1
|
Huang CY, Wang RC, Hsu TS, Hung TN, Shen MY, Chang CH, Wu HC. Developing an E. coli-Based Cell-Free Protein Synthesis System for Artificial Spidroin Production and Characterization. ACS Synth Biol 2025; 14:1829-1842. [PMID: 40256795 PMCID: PMC12090345 DOI: 10.1021/acssynbio.5c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Spider silk spidroins, nature's advanced polymers, have long hampered efficient in vitro production due to their considerable size, repetitive sequences, and aggregation-prone nature. This study harnesses the power of a cell-free protein synthesis (CFPS) system, presenting the first successful in vitro production and detailed characterization of recombinant spider silk major ampullate spidroins (MaSps) utilizing a reformulated and optimizedEscherichia coli based CFPS system. Through systematic optimization, including cell strain engineering via knockout generation, energy sources, crowding agents, and amino acid supplementation, we effectively addressed the specific challenges associated with recombinant spidroin biosynthesis, resulting in high yields of 0.61 mg/mL for MaSp1 (69 kDa) and 0.52 mg/mL for MaSp2 (73 kDa). The synthesized spidroins self-assembled into micelles, facilitating efficient purification compared to in vivo methods, and were further processed into prototype silk fiber products. The functional characterization demonstrated that the purified spidroins maintain essential natural properties, such as phase separation and fiber formation triggered by pH and ions. This tailored CFPS platform also facilitates versatile cosynthesis and serves as an accessible platform for studying the supramolecular coassembly and dynamic interactions among spidroins. This CFPS platform offers a viable alternative to conventional in vivo methods, facilitating innovative approaches for silk protein engineering and biomaterial development in a high-throughput, efficient manner.
Collapse
Affiliation(s)
- Chang-Yen Huang
- Department of Biochemical
Science and Technology, National Taiwan
University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
(ROC)
| | - Ruei-Chi Wang
- Department of Biochemical
Science and Technology, National Taiwan
University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
(ROC)
| | - Tzy-Shyuan Hsu
- Department of Biochemical
Science and Technology, National Taiwan
University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
(ROC)
| | - Tzu-Ning Hung
- Department of Biochemical
Science and Technology, National Taiwan
University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
(ROC)
| | - Ming-Yan Shen
- Department of Biochemical
Science and Technology, National Taiwan
University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
(ROC)
| | - Chung-Heng Chang
- Department of Biochemical
Science and Technology, National Taiwan
University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
(ROC)
| | - Hsuan-Chen Wu
- Department of Biochemical
Science and Technology, National Taiwan
University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
(ROC)
| |
Collapse
|
2
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Sato G, Miyazawa S, Doi N, Fujiwara K. Cell-Free Protein Expression by a Reconstituted Transcription-Translation System Energized by Sugar Catabolism. Molecules 2024; 29:2956. [PMID: 38998908 PMCID: PMC11243612 DOI: 10.3390/molecules29132956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Cooperation between catabolism and anabolism is crucial for maintaining homeostasis in living cells. The most fundamental systems for catabolism and anabolism are the glycolysis of sugars and the transcription-translation (TX-TL) of DNA, respectively. Despite their importance in living cells, the in vitro reconstitution of their cooperation through purified factors has not been achieved, which hinders the elucidation of the design principle in living cells. Here, we reconstituted glycolysis using sugars and integrated it with the PURE system, a commercial in vitro TX-TL kit composed of purified factors. By optimizing key parameters, such as glucokinase and initial phosphate concentrations, we determined suitable conditions for their cooperation. The optimized system showed protein synthesis at up to 33% of that of the original PURE system. We observed that ATP consumption in upstream glycolysis inhibits TX-TL and that this inhibition can be alleviated by the co-addition of glycolytic intermediates, such as glyceraldehyde 3-phosphate, with glucose. Moreover, the system developed here simultaneously synthesizes a subset of its own enzymes, that is, glycolytic enzymes, in a single test tube, which is a necessary step toward self-replication. As glycolysis and TX-TL provide building blocks for constructing cells, the integrated system can be a fundamental material for reconstituting living cells from purified factors.
Collapse
Affiliation(s)
- Gaku Sato
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Shintaro Miyazawa
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Sabukunze S, Gu H, Zhao L, Jia H, Guo H. Comparison of the performance of SAG2, GRA6, and GRA7 for serological diagnosis of Toxoplasma gondii infection in cats. Front Vet Sci 2024; 11:1423581. [PMID: 38898997 PMCID: PMC11186378 DOI: 10.3389/fvets.2024.1423581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Toxoplasmosis is an important zoonotic disease caused by Toxoplasma gondii that can infect almost all warm-blooded animals worldwide, including humans. The high prevalence of T. gondii infection and its ability to cause serious harm to humans and animals, especially immunodeficient individuals, make it a key public health issue. Accurate diagnostic tools with high sensitivity are needed for controlling T. gondii infection. In the current study, we compared the performance of recombinant SAG2, GRA6, and GRA7 in ELISA for the serological diagnosis of T. gondii infection in cats. We further investigated the antigenicity of recombinant dense granule protein 3 (rGRA3), rGRA5, rGRA8, and rSRS29A expressed in a plant-based, cell-free expression system for detecting antibodies in T. gondii-infected cats. In summary, our data suggest that GRA7 is more sensitive than the other two antigens for the serodiagnosis of T. gondii infection in cats, and GRA3 expressed in the cell-free system is also a priming antigen in serological tests for detecting T. gondii infection in cats.
Collapse
Affiliation(s)
- Serges Sabukunze
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haorong Gu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Honglin Jia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huanping Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Schloßhauer JL, Dondapati SK, Kubick S, Zemella A. A Cost-Effective Pichia pastoris Cell-Free System Driven by Glycolytic Intermediates Enables the Production of Complex Eukaryotic Proteins. Bioengineering (Basel) 2024; 11:92. [PMID: 38247969 PMCID: PMC10813726 DOI: 10.3390/bioengineering11010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-free systems are particularly attractive for screening applications and the production of difficult-to-express proteins. However, the production of cell lysates is difficult to implement on a larger scale due to large time requirements, cultivation costs, and the supplementation of cell-free reactions with energy regeneration systems. Consequently, the methylotrophic yeast Pichia pastoris, which is widely used in recombinant protein production, was utilized in the present study to realize cell-free synthesis in a cost-effective manner. Sensitive disruption conditions were evaluated, and appropriate signal sequences for translocation into ER vesicles were identified. An alternative energy regeneration system based on fructose-1,6-bisphosphate was developed and a ~2-fold increase in protein production was observed. Using a statistical experiment design, the optimal composition of the cell-free reaction milieu was determined. Moreover, functional ion channels could be produced, and a G-protein-coupled receptor was site-specifically modified using the novel cell-free system. Finally, the established P. pastoris cell-free protein production system can economically produce complex proteins for biotechnological applications in a short time.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, 14469 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| |
Collapse
|
6
|
Hunt JP, Free TJ, Galiardi J, Watt KM, Wood DW, Bundy BC. Streamlining the Detection of Human Thyroid Receptor Ligand Interactions with XL1-Blue Cell-Free Protein Synthesis and Beta-Galactosidase Fusion Protein Biosensors. Life (Basel) 2023; 13:1972. [PMID: 37895354 PMCID: PMC10608756 DOI: 10.3390/life13101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid receptor signaling controls major physiological processes and disrupted signaling can cause severe disorders that negatively impact human life. Consequently, methods to detect thyroid receptor ligands are of great toxicologic and pharmacologic importance. Previously, we reported thyroid receptor ligand detection with cell-free protein synthesis of a chimeric fusion protein composed of the human thyroid receptor beta (hTRβ) receptor activator and a β-lactamase reporter. Here, we report a 60% reduction in sensing cost by reengineering the chimeric fusion protein biosensor to include a reporter system composed of either the full-length beta galactosidase (β-gal), the alpha fragment of β-gal (β-gal-α), or a split alpha fragment of the β-gal (split β-gal-α). These biosensor constructs are deployed using E. coli XL1-Blue cell extract to (1) avoid the β-gal background activity abundant in BL21 cell extract and (2) facilitate β-gal complementation reporter activity to detect human thyroid receptor ligands. These results constitute a promising platform for high throughput screening and potentially the portable detection of human thyroid receptor ligands.
Collapse
Affiliation(s)
- J. Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Tyler J. Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Jackelyn Galiardi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kevin M. Watt
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - David W. Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
7
|
Stark JC, Jaroentomeechai T, Warfel KF, Hershewe JM, DeLisa MP, Jewett MC. Rapid biosynthesis of glycoprotein therapeutics and vaccines from freeze-dried bacterial cell lysates. Nat Protoc 2023:10.1038/s41596-022-00799-z. [PMID: 37328605 DOI: 10.1038/s41596-022-00799-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/22/2022] [Indexed: 06/18/2023]
Abstract
The advent of distributed biomanufacturing platforms promises to increase agility in biologic production and expand access by reducing reliance on refrigerated supply chains. However, such platforms are not capable of robustly producing glycoproteins, which represent the majority of biologics approved or in development. To address this limitation, we developed cell-free technologies that enable rapid, modular production of glycoprotein therapeutics and vaccines from freeze-dried Escherichia coli cell lysates. Here, we describe a protocol for generation of cell-free lysates and freeze-dried reactions for on-demand synthesis of desired glycoproteins. The protocol includes construction and culture of the bacterial chassis strain, cell-free lysate production, assembly of freeze-dried reactions, cell-free glycoprotein synthesis, and glycoprotein characterization, all of which can be completed in one week or less. We anticipate that cell-free technologies, along with this comprehensive user manual, will help accelerate development and distribution of glycoprotein therapeutics and vaccines.
Collapse
Affiliation(s)
- Jessica C Stark
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Simpson-Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Warfel K, Williams A, Wong DA, Sobol SE, Desai P, Li J, Chang YF, DeLisa MP, Karim AS, Jewett MC. A Low-Cost, Thermostable, Cell-Free Protein Synthesis Platform for On-Demand Production of Conjugate Vaccines. ACS Synth Biol 2023; 12:95-107. [PMID: 36548479 PMCID: PMC9872175 DOI: 10.1021/acssynbio.2c00392] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Cell-free protein synthesis systems that can be lyophilized for long-term, non-refrigerated storage and transportation have the potential to enable decentralized biomanufacturing. However, increased thermostability and decreased reaction cost are necessary for further technology adoption. Here, we identify maltodextrin as an additive to cell-free reactions that can act as both a lyoprotectant to increase thermostability and a low-cost energy substrate. As a model, we apply optimized formulations to produce conjugate vaccines for ∼$0.50 per dose after storage at room temperature (∼22 °C) or 37 °C for up to 4 weeks, and ∼$1.00 per dose after storage at 50 °C for up to 4 weeks, with costs based on raw materials purchased at the laboratory scale. We show that these conjugate vaccines generate bactericidal antibodies against enterotoxigenic Escherichia coli (ETEC) O78 O-polysaccharide, a pathogen responsible for diarrheal disease, in immunized mice. We anticipate that our low-cost, thermostable cell-free glycoprotein synthesis system will enable new models of medicine biosynthesis and distribution that bypass cold-chain requirements.
Collapse
Affiliation(s)
- Katherine
F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Asher Williams
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 United States
| | - Derek A. Wong
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Sarah E. Sobol
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Primit Desai
- Biochemistry,
Molecular & Cell Biology, Cornell University, Ithaca, New York 14853 United States
| | - Jie Li
- Department
of Population Medicine and Diagnostic Sciences, College of Veterinary
Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Yung-Fu Chang
- Department
of Population Medicine and Diagnostic Sciences, College of Veterinary
Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 United States
- Biochemistry,
Molecular & Cell Biology, Cornell University, Ithaca, New York 14853 United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853 United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, 676 North
Saint Clair Street, Suite 1200, Chicago, Illinois 60611, United States
- Simpson
Querrey Institute, Northwestern University, 303 East Superior Street, Suite
11-131, Chicago, Illinois 60611, United States
| |
Collapse
|
9
|
Yue K, Li Y, Cao M, Shen L, Gu J, Kai L. Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:1-20. [PMID: 37526707 DOI: 10.1007/10_2023_232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Technical advances in biotechnology have greatly accelerated the development of bottom-up synthetic biology. Unlike top-down approaches, bottom-up synthetic biology focuses on the construction of a minimal cell from scratch and the application of these principles to solve challenges. Cell-free protein synthesis (CFPS) systems provide minimal machinery for transcription and translation, from either a fractionated cell lysate or individual purified protein elements, thus speeding up the development of synthetic cell projects. In this review, we trace the history of the cell-free technique back to the first in vitro fermentation experiment using yeast cell lysate. Furthermore, we summarized progresses of individual cell mimicry modules, such as compartmentalization, gene expression regulation, energy regeneration and metabolism, growth and division, communication, and motility. Finally, current challenges and future perspectives on the field are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingsheng Gu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
10
|
Dong X, Qi S, Khan IM, Sun Y, Zhang Y, Wang Z. Advances in riboswitch-based biosensor as food samples detection tool. Compr Rev Food Sci Food Saf 2023; 22:451-472. [PMID: 36511082 DOI: 10.1111/1541-4337.13077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Food safety has always been a hot issue of social concern, and biosensing has been widely used in the field of food safety detection. Compared with traditional aptamer-based biosensors, aptamer-based riboswitch biosensing represents higher precision and programmability. A riboswitch is an elegant example of controlling gene expression, where the target is coupled to the aptamer domain, resulting in a conformational change in the downstream expression domain and determining the signal output. Riboswitch-based biosensing can be extensively applied to the portable real-time detection of food samples. The numerous key features of riboswitch-based biosensing emphasize their sustainability, renewable, and testing, which promises to transform engineering applications in the field of food safety. This review covers recent developments in riboswitch-based biosensors. The brief history, definition, and modular design (regulatory mode, reporter, and expression platform) of riboswitch-based biosensors are explained for better insight into the design and construction. We summarize recent advances in various riboswitch-based biosensors involving theophylline, malachite green, tetracycline, neomycin, fluoride, thrombin, naringenin, ciprofloxacin, and paromomycin, aiming to provide general guidance for the design of riboswitch-based biosensors. Finally, the challenges and prospects are also summarized as a way forward stratagem and signs of progress.
Collapse
Affiliation(s)
- Xiaoze Dong
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative innovation center of food safety and quality control in Jiangsu Province, Food, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Ranji Charna A, Des Soye BJ, Ntai I, Kelleher NL, Jewett MC. An efficient cell-free protein synthesis platform for producing proteins with pyrrolysine-based noncanonical amino acids. Biotechnol J 2022; 17:e2200096. [PMID: 35569121 PMCID: PMC9452482 DOI: 10.1002/biot.202200096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Incorporation of noncanonical amino acids (ncAAs) into proteins opens new opportunities in biotechnology and synthetic biology. Pyrrolysine (Pyl)-based ncAAs are some of the most predominantly used, but expression systems suffer from low yields. Here, we report a highly efficient cell-free protein synthesis (CFPS) platform for site-specific incorporation of Pyl-based ncAAs into proteins using amber suppression. This platform is based on cellular extracts derived from genomically recoded Escherichia coli lacking release factor 1 and enhanced through deletion of endonuclease A. To enable ncAA incorporation, orthogonal translation system (OTS) components (i.e., the orthogonal transfer RNA [tRNA] and orthogonal aminoacyl tRNA synthetase) were coexpressed in the source strain prior to lysis and the orthogonal tRNACUA Pyl that decodes the amber codon was further enriched in the CFPS reaction via co-synthesis with the product. Using this platform, we demonstrate production of up to 442 ± 23 µg/mL modified superfolder green fluorescent protein (sfGFP) containing a single Pyl-based ncAA at high (>95%) suppression efficiency, as well as sfGFP variants harboring multiple, identical ncAAs. Our CFPS platform can be used for the synthesis of modified proteins containing multiple precisely positioned, genetically encoded Pyl-based ncAAs. We anticipate that it will facilitate more general use of CFPS in synthetic biology.
Collapse
Affiliation(s)
- Arnaz Ranji Charna
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Benjamin J Des Soye
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Ioanni Ntai
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Guzman-Chavez F, Arce A, Adhikari A, Vadhin S, Pedroza-Garcia JA, Gandini C, Ajioka JW, Molloy J, Sanchez-Nieto S, Varner JD, Federici F, Haseloff J. Constructing Cell-Free Expression Systems for Low-Cost Access. ACS Synth Biol 2022; 11:1114-1128. [PMID: 35259873 PMCID: PMC9098194 DOI: 10.1021/acssynbio.1c00342] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Cell-free systems for gene expression have gained attention as platforms for the facile study of genetic circuits and as highly effective tools for teaching. Despite recent progress, the technology remains inaccessible for many in low- and middle-income countries due to the expensive reagents required for its manufacturing, as well as specialized equipment required for distribution and storage. To address these challenges, we deconstructed processes required for cell-free mixture preparation and developed a set of alternative low-cost strategies for easy production and sharing of extracts. First, we explored the stability of cell-free reactions dried through a low-cost device based on silica beads, as an alternative to commercial automated freeze dryers. Second, we report the positive effect of lactose as an additive for increasing protein synthesis in maltodextrin-based cell-free reactions using either circular or linear DNA templates. The modifications were used to produce active amounts of two high-value reagents: the isothermal polymerase Bst and the restriction enzyme BsaI. Third, we demonstrated the endogenous regeneration of nucleoside triphosphates and synthesis of pyruvate in cell-free systems (CFSs) based on phosphoenol pyruvate (PEP) and maltodextrin (MDX). We exploited this novel finding to demonstrate the use of a cell-free mixture completely free of any exogenous nucleotide triphosphates (NTPs) to generate high yields of sfGFP expression. Together, these modifications can produce desiccated extracts that are 203-424-fold cheaper than commercial versions. These improvements will facilitate wider use of CFS for research and education purposes.
Collapse
Affiliation(s)
| | - Anibal Arce
- ANID
− Millennium Institute for Integrative Biology (iBio), FONDAP
Center for Genome Regulation, Institute for Biological and Medical
Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Abhinav Adhikari
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sandra Vadhin
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jose Antonio Pedroza-Garcia
- Department
of Biochemistry, Faculty of Chemistry, National
Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Chiara Gandini
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0FD Cambridge, U.K.
| | - Jim W. Ajioka
- Department
of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, U.K.
| | - Jenny Molloy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0FD Cambridge, U.K.
| | - Sobeida Sanchez-Nieto
- Department
of Biochemistry, Faculty of Chemistry, National
Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Jeffrey D. Varner
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernan Federici
- ANID
− Millennium Institute for Integrative Biology (iBio), FONDAP
Center for Genome Regulation, Institute for Biological and Medical
Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Jim Haseloff
- Department
of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, U.K.
| |
Collapse
|
13
|
Bartzoka N, Loan TD, Onagi H, Alissandratos A. A Simple Recombinant E. coli Cell Lysate-Based Biocatalyst for ATP-Dependent Multi-step Reactions. Methods Mol Biol 2022; 2487:297-315. [PMID: 35687243 DOI: 10.1007/978-1-0716-2269-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The utility of ATP-dependent multi-enzymatic reactions is limited by their requirement for stoichiometric amounts of this expensive cofactor or additional purified enzymes for its recycling. Here we describe a simple method for the production of recombinant cell-free extracts (or lysates) of E. coli that support ATP-dependent biotransformations. The inexpensive preparation described is obtained with modest processing from a single recombinant bacterial culture of E. coli. In addition to recombinantly overexpressed enzymes that catalyze the primary ATP-dependent reactions of interest, endogenous kinases that are naturally present in the extract catalyze recycling of the requisite ATP. This means that only catalytic amounts of cofactor are necessary to drive the biotransformation, and without the requirement for additional purified enzymes. This approach has been applied successfully to an array of in vitro enzymatic cascades with multiple ATP-dependent steps.
Collapse
Affiliation(s)
- Natalia Bartzoka
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas D Loan
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Apostolos Alissandratos
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
- CSIRO Synthetic Biology Future Science Platform, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
14
|
Guidelines for nucleic acid template design for optimal cell-free protein synthesis using an Escherichia coli reconstituted system or a lysate-based system. Methods Enzymol 2021; 659:351-369. [PMID: 34752294 DOI: 10.1016/bs.mie.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free protein synthesis is an attractive method for generating enzyme/protein variants for simplified functional analysis as both in vitro protein expression and analysis may often be performed in a single vial or well. Today, researchers may choose from multiple commercial cell lysate products or reconstituted systems which are compatible with either mRNA, linear DNA or plasmid DNA templates. Here we provide guidance for optimal design of the genetic elements within linear and plasmid DNA templates which are required to reliably practice cell-free protein synthesis. Protocols are presented for generating linear DNA templates, and data are presented to show that linear DNA templates may in many cases provide robust protein yields even when employing an Escherichia coli lysate for protein synthesis. Finally, the use of linear DNA templates makes it possible to bypass all cell cultivation steps and proceed from PCR amplification of synthetic DNA to generation of target protein in a matter of hours.
Collapse
|
15
|
Hershewe JM, Warfel KF, Iyer SM, Peruzzi JA, Sullivan CJ, Roth EW, DeLisa MP, Kamat NP, Jewett MC. Improving cell-free glycoprotein synthesis by characterizing and enriching native membrane vesicles. Nat Commun 2021; 12:2363. [PMID: 33888690 PMCID: PMC8062659 DOI: 10.1038/s41467-021-22329-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery. As a model, we focus on bacterial glycoengineering. We first use multiple, orthogonal techniques to characterize vesicles and show how extract processing methods can be used to increase concentrations of membrane vesicles in CFE systems. Then, we show that extracts enriched in vesicle number also display enhanced concentrations of heterologous membrane protein cargo. Finally, we apply our methods to enrich membrane-bound oligosaccharyltransferases and lipid-linked oligosaccharides for improving cell-free N-linked and O-linked glycoprotein synthesis. We anticipate that these methods will facilitate on-demand glycoprotein production and enable new CFE systems with membrane-associated activities.
Collapse
Affiliation(s)
- Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Shaelyn M Iyer
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Claretta J Sullivan
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization and Experimentation (NUANCE) Center, Tech Institute A/B Wing A173, Evanston, IL, 60208, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Neha P Kamat
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Technological Institute E310, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
16
|
Development of a robust Escherichia coli-based cell-free protein synthesis application platform. Biochem Eng J 2020; 165:107830. [PMID: 33100890 PMCID: PMC7568173 DOI: 10.1016/j.bej.2020.107830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
A robust cell-free protein synthesis platform has been developed. Engineering strategies were explored to improve the synthesis efficiency. The platform has been applied in prototyping, screening and on-demand synthesis.
Since the cell-free protein synthesis system is not limited by the cell growth, all the substrates are used to produce the protein of interest, and the reaction environment can be flexibly controlled. All the advantages allow it to synthesize toxic proteins, membrane proteins, and unnatural proteins that are difficult to make in vivo. However, one typical reason why the cell-free system has not been widely accepted as a practical alternative, is its expression efficiency problem. The Escherichia coli-based system was chosen in this study, and the model protein deGFP was expressed to explore a more efficient cell-free system. The results showed that Mg2+ with a concentration of 15 mM in the cell-free system with BL21 Star (DE3) as the extract could better synthesize protein. The smaller the vectors, the lighter the burden, the higher the protein synthesis. Simulating the crowding effect in the cell does not improve the protein expression efficiency of the optimized cell-free protein synthesis system. Based on the optimized system, the cell-free fundamental research platform, primary screening platform, and portable biomolecular synthesis platform were established. This study provides a robust cell-free protein synthesis toolbox with easy extract preparation and high protein yield. It also enables more researchers to reap the benefits from the cell-free biosynthesis platform.
Collapse
|
17
|
Liu R, Zhang Y, Zhai G, Fu S, Xia Y, Hu B, Cai X, Zhang Y, Li Y, Deng Z, Liu T. A Cell-Free Platform Based on Nisin Biosynthesis for Discovering Novel Lanthipeptides and Guiding their Overproduction In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001616. [PMID: 32995136 PMCID: PMC7507342 DOI: 10.1002/advs.202001616] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Indexed: 05/12/2023]
Abstract
Lanthipeptides have extensive therapeutic and industrial applications. However, because many are bactericidal, traditional in vivo platforms are limited in their capacity to discover and mass produce novel lanthipeptides as bacterial organisms are often critical components in these systems. Herein, the development of a cell-free protein synthesis (CFPS) platform that enables rapid genome mining, screening, and guided overproduction of lanthipeptides in vivo is described. For proof-of-concept studies, a type I lanthipeptide, nisin, is selected. Four novel lanthipeptides with antibacterial activity are identified among all nisin analogs in the National Center for Biotechnology Information (NCBI) database in a single day. Further, the CFPS platform is coupled with a screening assay for anti-gram-negative bacteria growth, resulting in the identification of a potent nisin mutant, M5. The titers of nisin and the nisin analog are found to be improved with CFPS platform guidance. Owing to the similarities in biosynthesis, the CFPS platform is broadly applicable to other lanthipeptides, thereby providing a universal method for lanthipeptide discovery and overproduction.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Guoqing Zhai
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Shuai Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Yao Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Xuan Cai
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Yan Zhang
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Yan Li
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan430075China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan430075China
| |
Collapse
|
18
|
Abstract
Cell-free systems are a widely used research tool in systems and synthetic biology and a promising platform for manufacturing of proteins and chemicals. In the past, cell-free biology was primarily used to better understand fundamental biochemical processes. Notably, E. coli cell-free extracts were used in the 1960s to decipher the sequencing of the genetic code. Since then, the transcription and translation capabilities of cell-free systems have been repeatedly optimized to improve energy efficiency and product yield. Today, cell-free systems, in combination with the rise of synthetic biology, have taken on a new role as a promising technology for just-in-time manufacturing of therapeutically important biologics and high-value small molecules. They have also been implemented at an industrial scale for the production of antibodies and cytokines. In this review, we discuss the evolution of cell-free technologies, in particular advancements in extract preparation, cell-free protein synthesis, and cell-free metabolic engineering applications. We then conclude with a discussion of the mathematical modeling of cell-free systems. Mathematical modeling of cell-free processes could be critical to addressing performance bottlenecks and estimating the costs of cell-free manufactured products.
Collapse
|
19
|
Abstract
Proteins are the main source of drug targets and some of them possess therapeutic potential themselves. Among them, membrane proteins constitute approximately 50% of the major drug targets. In the drug discovery pipeline, rapid methods for producing different classes of proteins in a simple manner with high quality are important for structural and functional analysis. Cell-free systems are emerging as an attractive alternative for the production of proteins due to their flexible nature without any cell membrane constraints. In a bioproduction context, open systems based on cell lysates derived from different sources, and with batch-to-batch consistency, have acted as a catalyst for cell-free synthesis of target proteins. Most importantly, proteins can be processed for downstream applications like purification and functional analysis without the necessity of transfection, selection, and expansion of clones. In the last 5 years, there has been an increased availability of new cell-free lysates derived from multiple organisms, and their use for the synthesis of a diverse range of proteins. Despite this progress, major challenges still exist in terms of scalability, cost effectiveness, protein folding, and functionality. In this review, we present an overview of different cell-free systems derived from diverse sources and their application in the production of a wide spectrum of proteins. Further, this article discusses some recent progress in cell-free systems derived from Chinese hamster ovary and Sf21 lysates containing endogenous translocationally active microsomes for the synthesis of membrane proteins. We particularly highlight the usage of internal ribosomal entry site sequences for more efficient protein production, and also the significance of site-specific incorporation of non-canonical amino acids for labeling applications and creation of antibody drug conjugates using cell-free systems. We also discuss strategies to overcome the major challenges involved in commercializing cell-free platforms from a laboratory level for future drug development.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
20
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Ma W, Liu J, Xin Y, Yang X, Li R, Ding X, Niu Y, Xu Y. Clinically colorimetric diagnostics of blood glucose levels based on vanadium oxide quantum dots enzyme mimics. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Alissandratos A. In vitro multi-enzymatic cascades using recombinant lysates of E. coli: an emerging biocatalysis platform. Biophys Rev 2020; 12:175-182. [PMID: 31960346 PMCID: PMC7040066 DOI: 10.1007/s12551-020-00618-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 11/26/2022] Open
Abstract
In recent years, cell-free extracts (or lysates) have (re-)emerged as a third route to the traditional options of isolated or whole-cell biocatalysts. Advances in molecular biology and genetic engineering enable facile production of recombinant cell-free extracts, where endogenous enzymes are enriched with heterologous activities. These inexpensive preparations may be used to catalyse multistep enzymatic reactions without the constraints of cell toxicity and the cell membrane or the cost and complexity associated with production of isolated biocatalysts. Herein, we present an overview of the key advancements in cell-free synthetic biology that have led to the emergence of cell-free extracts as a promising biocatalysis platform.
Collapse
Affiliation(s)
- Apostolos Alissandratos
- Research School of Chemistry, The Australian National University, ACT, Canberra, 2601, Australia.
- CSIRO Synthetic Biology Future Science Platform, The Australian National University, ACT, Canberra, 2601, Australia.
| |
Collapse
|
23
|
Escherichia coli Extract-Based Cell-Free Expression System as an Alternative for Difficult-to-Obtain Protein Biosynthesis. Int J Mol Sci 2020; 21:ijms21030928. [PMID: 32023820 PMCID: PMC7037961 DOI: 10.3390/ijms21030928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Before utilization in biomedical diagnosis, therapeutic treatment, and biotechnology, the diverse variety of peptides and proteins must be preliminarily purified and thoroughly characterized. The recombinant DNA technology and heterologous protein expression have helped simplify the isolation of targeted polypeptides at high purity and their structure-function examinations. Recombinant protein expression in Escherichia coli, the most-established heterologous host organism, has been widely used to produce proteins of commercial and fundamental research interests. Nonetheless, many peptides/proteins are still difficult to express due to their ability to slow down cell growth or disrupt cellular metabolism. Besides, special modifications are often required for proper folding and activity of targeted proteins. The cell-free (CF) or in vitro recombinant protein synthesis system enables the production of such difficult-to-obtain molecules since it is possible to adjust reaction medium and there is no need to support cellular metabolism and viability. Here, we describe E. coli-based CF systems, the optimization steps done toward the development of highly productive and cost-effective CF methodology, and the modification of an in vitro approach required for difficult-to-obtain protein production.
Collapse
|
24
|
Horvath N, Vilkhovoy M, Wayman JA, Calhoun K, Swartz J, Varner JD. Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in Escherichia coli. Metab Eng Commun 2019; 10:e00113. [PMID: 32280586 PMCID: PMC7136494 DOI: 10.1016/j.mec.2019.e00113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 11/09/2022] Open
Abstract
In this study, we developed a dynamic mathematical model of E. coli cell-free protein synthesis (CFPS). Model parameters were estimated from a dataset consisting of glucose, organic acids, energy species, amino acids, and protein product, chloramphenicol acetyltransferase (CAT) measurements. The model was successfully trained to simulate these measurements, especially those of the central carbon metabolism. We then used the trained model to evaluate the performance, e.g., the yield and rates of protein production. CAT was produced with an energy efficiency of 12%, suggesting that the process could be further optimized. Reaction group knockouts showed that protein productivity was most sensitive to the oxidative phosphorylation and glycolysis/gluconeogenesis pathways. Amino acid biosynthesis was also important for productivity, while overflow metabolism and TCA cycle affected the overall system state. In addition, translation was more important to productivity than transcription. Finally, CAT production was robust to allosteric control, as were most of the predicted metabolite concentrations; the exceptions to this were the concentrations of succinate and malate, and to a lesser extent pyruvate and acetate, which varied from the measured values when allosteric control was removed. This study is the first to use kinetic modeling to predict dynamic protein production in a cell-free E. coli system, and could provide a foundation for genome scale, dynamic modeling of cell-free E. coli protein synthesis. Protein production is biphasic, powered initially by glucose and later by pyruvate. Protein is produced with an energy efficiency of only 12%. Protein productivity is most sensitive to oxidative phosphorylation and glycolysis. Protein production is robust to allosteric control.
Collapse
Affiliation(s)
- Nicholas Horvath
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Michael Vilkhovoy
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joseph A Wayman
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Kara Calhoun
- School of Chemical Engineering, Stanford University, Stanford, CA, 94395, USA
| | - James Swartz
- School of Chemical Engineering, Stanford University, Stanford, CA, 94395, USA
| | - Jeffrey D Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
25
|
Dopp JL, Jo YR, Reuel NF. Methods to reduce variability in E. Coli-based cell-free protein expression experiments. Synth Syst Biotechnol 2019; 4:204-211. [PMID: 31750411 PMCID: PMC6849339 DOI: 10.1016/j.synbio.2019.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) is an established biotechnology tool that has shown great utility in many applications such as prototyping proteins, building genetic circuits, designing biosensors, and expressing cytotoxic proteins. Although CFPS has been widely deployed, the many, varied methods presented in the literature can be challenging for new users to adopt. From our experience and others who newly enter the field, one of the most frustrating aspects of applying CFPS as a laboratory can be the large levels of variability that are present within experimental replicates. Herein we provide a retrospective summary of CFPS methods that reduce variability significantly. These methods include optimized extract preparation, fully solubilizing the master mix components, and careful mixing of the reaction. These have reduced our coefficient of variation from 97.3% to 1.2%. Moreover, these methods allow complete novices (e.g. semester rotation undergraduate students) to provide data that is comparable to experienced users, thus allowing broader participation in this exciting research area.
Collapse
|
26
|
Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 2019; 21:151-170. [DOI: 10.1038/s41576-019-0186-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
|
27
|
Abstract
Cell-free protein synthesis (CFPS) has become an established tool for rapid protein synthesis in order to accelerate the discovery of new enzymes and the development of proteins with improved characteristics. Over the past years, progress in CFPS system preparation has been made towards simplification, and many applications have been developed with regard to tailor-made solutions for specific purposes. In this review, various preparation methods of CFPS systems are compared and the significance of individual supplements is assessed. The recent applications of CFPS are summarized and the potential for biocatalyst development discussed. One of the central features is the high-throughput synthesis of protein variants, which enables sophisticated approaches for rapid prototyping of enzymes. These applications demonstrate the contribution of CFPS to enhance enzyme functionalities and the complementation to in vivo protein synthesis. However, there are different issues to be addressed, such as the low predictability of CFPS performance and transferability to in vivo protein synthesis. Nevertheless, the usage of CFPS for high-throughput enzyme screening has been proven to be an efficient method to discover novel biocatalysts and improved enzyme variants.
Collapse
|
28
|
Dopp JL, Rothstein SM, Mansell TJ, Reuel NF. Rapid prototyping of proteins: Mail order gene fragments to assayable proteins within 24 hours. Biotechnol Bioeng 2019; 116:667-676. [DOI: 10.1002/bit.26912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/08/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jared Lynn Dopp
- Iowa State University Chemical and Biological EngineeringAmes Iowa
| | | | | | | |
Collapse
|
29
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
30
|
Caschera F, Karim AS, Gazzola G, d’Aquino AE, Packard NH, Jewett MC. High-Throughput Optimization Cycle of a Cell-Free Ribosome Assembly and Protein Synthesis System. ACS Synth Biol 2018; 7:2841-2853. [PMID: 30354075 DOI: 10.1021/acssynbio.8b00276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Building variant ribosomes offers opportunities to reveal fundamental principles underlying ribosome biogenesis and to make ribosomes with altered properties. However, cell viability limits mutations that can be made to the ribosome. To address this limitation, the in vitro integrated synthesis, assembly and translation (iSAT) method for ribosome construction from the bottom up was recently developed. Unfortunately, iSAT is complex, costly, and laborious to researchers, partially due to the high cost of reaction buffer containing over 20 components. In this study, we develop iSAT in Escherichia coli BL21Rosetta2 cell lysates, a commonly used bacterial strain, with a cost-effective poly sugar and nucleotide monophosphate-based metabolic scheme. We achieved a 10-fold increase in protein yield over our base case with an evolutionary design of experiments approach, screening 490 reaction conditions to optimize the reaction buffer. The computationally guided, cell-free, high-throughput technology presented here augments the way we approach multicomponent synthetic biology projects and efforts to repurpose ribosomes.
Collapse
Affiliation(s)
| | | | - Gianluca Gazzola
- Rutgers Center for Operations Research, Rutgers Business School, 100 Rockafeller Road, Piscataway, New Jersey 08854, United States
| | | | - Norman H. Packard
- ProtoLife, Inc., 57 Post Street Suite 908, San Francisco, California 94104, United States
| | - Michael C. Jewett
- Rutgers Center for Operations Research, Rutgers Business School, 100 Rockafeller Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
31
|
Expanding biological applications using cell-free metabolic engineering: An overview. Metab Eng 2018; 50:156-172. [PMID: 30367967 DOI: 10.1016/j.ymben.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/21/2022]
Abstract
Expanding the concept of cell-free biology, implemented both with purified components and crude extracts, is continuing to deepen our appreciation of biological fundamentals while enlarging the range of applications. We are no longer intimidated by the complexity of crude extracts and complicated reaction systems with hundreds of active components, and, instead, coordinately activate and inactivate metabolic processes to focus and expand the capabilities of natural biological processes. This, in turn, dramatically increases the range of benefits offered by new products, both natural and supernatural, that were previously infeasible and/or unimaginable. This overview of cell-free metabolic engineering provides a broad range of examples and insights to guide and motivate continued research that will further expand fundamental understanding and beneficial applications. However, this survey also reveals how far we are from fully unlocking the potential offered by natural and engineered biological components and systems. This is an exciting conclusion, but metabolic engineering by itself is not sufficient. Going forward, innovative metabolic engineering must be intimately combined with creative process engineering to fully realize potential contributions toward a sustainable global civilization.
Collapse
|
32
|
Loan TD, Easton CJ, Alissandratos A. Recombinant cell-lysate-catalysed synthesis of uridine-5'-triphosphate from nucleobase and ribose, and without addition of ATP. N Biotechnol 2018; 49:104-111. [PMID: 30347258 DOI: 10.1016/j.nbt.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Nucleoside triphosphates (NTPs) are important synthetic targets with diverse applications in therapeutics and diagnostics. Enzymatic routes to NTPs from simple building blocks are attractive, however the cost and complexity of assembling the requisite mixtures of multiple enzymes hinders application. Here, we describe the use of an engineered E. coli cell-free lysate as an efficient readily-prepared multi-enzyme biocatalyst for the production of uridine triphosphate (UTP) from free ribose and nucleobase. Endogenous lysate enzymes are able to support the nucleobase ribosylation and nucleotide phosphorylation steps, while uridine phosphorylation and the production of ribose phosphates (ribose 1-phosphate, ribose 5-phosphate and phosphoribosyl pyrophosphate) require recombinant enrichment of endogenous activities. Co-expression vectors encoding all required recombinant enzymes were employed for host cell transformation, such that a cell-free lysate with all necessary activities was obtained from a single bacterial culture. ATP required as phosphorylation cofactor was recycled by endogenous lysate enzymes using cheap, readily-prepared acetyl phosphate. Surprisingly, acetyl phosphate initiated spontaneous generation of ATP in the lysate, most likely from the breakdown of endogenous pools of adenosine-containing starting materials (e.g. adenosine cofactors, ribonucleic acids). The sub-stoichiometric amount of ATP produced and recycled in this way was enough to support all ATP-dependent steps without addition of any exogenous cofactor or auxiliary enzyme. Using this approach, equimolar solutions of orotic acid and ribose are transformed near quantitatively into 1.4 g L-1 UTP within 2.5 h, using a low-cost, readily-generated biocatalytic preparation.
Collapse
Affiliation(s)
- Thomas D Loan
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Apostolos Alissandratos
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
33
|
Vilkhovoy M, Horvath N, Shih CH, Wayman JA, Calhoun K, Swartz J, Varner JD. Sequence Specific Modeling of E. coli Cell-Free Protein Synthesis. ACS Synth Biol 2018; 7:1844-1857. [PMID: 29944340 DOI: 10.1021/acssynbio.7b00465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell-free protein synthesis (CFPS) is a widely used research tool in systems and synthetic biology. However, if CFPS is to become a mainstream technology for applications such as point of care manufacturing, we must understand the performance limits and costs of these systems. Toward this question, we used sequence specific constraint based modeling to evaluate the performance of E. coli cell-free protein synthesis. A core E. coli metabolic network, describing glycolysis, the pentose phosphate pathway, energy metabolism, amino acid biosynthesis, and degradation was augmented with sequence specific descriptions of transcription and translation and effective models of promoter function. Model parameters were largely taken from literature; thus the constraint based approach coupled the transcription and translation of the protein product, and the regulation of gene expression, with the availability of metabolic resources using only a limited number of adjustable model parameters. We tested this approach by simulating the expression of two model proteins: chloramphenicol acetyltransferase and dual emission green fluorescent protein, for which we have data sets; we then expanded the simulations to a range of additional proteins. Protein expression simulations were consistent with measurements for a variety of cases. The constraint based simulations confirmed that oxidative phosphorylation was active in the CAT cell-free extract, as without it there was no feasible solution within the experimental constraints of the system. We then compared the metabolism of theoretically optimal and experimentally constrained CFPS reactions, and developed parameter free correlations which could be used to estimate productivity as a function of carbon number and promoter type. Lastly, global sensitivity analysis identified the key metabolic processes that controlled CFPS productivity and energy efficiency. In summary, sequence specific constraint based modeling of CFPS offered a novel means to a priori estimate the performance of a cell-free system, using only a limited number of adjustable parameters. While we modeled the production of a single protein in this study, the approach could easily be extended to multiprotein synthetic circuits, RNA circuits, or the cell-free production of small molecule products.
Collapse
Affiliation(s)
- Michael Vilkhovoy
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nicholas Horvath
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Che-Hsiao Shih
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joseph A. Wayman
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kara Calhoun
- School of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - James Swartz
- School of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey D. Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
34
|
Schoborg JA, Jewett MC. Cell-Free Protein Synthesis: An Emerging Technology for Understanding, Harnessing, and Expanding the Capabilities of Biological Systems. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University, 676 N. St Clair St; Suite 1200 Chicago IL 60611-3068 USA
- Simpson Querrey Institute; Northwestern University; 303 E. Superior St; Suite 11-131, Chicago IL 60611-2875 USA
- Center for Synthetic Biology; Northwestern University, 2145 Sheridan Road; Evanston IL 60208-3120 USA
| |
Collapse
|
35
|
Synthetic Biology with an All E. coli TXTL System: Quantitative Characterization of Regulatory Elements and Gene Circuits. Methods Mol Biol 2018; 1772:61-93. [PMID: 29754223 DOI: 10.1007/978-1-4939-7795-6_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, a new generation of cell-free transcription-translation (TXTL) systems has been devised for emerging multidisciplinary applications. The DNA-dependent in vitro protein synthesis technology has been developed to tackle applications in synthetic biology, biological and chemical engineering, as well as quantitative disciplines such as biophysics. In addition to being convenient at the biosafety level, the new TXTL platforms are user-friendly; more affordable; more versatile at the level of transcription, with a TX repertoire covering hundreds of parts; and more powerful, with protein production reaching a few mg/mL in batch and continuous modes. As a consequence, TXTL is rising up as a popular research tool and is used by a growing research community. While TXTL is proving reliable for an increasing number of applications, it is important to gain appropriate TXTL skills, especially for quantitative applications. TXTL has become particularly useful to rapidly prototype genetic devices , from single regulatory elements to elementary circuit motifs . In this chapter, we describe the basic procedures to develop appropriate TXTL practices for the characterization of such genetic parts. We use an all E. coli TXTL system developed in our lab, now commercialized by Arbor Biosciences under the name myTXTL.
Collapse
|
36
|
Schoborg JA, Hershewe JM, Stark JC, Kightlinger W, Kath JE, Jaroentomeechai T, Natarajan A, DeLisa MP, Jewett MC. A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases. Biotechnol Bioeng 2017; 115:739-750. [PMID: 29178580 DOI: 10.1002/bit.26502] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, or the attachment of sugar moieties (glycans) to proteins, is important for protein stability, activity, and immunogenicity. However, understanding the roles and regulations of site-specific glycosylation events remains a significant challenge due to several technological limitations. These limitations include a lack of available tools for biochemical characterization of enzymes involved in glycosylation. A particular challenge is the synthesis of oligosaccharyltransferases (OSTs), which catalyze the attachment of glycans to specific amino acid residues in target proteins. The difficulty arises from the fact that canonical OSTs are large (>70 kDa) and possess multiple transmembrane helices, making them difficult to overexpress in living cells. Here, we address this challenge by establishing a bacterial cell-free protein synthesis platform that enables rapid production of a variety of OSTs in their active conformations. Specifically, by using lipid nanodiscs as cellular membrane mimics, we obtained yields of up to 420 μg/ml for the single-subunit OST enzyme, "Protein glycosylation B" (PglB) from Campylobacter jejuni, as well as for three additional PglB homologs from Campylobacter coli, Campylobacter lari, and Desulfovibrio gigas. Importantly, all of these enzymes catalyzed N-glycosylation reactions in vitro with no purification or processing needed. Furthermore, we demonstrate the ability of cell-free synthesized OSTs to glycosylate multiple target proteins with varying N-glycosylation acceptor sequons. We anticipate that this broadly applicable production method will advance glycoengineering efforts by enabling preparative expression of membrane-embedded OSTs from all kingdoms of life.
Collapse
Affiliation(s)
- Jennifer A Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois.,Master of Biotechnology Program, Northwestern University, Evanston, Illinois
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - James E Kath
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | | | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York.,Department of Microbiology, Cornell University, Ithaca, New York
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois.,Master of Biotechnology Program, Northwestern University, Evanston, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois
| |
Collapse
|
37
|
Oesterle S, Roberts TM, Widmer LA, Mustafa H, Panke S, Billerbeck S. Sequence-based prediction of permissive stretches for internal protein tagging and knockdown. BMC Biol 2017; 15:100. [PMID: 29084520 PMCID: PMC5661948 DOI: 10.1186/s12915-017-0440-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Internal tagging of proteins by inserting small functional peptides into surface accessible permissive sites has proven to be an indispensable tool for basic and applied science. Permissive sites are typically identified by transposon mutagenesis on a case-by-case basis, limiting scalability and their exploitation as a system-wide protein engineering tool. METHODS We developed an apporach for predicting permissive stretches (PSs) in proteins based on the identification of length-variable regions (regions containing indels) in homologous proteins. RESULTS We verify that a protein's primary structure information alone is sufficient to identify PSs. Identified PSs are predicted to be predominantly surface accessible; hence, the position of inserted peptides is likely suitable for diverse applications. We demonstrate the viability of this approach by inserting a Tobacco etch virus protease recognition site (TEV-tag) into several PSs in a wide range of proteins, from small monomeric enzymes (adenylate kinase) to large multi-subunit molecular machines (ATP synthase) and verify their functionality after insertion. We apply this method to engineer conditional protein knockdowns directly in the Escherichia coli chromosome and generate a cell-free platform with enhanced nucleotide stability. CONCLUSIONS Functional internally tagged proteins can be rationally designed and directly chromosomally implemented. Critical for the successful design of protein knockdowns was the incorporation of surface accessibility and secondary structure predictions, as well as the design of an improved TEV-tag that enables efficient hydrolysis when inserted into the middle of a protein. This versatile and portable approach can likely be adapted for other applications, and broadly adopted. We provide guidelines for the design of internally tagged proteins in order to empower scientists with little or no protein engineering expertise to internally tag their target proteins.
Collapse
Affiliation(s)
- Sabine Oesterle
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania Michelle Roberts
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Lukas Andreas Widmer
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
- Life Science Zürich Graduate School in Systems Biology, Zürich, Switzerland
| | - Harun Mustafa
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
- Department of Computer Science, ETH Zürich, Zürich, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sonja Billerbeck
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
- Present address: Chemistry Department, Columbia University, 550 West 120th Street, New York, NY, 10027, USA.
| |
Collapse
|
38
|
Nieß A, Failmezger J, Kuschel M, Siemann-Herzberg M, Takors R. Experimentally Validated Model Enables Debottlenecking of in Vitro Protein Synthesis and Identifies a Control Shift under in Vivo Conditions. ACS Synth Biol 2017. [PMID: 28627886 DOI: 10.1021/acssynbio.7b00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free (in vitro) protein synthesis (CFPS) systems provide a versatile tool that can be used to investigate different aspects of the transcription-translation machinery by reducing cells to the basic functions of protein formation. Recent improvements in reaction stability and lysate preparation offer the potential to expand the scope of in vitro biosynthesis from a research tool to a multifunctional and versatile platform for protein production and synthetic biology. To date, even the best-performing CFPS systems are drastically slower than in vivo references. Major limitations are imposed by ribosomal activities that progress in an order of magnitude slower on the mRNA template. Owing to the complex nature of the ribosomal machinery, conventional "trial and error" experiments only provide little insight into how the desired performance could be improved. By applying a DNA-sequence-oriented mechanistic model, we analyzed the major differences between cell-free in vitro and in vivo protein synthesis. We successfully identified major limiting elements of in vitro translation, namely the supply of ternary complexes consisting of EFTu and tRNA. Additionally, we showed that diluted in vitro systems suffer from reduced ribosome numbers. On the basis of our model, we propose a new experimental design predicting 90% increased translation rates, which were well achieved in experiments. Furthermore, we identified a shifting control in the translation rate, which is characterized by availability of the ternary complex under in vitro conditions and the initiation of translation in a living cell. Accordingly, the model can successfully be applied to sensitivity analyses and experimental design.
Collapse
Affiliation(s)
- Alexander Nieß
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Jurek Failmezger
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Maike Kuschel
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | | | - Ralf Takors
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| |
Collapse
|
39
|
Caschera F. Bacterial cell-free expression technology to in vitro systems engineering and optimization. Synth Syst Biotechnol 2017; 2:97-104. [PMID: 29062966 PMCID: PMC5637228 DOI: 10.1016/j.synbio.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022] Open
Abstract
Cell-free expression system is a technology for the synthesis of proteins in vitro. The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.
Collapse
|
40
|
Musiol-Kroll EM, Zubeil F, Schafhauser T, Härtner T, Kulik A, McArthur J, Koryakina I, Wohlleben W, Grond S, Williams GJ, Lee SY, Weber T. Polyketide Bioderivatization Using the Promiscuous Acyltransferase KirCII. ACS Synth Biol 2017; 6:421-427. [PMID: 28206741 DOI: 10.1021/acssynbio.6b00341] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During polyketide biosynthesis, acyltransferases (ATs) are the essential gatekeepers which provide the assembly lines with precursors and thus contribute greatly to structural diversity. Previously, we demonstrated that the discrete AT KirCII from the kirromycin antibiotic pathway accesses nonmalonate extender units. Here, we exploit the promiscuity of KirCII to generate new kirromycins with allyl- and propargyl-side chains in vivo, the latter were utilized as educts for further modification by "click" chemistry.
Collapse
Affiliation(s)
- Ewa M. Musiol-Kroll
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building B220, 2800 Kgs. Lyngby, Denmark
- German Centre
for Infection Research (DZIF), Partner site Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Florian Zubeil
- Institut
für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Thomas Schafhauser
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Thomas Härtner
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Kulik
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - John McArthur
- North Carolina State University, Department of
Chemistry, Raleigh, North Carolina 27695-8204, United States
| | - Irina Koryakina
- North Carolina State University, Department of
Chemistry, Raleigh, North Carolina 27695-8204, United States
| | - Wolfgang Wohlleben
- German Centre
for Infection Research (DZIF), Partner site Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Stephanie Grond
- Institut
für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Gavin J. Williams
- North Carolina State University, Department of
Chemistry, Raleigh, North Carolina 27695-8204, United States
| | - Sang Yup Lee
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building B220, 2800 Kgs. Lyngby, Denmark
- Department
of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tilmann Weber
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building B220, 2800 Kgs. Lyngby, Denmark
- German Centre
for Infection Research (DZIF), Partner site Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Interfakultäres
Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
41
|
Guo W, Sheng J, Feng X. Mini-review: In vitro Metabolic Engineering for Biomanufacturing of High-value Products. Comput Struct Biotechnol J 2017; 15:161-167. [PMID: 28179978 PMCID: PMC5288458 DOI: 10.1016/j.csbj.2017.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 11/23/2022] Open
Abstract
With the breakthroughs in biomolecular engineering and synthetic biology, many valuable biologically active compound and commodity chemicals have been successfully manufactured using cell-based approaches in the past decade. However, because of the high complexity of cell metabolism, the identification and optimization of rate-limiting metabolic pathways for improving the product yield is often difficult, which represents a significant and unavoidable barrier of traditional in vivo metabolic engineering. Recently, some in vitro engineering approaches were proposed as alternative strategies to solve this problem. In brief, by reconstituting a biosynthetic pathway in a cell-free environment with the supplement of cofactors and substrates, the performance of each biosynthetic pathway could be evaluated and optimized systematically. Several value-added products, including chemicals, nutraceuticals, and drug precursors, have been biosynthesized as proof-of-concept demonstrations of in vitro metabolic engineering. This mini-review summarizes the recent progresses on the emerging topic of in vitro metabolic engineering and comments on the potential application of cell-free technology to speed up the “design-build-test” cycles of biomanufacturing.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Jiayuan Sheng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| |
Collapse
|
42
|
Alissandratos A, Caron K, Loan TD, Hennessy JE, Easton CJ. ATP Recycling with Cell Lysate for Enzyme-Catalyzed Chemical Synthesis, Protein Expression and PCR. ACS Chem Biol 2016; 11:3289-3293. [PMID: 27978706 DOI: 10.1021/acschembio.6b00838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
E. coli lysate efficiently catalyzes acetyl phosphate-driven ATP regeneration in several important biotechnological applications. The utility of this ATP recycling strategy in enzyme-catalyzed chemical synthesis is illustrated through the conversion of uridine to UMP by the lysate from recombinant overexpression of uridine kinase with the E. coli. The UMP is further transformed into UTP through sequential phosphorylations by kinases naturally present in the lysate, in high yield. Cytidine and 5-fluorouridine also give the corresponding NMPs and NTPs with this system. Cell-free protein expression with a processed extract of lysate also proceeds readily when, instead of adding the required NTPs, all four are produced in situ from the NMPs, using acetyl phosphate and relying on endogenous kinase activity. Similarly, dNMPs can be used to produce the dNTPs necessary for DNA synthesis in PCR. These cheap alternative protocols showcase the potential of acetyl phosphate and ATP recycling with readily available cell lysate.
Collapse
Affiliation(s)
| | - Karine Caron
- Research School
of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Thomas D. Loan
- Research School
of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - James E. Hennessy
- Research School
of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Christopher J. Easton
- Research School
of Chemistry, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
43
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
44
|
Functional properties of flagellin as a stimulator of innate immunity. Sci Rep 2016; 6:18379. [PMID: 26755208 PMCID: PMC4709591 DOI: 10.1038/srep18379] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/05/2015] [Indexed: 11/08/2022] Open
Abstract
We report the development of a well-defined flagellin-based nanoparticle stimulator and also provide a new mechanism of action model explaining how flagellin-triggered innate immunity has evolved to favor localized rather than potentially debilitating systemic immune stimulation. Cell-free protein synthesis (CFPS) was used to facilitate mutational analysis and precisely orientated display of flagellin on Hepatitis B core (HBc) protein virus-like particles (VLPs). The need for product stability and an understanding of mechanism of action motivated investigations indicating that the D0 domain of flagellin is sensitive to amino acid sequence independent hydrolysis - apparently due to the need for structural flexibility during natural flagellin polymerization. When D0-stabilized flagellin was attached to HBc VLPs with the D0 domain facing outward, flagellin's tendency to polymerize caused the VLPs to precipitate. However, attaching the D0 domain to the VLP surface produced a stable nanoparticle adjuvant. Surprisingly, attaching only 2 flagellins per VLP provided the same 1 pM potency as did VLPs with about 33 attached flagellins suggesting that the TLR5 receptor is highly effective in delivering its intracellular signal. These observations suggest that flagellin's protease sensitivity, tendency to aggregate, and very high affinity for TLR5 receptors limit its systemic distribution to favor localized immune stimulation.
Collapse
|
45
|
Heinzelman P, Schoborg JA, Jewett MC. pH responsive granulocyte colony-stimulating factor variants with implications for treating Alzheimer's disease and other central nervous system disorders. Protein Eng Des Sel 2015; 28:481-9. [PMID: 25877663 PMCID: PMC4596278 DOI: 10.1093/protein/gzv022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 12/14/2022] Open
Abstract
Systemic injection of granulocyte colony-stimulating factor (G-CSF) has yielded encouraging results in treating Alzheimer's Disease (AD) and other central nervous system (CNS) disorders. Making G-CSF a viable AD therapeutic will, however, require increasing G-CSF's ability to stimulate neurons within the brain. This objective could be realized by increasing transcytosis of G-CSF across the blood brain barrier (BBB). An established correlation between G-CSF receptor (G-CSFR) binding pH responsiveness and increased recycling of G-CSF to the cell exterior after endocytosis motivated development of G-CSF variants with highly pH responsive G-CSFR binding affinities. These variants will be used in future validation of our hypothesis that increased BBB transcytosis can enhance G-CSF therapeutic efficacy. Flow cytometric screening of a yeast-displayed library in which G-CSF/G-CSFR interface residues were mutated to histidine yielded a G-CSF triple His mutant (L109H/D110H/Q120H) with highly pH responsive binding affinity. This variant's KD, measured by surface plasmon resonance (SPR), increases ∼20-fold as pH decreases from 7.4 to below histidine's pKa of ∼6.0; an increase 2-fold greater than for previously reported G-CSF His mutants. Cell-free protein synthesis (CFPS) enabled expression and purification of soluble, bioactive G-CSF triple His variant protein, an outcome inaccessible via Escherichia coli inclusion body refolding. This purification and bioactivity validation will enable future identification of correlations between pH responsiveness and transcytosis in BBB cell culture model and animal experiments. Furthermore, the library screening and CFPS methods employed here could be applied to developing other pH responsive hematopoietic or neurotrophic factors for treating CNS disorders.
Collapse
Affiliation(s)
- Pete Heinzelman
- Department of Chemical, Biological and Materials Engineering, University of Oklahoma, Sarkeys Energy Center, 100 East Boyd Street, Room T-301, Norman, OK 73019, USA
| | - Jennifer A Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3120, USA
| |
Collapse
|
46
|
Anderson MJ, Stark JC, Hodgman CE, Jewett MC. Energizing eukaryotic cell-free protein synthesis with glucose metabolism. FEBS Lett 2015; 589:1723-1727. [PMID: 26054976 DOI: 10.1016/j.febslet.2015.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 11/18/2022]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms.
Collapse
Affiliation(s)
- Mark J Anderson
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL USA, 60208-3120
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL USA, 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL USA, 60208-3120
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL USA, 60208-3120
| | - C Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL USA, 60208-3120
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL USA, 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL USA, 60208-3120
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL USA, 60208-3120
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St Clair St, Suite 1200, Chicago, IL, USA, 60611-3068
- Simpson Querrey Institute, 303 E. Superior St, Suite 11-131 Chicago, IL USA, 60611-2875
| |
Collapse
|
47
|
Cai Q, Hanson JA, Steiner AR, Tran C, Masikat MR, Chen R, Zawada JF, Sato AK, Hallam TJ, Yin G. A simplified and robust protocol for immunoglobulin expression in Escherichia coli cell-free protein synthesis systems. Biotechnol Prog 2015; 31:823-31. [PMID: 25826247 PMCID: PMC5029582 DOI: 10.1002/btpr.2082] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/18/2015] [Indexed: 11/29/2022]
Abstract
Cell‐free protein synthesis (CFPS) systems allow for robust protein expression with easy manipulation of conditions to improve protein yield and folding. Recent technological developments have significantly increased the productivity and reduced the operating costs of CFPS systems, such that they can compete with conventional in vivo protein production platforms, while also offering new routes for the discovery and production of biotherapeutics. As cell‐free systems have evolved, productivity increases have commonly been obtained by addition of components to previously designed reaction mixtures without careful re‐examination of the essentiality of reagents from previous generations. Here we present a systematic sensitivity analysis of the components in a conventional Escherichia coli CFPS reaction mixture to evaluate their optimal concentrations for production of the immunoglobulin G trastuzumab. We identify eight changes to the system, which result in optimal expression of trastuzumab. We find that doubling the potassium glutamate concentration, while entirely eliminating pyruvate, coenzyme A, NAD, total tRNA, folinic acid, putrescine and ammonium glutamate, results in a highly productive cell‐free system with a 95% reduction in reagent costs (excluding cell‐extract, plasmid, and T7 RNA polymerase made in‐house). A larger panel of other proteins was also tested and all show equivalent or improved yields with our simplified system. Furthermore, we demonstrate that all of the reagents for CFPS can be combined in a single freeze‐thaw stable master mix to improve reliability and ease of use. These improvements are important for the application of the CFPS system in fields such as protein engineering, high‐throughput screening, and biotherapeutics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:823–831, 2015
Collapse
Affiliation(s)
- Qi Cai
- Sutro Biopharma, Inc., South San Francisco, CA, 94080
| | | | | | - Cuong Tran
- Sutro Biopharma, Inc., South San Francisco, CA, 94080
| | | | - Rishard Chen
- Sutro Biopharma, Inc., South San Francisco, CA, 94080
| | | | - Aaron K Sato
- Sutro Biopharma, Inc., South San Francisco, CA, 94080
| | | | - Gang Yin
- Sutro Biopharma, Inc., South San Francisco, CA, 94080
| |
Collapse
|
48
|
Lian Q, Cao H, Wang F. The Cost-Efficiency Realization in the Escherichia coli-Based Cell-Free Protein Synthesis Systems. Appl Biochem Biotechnol 2014; 174:2351-67. [DOI: 10.1007/s12010-014-1143-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/06/2014] [Indexed: 01/08/2023]
|
49
|
Yang D, Hartman MR, Derrien TL, Hamada S, An D, Yancey KG, Cheng R, Ma M, Luo D. DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res 2014; 47:1902-11. [PMID: 24884022 DOI: 10.1021/ar5001082] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CONSPECTUS: In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as a generic material for nanoscale engineering. DNA possesses many exceptional properties, including its biological function, biocompatibility, molecular recognition ability, and nanoscale controllability. Taking advantage of these unique attributes, a variety of DNA materials have been created with properties derived both from the biological functions and from the structural characteristics of DNA molecules. These novel DNA materials provide a natural bridge between nanotechnology and biotechnology, leading to far-ranging real-world applications. In this Account, we describe our work on the design and construction of DNA materials. Based on the role of DNA in the construction, we categorize DNA materials into two classes: substrate and linker. As a substrate, DNA interfaces with enzymes in biochemical reactions, making use of molecular biology's "enzymatic toolkit". For example, employing DNA as a substrate, we utilized enzymatic ligation to prepare the first bulk hydrogel made entirely of DNA. Using this DNA hydrogel as a structural scaffold, we created a protein-producing DNA hydrogel via linking plasmid DNA onto the hydrogel matrix through enzymatic ligation. Furthermore, to fully make use of the advantages of both DNA materials and polymerase chain reaction (PCR), we prepared thermostable branched DNA that could remain intact even under denaturing conditions, allowing for their use as modular primers for PCR. Moreover, via enzymatic polymerization, we have recently constructed a physical DNA hydrogel with unique internal structure and mechanical properties. As a linker, we have used DNA to interface with other functional moieties, including gold nanoparticles, clay minerals, proteins, and lipids, allowing for hybrid materials with unique properties for desired applications. For example, we recently designed a DNA-protein conjugate as a universal adapter for protein detection. We further demonstrate a diverse assortment of applications for these DNA materials including diagnostics, protein production, controlled drug release systems, the exploration of life evolution, and plasmonics. Although DNA has shown great potential as both substrate and linker in the construction of DNA materials, it is still in the initial stages of becoming a well-established and widely used material. Important challenges include the ease of design and fabrication, scaling-up, and minimizing cost. We envision that DNA materials will continue to bridge the gap between nanotechnology and biotechnology and will ultimately be employed for many real-world applications.
Collapse
Affiliation(s)
- Dayong Yang
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mark R. Hartman
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Thomas L. Derrien
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shogo Hamada
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Duo An
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kenneth G. Yancey
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ru Cheng
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
- College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, China
| | - Minglin Ma
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
50
|
An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins. J Biotechnol 2014; 178:12-22. [DOI: 10.1016/j.jbiotec.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 11/19/2022]
|