trypanosomatids. TryS attracts attention as molecular target for drug development against pathogens causing severe and fatal diseases in mammals. A drug discovery campaign aimed to identify and characterise new inhibitors of TryS with promising biological activity was conducted. A large compound library (n = 51,624), most of them bearing drug-like properties, was primarily screened against TryS from Trypanosoma brucei (TbTryS). With a true-hit rate of 0.056%, several of the TbTryS hits (IC50 from 1.2 to 36 µM) also targeted the homologue enzyme from Leishmania infantum and Trypanosoma cruzi (IC50 values from 2.6 to 40 µM). Calmidazolium chloride and Ebselen stand out for their multi-species anti-TryS activity at low µM concentrations (IC50 from 2.6 to 13.8 µM). The moieties carboxy piperidine amide and amide methyl thiazole phenyl were identified as novel TbTryS inhibitor scaffolds. Several of the TryS hits presented one-digit µM EC50 against T. cruzi and L. donovani amastigotes but proved cytotoxic against the human osteosarcoma and macrophage host cells (selectivity index ≤ 3). In contrast, seven hits showed a significantly higher selectivity against T. b. brucei (selectivity index from 11 to 182). Non-invasive redox assays confirmed that Ebselen, a multi-TryS inhibitor, induces an intracellular oxidative milieu in bloodstream T. b. brucei. Kinetic and mass spectrometry analysis revealed that Ebselen is a slow-binding inhibitor that modifies irreversible a highly conserved cysteine residue from the TryS’s synthetase domain. The most potent TbTryS inhibitor (a singleton containing an adamantine moiety) exerted a non-covalent, non-competitive (with any of the substrates) inhibition of the enzyme. These data feed the drug discovery pipeline for trypanosomatids with novel and valuable information on chemical entities with drug potential.
Collapse
Affiliation(s)
- Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jaime Franco
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Sardi
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Leyva
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gahee Choi
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Gyongseon Yang
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Taehee Kim
- Assay Development and Screening, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Namyoul Kim
- Assay Development and Screening, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Jinyeong Heo
- Assay Development and Screening, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Kideok Kim
- Automation and Logistics Management, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Honggun Lee
- Automation and Logistics Management, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Inhee Choi
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Constantin Radu
- Automation and Logistics Management, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - David Shum
- Assay Development and Screening, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
6
|
Wang DL, Jiang NQ, Cai ZJ, Ji SJ. A Radical Addition/Cyclization and Se-Group Transfer Strategy for the Facile Synthesis of Se-Containing Cyclopentenes under Metal-Free and Peroxide-Free Conditions. Chemistry 2021; 27:17765-17768. [PMID: 34611946 DOI: 10.1002/chem.202103334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 01/03/2023]
Abstract
A novel intermolecular radical addition/cyclization and Se-group transfer reaction of terminal alkynes and unsaturated alkyl selenide is presented which offers a straightforward and facile approach for the synthesis of valuable Se-containing cyclopentenes. Remarkable features of this strategy include easily accessible starting materials, metal-free and peroxide-free conditions, high atom economy, simple operation and broad substrate scope. More importantly, the reaction is easy to scale up and can be extended to the construction of six-membered carbon ring.
Collapse
Affiliation(s)
- Dian-Liang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science &, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Nan-Quan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science &, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science &, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science &, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
7
|
Fang J, Chen Z, Song J, Li J, Han Y, Hou W, Wang W, Ruan BH. Biodegradable self-assembly micelles significantly enhanced the solubility, biological stability and in vivo antitumor efficacy of Hexylselen. RSC Chem Biol 2021; 2:1669-1681. [PMID: 34977582 PMCID: PMC8637765 DOI: 10.1039/d1cb00089f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Glutaminolysis inhibitors have shown early promise in cancer therapeutics. Specifically, kidney-type glutaminase (KGA) has been a long-standing anti-tumor drug target; KGA allosteric inhibitors have attracted great attention due to their superior enzyme specificity and good drug safety profiles. However, the main issue with allosteric inhibitors—including BPTES, CB-839, and the recently developed KGA allosteric and glutamate dehydrogenase (GDH) dual inhibitor, Hexylselen (CPD-3B)—is their low solubility; it leads to limited in vivo efficacy. To optimize their formulation, various delivery carriers were screened in the present study. Soluplus® (SOL), an amphiphilic graft polymer, showed an interesting structure–solubility/activity relationship with Selen molecules containing different middle chain sizes. Among these molecules, the long chain molecule CPD-3B showed 3000-fold increased solubility with SOL, forming well-dispersed and stable micelles 60–80 nm in size. Moreover, CPD-3B@SOL micelles exhibited good metabolic stability in both blood and liver microsomes. These advantages significantly enhanced the bioavailability and in vivo antitumor efficacy of CPD-3B@SOL micelles in the H22 hepatocarcinoma xenograft mouse model. Thus, the current study provided a practical delivery system for allosteric inhibitors of glutaminase, which is one of the bottlenecks of targeting tumor glutaminolysis. Soluplus increased the aqueous solubility of Hexylselen (CPD-3B) by about 3000-fold forming nano-sized micelles, significantly enhanced the stability in blood and liver microsomes and improved the in vivo bioavailability and antitumor efficacy.![]()
Collapse
Affiliation(s)
- Jinzhang Fang
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou China +86 571-88871098 +86-18357023608
| | - Zhao Chen
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou China +86 571-88871098 +86-18357023608
| | - Jun Song
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou China +86 571-88871098 +86-18357023608
| | - Jinxiu Li
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou China +86 571-88871098 +86-18357023608
| | - Yunying Han
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou China +86 571-88871098 +86-18357023608
| | - Wei Hou
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou China +86 571-88871098 +86-18357023608
| | - Wenxi Wang
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou China +86 571-88871098 +86-18357023608
| | - Benfang H Ruan
- IDD & CB, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou China +86 571-88871098 +86-18357023608
| |
Collapse
|
8
|
Kozlova A, Thabault L, Dauguet N, Deskeuvre M, Stroobant V, Pilotte L, Liberelle M, Van den Eynde B, Frédérick R. Investigation of chalcogen bioisosteric replacement in a series of heterocyclic inhibitors of tryptophan 2,3-dioxygenase. Eur J Med Chem 2021; 227:113892. [PMID: 34678572 DOI: 10.1016/j.ejmech.2021.113892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
Selenium is an underexplored element that can be used for bioisosteric replacement of lower molecular weight chalcogens such as oxygen and sulfur. More studies regarding the impact of selenium substitution in different chemical scaffolds are needed to fully grasp this element's potential. Herein, we decided to evaluate the impact of selenium incorporation in a series of tryptophan 2,3-dioxygenase (TDO2) inhibitors, a target of interest in cancer immunotherapy. First, we synthesized the different chalcogen isosteres through Suzuki-Miyaura type coupling. Next, we evaluated the isosteres' affinity and selectivity for TDO2, as well as their lipophilicity, microsomal stability and cellular toxicity on TDO2-expressing cell lines. Overall, chalcogen isosteric replacements did not disturb the on-target activity but allowed for a modulation of the compounds' lipophilicity, toxicity and stability profiles. The present work contributes to our understanding of oxygen/sulfur/selenium isostery towards increasing structural options in medicinal chemistry for the development of novel and distinctive drug candidates.
Collapse
Affiliation(s)
- Arina Kozlova
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Léopold Thabault
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium; Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
| | | | - Marine Deskeuvre
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium; Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Maxime Liberelle
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; de Duve Institute, UCLouvain, Brussels B-1200, Belgium; Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium.
| |
Collapse
|
9
|
Abstract
Abstract
Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.
Collapse
|
10
|
Wang DL, Jiang NQ, Cai ZJ, Ji SJ. Amidation-Ketonization-Selenation of Terminal Alkynes Using TEMPO and Elemental Selenium. J Org Chem 2021; 86:9898-9904. [PMID: 34165301 DOI: 10.1021/acs.joc.1c01066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present a novel silver- or copper-mediated direct amidation-ketonization-selenation of terminal alkynes for the synthesis of α-oxo-selenoamides. The reaction utilized easily accessible elemental selenium as the source of selenium. In addition, the 18O labeling experiment revealed that TEMPO is the oxygen source of the carbonyl group. The reaction takes advantage of an unsaturated C≡C bond to construct new C═O, C═Se, and C-N bonds in one step.
Collapse
Affiliation(s)
- Dian-Liang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Nan-Quan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
11
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
12
|
Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem Toxicol 2021; 148:111945. [PMID: 33359022 DOI: 10.1016/j.fct.2020.111945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
13
|
Singh R, Salunke DB. Diverse chemical space of indoleamine-2,3-dioxygenase 1 (Ido1) inhibitors. Eur J Med Chem 2020; 211:113071. [PMID: 33341650 DOI: 10.1016/j.ejmech.2020.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) catalyses the first and rate limiting step of kynurenine pathway accounting for the major contributor of L-Tryptophan degradation. The Kynurenine metabolites are identified as essential cofactors, antagonists, neurotoxins, immunomodulators, antioxidants as well as carcinogens. The catalytic active site of IDO1 enzyme consists of hydrophobic Pocket-A positioned in the distal heme site and remains connected to a second hydrophobic Pocket-B towards the entrance of the active site. IDO1 enzyme also relates directly to the modulation of the innate and adaptive immune system. Various studies proved that the over expression of IDO1 enzyme play a predominant role in the escape of immunity during cancer progression. Recently, there has been considerable interest in evaluating the potential of IDO1 inhibitors to mobilize the body's immune system against solid tumours. In the last two decades, enormous attempts to advance new IDO1 inhibitors are on-going both in pharmaceutical industries and in academia which resulted in the discovery of a diverse range of selective and potent IDO1 inhibitors. The IDO1 inhibitors have therapeutic utility in various diseases and in the near future, it may have utility in the treatment of COVID-19. Despite various reviews on IDO1 inhibitors in last five years, none of the reviews provide a complete overview of diverse chemical space including naturally occurring and synthetic IDO1 inhibitors with detailed structure activity relationship studies. The present work provides a complete overview on the IDO1 inhibitors known in the literature so far along with the Structure-Activity Relationship (SAR) in each class of compounds.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
14
|
Pan S, Zhou Y, Wang Q, Wang Y, Tian C, Wang T, Huang L, Nan J, Li L, Yang S. Discovery and structure-activity relationship studies of 1-aryl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione derivatives as potent dual inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and trytophan 2,3-dioxygenase (TDO). Eur J Med Chem 2020; 207:112703. [DOI: 10.1016/j.ejmech.2020.112703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
15
|
Ortiz-Meoz RF, Wang L, Matico R, Rutkowska-Klute A, De la Rosa M, Bedard S, Midgett R, Strohmer K, Thomson D, Zhang C, Mebrahtu M, Guss J, Totoritis R, Consler T, Campobasso N, Taylor D, Lewis T, Weaver K, Muelbaier M, Seal J, Dunham R, Kazmierski W, Favre D, Bergamini G, Shewchuk L, Rendina A, Zhang G. Characterization of Apo-Form Selective Inhibition of Indoleamine 2,3-Dioxygenase*. Chembiochem 2020; 22:516-522. [PMID: 32974990 DOI: 10.1002/cbic.202000298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/23/2020] [Indexed: 01/01/2023]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that catalyzes the rate-limiting step in the kynurenine pathway of tryptophan (TRP) metabolism. As it is an inflammation-induced immunoregulatory enzyme, pharmacological inhibition of IDO1 activity is currently being pursued as a potential therapeutic tool for the treatment of cancer and other disease states. As such, a detailed understanding of the mechanism of action of IDO1 inhibitors with various mechanisms of inhibition is of great interest. Comparison of an apo-form-binding IDO1 inhibitor (GSK5628) to the heme-coordinating compound, epacadostat (Incyte), allows us to explore the details of the apo-binding inhibition of IDO1. Herein, we demonstrate that GSK5628 inhibits IDO1 by competing with heme for binding to a heme-free conformation of the enzyme (apo-IDO1), whereas epacadostat coordinates its binding with the iron atom of the IDO1 heme cofactor. Comparison of these two compounds in cellular systems reveals a long-lasting inhibitory effect of GSK5628, previously undescribed for other known IDO1 inhibitors. Detailed characterization of this apo-binding mechanism for IDO1 inhibition might help design superior inhibitors or could confer a unique competitive advantage over other IDO1 inhibitors vis-à-vis specificity and pharmacokinetic parameters.
Collapse
Affiliation(s)
- Rodrigo F Ortiz-Meoz
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Liping Wang
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Rosalie Matico
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | | | - Martha De la Rosa
- Infectious Diseases TAU, GlaxoSmithKline Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - Sabrina Bedard
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Robert Midgett
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Katrin Strohmer
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Douglas Thomson
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Cunyu Zhang
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Makda Mebrahtu
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Jeffrey Guss
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Rachel Totoritis
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Thomas Consler
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Nino Campobasso
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - David Taylor
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Tia Lewis
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Kurt Weaver
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Marcel Muelbaier
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - John Seal
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Richard Dunham
- Infectious Diseases TAU, GlaxoSmithKline Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - Wieslaw Kazmierski
- Infectious Diseases TAU, GlaxoSmithKline Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - David Favre
- Infectious Diseases TAU, GlaxoSmithKline Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - Giovanna Bergamini
- Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Lisa Shewchuk
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Alan Rendina
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Guofeng Zhang
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| |
Collapse
|
16
|
Yao HF, Wang DL, Li FH, Wu B, Cai ZJ, Ji SJ. Synthesis of organoselenyl isoquinolinium imides via iron(III) chloride-mediated tandem cyclization/selenation of N'-(2-alkynylbenzylidene)hydrazides and diselenides. Org Biomol Chem 2020; 18:7577-7584. [PMID: 32945312 DOI: 10.1039/d0ob01517b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report describes the synthesis of organoselenyl isoquinolinium imides through a tandem cyclization between N'-(2-alkynylbenzylidene)hydrazides and diselenides. The reaction was carried out at room temperature under an ambient atmosphere using cheap iron(iii) chloride as the metallic source. The strategy shows good tolerance to a broad range of N'-(2-alkynylbenzylidene)hydrazides and diselenides, and forms C-N and C-Se bonds in one step. The obtained product is further transformed into a bioactive H-pyrazolo[5,1-a]isoquinoline skeleton easily via a silver catalyzed [3 + 2] cycloaddition.
Collapse
Affiliation(s)
- Hai-Feng Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | |
Collapse
|
17
|
Zoppi C, Nocentini A, Supuran CT, Pratesi A, Messori L. Native mass spectrometry of human carbonic anhydrase I and its inhibitor complexes. J Biol Inorg Chem 2020; 25:979-993. [PMID: 32926233 PMCID: PMC7584553 DOI: 10.1007/s00775-020-01818-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/30/2020] [Indexed: 02/03/2023]
Abstract
Abstract Native mass spectrometry is a potent technique to study and characterize biomacromolecules in their native state. Here, we have applied this method to explore the solution chemistry of human carbonic anhydrase I (hCA I) and its interactions with four different inhibitors, namely three sulfonamide inhibitors (AAZ, MZA, SLC-0111) and the dithiocarbamate derivative of morpholine (DTC). Through high-resolution ESI-Q-TOF measurements, the native state of hCA I and the binding of the above inhibitors were characterized in the molecular detail. Native mass spectrometry was also exploited to assess the direct competition in solution among the various inhibitors in relation to their affinity constants. Additional studies were conducted on the interaction of hCA I with the metallodrug auranofin, under various solution and instrumental conditions. Auranofin is a selective reagent for solvent-accessible free cysteine residues, and its reactivity was analyzed also in the presence of CA inhibitors. Overall, our investigation reveals that native mass spectrometry represents an excellent tool to characterize the solution behavior of carbonic anhydrase. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00775-020-01818-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlotta Zoppi
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy.
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
18
|
Barce Ferro CT, dos Santos BF, da Silva CDG, Brand G, da Silva BAL, de Campos Domingues NL. Review of the Syntheses and Activities of Some Sulfur-Containing Drugs. Curr Org Synth 2020; 17:192-210. [DOI: 10.2174/1570179417666200212113412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/06/2019] [Accepted: 12/14/2019] [Indexed: 11/22/2022]
Abstract
Background:
Sulfur-containing compounds represent an important class of chemical compounds due
to their wide range of biological and pharmaceutical properties. Moreover, sulfur-containing compounds may be
applied in other fields, such as biological, organic, and materials chemistry. Several studies on the activities of
sulfur compounds have already proven their anti-inflammatory properties and use to treat diseases, such as
Alzheimer’s, Parkinson’s, and HIV. Moreover, examples of sulfur-containing compounds include dapsone,
quetiapine, penicillin, probucol, and nelfinavir, which are important drugs with known activities.
Objective:
This review will focus on the synthesis and application of some sulfur-containing compounds used to
treat several diseases, as well as promising new drug candidates.
Results:
Due to the variety of compounds containing C-S bonds, we have reviewed the different synthetic
routes used toward the synthesis of sulfur-containing drugs and other compounds.
Collapse
Affiliation(s)
- Criscieli Taynara Barce Ferro
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Beatriz Fuzinato dos Santos
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Caren Daniele Galeano da Silva
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - George Brand
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Beatriz Amaral Lopes da Silva
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Nelson Luís de Campos Domingues
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| |
Collapse
|
19
|
Kazmierski WM, Xia B, Miller J, De la Rosa M, Favre D, Dunham RM, Washio Y, Zhu Z, Wang F, Mebrahtu M, Deng H, Basilla J, Wang L, Evindar G, Fan L, Olszewski A, Prabhu N, Davie C, Messer JA, Samano V. DNA-Encoded Library Technology-Based Discovery, Lead Optimization, and Prodrug Strategy toward Structurally Unique Indoleamine 2,3-Dioxygenase-1 (IDO1) Inhibitors. J Med Chem 2020; 63:3552-3562. [PMID: 32073266 DOI: 10.1021/acs.jmedchem.9b01799] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the discovery of a novel indoleamine 2,3-dioxygenase-1 (IDO1) inhibitor class through the affinity selection of a previously unreported indole-based DNA-encoded library (DEL). The DEL exemplar, spiro-chromane 1, had moderate IDO1 potency but high in vivo clearance. Series optimization quickly afforded a potent, low in vivo clearance lead 11. Although amorphous 11 was highly bio-available, crystalline 11 was poorly soluble and suffered disappointingly low bio-availability because of solubility-limited absorption. A prodrug approach was deployed and proved effective in discovering the highly bio-available phosphonooxymethyl 31, which rapidly converted to 11 in vivo. Obtaining crystalline 31 proved problematic, however; thus salt screening was performed in an attempt to circumvent this obstacle and successfully delivered greatly soluble and bio-available crystalline tris-salt 32. IDO1 inhibitor 32 is characterized by a low calculated human dose, best-in-class potential, and an unusual inhibition mode by binding the IDO1 heme-free (apo) form.
Collapse
Affiliation(s)
- Wieslaw M Kazmierski
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Bing Xia
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - John Miller
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Martha De la Rosa
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - David Favre
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Richard M Dunham
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Yoshiaki Washio
- MST Medicine Design, Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Rd, Stevenage SG1 2NY, U.K
| | - Zhengrong Zhu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Feng Wang
- DMPK/IVIVT, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426-0989, United States
| | - Makda Mebrahtu
- Screening, Profiling & Mechanistic Biology, RD Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426-0989, United States
| | - Hongfeng Deng
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jonathan Basilla
- Screening, Profiling & Mechanistic Biology, RD Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426-0989, United States
| | - Liping Wang
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426, United States
| | - Ghotas Evindar
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lijun Fan
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Alison Olszewski
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ninad Prabhu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher Davie
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jeffrey A Messer
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Vicente Samano
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| |
Collapse
|
20
|
Yao HF, Li FH, Li J, Wang SY, Ji SJ. Iron(iii) chloride-promoted cyclization of α,β-alkynic tosylhydrazones with diselenides: synthesis of 4-(arylselanyl)-1H-pyrazoles. Org Biomol Chem 2020; 18:1987-1993. [PMID: 32107516 DOI: 10.1039/d0ob00048e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly efficient iron(iii) chloride-promoted cyclization between α,β-alkynic tosylhydrazones and diselenides to form a 4-(arylselanyl)-1H-pyrazole skeleton is studied. This reaction forms C-N and C-Se bonds in one step by utilizing inexpensive iron(iii) chloride instead of expensive transition metal additives. This strategy features easily synthesized substrates, mild reaction conditions and high tolerance to functional groups.
Collapse
Affiliation(s)
- Hai-Feng Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| | - Fang-Hui Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| | - Jian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, China.
| |
Collapse
|
21
|
Cui G, Lai F, Wang X, Chen X, Xu B. Design, synthesis and biological evaluation of indole-2-carboxylic acid derivatives as IDO1/TDO dual inhibitors. Eur J Med Chem 2019; 188:111985. [PMID: 31881488 DOI: 10.1016/j.ejmech.2019.111985] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are involved in the key steps of tryptophan metabolism and are potential new targets for tumor immunotherapy. In this work, a variety of indole-2-carboxylic acid derivatives were synthesized, and their inhibitory activities against both enzymes along with structure-activity relationships were investigated. As a result, a number of 6-acetamido-indole-2-carboxylic acid derivatives were found to be potent dual inhibitors with IC50 values at low micromolar levels. Among them, compound 9o-1 was the most potent inhibitor with an IC50 value of 1.17 μM for IDO1, and 1.55 μM for TDO, respectively. In addition, a para-benzoquinone derivative 9p-O, resulted from the oxidation of compound 9p, was also identified and it showed strong inhibition against the two enzymes with IC50 values at the double digit nanomolar level. Using molecular docking and molecular dynamic simulations, we predicted the binding modes of this class of compounds within IDO1 and TDO binding pocket. The results provide insights for further structural optimization of this series of IDO1/TDO dual inhibitors.
Collapse
Affiliation(s)
- Guonan Cui
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China.
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
22
|
Panda S, Pradhan N, Chatterjee S, Morla S, Saha A, Roy A, Kumar S, Bhattacharyya A, Manna D. 4,5-Disubstituted 1,2,3-triazoles: Effective Inhibition of Indoleamine 2,3-Dioxygenase 1 Enzyme Regulates T cell Activity and Mitigates Tumor Growth. Sci Rep 2019; 9:18455. [PMID: 31804586 PMCID: PMC6895048 DOI: 10.1038/s41598-019-54963-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/21/2019] [Indexed: 01/29/2023] Open
Abstract
The improvement of body's own immune system is considered one of the safest approaches to fight against cancer and several other diseases. Excessive catabolism of the essential amino acid, L-tryptophan (L-Trp) assists the cancer cells to escape normal immune obliteration. The formation of disproportionate kynurenine and other downstream metabolites suppress the T cell functions. Blocking of this immunosuppressive mechanism is considered as a promising approach against cancer, neurological disorders, autoimmunity, and other immune-mediated diseases. Overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme is directly related to the induction of immunosuppressive mechanisms and represents an important therapeutic target. Several classes of small molecule-based IDO1 inhibitors have been already reported, but only few compounds are currently being evaluated in various stages of clinical trials as adjuvants or in combination with chemo- and radiotherapies. In the quest for novel structural class(s) of IDO1 inhibitors, we developed a series of 4,5-disubstituted 1,2,3-triazole derivatives. The optimization of 4,5-disubstituted 1,2,3-triazole scaffold and comprehensive biochemical and biophysical studies led to the identification of compounds, 3i, 4i, and 4k as potent and selective inhibitors of IDO1 enzyme with IC50 values at a low nanomolar level. These potent compounds also showed strong IDO1 inhibitory activities in MDA-MB-231 cells with no/negligible level of cytotoxicity. The T cell activity studies revealed that controlled regulation of IDO1 enzyme activity in the presence of these potent compounds could induce immune response against breast cancer cells. The compounds also showed excellent in vivo antitumor efficacy (of tumor growth inhibition = 79-96%) in the female Swiss albino mice. As a consequence, this study describes the first example of 4,5-disubstituted 1,2,3-triazole based IDO1 inhibitors with potential applications for immunotherapeutic studies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/immunology
- Carcinoma, Ehrlich Tumor/pathology
- Cell Line, Tumor
- Drug Screening Assays, Antitumor
- Enzyme Assays
- Female
- HEK293 Cells
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Inhibitory Concentration 50
- Kynurenine/immunology
- Kynurenine/metabolism
- Metabolic Networks and Pathways/drug effects
- Metabolic Networks and Pathways/immunology
- Mice
- Molecular Docking Simulation
- Primary Cell Culture
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Triazoles/chemistry
- Triazoles/pharmacology
- Triazoles/therapeutic use
- Tryptophan/immunology
- Tryptophan/metabolism
- Tryptophan Oxygenase/antagonists & inhibitors
- Tryptophan Oxygenase/chemistry
- Tryptophan Oxygenase/metabolism
- Tumor Escape/drug effects
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nirmalya Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Soumya Chatterjee
- Department of Zoology, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Sudhir Morla
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Abhishek Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashalata Roy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
23
|
Tran HQ, Shin EJ, Saito K, Tran TV, Phan DH, Sharma N, Kim DW, Choi SY, Jeong JH, Jang CG, Cheong JH, Nabeshima T, Kim HC. Indoleamine-2,3-dioxygenase-1 is a molecular target for the protective activity of mood stabilizers against mania-like behavior induced by d-amphetamine. Food Chem Toxicol 2019; 136:110986. [PMID: 31760073 DOI: 10.1016/j.fct.2019.110986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023]
Abstract
It is recognized that d-amphetamine (AMPH)-induced hyperactivity is thought to be a valid animal model of mania. In the present study, we investigated whether a proinflammatory oxidative gene indoleamine-2,3-dioxygenase (IDO) is involved in AMPH-induced mitochondrial burden, and whether mood stabilizers (i.e., lithium and valproate) modulate IDO to protect against AMPH-induced mania-like behaviors. AMPH-induced IDO-1 expression was significantly greater than IDO-2 expression in the prefrontal cortex of wild type mice. IDO-1 expression was more pronounced in the mitochondria than in the cytosol. AMPH treatment activated intra-mitochondrial Ca2+ accumulation and mitochondrial oxidative burden, while inhibited mitochondrial membrane potential and activity of the mitochondrial complex (I > II), mitochondrial glutathione peroxidase, and superoxide dismutase, indicating that mitochondrial burden might be contributable to mania-like behaviors induced by AMPH. The behaviors were significantly attenuated by lithium, valproate, or IDO-1 knockout, but not in IDO-2 knockout mice. Lithium, valproate administration, or IDO-1 knockout significantly attenuated mitochondrial burden. Neither lithium nor valproate produced additive effects above the protective effects observed in IDO-1 KO in mice. Collectively, our results suggest that mood stabilizers attenuate AMPH-induced mania-like behaviors via attenuation of IDO-1-dependent mitochondrial stress, highlighting IDO-1 as a novel molecular target for the protective potential of mood stabilizers.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.
| | - The-Vinh Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dieu-Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dae-Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, 24252, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
24
|
Röhrig UF, Reynaud A, Majjigapu SR, Vogel P, Pojer F, Zoete V. Inhibition Mechanisms of Indoleamine 2,3-Dioxygenase 1 (IDO1). J Med Chem 2019; 62:8784-8795. [PMID: 31525930 DOI: 10.1021/acs.jmedchem.9b00942] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway of tryptophan metabolism, which is involved in immunity, neuronal function, and aging. Its implication in pathologies such as cancer and neurodegenerative diseases has stimulated the development of IDO1 inhibitors. However, negative phase III clinical trial results of the IDO1 inhibitor epacadostat in cancer immunotherapy call for a better understanding of the role and the mechanisms of IDO1 inhibition. In this work, we investigate the molecular inhibition mechanisms of four known IDO1 inhibitors and of two quinones in detail, using different experimental and computational approaches. We also determine for the first time the X-ray structure of the highly efficient 1,2,3-triazole inhibitor MMG-0358. Based on our results and a comprehensive literature overview, we propose a classification scheme for IDO1 inhibitors according to their inhibition mechanism, which will be useful for further developments in the field.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group , SIB Swiss Institute of Bioinformatics , 1015 Lausanne , Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group , SIB Swiss Institute of Bioinformatics , 1015 Lausanne , Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Vincent Zoete
- Molecular Modeling Group , SIB Swiss Institute of Bioinformatics , 1015 Lausanne , Switzerland.,Department of Fundamental Oncology , University of Lausanne, Ludwig Lausanne Branch , 1066 Epalinges , Switzerland
| |
Collapse
|
25
|
Wang XX, Sun SY, Dong QQ, Wu XX, Tang W, Xing YQ. Recent advances in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. MEDCHEMCOMM 2019; 10:1740-1754. [PMID: 32055299 DOI: 10.1039/c9md00208a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), an important immunoregulatory enzyme ubiquitously expressed in various tissues and cells, plays a key role in tryptophan metabolism via the kynurenine pathway and has emerged as an attractive therapeutic target for the treatment of cancer and other diseases, such as Alzheimer's disease and arthritis. IDO1 has diverse biological roles in immune suppression and tumor progression by tryptophan catabolism. In addition, IDO1-mediated immune tolerance assists tumor cells in escaping the immune surveillance. Recently, extensive and enormous investigations have been made in the discovery of IDO1 inhibitors in both academia and pharmaceutical companies. In this review, IDO1 inhibitors are grouped as tryptophan derivatives, inhibitors with an imidazole, 1,2,3-triazole or tetrazole scaffold, inhibitors with quinone or iminoquinone, N-hydroxyamidines and other derivatives, and their enzymatic inhibitory activity, selectivity and other biological activities are also introduced and summarized.
Collapse
Affiliation(s)
- Xiu-Xiu Wang
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Si-Yu Sun
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Qing-Qing Dong
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Xiao-Xiang Wu
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Wei Tang
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Ya-Qun Xing
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| |
Collapse
|
26
|
Zhang S, Song Q, Wang X, Wei Z, Yu R, Wang X, Jiang T. Virtual Screening Guided Design, Synthesis and Bioactivity Study of Benzisoselenazolones (BISAs) on Inhibition of c-Met and Its Downstream Signalling Pathways. Int J Mol Sci 2019; 20:E2489. [PMID: 31137515 PMCID: PMC6566228 DOI: 10.3390/ijms20102489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
c-Met is a transmembrane receptor tyrosine kinase and an important therapeutic target for anticancer drugs. In this study, we designed a small library containing 300 BISAs molecules that consisted of carbohydrates, amino acids, isothiourea, tetramethylthiourea, guanidine and heterocyclic groups and screened c-Met targeting compounds using docking and MM/GBSA. Guided by virtual screening, we synthesised a series of novel compounds and their activity on inhibition of the autophosphorylation of c-Met and its downstream signalling pathway proteins were evaluated. We found a panel of benzisoselenazolones (BISAs) obtained by introducing isothiourea, tetramethylthiourea and heterocyclic groups into the C-ring of Ebselen, including 7a, 7b, 8a, 8b and 12c (with IC50 values of less than 20 μM in MET gene amplified lung cancer cell line EBC-1), exhibited more potent antitumour activity than Ebselen by cell growth assay combined with in vitro biochemical assays. In addition, we also tested the antitumour activity of three cancer cell lines without MET gene amplification/activation, including DLD1, MDA-MB-231 and A549. The neuroblastoma SK-N-SH cells with HGF overexpression which activates MET signalling are sensitive to MET inhibitors. The results reveal that our compounds may be nonspecific multitarget kinase inhibitors, just like type-II small molecule inhibitors. Western blot analysis showed that these inhibitors inhibited autophosphorylation of c-MET, and its downstream signalling pathways, such as PI3K/AKT and MARK/ERK. Results suggest that bensoisoselenones can be used as a scaffold for the design of c-Met inhibiting drug leads, and this study opens up new possibilities for future antitumour drug design.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Qiaoling Song
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Center for Innovative Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Xueting Wang
- Center for High Performance Computing & System simulation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Zhiqiang Wei
- Center for High Performance Computing & System simulation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Center for Innovative Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Center for Innovative Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Center for Innovative Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE Hexokinases are key enzymes that are responsible for the first reaction of glycolysis, but they also moonlight other cellular processes, including mitochondrial redox signaling regulation. Modulation of hexokinase activity and spatiotemporal location by reactive oxygen and nitrogen species as well as other gasotransmitters serves as the basis for a unique, underexplored method of tight and flexible regulation of these fundamental enzymes. Recent Advances: Redox modifications of thiols serve as a molecular code that enables the precise and complex regulation of hexokinases. Redox regulation of hexokinases is also used by multiple parasites to cause widespread and severe diseases, including malaria, Chagas disease, and sleeping sickness. Redox-active molecules affect each other, and the moonlighting activity of hexokinases provides another feedback loop that affects the cellular redox status and is hijacked in malignantly transformed cells. CRITICAL ISSUES Several compounds affect the redox status of hexokinases in vivo. These include the dehydroascorbic acid (oxidized form of vitamin C), pyrrolidinium porrolidine-1-carbodithioate (contraceptive), peroxynitrite (product of ethanol metabolism), alloxan (a glucose analog), and isobenzothiazolinone ebselen. However, very limited information is available regarding which amino acid residues in hexokinases are affected by redox signaling. Except in cases of monogenic diabetes, direct evidence is absent for disease phenotypes that are associated with variations within motifs that are susceptible to redox signaling. FUTURE DIRECTIONS Further studies should address the propensity of hexokinases and their disease-associated variants to participate in redox regulation. Robust and straightforward proteomic methods are needed to understand the context and consequences of hexokinase-mediated redox regulation in health and disease.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University , Prague, Czech Republic
| |
Collapse
|
28
|
Lybaert L, Vermaelen K, De Geest BG, Nuhn L. Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. J Control Release 2018; 289:125-145. [DOI: 10.1016/j.jconrel.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
29
|
Eltahan R, Guo F, Zhang H, Zhu G. The Action of the Hexokinase Inhibitor 2-deoxy-d-glucose on Cryptosporidium parvum and the Discovery of Activities against the Parasite Hexokinase from Marketed Drugs. J Eukaryot Microbiol 2018; 66:460-468. [PMID: 30222231 DOI: 10.1111/jeu.12690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 11/29/2022]
Abstract
Cryptosporidium parvum is one of the major species causing mild to severe cryptosporidiosis in humans and animals. We have previously observed that 2-deoxy-d-glucose (2DG) could inhibit both the enzyme activity of C. parvum hexokinase (CpHK) and the parasite growth in vitro. However, the action and fate of 2DG in C. parvum was not fully investigated. In the present study, we showed that, although 2DG could be phosphorylated by CpHK to form 2DG-6-phosphate (2DG6P), the anti-cryptosporidial activity of 2DG was mainly attributed to the action of 2DG on CpHK, rather than the action of 2DG or 2DG6P on the downstream enzyme glucose-6-phosphate isomerase (CpGPI) nor 2DG6P on CpHK. These observations further supported the hypothesis that CpHK could serve as a drug target in the parasite. We also screened 1,200 small molecules consisting of marketed drugs against CpHK, from which four drugs were identified as CpHK inhibitors with micromolar level of anti-cryptospordial activities at concentrations nontoxic to the host cells (i.e. hexachlorphene, thimerosal, alexidine dihydrochloride, and ebselen with EC50 = 0.53, 1.77, 8.1 and 165 μM, respectively). The anti-CpHK activity of the four existing drugs provided us new reagents for studying the enzyme properties of the parasite hexokinase.
Collapse
Affiliation(s)
- Rana Eltahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| |
Collapse
|
30
|
Chen Z, Jiang Z, Chen N, Shi Q, Tong L, Kong F, Cheng X, Chen H, Wang C, Tang B. Target discovery of ebselen with a biotinylated probe. Chem Commun (Camb) 2018; 54:9506-9509. [PMID: 30091742 DOI: 10.1039/c8cc04258f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite numerous studies on ebselen over the past decade, its cellular targets remain obscure. Here we synthesized a biotinylated ebselen probe (biotin-ebselen) and characterized ebselen-binding proteins via an efficient activity-based protein profiling (ABPP) method, which allowed for the robust identification of 462 targeted proteins in HeLa cells. This first work of global target profiling of ebselen will be helpful to re-design ebselen-based therapy appropriately in clinical trials.
Collapse
Affiliation(s)
- Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Roy A, Das S, Manna D. Effect of Molecular Crowding Agents on the Activity and Stability of Immunosuppressive Enzyme Indoleamine 2,3‐Dioxygenase 1. ChemistrySelect 2018. [DOI: 10.1002/slct.201801366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ashalata Roy
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Sreeparna Das
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Debasis Manna
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati-781039 Assam India
| |
Collapse
|
32
|
Tang Y, Zhang S, Chang Y, Fan D, Agostini AD, Zhang L, Jiang T. Aglycone Ebselen and β-d-Xyloside Primed Glycosaminoglycans Co-contribute to Ebselen β-d-Xyloside-Induced Cytotoxicity. J Med Chem 2018; 61:2937-2948. [PMID: 29584939 DOI: 10.1021/acs.jmedchem.7b01835] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most β-d-xylosides with hydrophobic aglycones are nontoxic primers for glycosaminoglycan assembly in animal cells. However, when Ebselen was conjugated to d-xylose, d-glucose, d-galactose, and d-lactose (8A-D), only Ebselen β-d-xyloside (8A) showed significant cytotoxicity in human cancer cells. The following facts indicated that the aglycone Ebselen and β-d-xyloside primed glycosaminoglycans co-contributed to the observed cytotoxicity: 1. Ebselen induced S phase cell cycle arrest, whereas 8A induced G2/M cell cycle arrest; 2. 8A augmented early and late phase cancer cell apoptosis significantly compared to that of Ebselen and 8B-D; 3. Both 8A and phenyl-β-d-xyloside primed glycosaminoglycans with similar disaccharide compositions in CHO-pgsA745 cells; 4. Glycosaminoglycans could be detected inside of cells only when treated with 8A, indicating Ebselen contributed to the unique property of intracellular localization of the primed glycosaminoglycans. Thus, 8A represents a lead compound for the development of novel antitumor strategy by targeting glycosaminoglycans.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China
| | - Yajing Chang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Dacheng Fan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China
| | - Ariane De Agostini
- Department of Gynecology and Obstetrics , Geneva University Hospitals and University of Geneva , Geneva 14 , Switzerland
| | - Lijuan Zhang
- Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National of Laboratory for Marine Science and Technology , Qingdao 266003 , P. R. China
| |
Collapse
|
33
|
Eltahan R, Guo F, Zhang H, Xiang L, Zhu G. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:43-49. [PMID: 29414105 PMCID: PMC6114080 DOI: 10.1016/j.ijpddr.2018.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
Abstract
Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (Km = 0.309 mM, Vmax = 31.72 nmol/μg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC50 = 8.33 μM; Ki = 36.33 μM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC50 = 165 μM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC50 on HCT-8 cells = 700 μM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Cryptosporidium parvum possesses a single glucose-6-phosphate isomerase (CpGPI). CpGPI displays Michaelis-Menten kinetics towards fructose-6P (Km = 0.309 mM). The organoselenium ebselen is a CpGPI inhibitor identified from 1200 existing drugs. Ebselen displays allosteric noncompetitive inhibition on CpGPI (Ki = 36.33 μM). Ebeselen could inhibit the growth of C. parvum in vitro (EC50 = 165 μM).
Collapse
Affiliation(s)
- Rana Eltahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lixin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA.
| |
Collapse
|
34
|
Selenazolinium Salts as "Small Molecule Catalysts" with High Potency against ESKAPE Bacterial Pathogens. Molecules 2017; 22:molecules22122174. [PMID: 29292789 PMCID: PMC6149925 DOI: 10.3390/molecules22122174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
In view of the pressing need to identify new antibacterial agents able to combat multidrug-resistant bacteria, we investigated a series of fused selenazolinium derivatives (1–8) regarding their in vitro antimicrobial activities against 25 ESKAPE-pathogen strains. Ebselen was used as reference compound. Most of the selenocompounds demonstrated an excellent in vitro activity against all S. aureus strains, with activities comparable to or even exceeding the one of ebselen. In contrast to ebselen, some selenazolinium derivatives (1, 3, and 7) even displayed significant actions against all Gram-negative pathogens tested. The 3-bromo-2-(1-hydroxy-1-methylethyl)[1,2]selenazolo[2,3-a]pyridinium chloride (1) was particularly active (minimum inhibitory concentrations, MICs: 0.31–1.24 µg/mL for MRSA, and 0.31–2.48 µg/mL for Gram-negative bacteria) and devoid of any significant mutagenicity in the Ames assay. Our preliminary mechanistic studies in cell culture indicated that their mode of action is likely to be associated with an alteration of intracellular levels of glutathione and cysteine thiols of different proteins in the bacterial cells, hence supporting the idea that such compounds interact with the intracellular thiolstat. This alteration of pivotal cysteine residues is most likely the result of a direct or catalytic oxidative modification of such residues by the highly reactive selenium species (RSeS) employed.
Collapse
|
35
|
Tomek P, Palmer BD, Flanagan JU, Sun C, Raven EL, Ching LM. Discovery and evaluation of inhibitors to the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1): Probing the active site-inhibitor interactions. Eur J Med Chem 2016; 126:983-996. [PMID: 28011425 DOI: 10.1016/j.ejmech.2016.12.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023]
Abstract
High expression of the immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) for a broad range of malignancies is associated with poor patient prognosis, and the enzyme is a validated target for cancer intervention. To identify novel IDO1 inhibitors suitable for drug development, 1597 compounds in the National Cancer Institute Diversity Set III library were tested for inhibitory activity against recombinant human IDO1. We retrieved 35 hits that inhibited IDO1 activity >50% at 20 μM. Five structural filters and the PubChem Bioassay database were used to guide the selection of five inhibitors with IC50 between 3 and 12 μM for subsequent experimental evaluation. A pyrimidinone scaffold emerged as being the most promising. It showed excellent cell penetration, negligible cytotoxicity and passed four out of the five structural filters applied. To evaluate the importance of Ser167 and Cys129 residues in the IDO1 active site for inhibitor binding, the entire NCI library was subsequently screened against alanine-replacement mutant enzymes of these two residues. The results established that Ser167 but not Cys129 is important for inhibitory activity of a broad range of IDO1 inhibitors. Structure-activity-relationship studies proposed substituents interacting with Ser167 on four investigated IDO1 inhibitors. Three of these four Ser167 interactions associated with an increased IDO1 inhibition and were correctly predicted by molecular docking supporting Ser167 as an important mediator of potency for IDO1 inhibitors.
Collapse
Affiliation(s)
- Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand
| | - Brian D Palmer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand
| | - Chuanwen Sun
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand
| | - Emma L Raven
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand.
| |
Collapse
|
36
|
Convergent Synthesis of Two Fluorescent Ebselen-Coumarin Heterodimers. Pharmaceuticals (Basel) 2016; 9:ph9030043. [PMID: 27399725 PMCID: PMC5039496 DOI: 10.3390/ph9030043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022] Open
Abstract
The organo-seleniumdrug ebselen exhibits a wide range of pharmacological effects that are predominantly due to its interference with redox systems catalyzed by seleno enzymes, e.g., glutathione peroxidase and thioredoxin reductase. Moreover, ebselen can covalently interact with thiol groups of several enzymes. According to its pleiotropic mode of action, ebselen has been investigated in clinical trials for the prevention and treatment of different ailments. Fluorescence-labeled probes containing ebselen are expected to be suitable for further biological and medicinal studies. We therefore designed and synthesized two coumarin-tagged activity-based probes bearing the ebselen warhead. The heterodimers differ by the nature of the spacer structure, for which—in the second compound—a PEG/two-amide spacer was introduced. The interaction of this probe and of ebselen with two cysteine proteases was investigated.
Collapse
|
37
|
Hanavan PD, Borges CR, Katchman BA, Faigel DO, Ho TH, Ma CT, Sergienko EA, Meurice N, Petit JL, Lake DF. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines. Oncotarget 2016; 6:18418-28. [PMID: 26158899 PMCID: PMC4621900 DOI: 10.18632/oncotarget.4099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a “proof-of-principle” that enzymatic inhibition of QSOX1 may have clinical relevancy.
Collapse
Affiliation(s)
- Paul D Hanavan
- School of Life Sciences, Mayo Clinic Collaborative Research Building, Arizona State University, Scottsdale, AZ, USA
| | - Chad R Borges
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Benjamin A Katchman
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | - Thai H Ho
- Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Chen-Ting Ma
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Eduard A Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | - Douglas F Lake
- School of Life Sciences, Mayo Clinic Collaborative Research Building, Arizona State University, Scottsdale, AZ, USA
| |
Collapse
|
38
|
Abstract
Indoleamine 2,3-dioxygenase (IDO, subsequently named IDO1) can degrade the level of essential amino acid tryptophan in mammals, and catalyze the initial and rate-limiting step through the kynurenine pathway. Broad evidence implies that IDO is overexpressed in both tumor cells and antigen-presenting cells, facilitating the escape of malignant tumors from immune surveillance. In the past decades, the inhibition of IDO has been one of the most promising areas in cancer immunotherapy and many potential inhibitors of IDO have been designed, synthesized and evaluated, among which d-1-methyl-tryptophan and INCB24360 have advanced to clinical trial stage. This review aims to give an overview of the rationale for IDO as a therapeutic target as well as the research progress of IDO inhibitors.
Collapse
|
39
|
Mordente A, Silvestrini A, Martorana GE, Tavian D, Meucci E. Inhibition of Anthracycline Alcohol Metabolite Formation in Human Heart Cytosol: A Potential Role for Several Promising Drugs. Drug Metab Dispos 2015; 43:1691-701. [PMID: 26265744 DOI: 10.1124/dmd.115.065110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/10/2015] [Indexed: 02/13/2025] Open
Abstract
The clinical efficacy of anthracyclines (e.g., doxorubicin and daunorubicin) in cancer therapy is limited by their severe cardiotoxicity, the etiology of which is still not fully understood. The development of anthracycline-induced cardiomyopathy has been found to correlate with myocardial formation and accumulation of anthracycline secondary alcohol metabolites (e.g., doxorubicinol and daunorubicinol) that are produced by distinct cytosolic NADPH-dependent reductases. The aim of the current study is to identify chemical compounds capable of inhibiting myocardial reductases implied in anthracycline reductive metabolism in an attempt to decrease the production of cardiotoxic C-13 alcohol metabolites. Among the variety of tested compounds (metal chelators, radical scavengers, antioxidants, β-blockers, nitrone spin traps, and lipid-lowering drugs), ebselen, cyclopentenone prostaglandins, nitric oxide donors, and short-chain coenzyme Q analogs resulted in being effective inhibitors of both doxorubicinol and daunorubicinol formation. In particular, ebselen (as well as ebselen diselenide, its storage form in the cells) was the most potent inhibitor of cardiotoxic anthracycline alcohol metabolites with 50% inhibition of doxorubicinol formation at 0.2 mol Eq of ebselen with respect to doxorubicin concentration. The high efficacy, together with its favorable pharmacological profile (low toxicity, lack of adverse effects, and metabolic stability) portends ebselen as a promising cardioprotective agent against anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Alvaro Mordente
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Roma, Italy (A.M., A.S., G.E.M., E.M.); and Laboratory of Cellular Biochemistry and Molecular Biology, CriBeNS, Catholic University, Milan, Italy (D.T.)
| | - Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Roma, Italy (A.M., A.S., G.E.M., E.M.); and Laboratory of Cellular Biochemistry and Molecular Biology, CriBeNS, Catholic University, Milan, Italy (D.T.)
| | - Giuseppe Ettore Martorana
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Roma, Italy (A.M., A.S., G.E.M., E.M.); and Laboratory of Cellular Biochemistry and Molecular Biology, CriBeNS, Catholic University, Milan, Italy (D.T.)
| | - Daniela Tavian
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Roma, Italy (A.M., A.S., G.E.M., E.M.); and Laboratory of Cellular Biochemistry and Molecular Biology, CriBeNS, Catholic University, Milan, Italy (D.T.)
| | - Elisabetta Meucci
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Roma, Italy (A.M., A.S., G.E.M., E.M.); and Laboratory of Cellular Biochemistry and Molecular Biology, CriBeNS, Catholic University, Milan, Italy (D.T.)
| |
Collapse
|
40
|
Chormova D, Franková L, Defries A, Cutler SR, Fry SC. Discovery of small molecule inhibitors of xyloglucan endotransglucosylase (XET) activity by high-throughput screening. PHYTOCHEMISTRY 2015; 117:220-236. [PMID: 26093490 PMCID: PMC4560162 DOI: 10.1016/j.phytochem.2015.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 05/23/2023]
Abstract
Small molecules (xenobiotics) that inhibit cell-wall-localised enzymes are valuable for elucidating the enzymes' biological roles. We applied a high-throughput fluorescent dot-blot screen to search for inhibitors of Petroselinum xyloglucan endotransglucosylase (XET) activity in vitro. Of 4216 xenobiotics tested, with cellulose-bound xyloglucan as donor-substrate, 18 inhibited XET activity and 18 promoted it (especially anthraquinones and flavonoids). No compounds promoted XET in quantitative assays with (cellulose-free) soluble xyloglucan as substrate, suggesting that promotion was dependent on enzyme-cellulose interactions. With cellulose-free xyloglucan as substrate, we found 22 XET-inhibitors - especially compounds that generate singlet oxygen ((1)O2) e.g., riboflavin (IC50 29 μM), retinoic acid, eosin (IC50 27 μM) and erythrosin (IC50 36 μM). The riboflavin effect was light-dependent, supporting (1)O2 involvement. Other inhibitors included tannins, sulphydryl reagents and triphenylmethanes. Some inhibitors (vulpinic acid and brilliant blue G) were relatively specific to XET, affecting only two or three, respectively, of nine other wall-enzyme activities tested; others [e.g. (-)-epigallocatechin gallate and riboflavin] were non-specific. In vivo, out of eight XET-inhibitors bioassayed, erythrosin (1 μM) inhibited cell expansion in Rosa and Zea cell-suspension cultures, and 40 μM mycophenolic acid and (-)-epigallocatechin gallate inhibited Zea culture growth. Our work showcases a general high-throughput strategy for discovering wall-enzyme inhibitors, some being plant growth inhibitors potentially valuable as physiological tools or herbicide leads.
Collapse
Affiliation(s)
- Dimitra Chormova
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Andrew Defries
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Department of Chemistry (CFM), University of California, 5451 Boyce Hall, Riverside, CA 92521, USA
| | - Sean R Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Department of Chemistry (CFM), University of California, 5451 Boyce Hall, Riverside, CA 92521, USA
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
41
|
Abstract
IDO1 (indoleamine 2,3-dioxygenase 1) is a member of a unique class of mammalian haem dioxygenases that catalyse the oxidative catabolism of the least-abundant essential amino acid, L-Trp (L-tryptophan), along the kynurenine pathway. Significant increases in knowledge have been recently gained with respect to understanding the fundamental biochemistry of IDO1 including its catalytic reaction mechanism, the scope of enzyme reactions it catalyses, the biochemical mechanisms controlling IDO1 expression and enzyme activity, and the discovery of enzyme inhibitors. Major advances in understanding the roles of IDO1 in physiology and disease have also been realised. IDO1 is recognised as a prominent immune regulatory enzyme capable of modulating immune cell activation status and phenotype via several molecular mechanisms including enzyme-dependent deprivation of L-Trp and its conversion into the aryl hydrocarbon receptor ligand kynurenine and other bioactive kynurenine pathway metabolites, or non-enzymatic cell signalling actions involving tyrosine phosphorylation of IDO1. Through these different modes of biochemical signalling, IDO1 regulates certain physiological functions (e.g. pregnancy) and modulates the pathogenesis and severity of diverse conditions including chronic inflammation, infectious disease, allergic and autoimmune disorders, transplantation, neuropathology and cancer. In the present review, we detail the current understanding of IDO1’s catalytic actions and the biochemical mechanisms regulating IDO1 expression and activity. We also discuss the biological functions of IDO1 with a focus on the enzyme's immune-modulatory function, its medical implications in diverse pathological settings and its utility as a therapeutic target.
Collapse
|
42
|
Röhrig UF, Majjigapu SR, Vogel P, Zoete V, Michielin O. Challenges in the Discovery of Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. J Med Chem 2015; 58:9421-37. [DOI: 10.1021/acs.jmedchem.5b00326] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ute F. Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Laboratory
of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory
of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1015 Lausanne, Switzerland
- Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| |
Collapse
|
43
|
Advanced enzymology, expression profile and immune response of Clonorchis sinensis hexokinase show its application potential for prevention and control of clonorchiasis. PLoS Negl Trop Dis 2015; 9:e0003641. [PMID: 25799453 PMCID: PMC4370448 DOI: 10.1371/journal.pntd.0003641] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 02/24/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Approximately 35 million people are infected with Clonorchis sinensis (C. sinensis) globally, of whom 15 million are in China. Glycolytic enzymes are recognized as crucial molecules for trematode survival and have been targeted for vaccine and drug development. Hexokinase of C. sinensis (CsHK), as the first key regulatory enzyme of the glycolytic pathway, was investigated in the current study. PRINCIPAL FINDINGS There were differences in spatial structure and affinities for hexoses and phosphate donors between CsHK and HKs from humans or rats, the definitive hosts of C. sinensis. Effectors (AMP, PEP, and citrate) and a small molecular inhibitor regulated the enzymatic activity of rCsHK, and various allosteric systems were detected. CsHK was distributed in the worm extensively as well as in liver tissue and serum from C. sinensis infected rats. Furthermore, high-level specific IgG1 and IgG2a were induced in rats by immunization with rCsHK. The enzymatic activity of CsHK was suppressed by the antibody in vitro. Additionally, the survival of C. sinensis was inhibited by the antibody in vivo and in vitro. CONCLUSIONS/SIGNIFICANCE Due to differences in putative spatial structure and enzymology between CsHK and HK from the host, its extensive distribution in adult worms, and its expression profile as a component of excretory/secretory products, together with its good immunogenicity and immunoreactivity, as a key glycolytic enzyme, CsHK shows potential as a vaccine and as a promising drug target for Clonorchiasis.
Collapse
|
44
|
Fang Y, Wang SY, Shen XB, Ji SJ. Base-promoted cascade reaction of isocyanides, selenium and amines: a practical approach to 2-aminobenzo[d][1,3]selenazines under metal-free conditions. Org Chem Front 2015. [DOI: 10.1039/c5qo00150a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for the construction of 2-aminobenzo[d][1,3]selenazines under metal-free conditions was established.
Collapse
Affiliation(s)
- Yi Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Xiao-Bin Shen
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| |
Collapse
|
45
|
Röhrig UF, Majjigapu SR, Chambon M, Bron S, Pilotte L, Colau D, Van den Eynde BJ, Turcatti G, Vogel P, Zoete V, Michielin O. Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem 2014; 84:284-301. [PMID: 25036789 DOI: 10.1016/j.ejmech.2014.06.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/28/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulator of immune responses and therefore an important therapeutic target for the treatment of diseases that involve pathological immune escape, such as cancer. Here, we describe a robust and sensitive high-throughput screen (HTS) for IDO1 inhibitors using the Prestwick Chemical Library of 1200 FDA-approved drugs and the Maybridge HitFinder Collection of 14,000 small molecules. Of the 60 hits selected for follow-up studies, 14 displayed IC50 values below 20 μM under the secondary assay conditions, and 4 showed an activity in cellular tests. In view of the high attrition rate we used both experimental and computational techniques to identify and to characterize compounds inhibiting IDO1 through unspecific inhibition mechanisms such as chemical reactivity, redox cycling, or aggregation. One specific IDO1 inhibitor scaffold, the imidazole antifungal agents, was chosen for rational structure-based lead optimization, which led to more soluble and smaller compounds with micromolar activity.
Collapse
Affiliation(s)
- Ute F Röhrig
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Somi Reddy Majjigapu
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland; Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Marc Chambon
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sylvian Bron
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Luc Pilotte
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Didier Colau
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Benoît J Van den Eynde
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland; Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland; Ludwig Center for Cancer Research of the University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014; 41:4865-79. [DOI: 10.1007/s11033-014-3417-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Elsherbini M, Hamama WS, Zoorob HH, Bhowmick D, Mugesh G, Wirth T. Synthesis and Antioxidant Activities of Novel Chiral Ebselen Analogues. HETEROATOM CHEMISTRY 2014. [DOI: 10.1002/hc.21164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohamed Elsherbini
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT United Kingdom
- Chemistry Department; Faculty of Science, Mansoura University; Mansoura 35516 Egypt
| | - Wafaa S. Hamama
- Chemistry Department; Faculty of Science, Mansoura University; Mansoura 35516 Egypt
| | - Hanafi H. Zoorob
- Chemistry Department; Faculty of Science, Mansoura University; Mansoura 35516 Egypt
| | - Debasish Bhowmick
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore 560 012 India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore 560 012 India
| | - Thomas Wirth
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT United Kingdom
| |
Collapse
|
48
|
Crystal Structure Studies on Some of Benzamide Ring Substituted Isoselenazolones and Symmetric Diaryl Monoselenides Derived from Benzamides. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2014. [DOI: 10.1007/s40010-014-0129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Becker K, Schroecksnadel S, Gostner J, Zaknun C, Schennach H, Uberall F, Fuchs D. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:164-171. [PMID: 24041614 DOI: 10.1016/j.phymed.2013.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/09/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Oxidative stress is considered to be critically involved in the normal aging process but also in the development and progression of various human pathologies like cardiovascular and neurodegenerative diseases, as well as of infections and malignant tumors. These pathological conditions involve an overwhelming production of reactive oxygen species (ROS), which are released as part of an anti-proliferative strategy during pro-inflammatory immune responses. Moreover, ROS themselves are autocrine forward regulators of the immune response. Most of the beneficial effects of antioxidants are considered to derive from their influence on the immune system. Due to their antioxidant and/or radical scavenging nature, phytochemicals, botanicals and herbal preparations can be of great importance to prevent oxidation processes and to counteract the activation of redox-regulated signaling pathways. Antioxidants can antagonize the activation of T-cells and macrophages during the immune response and this anti-inflammatory activity could be of utmost importance for the treatment of above-mentioned disorders and for the development of immunotolerance. Herein, we provide an overview of in vitro assays for the measurement of antioxidant and anti-inflammatory activities of plant-derived substances and extracts, by discussing possibilities and limitations of these methods. To determine the capacity of antioxidants, the oxygen radical absorbance capacity (ORAC) assay and the cell-based antioxidant activity (CAA) assay are widely applied. To examine the influence of compounds on the human immune response more closely, the model of mitogen stimulated human peripheral blood mononuclear (PBMC) cells can be applied, and the production of the inflammatory marker neopterin as well as the breakdown of the amino acid tryptophan in culture supernatants can be used as readout to indicate an immunomodulatory potential of the tested compound. These two biomarkers of immune system activation are robust and correlate with the course of cardiovascular, neurodegenerative and malignant tumor diseases, but also with the normal aging process, and they are strongly predictive. Thus, while the simpler ORAC and CAA assays provide insight into one peculiar chemical aspect, namely the neutralization of peroxyl radicals, the more complex PBMC assay is closer to the in vivo conditions as the assay comprehensively enlights several properties of immunomodulatory test compounds.
Collapse
Affiliation(s)
- Kathrin Becker
- Division of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | | | - Johanna Gostner
- Division of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Cathrine Zaknun
- Division of Biological Chemistry, Medical University Innsbruck, Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Florian Uberall
- Division of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
50
|
Azad G, Singh V, Mandal P, Singh P, Golla U, Baranwal S, Chauhan S, Tomar RS. Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio 2014; 4:77-89. [PMID: 24490132 PMCID: PMC3907691 DOI: 10.1016/j.fob.2014.01.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/12/2022] Open
Abstract
Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood. We performed biochemical as well as in vivo experiments employing budding yeast as a model organism to understand the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting) assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants such as reduced glutathione (GSH) or N-acetyl-l-cysteine (NAC). Interestingly, a significant increase in ROS levels was noticed in gdh3-deleted cells compared to wild-type cells. Furthermore, we showed that ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inactive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis.
Collapse
Key Words
- CypA, Cyclophilin A
- DCFH-DA, 2,7-dichlorodihydrofluorescein diacetate
- Ebselen
- FACS, florescence activated cell sorting
- GDH, glutamate dehydrogenase
- GSH, glutathione
- Glutamate dehydrogenase
- Histone clipping
- Mitochondrial membrane potential
- NAC, N-acetyl-l-cysteine
- Ni-NTA, nickel-nitrilotriacetic acid
- ROS levels
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- Yeast sporulation
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| |
Collapse
|