1
|
Venkatesh D, Sarkar S, Kandasamy T, Ghosh SS. In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression. Comput Biol Chem 2025; 115:108312. [PMID: 39689434 DOI: 10.1016/j.compbiolchem.2024.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
The aberrant metabolic reprogramming endows TNBC cells with sufficient ATP and lactate required for survival and metastasis. Hence, the intervention of the metabolic network represents a promising avenue to alleviate the Warburg effect in TNBC cells to impair their invasive and metastatic potential. Multitudinous in-silico analysis identified Enolase1 (ENO1) and the surface transporter protein, GLUT4 to be the potential targets for the abrogation of the metabolic network. The expression profiles of ENO1 and GLUT4 genes showed anomalous expression in various cancers, including breast cancer. Subsequently, the functional and physiological interactions of the target proteins were analyzed from the protein-protein interaction network. The pathway enrichment analysis identified the prime cancer signaling pathways in which these proteins are involved. Further, docking results bestowed Silibinin as the concurrent inhibitor of ENO1 and GLUT4. Moreover, the stable interaction of Silibinin with both proteins deciphered the binding free energies values of -48.86 and -104.31 KJ/mol from MMPBSA analysis and MD simulation, respectively. Furthermore, the cell viability, ROS assay, and live-dead imaging underscored the pronounced cytotoxicity of Silibinin, illuminating its capacity to incur apoptosis within TNBC cells. Additionally, glycolysis assay and gene expression analysis demonstrated the silibinin-mediated inhibition of the glycolysis pathway. Eventually, a lipidomic reprogramming towards fatty acid metabolism was established from the elevated lipid droplet accumulation, exogenous fatty acid uptake and de-novo lipogenesis. Nevertheless, repression of EMT and Wnt pathway progression by Silibinin was perceived from the gene expression studies. Overall, the current study highlights the tweaking of intricate signaling crosstalk between glycolysis and the Wnt pathway in TNBC cells through inhibiting ENO1 and GLUT4.
Collapse
Affiliation(s)
- Dheepika Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 39, Guwahati, Assam, India
| | - Shilpi Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 39, Guwahati, Assam, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 39, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 39, Guwahati, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, 39, Guwahati, Assam, India.
| |
Collapse
|
2
|
Gui Y, Hou R, Huang Y, Zhou Y, Liu S, Meng L, Li Y, Sang Lam F, Ding R, Cao Y, Li G, Lu X, Li X. Discovering Cell-Targeting Ligands and Cell-Surface Receptors by Selection of DNA-Encoded Chemical Libraries against Cancer Cells without Predefined Targets. Angew Chem Int Ed Engl 2025; 64:e202421172. [PMID: 39794292 DOI: 10.1002/anie.202421172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target-agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell-based DEL selection method against cancer cells without predefined targets. A 104.96-million-member DEL was selected against MDA-MB-231 and MCF-7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell-specific small molecules. We further demonstrated cell-targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α-enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA-MB-231 cells. Overall, this work offers an efficient approach for discovering cell-targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
Collapse
Grants
- 2023A1515010711 Basic and Applied Basic Research Foundation of Guangdong Province
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17300423, C7005-20G, C7016-22G, C7035-23G, N_HKU702/23, and T12-705-24-R Research Grants Council, University Grants Committee
- SZBL2020090501008 Shenzhen Bay Laboratory
- 91953203, 22377139 National Natural Science Foundation of China
- Major Project Science and Technology Commission of Shanghai Municipality
- Laboratory for Synthetic Chemistry and Chemical Biology Innovation and Technology Commission
Collapse
Affiliation(s)
- Yuhan Gui
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Yuchen Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
- Present address: Institute of Translational Medicine & School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ruoyun Ding
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| |
Collapse
|
3
|
Gulotta M, Perricone U, Rubino P, Bonura A, Feo S, Giallongo A, Perconti G. ENO1/Hsp70 Interaction Domains: In Silico and In Vitro Insight for a Putative Therapeutic Target in Cancer. ACS OMEGA 2025; 10:5036-5046. [PMID: 39959117 PMCID: PMC11822713 DOI: 10.1021/acsomega.4c10808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
Alpha-enolase (ENO1) is a multifunctional protein with oncogenic roles. First described as a glycolytic enzyme, the protein performs different functions according to its cellular localization, post-translational modifications, and binding partners. Cell surface-localized ENO1 serves as a plasminogen-binding receptor, and it has been detected in several cell types, including various tumor cells. The plasminogen system plays a crucial role in pathological events, such as tumor cell invasion and metastasis. We have previously demonstrated that the interaction of ENO1 with the multifunctional chaperone Hsp70 increases its surface localization and the migratory and invasive capacity of breast cancer cells, thus representing a novel potential target to counteract the metastatic potential of tumors. Here, we have used computational approaches to map the putative binding region of ENO1 to Hsp70 and predict the key anchoring amino acids, also called hot spots. In vitro coimmunoprecipitation experiments were then used to validate the in silico prediction of the protein-protein interaction. This work outcome will be further used as a guide for the design of potential ENO1/HSP70 inhibitors.
Collapse
Affiliation(s)
- Maria
Rita Gulotta
- Molecular
Informatics Group, Fondazione Ri.MED, Corso Calatafimi 414, Palermo 90129, Italy
| | - Ugo Perricone
- Molecular
Informatics Group, Fondazione Ri.MED, Corso Calatafimi 414, Palermo 90129, Italy
| | - Patrizia Rubino
- Institute
of Translational Pharmacology (IFT), National
Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
| | - Angela Bonura
- Institute
of Translational Pharmacology (IFT), National
Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
| | - Salvatore Feo
- Department
of Biological Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Agata Giallongo
- Institute
of Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
| | - Giovanni Perconti
- Institute
of Translational Pharmacology (IFT), National
Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
- Institute
of Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
| |
Collapse
|
4
|
Li Y, Liu L, Li B. Role of ENO1 and its targeted therapy in tumors. J Transl Med 2024; 22:1025. [PMID: 39543641 PMCID: PMC11566422 DOI: 10.1186/s12967-024-05847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
ENO1, also called 2-phospho-D-glycerate hydrolase in cellular glycolysis, is an enzyme that converts 2-phosphoglycerate to phosphoenolpyruvate and plays an important role in the Warburg effect. In various tumors, ENO1 overexpression correlates with poor prognosis. ENO1 is a multifunctional oncoprotein that, when located on the cell surface, acts as a "moonlighting protein" to promote tumor invasion and metastasis. When located intracellularly, ENO1 facilitates glycolysis to dysregulate cellular energy and sustain tumor proliferation. Additionally, it promotes tumor progression by activating oncogenic signaling pathways. ENO1 is a tumor biomarker and represents a promising target for tumor therapy. This review summarizes recent advances from 2020 to 2024 in understanding the relationship between ENO1 and tumors and explores the latest targeted therapeutic strategies involving ENO1.
Collapse
Affiliation(s)
- Yafei Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lu Liu
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Leineweber WD, Rowell MZ, Ranamukhaarachchi SK, Walker A, Li Y, Villazon J, Mestre-Farrera A, Hu Z, Yang J, Shi L, Fraley SI. Divergent iron regulatory states contribute to heterogeneity in breast cancer aggressiveness. iScience 2024; 27:110661. [PMID: 39262774 PMCID: PMC11387597 DOI: 10.1016/j.isci.2024.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Contact with dense collagen I (Col1) can induce collective invasion of triple negative breast cancer (TNBC) cells and transcriptional signatures linked to poor patient prognosis. However, this response is heterogeneous and not well understood. Using phenotype-guided sequencing analysis of invasive vs. noninvasive subpopulations, we show that these two phenotypes represent opposite sides of the iron response protein 1 (IRP1)-mediated response to cytoplasmic labile iron pool (cLIP) levels. Invasive cells upregulate iron uptake and utilization machinery characteristic of a low cLIP response, which includes contractility regulating genes that drive migration. Non-invasive cells upregulate iron sequestration machinery characteristic of a high cLIP response, which is accompanied by upregulation of actin sequestration genes. These divergent IRP1 responses result from Col1-induced transient expression of heme oxygenase I (HO-1), which cleaves heme and releases iron. These findings lend insight into the emerging theory that heme and iron fluxes regulate TNBC aggressiveness.
Collapse
Affiliation(s)
- William D. Leineweber
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Z. Rowell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Alyssa Walker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yajuan Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge Villazon
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aida Mestre-Farrera
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Lingyan Shi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wang H, Zhang S, Kui X, Ren J, Zhang X, Gao W, Zhang Y, Liu H, Yan J, Sun M, Wu S, Wang C, Yan J. Ciwujianoside E inhibits Burkitt lymphoma cell proliferation and invasion by blocking ENO1-plasminogen interaction and TGF-β1 activation. Biomed Pharmacother 2024; 177:116970. [PMID: 38897160 DOI: 10.1016/j.biopha.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Burkitt's lymphoma (BL) is a rare and highly aggressive B-cell non-Hodgkin lymphoma. Although the outcomes of patients with BL have greatly improved, options for patients with relapsed and refractory BL are limited. Therefore, there is an urgent need to improve BL therapeutics and to develop novel drugs with reduced toxicity. In this study, we demonstrated that enolase 1 (ENO1) is a potential novel drug target for BL treatment. We determined that ENO1 was aberrantly upregulated in BL, which was closely related to its invasiveness and poor clinical outcomes. Furthermore, using RNA interference, we demonstrated that ENO1 depletion significantly inhibited cell proliferation and invasion both in vitro and in vivo. Mechanistically, we established that ENO1 knockdown suppressed the PI3K-AKT and epithelial-mesenchymal transition (EMT) signaling pathways by reducing plasminogen (PLG) recruitment, plasmin (PL) generation, and TGF-β1 activation. Addition of activated TGF-β1 protein to the culture medium of shENO1 cells reversed the inhibitory effects on cell proliferation and invasion, as well as those on the PI3K-AKT and EMT signaling pathways. Notably, our research led to the discovery of a novel ENO1-PLG interaction inhibitor, Ciwujianoside E (L-06). L-06 effectively disrupts the interaction between ENO1 and PLG, consequently reducing PL generation and suppressing TGF-β1 activation. In both in vitro and in vivo experiments, L-06 exerted impressive antitumor effects. In summary, our study elucidated the critical role of ENO1 in BL cell proliferation and invasion and introduced a novel ENO1 inhibitor, which holds promise for improving the treatment of patients with BL in the future.
Collapse
Affiliation(s)
- Haina Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Shanshan Zhang
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiangjie Kui
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Jinhong Ren
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjuan Gao
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yinggang Zhang
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hongchen Liu
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Jingyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China
| | - Mingzhong Sun
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Sijin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China; Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian 116027, China.
| |
Collapse
|
8
|
Horvat S, Kos J, Pišlar A. Multifunctional roles of γ-enolase in the central nervous system: more than a neuronal marker. Cell Biosci 2024; 14:61. [PMID: 38735971 PMCID: PMC11089681 DOI: 10.1186/s13578-024-01240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Enolase, a multifunctional protein with diverse isoforms, has generally been recognized for its primary roles in glycolysis and gluconeogenesis. The shift in isoform expression from α-enolase to neuron-specific γ-enolase extends beyond its enzymatic role. Enolase is essential for neuronal survival, differentiation, and the maturation of neurons and glial cells in the central nervous system. Neuron-specific γ-enolase is a critical biomarker for neurodegenerative pathologies and neurological conditions, not only indicating disease but also participating in nerve cell formation and neuroprotection and exhibiting neurotrophic-like properties. These properties are precisely regulated by cysteine peptidase cathepsin X and scaffold protein γ1-syntrophin. Our findings suggest that γ-enolase, specifically its C-terminal part, may offer neuroprotective benefits against neurotoxicity seen in Alzheimer's and Parkinson's disease. Furthermore, although the therapeutic potential of γ-enolase seems promising, the effectiveness of enolase inhibitors is under debate. This paper reviews the research on the roles of γ-enolase in the central nervous system, especially in pathophysiological events and the regulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Selena Horvat
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Luo X, Luan C, Zhou J, Ye Y, Zhang W, Jain R, Zhang E, Chen N. Glycolytic enzyme Enolase-1 regulates insulin gene expression in pancreatic β-cell. Biochem Biophys Res Commun 2024; 706:149735. [PMID: 38461647 DOI: 10.1016/j.bbrc.2024.149735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Enolase-1 (Eno1) plays a critical role in regulating glucose metabolism; however, its specific impact on pancreatic islet β-cells remains elusive. This study aimed to provide a preliminary exploration of Eno1 function in pancreatic islet β-cells. The findings revealed that the expression of ENO1 mRNA in type 2 diabetes donors was significantly increased and positively correlated with HbA1C and negatively correlated with insulin gene expression. A high level of Eno1 in human insulin-secreting rat INS-1832/13 cells with co-localization with intracellular insulin proteins was accordingly observed. Silencing of Eno1 using siRNA or inhibiting Eno1 protein activity with an Eno1 antagonist significantly reduced insulin secretion and insulin content in β-cells, while the proinsulin/insulin content ratio remained unchanged. This reduction in β-cells function was accompanied by a notable decrease in intracellular ATP and mitochondrial cytochrome C levels. Overall, our findings confirm that Eno1 regulates the insulin secretion process, particularly glucose metabolism and ATP production in the β-cells. The mechanism primarily involves its influence on insulin production, suggesting that Eno1 represents a potential target for β-cell protection and diabetes treatment.
Collapse
Affiliation(s)
- Xiumei Luo
- , Department of Endocrinology, Fudan University Zhongshan Hospital Xiamen Branch, No668. Jinhu Road, Xiamen, 361000, China
| | - Cheng Luan
- , Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms Gata 35, 20502, Malmö, Sweden
| | - Jingqi Zhou
- , Department of Endocrinology, Fudan University Zhongshan Hospital Xiamen Branch, No668. Jinhu Road, Xiamen, 361000, China
| | - Yingying Ye
- , Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms Gata 35, 20502, Malmö, Sweden
| | - Wei Zhang
- , Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ruchi Jain
- , Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms Gata 35, 20502, Malmö, Sweden
| | - Enming Zhang
- , Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms Gata 35, 20502, Malmö, Sweden.
| | - Ning Chen
- , Department of Endocrinology, Fudan University Zhongshan Hospital Xiamen Branch, No668. Jinhu Road, Xiamen, 361000, China.
| |
Collapse
|
10
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Wu XM, Zhang BS, Zhao YL, Wu HW, Gao F, Zhang J, Zhao JH, Guo HS. DeSUMOylation of a Verticillium dahliae enolase facilitates virulence by derepressing the expression of the effector VdSCP8. Nat Commun 2023; 14:4844. [PMID: 37563142 PMCID: PMC10415295 DOI: 10.1038/s41467-023-40384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, causes vascular wilts in a wide variety of economically important crops. The molecular mechanism of V. dahliae pathogenesis remains largely elusive. Here, we identify a small ubiquitin-like modifier (SUMO)-specific protease (VdUlpB) from V. dahliae, and find that VdUlpB facilitates V. dahliae virulence by deconjugating SUMO from V. dahliae enolase (VdEno). We identify five lysine residues (K96, K254, K259, K313 and K434) that mediate VdEno SUMOylation, and SUMOylated VdEno preferentially localized in nucleus where it functions as a transcription repressor to inhibit the expression of an effector VdSCP8. Importantly, VdUlpB mediates deSUMOylation of VdEno facilitates its cytoplasmic distribution, which allows it to function as a glycolytic enzyme. Our study reveals a sophisticated pathogenic mechanism of VdUlpB-mediated enolase deSUMOylation, which fortifies glycolytic pathway for growth and contributes to V. dahliae virulence through derepressing the expression of an effector.
Collapse
Affiliation(s)
- Xue-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Long Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hua-Wei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Xu YD, Guo YJ, Mao HR, Xiong ZX, Luo MY, Luo RQ, Lu S, Huang L, Hong Y. Integration of transcriptomics and proteomics to elucidate inhibitory effect and mechanism of rosmarinic acid from Perilla frutescens (L.) Britt. in treating Trichophyton mentagrophytes. Chin Med 2023; 18:67. [PMID: 37280712 DOI: 10.1186/s13020-023-00772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Dermatophyte caused by Trichophyton mentagrophytes is a global disease with a growing prevalence that is difficult to cure. Perilla frutescens (L.) Britt. is an edible and medicinal plant. Ancient books of Traditional Chinese Medicine and modern pharmacological studies have shown that it has potential anti-fungi activity. This is the first study to explore the inhibitory effects of compounds from P. frutescens on Trichophyton mentagrophytes and its mechanism of action coupled with the antifungal activity in vitro from network pharmacology, transcriptomics and proteomics. METHODS Five most potential inhibitory compounds against fungi in P. frutescens was screened with network pharmacology. The antifungal activity of the candidates was detected by a broth microdilution method. Through in vitro antifungal assays screening the compound with efficacy, transcriptomics and proteomics were performed to investigate the pharmacological mechanisms of the effective compound against Trichophyton mentagrophytes. Furthermore, the real-time polymerase chain reaction (PCR) was applied to verify the expression of genes. RESULTS The top five potential antifungal compounds in P. frutescens screened by network pharmacology are: progesterone, luteolin, apigenin, ursolic acid and rosmarinic acid. In vitro antifungal assays showed that rosmarinic acid had a favorable inhibitory effect on fungi. The transcriptomic findings exhibited that the differentially expressed genes of fungus after rosmarinic acid intervention were mainly enriched in the carbon metabolism pathway, while the proteomic findings suggested that rosmarinic acid could inhibit the average growth of Trichophyton mentagrophytes by interfering with the expression of enolase in the glycolysis pathway. Comparison of real-time PCR and transcriptomics results showed that the trends of gene expression in glycolytic, carbon metabolism and glutathione metabolic pathways were identical. The binding modes and interactions between rosmarinic acid and enolase were preliminary explored by molecular docking analysis. CONCLUSION The key findings of the present study manifested that rosmarinic acid, a medicinal compound extracted from P. frutescens, had pharmacological activity in inhibiting the growth of Trichophyton mentagrophytes by affecting its enolase expression to reduce metabolism. Rosmarinic acid is expected to be an efficacious product for prevention and treatment of dermatophytes.
Collapse
Affiliation(s)
- Yang-Ding Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yu-Jie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - He-Rong Mao
- International Center for TCM Communication Studies, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhi-Xiang Xiong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Meng-Yu Luo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Rui-Qi Luo
- School of Foreign Languages, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Lu Huang
- Guangzhou Wellhealth Bio-Pharmaceutical CO., Ltd, Guangzhou, 510200, China.
| | - Yi Hong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
13
|
Trevizol JS, Dionizio A, Delgado AQ, Ventura TMO, Ribeiro CFDS, Ribeiro L, Buzalaf NR, Cestari TM, Magalhães AC, Suzuki M, Bosqueiro JR, Buzalaf MAR. Metabolic effect of low fluoride levels in the islets of NOD mice: integrative morphological, immunohistochemical, and proteomic analyses. J Appl Oral Sci 2023; 31:e20230036. [PMID: 37283331 PMCID: PMC10247282 DOI: 10.1590/1678-7757-2023-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVES Fluoride (F) has been widely used to control dental caries, and studies suggest beneficial effects against diabetes when a low dose of F is added to the drinking water (10 mgF/L). This study evaluated metabolic changes in pancreatic islets of NOD mice exposed to low doses of F and the main pathways altered by the treatment. METHODOLOGY In total, 42 female NOD mice were randomly divided into two groups, considering the concentration of F administered in the drinking water for 14 weeks: 0 or 10 mgF/L. After the experimental period, the pancreas was collected for morphological and immunohistochemical analysis, and the islets for proteomic analysis. RESULTS In the morphological and immunohistochemical analysis, no significant differences were found in the percentage of cells labelled for insulin, glucagon, and acetylated histone H3, although the treated group had higher percentages than the control group. Moreover, no significant differences were found for the mean percentages of pancreatic areas occupied by islets and for the pancreatic inflammatory infiltrate between the control and treated groups. Proteomic analysis showed large increases in histones H3 and, to a lesser extent, in histone acetyltransferases, concomitant with a decrease in enzymes involved in the formation of acetyl-CoA, besides many changes in proteins involved in several metabolic pathways, especially energy metabolism. The conjunction analysis of these data showed an attempt by the organism to maintain protein synthesis in the islets, even with the dramatic changes in energy metabolism. CONCLUSION Our data suggests epigenetic alterations in the islets of NOD mice exposed to F levels comparable to those found in public supply water consumed by humans.
Collapse
Affiliation(s)
- Juliana Sanches Trevizol
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Aline Dionizio
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | | | | | | | - Laura Ribeiro
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Nathalia Rabelo Buzalaf
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Tânia Mary Cestari
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Ana Carolina Magalhães
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Maiko Suzuki
- The Dental College of Georgia, Department of Oral Biology and Diagnostic Sciences, Augusta, Georgia, United States
| | - José Roberto Bosqueiro
- Universidade Estadual Paulista, Faculdade de Ciências, Departamento de Educação Física, Bauru, São Paulo, Brasil
| | - Marília Afonso Rabelo Buzalaf
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
14
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
15
|
Vadlamani S, Karmakar R, Kumar A, Rajala MS. Non-metabolic role of alpha-enolase in virus replication. Mol Biol Rep 2023; 50:1677-1686. [PMID: 36402937 DOI: 10.1007/s11033-022-08067-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/31/2022] [Indexed: 11/20/2022]
Abstract
Viruses are extremely complex and highly evolving microorganisms; thus, it is difficult to analyse them in detail. The virion is believed to contain all the essential components required from its entry to the establishment of a successful infection in a susceptible host cell. Hence, the virion composition is the principal source for its transmissibility and immunogenicity. A virus is completely dependent on a host cell for its replication and progeny production. Occasionally, they recruit and package host proteins into mature virion. These incorporated host proteins are believed to play crucial roles in the subsequent infection, although the significance and the molecular mechanism regulated are poorly understood. One such host protein which is hijacked by several viruses is the glycolytic enzyme, Enolase (Eno-1) and is also packaged into mature virion of several viruses. This enzyme exhibits a highly flexible nature of functions, ranging from metabolic to several non-metabolic activities. All the glycolytic enzymes are known to be moonlighting proteins including enolase. The non-metabolic functions of this moonlighting protein are also highly diverse with respect to its cellular localization. Although very little is known about the virological significance of this enzyme, several of its non-metabolic functions have been observed to influence the virus replication cycle in infected cells. In this review, we have attempted to provide a comprehensive picture of the non-metabolic role of Eno-1, its significance in the virus replication cycle and to stimulate interest around its scope as a therapeutic target for treating viral pathologies.
Collapse
Affiliation(s)
- Satya Vadlamani
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Ruma Karmakar
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Alok Kumar
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | | |
Collapse
|
16
|
Gao L, Yang F, Tang D, Xu Z, Tang Y, Yang D, Sun D, Chen Z, Teng Y. Mediation of PKM2-dependent glycolytic and non-glycolytic pathways by ENO2 in head and neck cancer development. J Exp Clin Cancer Res 2023; 42:1. [PMID: 36588153 PMCID: PMC9806895 DOI: 10.1186/s13046-022-02574-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Enolase 2 (ENO2) is a crucial glycolytic enzyme in cancer metabolic process and acts as a "moonlighting" protein to play various functions in diverse cellular processes unrelated to glycolysis. ENO2 is highly expressed in head and neck squamous cell carcinoma (HNSCC) tissues relative to normal tissues; however, its impact and underlying regulatory mechanisms in HNSCC malignancy remain unclear. METHODS Molecular alterations were examined by bioinformatics, qRT-PCR, western blotting, immunofluorescence, immunohistochemistry, immunoprecipitation, and ChIP-PCR assays. Metabolic changes were assessed by intracellular levels of ATP and glucose. Animal study was used to evaluate the therapeutic efficacy of the ENO inhibitor. RESULTS ENO2 is required for HNSCC cell proliferation and glycolysis, which, surprisingly, is partially achieved by controlling PKM2 protein stability and its nuclear translocation. Mechanistically, loss of ENO2 expression promotes PKM2 protein degradation via the ubiquitin-proteasome pathway and prevents the switch of cytoplasmic PKM2 to the nucleus by inactivating AKT signaling, leading to a blockade in PKM2-mediated glycolytic flux and CCND1-associated cell cycle progression. In addition, treatment with the ENO inhibitor AP-III-a4 significantly induces HNSCC remission in a preclinical mouse model. CONCLUSION Our work elucidates the signaling basis underlying ENO2-dependent HNSCC development, providing evidence to establish a novel ENO2-targeted therapy for treating HNSCC.
Collapse
Affiliation(s)
- Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Fan Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Dianyong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhigang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yan Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Donglin Yang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Deping Sun
- University-Town Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401331, China
| | - Zhongzhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
17
|
Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers (Basel) 2022; 14:cancers14194568. [PMID: 36230492 PMCID: PMC9559313 DOI: 10.3390/cancers14194568] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Reprogramming of glucose metabolism is a hallmark of cancer and can be targeted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have been approved for cancer treatment. Currently, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic opportunities in cancer. However, most of them have failed to be translated into clinical applications due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other conventional anticancer drugs may be a future direction for cancer treatment. Abstract Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.
Collapse
|
18
|
Li L, Lu H, Zhang X, Whiteway M, Wu H, Tan S, Zang J, Tian S, Zhen C, Meng X, Li W, Zhang D, Zhang M, Jiang Y. Baicalein Acts against Candida albicans by Targeting Eno1 and Inhibiting Glycolysis. Microbiol Spectr 2022; 10:e0208522. [PMID: 35900099 PMCID: PMC9430770 DOI: 10.1128/spectrum.02085-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Baicalein (BE) is a promising antifungal small-molecule compound with an extended antifungal spectrum, good synergy with fluconazole, and low toxicity, but its target protein and antifungal mechanism remain elusive. In this study, we found that BE can function against Candida albicans by disrupting glycolysis through targeting Eno1 and inhibiting its function. Eno1 acts as a key therapeutic target of the drug, as BE had no antifungal activity against the eno1 null mutant in a Galleria mellonella model of C. albicans infection. To investigate the mechanism of action, we solved the crystal structure of C. albicans Eno1(CaEno1) and then compared the difference between this structure and that of Eno1 from humans. The predicted primary binding site of BE on CaEno1 is between amino acids D261 and W274, with D263, S269, and K273 playing critical roles in the interaction with BE. Both positions S269 and K273 have different residues in the human Eno1 (hEno1). This finding suggests that BE may bind selectively to CaEno1, which would limit the potential for side effects in humans. Our findings demonstrate that Eno1 is a target protein of BE and thus may serve as a novel target for the development of antifungal therapeutics acting through the inhibition of glycolysis. IMPORTANCE Baicalein (BE) is a promising antifungal agent which has been well characterized, but its target protein is still undiscovered. The protein Eno1 plays a crucial role in the survival of Candida albicans. However, there are few antifungal agents which inhibit the functions of Eno1. Here, we found that BE can function against Candida albicans by disrupting glycolysis through targeting Eno1 and inhibiting its function. We further solved the crystal structure of C. albicans Eno1(CaEno1) and predicted that the primary binding site of BE on CaEno1 is between amino acids D261 and W274, with D263, S269, and K273 playing critical roles in the interaction with BE. Our findings will be helpful to get specific small-molecule inhibitors of CaEno1 and open the way for the development of new antifungal therapeutics targeted at inhibiting glycolysis.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shanlun Tan
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Shujuan Tian
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Cheng Zhen
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianlei Meng
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanqian Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
ENO2 Promotes Colorectal Cancer Metastasis by Interacting with the LncRNA CYTOR and Activating YAP1-Induced EMT. Cells 2022; 11:cells11152363. [PMID: 35954207 PMCID: PMC9367517 DOI: 10.3390/cells11152363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The glycolytic enzyme enolase 2 (ENO2) is dysregulated in many types of cancer. However, the roles and detailed molecular mechanism of ENO2 in colorectal cancer (CRC) metastasis remain unclear. Here, we performed a comprehensive analysis of ENO2 expression in 184 local CRC samples and samples from the TCGA and GEO databases and found that ENO2 upregulation in CRC samples was negatively associated with prognosis. By knocking down and overexpressing ENO2, we found that ENO2 promoted CRC cell migration and invasion, which is dependent on its interaction with the long noncoding RNA (lncRNA) CYTOR, but did not depend on glycolysis regulation. Furthermore, CYTOR mediated ENO2 binding to large tumor suppressor 1 (LATS1) and competitively inhibited the phosphorylation of Yes-associated protein 1 (YAP1), which ultimately triggered epithelial–mesenchymal transition (EMT). Collectively, these findings highlight the molecular mechanism of the ENO2–CYTOR interaction, and ENO2 could be considered a potential therapeutic target for CRC.
Collapse
|
20
|
Huppertz I, Perez-Perri JI, Mantas P, Sekaran T, Schwarzl T, Russo F, Ferring-Appel D, Koskova Z, Dimitrova-Paternoga L, Kafkia E, Hennig J, Neveu PA, Patil K, Hentze MW. Riboregulation of Enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Mol Cell 2022; 82:2666-2680.e11. [PMID: 35709751 DOI: 10.1016/j.molcel.2022.05.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Differentiating stem cells must coordinate their metabolism and fate trajectories. Here, we report that the catalytic activity of the glycolytic enzyme Enolase 1 (ENO1) is directly regulated by RNAs leading to metabolic rewiring in mouse embryonic stem cells (mESCs). We identify RNA ligands that specifically inhibit ENO1's enzymatic activity in vitro and diminish glycolysis in cultured human cells and mESCs. Pharmacological inhibition or RNAi-mediated depletion of the protein deacetylase SIRT2 increases ENO1's acetylation and enhances its RNA binding. Similarly, induction of mESC differentiation leads to increased ENO1 acetylation, enhanced RNA binding, and inhibition of glycolysis. Stem cells expressing mutant forms of ENO1 that escape or hyper-activate this regulation display impaired germ layer differentiation. Our findings uncover acetylation-driven riboregulation of ENO1 as a physiological mechanism of glycolytic control and of the regulation of stem cell differentiation. Riboregulation may represent a more widespread principle of biological control.
Collapse
Affiliation(s)
- Ina Huppertz
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Joel I Perez-Perri
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Panagiotis Mantas
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Thileepan Sekaran
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Francesco Russo
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dunja Ferring-Appel
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Zuzana Koskova
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | | | - Eleni Kafkia
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Janosch Hennig
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Pierre A Neveu
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Kiran Patil
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
21
|
Wang D, Fu Y, Fan J, Wang Y, Li C, Xu Y, Chen H, Hu Y, Cao H, Zhao RC, He W, Zhang J. Identification of alpha-enolase as a potential immunogenic molecule during allogeneic transplantation of human adipose-derived mesenchymal stromal cells. Cytotherapy 2022; 24:393-404. [PMID: 34863626 DOI: 10.1016/j.jcyt.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AIMS Given their low immunogenicity, immunoregulatory effects and multiple differentiation capacity, mesenchymal stromal cells (MSCs) have the potential to be used for "off-the-shelf" cell therapy to treat various diseases. However, the allorejection of MSCs indicates that they are not fully immune-privileged. In this study, the authors investigated the immunogenicity of human adipose-derived MSCs (Ad-MSCs) and identified potential immunogenic molecules. METHODS To evaluate the immunogenicity of human Ad-MSCs in vivo, cells were transplanted into humanized mice (hu-mice), then T-cell infiltration and clearance of human Ad-MSCs were observed by immunofluorescence and bioluminescence imaging. One-way mixed lymphocyte reaction and flow cytometry were performed to evaluate the immunogenicity of human Ad-MSCs in vitro. High-throughput T-cell receptor (TCR) repertoire sequencing and mass spectrometry were applied to identified potential immunogenic molecules. RESULTS The authors observed that allogeneic Ad-MSCs recruited human T cells and caused faster clearance in hu-mice than non-humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The proliferation and activation of T cells were significantly enhanced during in vitro co-culture with human Ad-MSCs. In addition, the level of HLA-II expression on human Ad-MSCs was dramatically increased after co-culture with human peripheral blood mononuclear cells (PBMCs). High-throughput sequencing was applied to analyze the TCR repertoire of the Ad-MSC-recruited T cells to identify dominant TCR CDR3 sequences. Using synthesized TCR CDR3 peptides, the authors identified several potential immunogenic candidates, including alpha-enolase (ENO1). The ENO1 expression level of Ad-MSCs significantly increased after co-culture with PBMCs, whereas ENO1 inhibitor (ENOblock) treatment decreased the expression level of ENO1 and Ad-MSC-induced proliferation of T cells. CONCLUSIONS The authors' findings improve the understanding of the immunogenicity of human Ad-MSCs and provide a theoretical basis for the safe clinical application of allogeneic MSC therapy.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Junfen Fan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Yue Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Xu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China.
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China.
| |
Collapse
|
22
|
Abstract
α-Enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a glycolytic enzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid during glycolysis. It is a multifunctional oncoprotein that is present both in cell surface and cytoplasm, contributing to hit seven out of ten “hallmarks of cancer.” ENO1's glycolytic function deregulates cellular energetic, sustains tumor proliferation, and inhibits cancer cell apoptosis. Moreover, ENO1 evades growth suppressors and helps tumors to avoid immune destruction. Besides, ENO1 “moonlights” on the cell surface and acts as a plasminogen receptor, promoting cancer invasion and metastasis by inducing angiogenesis. Overexpression of ENO1 on a myriad of cancer types together with its localization on the tumor surface makes it a great prognostic and diagnostic cancer biomarker as well as an accessible oncotherapeutic target. This review summarizes the up-to-date knowledge about the relationship between ENO1 and cancer, examines ENO1's potential as a cancer biomarker, and discusses ENO1's role in novel onco-immunotherapeutic strategies.
Collapse
|
23
|
González-Morena JM, Sánchez-Gómez FJ, Vida Y, Pérez-Inestrosa E, Salas M, Montañez MI, Altomare A, Aldini G, Pajares MA, Pérez-Sala D. Amoxicillin Haptenation of α-Enolase is Modulated by Active Site Occupancy and Acetylation. Front Pharmacol 2022; 12:807742. [PMID: 35095517 PMCID: PMC8793629 DOI: 10.3389/fphar.2021.807742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Allergic reactions to antibiotics are a major concern in the clinic. ß-lactam antibiotics are the class most frequently reported to cause hypersensitivity reactions. One of the mechanisms involved in this outcome is the modification of proteins by covalent binding of the drug (haptenation). Hence, interest in identifying the corresponding serum and cellular protein targets arises. Importantly, haptenation susceptibility and extent can be modulated by the context, including factors affecting protein conformation or the occurrence of other posttranslational modifications. We previously identified the glycolytic enzyme α-enolase as a target for haptenation by amoxicillin, both in cells and in the extracellular milieu. Here, we performed an in vitro study to analyze amoxicillin haptenation of α-enolase using gel-based and activity assays. Moreover, the possible interplay or interference between amoxicillin haptenation and acetylation of α-enolase was studied in 1D- and 2D-gels that showed decreased haptenation and displacement of the haptenation signal to lower pI spots after chemical acetylation of the protein, respectively. In addition, the peptide containing lysine 239 was identified by mass spectrometry as the amoxicillin target sequence on α-enolase, thus suggesting a selective haptenation under our conditions. The putative amoxicillin binding site and the surrounding interactions were investigated using the α-enolase crystal structure and molecular docking. Altogether, the results obtained provide the basis for the design of novel diagnostic tools or approaches in the study of amoxicillin-induced allergic reactions.
Collapse
Affiliation(s)
- Juan M González-Morena
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Francisco J Sánchez-Gómez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Yolanda Vida
- Dpto. Química Orgánica, Universidad de Málaga-IBIMA, Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Ezequiel Pérez-Inestrosa
- Dpto. Química Orgánica, Universidad de Málaga-IBIMA, Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - María Salas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Allergy Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - María I Montañez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Andalusian Centre for Nanomedicine Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Alessandra Altomare
- Department of Scienze Farmaceutiche, Universita degli Studi di Milano, Milan, Italy
| | - Giancarlo Aldini
- Department of Scienze Farmaceutiche, Universita degli Studi di Milano, Milan, Italy
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| |
Collapse
|
24
|
Li J, Hu ZQ, Yu SY, Mao L, Zhou ZJ, Wang PC, Gong Y, Su S, Zhou J, Fan J, Zhou SL, Huang XW. CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma. Cancer Res 2022; 82:1055-1069. [PMID: 35045986 DOI: 10.1158/0008-5472.can-21-1259] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/05/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Jia Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhi-Qiang Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Song-Yang Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Li Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zheng-Jun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Peng-Cheng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yu Gong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Sheng Su
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shao-Lai Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xiao-Wu Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Qiao G, Wu A, Chen X, Tian Y, Lin X. Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment. Int J Biol Sci 2021; 17:3981-3992. [PMID: 34671213 PMCID: PMC8495383 DOI: 10.7150/ijbs.63556] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enolase 1 (ENO1) is a moonlighting protein, function as a glycolysis enzyme, a plasminogen receptor and a DNA binding protein. ENO1 play an important role in the process of cancer development. The transcription, translation, post-translational modifying activities and the immunoregulatory role of ENO1 at the cancer development is receiving increasing attention. Some function model studies have shown that ENO1 is a potential target for cancer treatment. In this review, we provide a comprehensive overview of the characterization, function, related transduction cascades of ENO1 and its roles in the pathophysiology of cancers, which is a consequence of ENO1 signaling dysregulation. And the development of novels anticancer agents that targets ENO1 may provide a more attractive option for the treatment of cancers. The data of sarcoma and functional cancer models indicates that ENO1 may become a new potential target for anticancer therapy.
Collapse
Affiliation(s)
- Gan Qiao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China (Q.G, ).,School of Pharmacy, Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoliang Chen
- Schools of Medicine; Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ye Tian
- The Eighth Affiliated Hospital Sun Yat-sen University,Shenzhen, Guangdong, China
| | - Xiukun Lin
- College of Life Sci., Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
26
|
Li J, Dai L, Huang M, Ma Y, Guo Z, Wang X, Li W, Zhang JY. Immunoseroproteomic profiling in autoantibody to ENO1 as potential biomarker in immunodiagnosis of osteosarcoma by serological proteome analysis (SERPA) approach. Oncoimmunology 2021; 10:1966969. [PMID: 38260036 PMCID: PMC10802918 DOI: 10.1080/2162402x.2021.1966969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most common highly malignant primary solid bone tumor. Despite its relatively low incidence among cancers, it remains one of the most harmful primary malignant tumors in childhood and adolescence. It is now evident that serum autoantibodies against tumor-associated antigens (TAAs) could be used as serological cancer biomarkers in types of cancers. Serological proteome analysis (SERPA) approach was applied to profile anti-TAA autoantibody response in sera from patients with OS and normal human, as well as explore difference between this response. This approach can detect autoantibodies that could serve as clinical biomarkers and immunotherapeutic agents. Enzyme-linked immunosorbent assay (ELISA) and Western blotting were further used to validate the level of identified TAAs. ENO1 as a 47kD TAA in OS was identified and characterized by SERPA. Analysis of 172 serum samples with OS, osteochondroma (OC), and normal human sera (NHS) by ELISA showed higher frequency of anti-ENO1 autoantibodies in OS sera compared to others. Interestingly, decrease of ENO1 immunoreactivity was observed in most patients after treatments, which may imply a potential association between anti-ENO1 autoantibody titers and disease progression. Nine of twelve sera reacted strongly against purified ENO1, but three reacted weakly against purified ENO1, which indicated 75.0% sera with positive optimal density values from ELISA were consistently positive in Western blotting. The expression of ENO1 in OS tissues was evaluated by immunohistochemistry in tumor microarray. ENO1 was one of the autoantibodies that elicit autoimmune responses in OS and can be used as biomarkers in immunodiagnosis and progression of OS.
Collapse
Affiliation(s)
- Jitian Li
- Department of Biological Sciences & NIH-sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Liping Dai
- Department of Biological Sciences & NIH-sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Manyu Huang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Yan Ma
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Zhiping Guo
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Xiao Wang
- Department of Biological Sciences & NIH-sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Wuyin Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Jian-Ying Zhang
- Department of Biological Sciences & NIH-sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
27
|
Cook KW, Xue W, Symonds P, Daniels I, Gijon M, Boocock D, Coveney C, Miles AK, Shah S, Atabani S, Choudhury RH, Vaghela P, Weston D, Metheringham RL, Brentville VA, Durrant LG. Homocitrullination of lysine residues mediated by myeloid-derived suppressor cells in the tumor environment is a target for cancer immunotherapy. J Immunother Cancer 2021; 9:jitc-2020-001910. [PMID: 34321274 PMCID: PMC8320257 DOI: 10.1136/jitc-2020-001910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Background Homocitrullination is the post-translational modification of lysine that is recognized by T cells. Methods This study identified homocitrullinated peptides from aldolase, enolase, cytokeratin and binding immunoglobulin protein and used human leukocyte antigen (HLA) transgenic mice to assess immunogenicity by enzyme-linked immunosorbent spot assay. Vaccine efficacy was assessed in tumor therapy studies using HLA-matched B16 melanoma expressing constitutive or interferon γ (IFNγ)-inducible major histocompatibility complex class II (MHC-II) as represented by most human tumors. To determine the mechanism behind the therapy, immune cell infiltrates were analyzed using flow cytometry and therapy studies in the presence of myeloperoxidase (MPO) inhibitor and T-cell depletion performed. We assessed the T-cell repertoire to homocitrullinated peptides in patients with cancer and healthy donors using flow cytometry. Results Homocitrulline (Hcit) peptide vaccination stimulated strong CD4 T-cell responses and induced significant antitumor therapy in an established tumor model. The antitumor response was dependent on CD4 T cells and the effect was driven mainly via direct tumor recognition, as responses were only observed if the tumors were induced to express MHC-II. In vitro proliferation assays show that healthy donors and patients with cancer have an oligoclonal CD4 T-cell repertoire recognizing homocitrullinated peptides. Inhibition of cyanate generation, which mediates homocitrullination, by MPO inhibition reduced tumor therapy by the vaccine induced T cells (p=0.0018). Analysis of the tumor microenvironment (TME) suggested that myeloid-derived suppressor cells (MDSCs) were a potential source of MPO. The selected B16 melanoma model showed MDSC infiltration and was appropriate to see if the Hcit vaccine could overcome the immunosuppression associated with MDSCs. The vaccine was very effective (90% survival) as the induced CD4 T cells directly targeted the homocitrullinated tumor and likely reversed the immunosuppressive environment. Conclusion We propose that MPO, potentially produced by MDSCs, catalyzes the buildup of cyanate in the TME which diffuses into tumor cells causing homocitrullination of cytoplasmic proteins which are degraded and, in the presence of IFNγ, presented by MHC-II for direct CD4 T-cell recognition. Homocitrullinated proteins are a new target for cancer vaccines and may be particularly effective against tumors containing high levels of MPO expressing MDSCs.
Collapse
Affiliation(s)
| | - Wei Xue
- Scancell Ltd, Nottingham, UK
| | | | | | | | - David Boocock
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Clare Coveney
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Amanda K Miles
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Suha Atabani
- Biodiscovery Institute, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham, UK
| | | | - Poonam Vaghela
- Biodiscovery Institute, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham, UK
| | | | | | | | - Lindy G Durrant
- Scancell Ltd, Nottingham, UK .,Biodiscovery Institute, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham, UK
| |
Collapse
|
28
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
29
|
Almaguel FA, Sanchez TW, Ortiz-Hernandez GL, Casiano CA. Alpha-Enolase: Emerging Tumor-Associated Antigen, Cancer Biomarker, and Oncotherapeutic Target. Front Genet 2021; 11:614726. [PMID: 33584813 PMCID: PMC7876367 DOI: 10.3389/fgene.2020.614726] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Alpha-enolase, also known as enolase-1 (ENO1), is a glycolytic enzyme that “moonlights” as a plasminogen receptor in the cell surface, particularly in tumors, contributing to cancer cell proliferation, migration, invasion, and metastasis. ENO1 also promotes other oncogenic events, including protein-protein interactions that regulate glycolysis, activation of signaling pathways, and resistance to chemotherapy. ENO1 overexpression has been established in a broad range of human cancers and is often associated with poor prognosis. This increased expression is usually accompanied by the generation of anti-ENO1 autoantibodies in some cancer patients, making this protein a tumor associated antigen. These autoantibodies are common in patients with cancer associated retinopathy, where they exert pathogenic effects, and may be triggered by immunodominant peptides within the ENO1 sequence or by posttranslational modifications. ENO1 overexpression in multiple cancer types, localization in the tumor cell surface, and demonstrated targetability make this protein a promising cancer biomarker and therapeutic target. This mini-review summarizes our current knowledge of ENO1 functions in cancer and its growing potential as a cancer biomarker and guide for the development of novel anti-tumor treatments.
Collapse
Affiliation(s)
- Frankis A Almaguel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Tino W Sanchez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Medicine, Division of Rheumatology, Loma Linda University Health, Loma Linda, CA, United States
| |
Collapse
|
30
|
Czogalla B, Partenheimer A, Badmann S, Schmoeckel E, Mayr D, Kolben T, Beyer S, Hester A, Burges A, Mahner S, Jeschke U, Trillsch F. Nuclear Enolase-1/ MBP-1 expression and its association with the Wnt signaling in epithelial ovarian cancer. Transl Oncol 2020; 14:100910. [PMID: 33069100 PMCID: PMC7569221 DOI: 10.1016/j.tranon.2020.100910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Enolase-1, primarily known for its role in glucose metabolism, is overexpressed in various cancer entities. In contrast its alternative spliced nuclear isoform MBP-1 acts as a tumor suppressor. The aim of this study is to analyze the prognostic impact of Enolase-1/ MBP-1 and its functional significance in epithelial ovarian cancer (EOC). METHODS By immunohistochemistry, Enolase-1 staining was examined in 156 EOC samples. Evaluation of Enolase-1 staining was conducted in the nucleus and the cytoplasm using the semi-quantitative immunoreactive score. Expression levels were correlated with clinical and pathological parameters as well as with overall survival to assess for prognostic impact. RESULTS Cytoplasmic and nuclear Enolase-1 expression did not show a significant difference between the histological subtypes (p = 0.1). High nuclear Enolase-1/ MBP-1 staining negativly correlated with the tumor grading (p<0.001; Cc= -0.318). Cytoplasmic Enolase-1 did not correlate with clinicopathological data. Higher nuclear Enolase-1/ MBP-1 staining was detected in low-grade serous cancer cases compared to high-grade ones (median IRS 3 (range 0-8) vs. median IRS 2 (range 0-4), p<0.001). Nuclear Enolase-1/ MBP-1 expression correlated with the Wnt signaling markers membranous beta-catenin (p = 0.007; Cc=0.235), serine residue 9-phosphorylated glycogen synthase kinase 3 beta (p<0.001; Cc=0.341) and snail/slug (p = 0.004; Cc= -0.257). High nuclear Enolase-1/ MBP-1 expression was associated with improved overall survival (88.6 vs. 33.1 months, median; p = 0.013). CONCLUSION Additional knowledge of Enolase-1/ MBP-1 as a biomarker and its interactions within the Wnt signaling pathway and epithelial-mesenchymal transition potentially improve the prognosis of therapeutic approaches in EOC.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany.
| | - Alexandra Partenheimer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Susann Badmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Trevizol JS, Buzalaf NR, Dionizio A, Delgado AQ, Cestari TM, Bosqueiro JR, Magalhães AC, Buzalaf MAR. Effects of low-level fluoride exposure on glucose homeostasis in female NOD mice. CHEMOSPHERE 2020; 254:126602. [PMID: 32334241 DOI: 10.1016/j.chemosphere.2020.126602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Water fluoridation is an important public health measure for the control of dental caries. Recent animal studies have shown that low doses of fluoride (F) in the drinking water, similar to those found in public water supplies, increase insulin sensitivity and reduce blood glucose. In the present study we evaluated the effects of low-level F exposure through the drinking water on glucose homeostasis in female NOD mice. Seventy-two 6-week mice were randomly divided into 2 groups according to the concentration of F in the drinking water (0-control, or 10 mg/L) they received for 14 weeks. After the experimental period the blood was collected for analyses of plasma F, glucose and insulin. Liver and gastrocnemius muscle were collected for proteomic analysis. Plasma F concentrations were significantly higher in the F-treated than in the control group. Despite treatment with fluoridated water reduced plasma levels glucose by 20% compared to control, no significant differences were found between the groups for plasma glucose and insulin. In the muscle, treatment with fluoridated water increased the expression of proteins related to muscle contraction, while in the liver, there was an increase in expression of antioxidant proteins and in proteins related to carboxylic acid metabolic process. Remarkably, phosphoenolpyruvate carboxykinase (PEPCK) was found exclusively in the liver of control mice. The reduction in PEPCK, a positive regulator of gluconeogenesis, thus increasing glucose uptake, might be a probable mechanism to explain the anti-diabetic effects of low doses of F, which should be evaluated in further studies.
Collapse
Affiliation(s)
- Juliana Sanches Trevizol
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Nathalia Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | | | - Tania Mary Cestari
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - José Roberto Bosqueiro
- Department of Physical Education, Faculty of Science, São Paulo State University, Bauru, São Paulo, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Marilia Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil.
| |
Collapse
|
32
|
Hu T, Liu H, Liang Z, Wang F, Zhou C, Zheng X, Zhang Y, Song Y, Hu J, He X, Xiao J, King RJ, Wu X, Lan P. Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis. Am J Cancer Res 2020; 10:4056-4072. [PMID: 32226539 PMCID: PMC7086360 DOI: 10.7150/thno.40860] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/09/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: CD47 plays a vital role in the immune escape of tumor cells, but its role in regulating immune-unrelated biological processes such as proliferation and metastasis remains unclear. We seek to explore the immune-independent functions of CD47 in colorectal cancer (CRC). Methods: The expression of CD47 in CRC was determined by immunohistochemistry. The biological effect of CD47 signaling on tumor cell proliferation and metastasis was evaluated in vitro and in vivo. RNA sequencing analysis was performed to identify pivotal signaling pathways modulated by CD47. The interaction between CD47 and ENO1 was verified by co-immunoprecipitation (co-IP). The effect of CD47 on glycolytic metabolites was analyzed by seahorse XF and targeted metabolomics. Results: The expression of CD47 was upregulated and correlated to poor prognosis in CRC patients. Functional assays revealed that CD47 promoted CRC cell growth and metastasis in vitro and in vivo. Our mechanistic investigations demonstrated that CD47 interacted with ENO1 and protected it from ubiquitin-mediated degradation, subsequently promoting glycolytic activity and phosphorylation of ERK in CRC cells. Inhibition of ENO1 diminished CD47-mediated cell growth and migration. Clinically, the combined expression of CD47 and ENO1 provided reliable predictive biomarkers for the prognosis of CRC patients. Conclusions: CD47 is overexpressed in CRC, and its expression is associated with poor prognosis. Through stabilizing ENO1, CD47 enhances the aerobic glycolysis and ERK activity in CRC cells, thereby promoting the progression of CRC. Our studies reveal an unconventional role of CD47, suggesting that targeting the CD47-ENO1 axis may provide a novel therapeutic avenue for CRC.
Collapse
|
33
|
Ray A, Song Y, Du T, Chauhan D, Anderson KC. Preclinical validation of Alpha-Enolase (ENO1) as a novel immunometabolic target in multiple myeloma. Oncogene 2020; 39:2786-2796. [PMID: 32024967 DOI: 10.1038/s41388-020-1172-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 12/30/2022]
Abstract
Bone marrow plasmacytoid dendritic cells (pDCs) in patients with multiple myeloma (MM) promote tumor growth, survival, drug resistance, and immune suppression. Understanding the molecular signaling crosstalk among the tumor cells, pDCs and immune cells will identify novel therapeutic approaches to enhance anti-MM immunity. Using oligonucleotide arrays, we found that pDC-MM interactions induce metabolic enzyme Alpha-Enolase (ENO1) in both pDCs and MM cells. Analysis of MM patient gene expression profiling database showed that ENO1 expression inversely correlates with overall survival. Protein expression analysis showed that ENO1 is expressed in pDC and MM cells; and importantly, that pDC-MM coculture further increases ENO1 expression in both MM cells and pDCs. Using our coculture models of patient autologous pDC-T-NK-MM cells, we examined whether targeting ENO1 can enhance anti-MM immunity. Biochemical inhibition of ENO1 with ENO1 inhibitor (ENO1i) activates pDCs, as well as increases pDC-induced MM-specific CD8+ CTL and NK cell activity against autologous tumor cells. Combination of ENO1i and anti-PD-L1 Ab or HDAC6i ACY-241 enhances autologous MM-specific CD8+ CTL activity. Our preclinical data therefore provide the basis for novel immune-based therapeutic approaches targeting ENO1, alone or in combination with anti-PD-L1 Ab or ACY241, to restore anti-MM immunity, enhance MM cytotoxicity, and improve patient outcome.
Collapse
Affiliation(s)
- Arghya Ray
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yan Song
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ting Du
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dharminder Chauhan
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Kenneth C Anderson
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Hyperglycemia promotes Snail-induced epithelial-mesenchymal transition of gastric cancer via activating ENO1 expression. Cancer Cell Int 2019; 19:344. [PMID: 31889896 PMCID: PMC6924061 DOI: 10.1186/s12935-019-1075-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. Emerging evidence indicates that hyperglycemia promotes tumor progression, especially the processes of migration, invasion and epithelial-mesenchymal transition (EMT). However, the underlying mechanisms of GC remain unclear. Method Data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to detect the expression of glycolysis-related enzymes and EMT-related transcription factors. Small interfering RNA (siRNA) transfection was performed to decrease ENO1 expression. Immunohistochemistry (IHC), Western blot and qRT-PCR analyses were used to measure gene expression at the protein or mRNA level. CCK-8, wound-healing and Transwell assays were used to assess cell proliferation, migration and invasion. Results Among the glycolysis-related genes, ENO1 was the most significantly upregulated in GC, and its overexpression was correlated with poor prognosis. Hyperglycemia enhanced GC cell proliferation, migration and invasion. ENO1 expression was also upregulated with increasing glucose concentrations. Moreover, decreased ENO1 expression partially reversed the effect of high glucose on the GC malignant phenotype. Snail-induced EMT was promoted by hyperglycemia, and suppressed by ENO1 silencing. Moreover, ENO1 knockdown inhibited the activation of transforming growth factor β (TGF-β) signaling pathway in GC. Conclusions Our results indicated that hyperglycemia induced ENO1 expression to trigger Snail-induced EMT via the TGF-β/Smad signaling pathway in GC.
Collapse
|
35
|
Discovery and evaluation of inhibitory activity and mechanism of arylcoumarin derivatives on Theileria annulata enolase by in vitro and molecular docking studies. Mol Divers 2019; 24:1149-1164. [PMID: 31754915 DOI: 10.1007/s11030-019-10018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
In this study, the inhibition potential of 3- and 4-arylcoumarin derivatives on Theileria annulata enolase (TaENO) was assessed for the first time in the literature. Firstly, protein stabilization analyses of TaENO were performed and it was found that the enzyme remains stable with the addition of 6 M ethylene glycol at + 4 °C. Inhibitor screening analyses were carried out using 25 coumarin derivatives on highly purified TaENO (> 95%), and four coumarin derivatives [4-(3,4-dimethoxyphenyl)-6,7-dihydroxy-2H-chromen-2-one (C8); 4-(3,4-dihydroxyphenyl)-7,8 dihydroxy-2H-chromen-2-one (C9); 4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-2H-chromen-2 one (C21); and 3-(3,4-dihydroxyphenyl)-7,8-dihydroxy-2H-chromen-2-one (C23)] showed the highest inhibitory effects with the IC50 values of 10.450, 13.170, 8.871 and 10.863 µM, respectively. The kinetic results indicated that these compounds inhibited the enzyme by uncompetitive inhibition. In addition, the successful binding of the most potent inhibitor (C21) into TaENO was confirmed by using MALDI-TOF mass spectrophotometry. Molecular docking analyses have predicted that C8 and C21 coumarin derivatives which showed high inhibitory effects on TaENO were interacted with high affinity to the potential regions out of the active site. Taken together, these coumarin derivatives (C8, C9, C21 and C23) are first known potent, nonsubstrate, uncompetitive inhibitors of TaENO and these results will facilitate further in vitro and in vivo analysis toward structure-based drug design studies.
Collapse
|
36
|
Li L, Zhang T, Xu J, Wu J, Wang Y, Qiu X, Zhang Y, Hou W, Yan L, An M, Jiang Y. The Synergism of the Small Molecule ENOblock and Fluconazole Against Fluconazole-Resistant Candida albicans. Front Microbiol 2019; 10:2071. [PMID: 31555252 PMCID: PMC6742966 DOI: 10.3389/fmicb.2019.02071] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is the most common opportunistic fungal pathogen which can cause life-threatening bloodstream infections known as candidaemia. It is very important to discover new drugs and targets for the treatment of candidaemia. In this study, we first investigated the combination antifungal effects of the small molecule ENOblock and fluconazole (FLC) against FLC-resistant C. albicans. A checkerboard microdilution assay showed that ENOblock has a significant synergistic effect in combination with FLC against FLC-resistant C. albicans. The time-kill curve further confirmed the synergism of this compound with FLC against FLC-resistant C. albicans. Moreover, we demonstrated the significant inhibitory effects of ENOblock alone and in combination with FLC against C. albicans hypha and biofilm formation. Furthermore, the XTT assay showed that ENOblock has relatively low toxicity to human umbilical vein endothelial cells. The in vivo antifungal efficacy of ENOblock was further assessed in a murine model of systemic C. albicans infection. Although ENOblock alone was not sufficient to treat C. albicans infection, the combination of FLC and ENOblock showed significant in vivo activity against FLC-resistant C. albicans. Finally, using surface plasmon resonance analysis as well as an inhibition assay, we determined that ENOblock directly interacted with CaEno1 and significantly inhibited the transglutaminase activity of this enzyme, which is involved in the growth and morphogenesis of C. albicans. In summary, these results demonstrate the synergistic effects of FLC and ENOblock against FLC-resistant C. albicans, and indicate that inhibition of the transglutaminase activity of CaEno1 by ENOblock might confer an advantage for the synergism of FLC and ENOblock, suggesting the potential of ENOblock as a new antifungal candidate.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Teng Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yida Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiran Qiu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weitong Hou
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Yan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Maomao An
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Borne AL, Huang T, McCloud RL, Pachaiyappan B, Bullock TNJ, Hsu KL. Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Curr Top Microbiol Immunol 2019; 420:175-210. [PMID: 30128827 PMCID: PMC7134364 DOI: 10.1007/82_2018_124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
As a major sentinel of adaptive immunity, T cells seek and destroy diseased cells using antigen recognition to achieve molecular specificity. Strategies to block checkpoint inhibition of T cell activity and thus reawaken the patient's antitumor immune responses are rapidly becoming standard of care for treatment of diverse cancers. Adoptive transfer of patient T cells genetically engineered with tumor-targeting capabilities is redefining the field of personalized medicines. The diverse opportunities for exploiting T cell biology in the clinic have prompted new efforts to expand the scope of targets amenable to immuno-oncology. Given the complex spatiotemporal regulation of T cell function and fate, new technologies capable of global molecular profiling in vivo are needed to guide selection of appropriate T cell targets and subsets. In this chapter, we describe the use of activity-based protein profiling (ABPP) to illuminate different aspects of T cell metabolism and signaling as fertile starting points for investigation. We highlight the merits of ABPP methods to enable target, inhibitor, and biochemical pathway discovery of T cells in the burgeoning field of immuno-oncology.
Collapse
Affiliation(s)
- Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tao Huang
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Rebecca L McCloud
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Boobalan Pachaiyappan
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA.
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
38
|
Didiasova M, Schaefer L, Wygrecka M. When Place Matters: Shuttling of Enolase-1 Across Cellular Compartments. Front Cell Dev Biol 2019; 7:61. [PMID: 31106201 PMCID: PMC6498095 DOI: 10.3389/fcell.2019.00061] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Enolase is a glycolytic enzyme, which catalyzes the inter-conversion of 2-phosphoglycerate to phosphoenolpyruvate. Altered expression of this enzyme is frequently observed in cancer and accounts for the Warburg effect, an adaptive response of tumor cells to hypoxia. In addition to its catalytic function, ENO-1 exhibits other activities, which strongly depend on its cellular and extracellular localization. For example, the association of ENO-1 with mitochondria membrane was found to be important for the stability of the mitochondrial membrane, and ENO-1 sequestration on the cell surface was crucial for plasmin-mediated pericellular proteolysis. The latter activity of ENO-1 enables many pathogens but also immune and cancer cells to invade the tissue, leading further to infection, inflammation or metastasis formation. The ability of ENO-1 to conduct so many diverse processes is reflected by its contribution to a high number of pathologies, including type 2 diabetes, cardiovascular hypertrophy, fungal and bacterial infections, cancer, systemic lupus erythematosus, hepatic fibrosis, Alzheimer's disease, rheumatoid arthritis, and systemic sclerosis. These unexpected non-catalytic functions of ENO-1 and their contributions to diseases are the subjects of this review.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
39
|
Krucinska J, Falcone E, Erlandsen H, Hazeen A, Lombardo MN, Estrada A, Robinson VL, Anderson AC, Wright DL. Structural and Functional Studies of Bacterial Enolase, a Potential Target against Gram-Negative Pathogens. Biochemistry 2019; 58:1188-1197. [PMID: 30714720 DOI: 10.1021/acs.biochem.8b01298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enolase is a glycolytic metalloenzyme involved in carbon metabolism. The advantage of targeting enolase lies in its essentiality in many biological processes such as cell wall formation and RNA turnover and as a plasminogen receptor. We initially used a DARTS assay to identify enolase as a target in Escherichia coli. The antibacterial activities of α-, β-, and γ-substituted seven-member ring tropolones were first evaluated against four strains representing a range of Gram-negative bacteria. We observed that the chemical properties and position of the substituents on the tropolone ring play an important role in the biological activity of the investigated compounds. Both α- and β-substituted phenyl derivatives of tropolone were the most active with minimum inhibitory concentrations in the range of 11-14 μg/mL. The potential inhibitory activity of the synthetic tropolones was further evaluated using an enolase inhibition assay, X-ray crystallography, and molecular docking simulations. The catalytic activity of enolase was effectively inhibited by both the naturally occurring β-thujaplicin and the α- and β-substituted phenyl derivatives of tropolones with IC50 values in range of 8-11 μM. Ligand binding parameters were assessed by isothermal titration calorimetry and differential scanning calorimetry techniques and agreed with the in vitro data. Our studies validate the antibacterial potential of tropolones with careful consideration of the position and character of chelating moieties for stronger interaction with metal ions and residues in the enolase active site.
Collapse
Affiliation(s)
- Jolanta Krucinska
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Eric Falcone
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Heidi Erlandsen
- Center for Open Research Resources & Equipment (COR2E) , University of Connecticut , 91 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Akram Hazeen
- Department of Chemistry , University of Connecticut , 55 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Michael N Lombardo
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Alexavier Estrada
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Victoria L Robinson
- Department of Molecular and Cellular Biology , University of Connecticut , 91 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Amy C Anderson
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Dennis L Wright
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States.,Department of Chemistry , University of Connecticut , 55 North Eagleville Road , Storrs , Connecticut 06269 , United States
| |
Collapse
|
40
|
Gemta LF, Siska PJ, Nelson ME, Gao X, Liu X, Locasale JW, Yagita H, Slingluff CL, Hoehn KL, Rathmell JC, Bullock TNJ. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8 + T cells. Sci Immunol 2019; 4:eaap9520. [PMID: 30683669 PMCID: PMC6824424 DOI: 10.1126/sciimmunol.aap9520] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 08/10/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
In the context of solid tumors, there is a positive correlation between the accumulation of cytotoxic CD8+ tumor-infiltrating lymphocytes (TILs) and favorable clinical outcomes. However, CD8+ TILs often exhibit a state of functional exhaustion, limiting their activity, and the underlying molecular basis of this dysfunction is not fully understood. Here, we show that TILs found in human and murine CD8+ melanomas are metabolically compromised with deficits in both glycolytic and oxidative metabolism. Although several studies have shown that tumors can outcompete T cells for glucose, thus limiting T cell metabolic activity, we report that a down-regulation in the activity of ENOLASE 1, a critical enzyme in the glycolytic pathway, represses glycolytic activity in CD8+ TILs. Provision of pyruvate, a downstream product of ENOLASE 1, bypasses this inactivity and promotes both glycolysis and oxidative phosphorylation, resulting in improved effector function of CD8+ TILs. We found high expression of both enolase 1 mRNA and protein in CD8+ TILs, indicating that the enzymatic activity of ENOLASE 1 is regulated posttranslationally. These studies provide a critical insight into the biochemical basis of CD8+ TIL dysfunction.
Collapse
Affiliation(s)
- Lelisa F Gemta
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marin E Nelson
- Department of Pharmacology, University of Virginia, VA 22908, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University, NC 27710, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, NC 27710, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Craig L Slingluff
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
41
|
Abstract
Obesity is a medical condition that impacts on all levels of society and causes numerous comorbidities, such as diabetes, cardiovascular disease, and cancer. We assessed the suitability of targeting enolase, a glycolysis pathway enzyme with multiple, secondary functions in cells, to treat obesity. Treating adipocytes with ENOblock, a novel modulator of these secondary ‘moonlighting’ functions of enolase, suppressed the adipogenic program and induced mitochondrial uncoupling. Obese animals treated with ENOblock showed a reduction in body weight and increased core body temperature. Metabolic and inflammatory parameters were improved in the liver, adipose tissue and hippocampus. The mechanism of ENOblock was identified as transcriptional repression of master regulators of lipid homeostasis (Srebp-1a and Srebp-1c), gluconeogenesis (Pck-1) and inflammation (Tnf-α and Il-6). ENOblock treatment also reduced body weight gain, lowered cumulative food intake and increased fecal lipid content in mice fed a high fat diet. Our results support the further drug development of ENOblock as a therapeutic for obesity and suggest enolase as a new target for this disorder.
Collapse
|
42
|
Granulin A Synergizes with Cisplatin to Inhibit the Growth of Human Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19103060. [PMID: 30301274 PMCID: PMC6213591 DOI: 10.3390/ijms19103060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023] Open
Abstract
Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. However, due to resistance and toxicity, the application of cisplatin for the treatment of hepatocellular carcinoma (HCC) is limited. Our previous study has shown that granulin A (GRN A), an anticancer peptide, is able to interact with enolase1 (ENO1) and inhibit the growth of HCC in vitro. In the present study, we studied the synergistic effect of the combination of cisplatin and GRN A for the inhibitory effect on HCC. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and Chou-Talalay approaches revealed that the combination of GRN A and cisplatin displayed potent synergistic effect. The colony formation and cell viability of HCC cells were inhibited significantly in cells treated with the combination of cisplatin and GRN A, compared with cells treated with cisplatin or GRN A alone. Overexpression of ENO1 diminished the synergistic effect of GRN A and cisplatin in HCC cells. The combination of the two drugs exhibited a more obvious inhibitory effect on cancer cell apoptosis, as analyzed by the cytometry flow, mitochondrial membrane potential (MMP) and western blot analysis. An in vivo study confirmed that the combined use of the two drugs displayed more potent antitumor activity compared to mice treated with cisplatin and GRN A alone; the inhibitory rate of tumor growth was 65.46% and 68.94%, respectively, in mice treated with GRN A and cisplatin. However, the inhibitory rate increased to 86.63% in mice treated with the combination of the two drugs. This study provides evidence that the combination of GRN A and cisplatin is able to sensitize the liver cancer to cisplatin, and that targeting ENO1 is a promising approach for enhancing the antitumor activity of cisplatin.
Collapse
|
43
|
Lee JY, Kang MJ, Choi JY, Park JS, Park JK, Lee EY, Lee EB, Pap T, Yi EC, Song YW. Apolipoprotein B binds to enolase-1 and aggravates inflammation in rheumatoid arthritis. Ann Rheum Dis 2018; 77:1480-1489. [PMID: 29997113 DOI: 10.1136/annrheumdis-2018-213444] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Immune cells from patients with rheumatoid arthritis (RA) express more enolase-1 (ENO1) on their surface than those from healthy subjects, and they elicit an enhanced inflammatory response. This study is aimed to identify the ligands of ENO1 that could promote inflammatory loops in vitro and enhance the arthritis severity in vivo. METHODS ENO1-binding proteins in RA synovial fluid were identified by mass spectromety, and affinity to ENO1 was evaluated by means of a ligand blotting and binding assay, surface plasmon resonance and confocal microscopy. Proinflammatory response by the interaction between ENO1 and apolipoprotein B (apoB) was tested in vitro and in vivo using peripheral blood mononuclear cells and a K/BxN serum transfer arthritis model and low-density lipoproteins receptor (LDLR) knockout mice. RESULTS ApoB in the synovid fluid of patients with RA was identified as a specific ligand to ENO1 with a higher affinity than plasminogen, a known ENO1 ligand. ApoB binding to ENO1 on monocytes elicited the production of tumour necrosis factor-α, interleukins (IL)-1β and IL-6 through both p38 mitogen-activated protein kinase and NF-κB pathways. In the K/BxN serum transfer arthritis model, administration of apoB increased the production of proinflammatory cytokines and exaggerated arthritis severity. The severity of K/BxN serum transfer arthritis in LDLR knockout mice was comparable with wild-type mice. CONCLUSIONS A key component of atherogenic lipids, apoB, aggravated arthritis by potentiating the inflammatory response via its interaction with ENO1 expressed on the surface of immune cells. This suggests a novel mechanism by which lipid metabolism regulates chronic inflammation in RA.
Collapse
Affiliation(s)
- Joo Youn Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Ji Yong Choi
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Ji Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Jin Kyun Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Yeong Wook Song
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
44
|
Dai J, Zhou Q, Chen J, Rexius-Hall ML, Rehman J, Zhou G. Alpha-enolase regulates the malignant phenotype of pulmonary artery smooth muscle cells via the AMPK-Akt pathway. Nat Commun 2018; 9:3850. [PMID: 30242159 PMCID: PMC6155017 DOI: 10.1038/s41467-018-06376-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms underlying the metabolic shift toward increased glycolysis observed in pulmonary artery smooth muscle cells (PASMC) during the pathogenesis of pulmonary arterial hypertension (PAH) are not fully understood. Here we show that the glycolytic enzyme α-enolase (ENO1) regulates the metabolic reprogramming and malignant phenotype of PASMC. We show that ENO1 levels are elevated in patients with associated PAH and in animal models of hypoxic pulmonary hypertension (HPH). The silencing or inhibition of ENO1 decreases PASMC proliferation and de-differentiation, and induces PASMC apoptosis, whereas the overexpression of ENO1 promotes a synthetic, de- differentiated, and apoptotic-resistant phenotype via the AMPK-Akt pathway. The suppression of ENO1 prevents the hypoxia-induced metabolic shift from mitochondrial respiration to glycolysis in PASMC. Finally, we find that pharmacological inhibition of ENO1 reverses HPH in mice and rats, suggesting ENO1 as a regulator of pathogenic metabolic reprogramming in HPH.
Collapse
Affiliation(s)
- Jingbo Dai
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Qiyuan Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jiwang Chen
- Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Megan L Rexius-Hall
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Guofei Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
45
|
Shahruzaman SH, Fakurazi S, Maniam S. Targeting energy metabolism to eliminate cancer cells. Cancer Manag Res 2018; 10:2325-2335. [PMID: 30104901 PMCID: PMC6074761 DOI: 10.2147/cmar.s167424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adaptive metabolic responses toward a low oxygen environment are essential to maintain rapid proliferation and are relevant for tumorigenesis. Reprogramming of core metabolism in tumors confers a selective growth advantage such as the ability to evade apoptosis and/or enhance cell proliferation and promotes tumor growth and progression. One of the mechanisms that contributes to tumor growth is the impairment of cancer cell metabolism. In this review, we outline the small-molecule inhibitors identified over the past decade in targeting cancer cell metabolism and the usage of some of these molecules in clinical trials.
Collapse
Affiliation(s)
- Shazwin Hani Shahruzaman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| |
Collapse
|
46
|
Zhao Z, Rajagopalan R, Zweifach A. A Novel Multiple-Read Screen for Metabolically Active Compounds Based on a Genetically Encoded FRET Sensor for ATP. SLAS DISCOVERY 2018; 23:907-918. [PMID: 29898642 DOI: 10.1177/2472555218780636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both glycolysis and mitochondrial energetics are targets of interest for developing antiproliferative cancer therapeutics. We developed a novel multiple-read assay based on long-term expression in K562 cells of a genetically encoded intramolecular Förster resonance energy transfer sensor for adenosine triphosphate (ATP). The assay, conducted in a fluorescent plate reader, can identify compounds that inhibit oxidative phosphorylation-dependent ATP production, glycolysis, or both after short-term treatment. We screened a National Cancer Institute (NCI) compound library, identifying inhibitors of oxidative phosphorylation-dependent ATP production and glycolysis. Three glycolysis inhibitors blocked hexokinase activity, demonstrating that our assay can serve as the initial step in a workflow to identify compounds that inhibit glycolysis via a defined desired mechanism. Finally, upon reviewing the literature, we found surprisingly little evidence that inhibiting glycolysis with small molecules is antiproliferative. Using NCI data on proliferation of K562 cells, we found that inhibitors of oxidative phosphorylation-dependent ATP production were no more antiproliferative than the overall library, whereas all glycolysis inhibitors were in the top third of most effective antiproliferative compounds. Our results thus present a powerful new way to screen for compounds that affect cellular metabolism and also provide important support for the idea that blocking glycosis is antiproliferative.
Collapse
Affiliation(s)
- Ziyan Zhao
- 1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Rahul Rajagopalan
- 1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Adam Zweifach
- 1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
47
|
Chen J, Hu X, Cui J. Shikonin, vitamin K 3 and vitamin K 5 inhibit multiple glycolytic enzymes in MCF-7 cells. Oncol Lett 2018; 15:7423-7432. [PMID: 29725454 DOI: 10.3892/ol.2018.8251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Glycolysis is the most important source of energy for the production of anabolic building blocks in cancer cells. Therefore, glycolytic enzymes are regarded as potential targets for cancer treatment. Previously, naphthaquinones, including shikonin, vitamin K3 and vitamin K5, have been proven to decrease the rate of glycolysis in cancer cells, which is partly due to suppressed pyruvate kinase activity. In the present study, enzymatic assays were performed using MCF-7 cell lysate in order to screen the profile of glycolytic enzymes in cancer cells inhibited by shikonin, vitamin K3 and vitamin K5, in addition to pyruvate kinase. Results revealed that hexokinase, phosphofructokinase-1, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase produced in the process of glycolysis were inhibited by shikonin, vitamin K3 and vitamin K5. The results indicated that shikonin, vitamin K3 and vitamin K5 are chemical inhibitors of glycolytic enzymes in cancer cells and have potential uses in translational medical applications.
Collapse
Affiliation(s)
- Jing Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, The Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P.R. China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310009, P.R. China
| | - Jingjie Cui
- Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
48
|
Chen X, Xu H, Wu N, Liu X, Qiao G, Su S, Tian Y, Yuan R, Li C, Liu X, Lin X. Interaction between granulin A and enolase 1 attenuates the migration and invasion of human hepatoma cells. Oncotarget 2018; 8:30305-30316. [PMID: 28415822 PMCID: PMC5444744 DOI: 10.18632/oncotarget.16328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
Granulin A (GRN A), a peptide with a molecular 6 kDa, is derived from proteolysis of progranulin (PGRN). Previous study in our laboratory has shown that GRN A is able to inhibit cancer cell growth significantly. In the present study, we confirmed that GRN A can bind to α-enolase (ENO1) specifically as analyzed using Pull-down/MS approaches. The interaction of GRN A with ENO1 was further confirmed by Western blotting and Surface plasmon resonance (SPR) analysis. Treatment of human HepG-2 cells with GRN A inhibited cancer cell growth as well as migration and invasion of cancer cells as analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide (MTT) and Scratch wound healing assay as well as Transwell experiments. Additionally, GRN A treatment results in augmentation of glucose uptake in cancer cells. Further study reveals that higher expression of ENO1 reversed the inhibitory effects of GRN A on migration and invasion of HepG-2 cells. The increase of glucose uptake, as well as the expression of apoptosis-related genes, is also reversed in cells overexpressing ENO1. The study provides solid evidence that there is the interaction between GRN A and ENO1 and the interaction is responsible for the effects of GRN A on glucose uptake as well as cancer cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoliang Chen
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Huanli Xu
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Ning Wu
- Institute of Oceanology, Chinese Academy of Science, Qingdao 266003, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Gan Qiao
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Shuonan Su
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Ye Tian
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Ru Yuan
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Cong Li
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Xiaohui Liu
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Xiukun Lin
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
49
|
Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners. Cancers (Basel) 2018; 10:cancers10020051. [PMID: 29462900 PMCID: PMC5836083 DOI: 10.3390/cancers10020051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC). Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1), a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC)-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells), which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors) that could be effective in amplifying the response induced by the immune vaccination in PDA.
Collapse
|
50
|
Kurmi K, Hitosugi S, Wiese EK, Boakye-Agyeman F, Gonsalves WI, Lou Z, Karnitz LM, Goetz MP, Hitosugi T. Carnitine Palmitoyltransferase 1A Has a Lysine Succinyltransferase Activity. Cell Rep 2018; 22:1365-1373. [PMID: 29425493 PMCID: PMC5826573 DOI: 10.1016/j.celrep.2018.01.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Lysine succinylation was recently identified as a post-translational modification in cells. However, the molecular mechanism underlying lysine succinylation remains unclear. Here, we show that carnitine palmitoyltransferase 1A (CPT1A) has lysine succinyltransferase (LSTase) activity in vivo and in vitro. Using a stable isotope labeling by amino acid in cell culture (SILAC)-based proteomics approach, we found that 101 proteins were more succinylated in cells expressing wild-type (WT) CPT1A compared with vector control cells. One of the most heavily succinylated proteins in this analysis was enolase 1. We found that CPT1A WT succinylated enolase 1 and reduced enolase enzymatic activity in cells and in vitro. Importantly, mutation of CPT1A Gly710 (G710E) selectively inactivated carnitine palmitoyltransferase (CPTase) activity but not the LSTase activity that decreased enolase activity in cells and promoted cell proliferation under glutamine depletion. These findings suggest that CPT1A acts as an LSTase that can regulate enzymatic activity of a substrate protein and metabolism independent of its classical CPTase activity.
Collapse
Affiliation(s)
- Kiran Kurmi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Sadae Hitosugi
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Elizabeth K Wiese
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Taro Hitosugi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|