1
|
Cheng H, Wang W, Zeng Y, Zhang H, Huang X, Pu F, Zhang X, Hu A, Ding Y. Thermal C α-C 6 Cyclization of Enediynes. J Org Chem 2025. [PMID: 40261941 DOI: 10.1021/acs.joc.4c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Canonical thermal cycloaromatizations (Bergman, C1-C6; Myers-Saito, C2-C7; Schmittel, C2-C6; Schreiner-Pascal, C1-C5) are limited to the formation of five- or six-membered rings, while the formation of larger rings from enediyne (or enyne-allenes) has no precedent experimental exploration. Herein, we present a novel thermal cyclization of enediyne, leading to the formation of a stable seven-membered cyclization product. The structure of this product was elucidated by using NMR and single-crystal X-ray diffraction techniques. The presence of a maleic hydrazide moiety is postulated to facilitate the proton transfer, resulting in the rearrangement of enediyne to enyne-allene, culminating in ring closure through Cα-C6 cyclization. The reaction mechanism was further explored by using density functional theory (DFT), revealing a low activation barrier for the Cα-C6 cyclization at 19.6 kcal/mol. The newly formed seven-membered ring exhibits strong Möbius aromaticity, as confirmed by calculations of the nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID). In the subsequent reaction, the fusion of the oxazolidin-2-one ring and the elimination of the isobutene molecule release a significant amount of energy, further driving the formation of the final product.
Collapse
Affiliation(s)
- Haonan Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Zeng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Houjun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohua Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fangxu Pu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Li PP, Yang Z, Cai SQ, Liang W, Fang SC, Zhao JF, Pan B, Du F. Palladium-Catalyzed and Photoinduced Site-Selective Alkynylation and Oxidation of the Remote C(sp 3)-H. Org Lett 2025; 27:2602-2608. [PMID: 40063055 DOI: 10.1021/acs.orglett.5c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A general and efficient method for the direct alkynylation and oxidation of remote C(sp3)-H bonds under photoirradiation is described. In this reaction, the Pd catalyst acts as both a photocatalyst to generate the nitrogen radical and a cross-coupling catalyst with a terminal alkyne. Attractive features of this system include good functional group tolerance, scalability, convenient reagents, and an operating system. The utility of this protocol is highlighted by its application for derivatization of several valuable aza-heterocycles such as caspase-3 inhibitor and azepinone derivatives.
Collapse
Affiliation(s)
- Pan-Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhi Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shao-Qun Cai
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shi-Cui Fang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jun-Fei Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
3
|
Song G, Lee S, Jeong KS. Foldameric receptors with domain-swapping cavities capable of selectively binding and transporting monosaccharides. Org Biomol Chem 2025; 23:2845-2853. [PMID: 39973617 DOI: 10.1039/d4ob02061h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The development of synthetic receptors capable of selectively binding and transporting saccharides is crucial but highly challenging. In this study, two foldameric receptors 1 and 2, consisting of two repeating monomers, indolocarbazole and naphthyridine units, with different aromatic spacers in the middle of their sequences, have been synthesised. These receptors fold into helical conformations, and the two strands of each receptor are assembled to create domain-swapping cavities for binding monosaccharides by multiple hydrogen bonds. According to 1H NMR, CD spectroscopy, mass spectrometry, and ITC experiments, receptor 1 forms two distinct 2 : 2 complexes with methyl β-D-galactopyranoside and methyl β-D-glucopyranoside: (1-MM)2⊃(methyl β-D-galactopyranoside·2H2O)2 and (1-MP)2⊃(methyl β-D-glucopyranoside)2. Despite being composed of identical foldamer strands, these two complexes exhibit notably different folding and assembly modes to achieve optimal stability. The binding affinities of 1 for methyl β-D-galactopyranoside and methyl β-D-glucopyranoside are estimated to be log K = 12.7 and 13.3, respectively, in 5% (v/v) DMSO/CH2Cl2. On the other hand, receptor 2 forms a stable 2 : 2 receptor/guest complex with methyl β-D-glucopyranoside, (2-MP)2⊃(methyl β-D-glucopyranoside)2, with an association constant of log K = 13.9, which is significantly higher than that of methyl β-D-galactopyranoside (log K = 11.1) and methyl α-D-glucopyranoside (log K = 10.6). Furthermore, receptor 2 facilitates the selective transport of methyl β-D-glucopyranoside over other glycosides across an organic phase (CH2Cl2) in U-tube experiments.
Collapse
Affiliation(s)
- Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
4
|
Morrison KM, Volpin G, Kaldas SJ, Holstein PM, Lübbesmeyer M, Ford MJ, Guimond N, Stradiotto M. Palladium-Catalyzed Sonogashira Cross-Couplings of (Hetero)Aryl Fluorosulfates. Org Lett 2025; 27:2456-2460. [PMID: 40040276 DOI: 10.1021/acs.orglett.5c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The palladium-catalyzed Sonogashira cross-coupling of (hetero)aryl fluorosulfates and terminal alkynes, featuring a synthetically useful scope and yields, is reported herein. Such transformations involving a diversity of (hetero)aryl fluorosulfate coupling partners, including chemoselective examples where contending chloro functionalities are present, are achieved using a DPPF/[Pd(cinnamyl)Cl]2 catalyst system without the requirement of a copper additive.
Collapse
Affiliation(s)
- Kathleen M Morrison
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Giulio Volpin
- Research & Development, Process Design & Sample Delivery, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Sherif J Kaldas
- Active Ingredient Process Development, Crop Science Division, Bayer AG, Alte Heerstraße 4, 41539 Dormagen, Germany
| | - Philipp M Holstein
- Drug Discovery Sciences, Pharmaceutical Division, Bayer AG, Aprather Weg 18 A, 42096 Wuppertal, Germany
| | - Maximilian Lübbesmeyer
- Research & Development, Process Design & Sample Delivery, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Mark James Ford
- Research & Development, Process Design & Sample Delivery, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Nicolas Guimond
- Research & Development, Process Design & Sample Delivery, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
5
|
Zhang W, Chen S, Zhang Y, Liu S, Shen X. Cu(I)-Catalyzed Enantioselective Epoxidation of Aldehydes with α-Trifluoromethyl Diazosilanes. Angew Chem Int Ed Engl 2025; 64:e202422020. [PMID: 39910886 DOI: 10.1002/anie.202422020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Catalytic epoxidation of readily available aldehydes with diazo compounds is an atom economical strategy to synthesize epoxides. However, the asymmetric epoxidation reaction of aldehydes and fluorinated diazo compounds is challenging, because of the severe racemic background reaction. Herein, we report the first Cu(I)-catalyzed enantioselective epoxidation reaction between aldehydes and α-trifluoromethyl diazosilanes for the synthesis of chiral trifluoromethyl epoxides. This reaction features mild conditions, broad substrate scope, excellent diastereoselectivity and enantioselectivity. The observed positive nonlinear effect supports the ligand acceleration and the achievement of high enantioselectivity with a chiral ligand possessing lower enantiopurity. The gram scale reaction and down-stream transformation based on the removable silyl group demonstrated the synthetic potential of the reaction.
Collapse
Affiliation(s)
- Weilu Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Suo Chen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Yunxiao Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
6
|
Ali H, Orooji Y, Alzahrani AYA, Hassan HMA, Ajmal Z, Yue D, Hayat A. Advanced Porous Aromatic Frameworks: A Comprehensive Overview of Emerging Functional Strategies and Potential Applications. ACS NANO 2025; 19:7482-7545. [PMID: 39965777 DOI: 10.1021/acsnano.4c16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Porous aromatic frameworks (PAFs) are a fundamental group of porous materials characterized by their distinct structural features and large surface areas. These materials are synthesized from aromatic building units linked by strong carbon-carbon bonds, which confer exceptional rigidity and long-term stability. PAFs functionalities may arise directly from the intrinsic chemistry of their building units or through the postmodification of aromatic motifs using well-defined chemical processes. Compared to other traditional porous materials such as zeolites and metallic-organic frameworks, PAFs demonstrate superior stability under severe chemical treatments due to their robust carbon-carbon bonding. Even in challenging environments, the chemical stability and ease of functionalization of PAFs demonstrate their flexibility and specificity. Research on PAFs has significantly expanded and accelerated over the past decade, necessitating a comprehensive overview of key advancements in this field. This review provides an in-depth analysis of the recent advances in the synthesis, functionalization, and dimensionality of PAFs, along with their distinctive properties and wide-ranging applications. This review explores the innovative methodologies in PAFs synthesis, the strategies for functionalizing their structures, and the manipulation of their dimensionality to tailor their properties for specific potential applications. Similarly, the key application areas, including batteries, absorption, sensors, CO2 capture, photo-/electrocatalytic usages, supercapacitors, separation, and biomedical are discussed in detail, highlighting the versatility and potential of PAFs in addressing modern scientific and industrial challenges.
Collapse
Affiliation(s)
- Hamid Ali
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
- School of Resources and Environment, Shensi Lab, University of Electronic Science and Technology of China, Chengdu, 611731,China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | | | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, 72345, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Asif Hayat
- Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, China
| |
Collapse
|
7
|
Kuang Y, Ni W, Liu H, Han J. Poly(p-Phenyleneethynylene)s-Based Sensor Array for Diagnosis of Clinical Diseases. ChemMedChem 2025; 20:e202400686. [PMID: 39581864 DOI: 10.1002/cmdc.202400686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Inspired by the mammalian taste and olfactory systems, array-based pattern recognition technology has demonstrated significant potential in discerning subtle differences between highly similar compounds and complex mixtures, owing to their unique parallel detection mechanism based on cross-reactive signals. While optical sensor array has been extensively employed in the field of chemical sensing, they encounter significant challenges in non-specific recognition of multiple analytes at low concentrations, particularly in rife environments with complex interferences. Poly(p-phenylene ethynylene)s (PPEs) offer substantial advantages in detecting multi-analytes at low concentrations, owing to its distinctive optical properties, including the "molecular wire" effect, fluorescence super-amplification and super-quenching. This is particularly promising for the parallel detection of ultra-low concentration multi-biomarkers in clinical diseases. As the continuous development of PPEs sensor array, more sensitive methods for rapid detection of clinical disease will be further developed. It will promote the further development of the field of early diagnosis of clinical diseases.
Collapse
Affiliation(s)
- Yongbin Kuang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Han Liu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| |
Collapse
|
8
|
Samoylenko DE, Lotsman KA, Rodygin KS, Ananikov VP. Rapid and Sustainable Electrochemical Pd Catalyst Generation from Bulk Metal. Chemistry 2025; 31:e202403872. [PMID: 39807073 DOI: 10.1002/chem.202403872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Palladium catalysts constitute a cornerstone of modern chemistry with upmost scientific and industrial impact. Bulk palladium metal itself is chemically inert, and a sequence of chemical transformations has to be utilized to convert the metal into a Pd precatalyst covered by ligands. However, the "cocktail" concept of catalysis discovered recently has shown that Pd systems can efficiently operate in catalysis without the need for a complicated and expensive preinstalled ligand environment. Here, we point out on a green and sustainable process for the generation of Pd active species without the need for waste-abundant precatalyst-related chemistry. In this work, an electric current was used to generate an active Pd catalyst from a bulk metal in an ionic liquid medium for the efficient cross-coupling of aryl iodides/bromides and boronic acids. A synthetically important Suzuki cross-coupling was utilized as a representative test reaction to confirm the idea. Notably, an electric current is used only at the Pd dissolution stage. Afterwards, the electrodes are removed from the reaction mixture, and a standard reaction procedure can be followed. The reported catalyst preparation process via electrochemical dissolution is potentially compatible with several already existing catalytic methods.
Collapse
Affiliation(s)
- Dmirtiy E Samoylenko
- Saint Petersburg State University, Institute of Chemistry, Saint Petersburg, Universitetskaya nab. 7-9, Russia
| | - Kristina A Lotsman
- Saint Petersburg State University, Institute of Chemistry, Saint Petersburg, Universitetskaya nab. 7-9, Russia
| | - Konstantin S Rodygin
- Saint Petersburg State University, Institute of Chemistry, Saint Petersburg, Universitetskaya nab. 7-9, Russia
| | - Valentin P Ananikov
- Saint Petersburg State University, Institute of Chemistry, Saint Petersburg, Universitetskaya nab. 7-9, Russia
- N.D. Zelinskiy Institute of Organic Chemistry, Moscow, Leninsky pr., 47, Russia
| |
Collapse
|
9
|
Priya TS, Patil P, Siva B, Roy D, Dhote R, Parashar D, Alagarasu K, Cherian S, Suresh Babu K. Novel α-mangostin derivatives as promising antiviral agents: Isolation, synthesis, and evaluation against chikungunya virus. Eur J Med Chem 2025; 284:117227. [PMID: 39752822 DOI: 10.1016/j.ejmech.2024.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
Investigations into fruit and vegetable processing residues (FVPRs) offer huge opportunities to discover novel therapeutics against many diseases. In this study, detailed investigation of Garcinia mangostana fruit peel extract led to the isolation and identification of ten known compounds (1-10). Further, a new series of α-mangostin derived sulphonyl piperzines, aryl alkynes and 1,2,3-triazole derivatives were synthesized using Huisgen 1,3-dipolar cyclo-addition reaction ("click" chemistry). Both isolated compounds and synthetic derivatives were evaluated for their anti-chikungunya activity (CHIKV). Isolated compounds, gartanin (1), mangostenone-F (4), 1-isomangostin (5), mangostenone-D (6), epicatechin (7) and derivatives 14, 15c, 15d, 15e, 15f, 17d, 17f, and 18h exerted anti-CHIKV activity. Compounds 17d, 17f and 18h manifested higher antiviral activity (>2 log reduction in virus titer) with a selectivity index (SI) > 50. The compounds with higher antiviral activity were evaluated further with various assays, time of addition assay, entry and entry bypass assay and were also subjected to molecular docking with viral proteins. The results revealed that 17d, 17f and 18h affect multiple stages of virus life cycle through probable interaction with envelope proteins and nsP3 macrodomain of CHIKV. Overall, this study provides evidence for anti-CHIKV activity of natural xanthones from Garcinia mangostana L and their derivatives which could be further investigated for development of therapeutics against chikungunya.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products and Medicinal Chemistry, CSIR-IICT Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poonam Patil
- ICMR- National Institute of Virology, 411001, Pune, India
| | - Bandi Siva
- Department of Natural Products and Medicinal Chemistry, CSIR-IICT Hyderabad, India
| | - Diya Roy
- ICMR- National Institute of Virology, 411001, Pune, India
| | - Radhika Dhote
- ICMR- National Institute of Virology, 411001, Pune, India
| | - Deepti Parashar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; ICMR- National Institute of Virology, 411001, Pune, India
| | - Kalichamy Alagarasu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; ICMR- National Institute of Virology, 411001, Pune, India.
| | - Sarah Cherian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; ICMR- National Institute of Virology, 411001, Pune, India
| | - K Suresh Babu
- Department of Natural Products and Medicinal Chemistry, CSIR-IICT Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Zhou XH, Zhang X, Song YR, Li X, Bao LT, Xu WT, Wang XQ, Yang HB, Wang W. Catalytic Enantioselective Synthesis of Planar Chiral Pillar[5]arenes via Asymmetric Sonogashira Coupling. Angew Chem Int Ed Engl 2025; 64:e202415190. [PMID: 39258396 DOI: 10.1002/anie.202415190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
As a novel type of macrocycles with attractive planar chirality, pillar[5]arenes have gained increasing research interest over the past decades, enabling their widespread applications in diverse fields such as porous materials, molecular machines, and chiral luminescence materials. However, the catalytic methodology towards the enantioselective synthesis of planar chiral pillar[5]arenes remains elusive. Here we report a novel method for the enantioselective synthesis of planar chiral pillar[5]arenes via asymmetric Sonogashira coupling, giving access to a wide range of highly functionalized planar chiral pillar[5]arenes, including both homo- and hetero-rimmed ones, with excellent enantioselectivities. Attractively, the resultant planar chiral pillar[5]arenes show great potential for widespread use in many areas such as chiral luminescent materials. This work not only enables the successful synthesis of planar chiral pillar[5]arenes with abundant structural and functional diversity as key building blocks for practical applications but also enriches the asymmetric cross-coupling methodologies in organic synthetic chemistry.
Collapse
Affiliation(s)
- Xiao-Hua Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Yi-Ru Song
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Lin-Tao Bao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
11
|
Ghorai J, Almounajed L, Noori S, Nguyen HM. Cooperative Catalysis in Stereoselective O- and N-Glycosylations with Glycosyl Trichloroacetimidates Mediated by Singly Protonated Phenanthrolinium Salt and Trichloroacetamide. J Am Chem Soc 2024; 146:34413-34426. [PMID: 39630085 PMCID: PMC11749421 DOI: 10.1021/jacs.4c10633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The development of small-molecule catalysts that can effectively activate both reacting partners simultaneously represents a pivotal pursuit in advancing the field of stereoselective glycosylation reactions. We report herein the development of the singly protonated form of readily available phenanthroline as an effective cooperative catalyst that facilitates the coupling of a wide variety of aliphatic alcohols, phenols, and aromatic amines with α-glycosyl trichloroacetimidate donors. The glycosylation reaction likely proceeds via an SN2-like mechanism, generating β-selective glycoside products. The developed protocol provides access to O- and N-glycosides in good yields with excellent levels of β-selectivity and enables late-stage functionalization of O- and N-glycosides via cross-coupling reactions. Importantly, this method exhibits excellent β-selectivity that is unattainable through a C2-O-acyl neighboring group participation strategy, especially in the case of glycosyl donors already containing a C2 heteroatom or sugar unit. Kinetic studies demonstrate that the byproduct trichloroacetamide group plays a previously undiscovered pivotal role in influencing the reactivity and selectivity of the reaction. A proposed mechanism involving simultaneous activation of the glycosyl donor and acceptor by the singly protonated phenanthrolinium salt catalyst with the assistance of the trichloroacetamide group is supported by kinetic analysis and preliminary computational studies. This cooperative catalysis process involves four consecutive hydrogen bond interactions. The first interaction occurs between the carbonyl oxygen of the trichloroacetamide group and the hydroxyl group of alcohol nucleophile (C═O···HO). The second involves the trichloroacetamide-NH2 forming a hydrogen bond with the nitrogen atom of the phenanthroline (NH···N). The third involves the donor trichloroacetimidate (═NH) engaging in a hydrogen bond interaction with the phenanthrolinium-NH (NH···N═H). Lastly, the protonated trichloroacetimidate-NH2 forms a hydrogen bond with the fluorine atom of the tetrafluoroborate ion.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Leila Almounajed
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Suendues Noori
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
12
|
Rao RS, Bashri M, Mohideen MIH, Yildiz I, Shetty D, Shaya J. Recent advances in heterogeneous porous Metal-Organic Framework catalysis for Suzuki-Miyaura cross-couplings. Heliyon 2024; 10:e40571. [PMID: 39687170 PMCID: PMC11647841 DOI: 10.1016/j.heliyon.2024.e40571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Suzuki-Miyaura coupling (SMC), a crucial C-C cross-coupling reaction, is still associated with challenges such as high synthetic costs, intricate work-ups, and contamination with homogeneous metal catalysts. Research intensely focuses on strategies to convert homogeneous soluble metal catalysts into insoluble powder solids, promoting heterogeneous catalysis for easy recovery and reuse as well as for exploring greener reaction protocols. Metal-Organic Frameworks (MOFs), recognized for their high surface area, porosity, and presence of transition metals, are increasingly studied for developing heterogeneous SMC. The molecular fence effect, attributed to MOF surface functionalization, helps preventing catalyst deactivation by aggregation, migration, and leaching during catalysis. Recent reports demonstrate the enhanced catalytic activity, selectivity, stability, application scopes, and potential of MOFs in developing greener heterogeneous synthetic methodologies. This review focuses on the catalytic applications of MOFs in SMC reactions, emphasizing developments after 2016. It critically examines the synthesis and incorporation of active metal species into MOFs, focusing on morphology, crystallinity, and dimensionality for catalytic activity induction. MOF catalysts are categorized based on their metal nodes in subsections, with comprehensive discussion on Pd incorporation strategies, catalyst structures, optimal SMC conditions, and application scopes, concluding with insights into challenges and future research directions in this important emerging area of MOF applications.
Collapse
Affiliation(s)
- Ravulakollu Srinivasa Rao
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mahira Bashri
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mohamed Infas Haja Mohideen
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Ibrahim Yildiz
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Functional Biomaterials Group, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Janah Shaya
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| |
Collapse
|
13
|
Raglione V, Palmeri F, Mattioli G, Porcelli F, Caschera D, Zanotti G. Glycerol as Reaction Medium for Sonogashira Couplings: A Green Approach for the Synthesis of New Triarylamine-Based Materials with Potential Application in Optoelectronics. Chemistry 2024; 30:e202402901. [PMID: 39172104 DOI: 10.1002/chem.202402901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
This study focuses on the design, eco-friendly synthesis, and characterization of several novel three-legged triphenylamine derivatives. By performing Sonogashira couplings of functionalized aryl iodides with tris(4-ethynylphenyl)amine in glycerol, a readily available bio-derived solvent, we achieved the synthesis of target products in short times and high yields, up to 94 %, with consistently lower E-factors and reduced costs compared to standard conditions using toluene as the reaction medium. The target molecules possess a D-(π-A)₃ or D-(π-D)₃ structure, where an electron-donating core connects to three electron-donating (D) or electron-accepting (A) peripheral aromatic subunits through an acetylene spacer. Their main optical and electronic properties have been determined experimentally and by DFT simulations and suggest a possible implementation in energy conversion technologies such as luminescent solar concentrators (LSCs) and perovskite solar cells (PSCs).
Collapse
Affiliation(s)
- Venanzio Raglione
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Strada provinciale 35d/9, Montelibretti, 00010, Italy
| | - Federica Palmeri
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Strada provinciale 35d/9, Montelibretti, 00010, Italy
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, Rome, 00185, Italy
| | - Giuseppe Mattioli
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Strada provinciale 35d/9, Montelibretti, 00010, Italy
| | - Francesco Porcelli
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Strada provinciale 35d/9, Montelibretti, 00010, Italy
| | - Daniela Caschera
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), Strada provinciale 35d/9, Montelibretti, 00010, Italy
| | - Gloria Zanotti
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Strada provinciale 35d/9, Montelibretti, 00010, Italy
| |
Collapse
|
14
|
Xu P, Ma C. Scalable deoxygenative alkynylation of alcohols via flow photochemistry. Commun Chem 2024; 7:276. [PMID: 39592716 PMCID: PMC11599925 DOI: 10.1038/s42004-024-01363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Internal alkynes are often contained in bioactive pharmaceuticals and crucial intermediates in material sciences, yet their production methods are often limited and challenging, necessitating the development of more efficient and versatile synthetic routes. Here we report a method of deoxygenative alkynylation of alcohols via flow photochemistry. Formation of N-heterocyclic carbene-alcohol adducts undergoes oxidation by a photocatalyst, generating alkyl radicals. These radicals are subsequently trapped by an alkynylation agent, yielding the desired alkyne. Compared to batch reactions, the strategy using flow photochemistry is practical and efficient to complete the reaction in relatively short time with good yields. A wide range of functional groups were tolerated. The broad application of this method for alkyne synthesis in industry settings is anticipated, supported by the potential in late-stage functionalization of biomolecules and gram-scale synthesis.
Collapse
Affiliation(s)
- Pin Xu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
15
|
Yu H, Nie JJ, Wang ZX. Palladium-catalyzed cross-coupling of arylcarboxylic acid 2-pyridyl esters with terminal alkynes. Org Biomol Chem 2024; 22:8764-8772. [PMID: 39387614 DOI: 10.1039/d4ob01398k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In the presence of Na2CO3, the combination of PdCl2(dppf), dppp and CuI catalyzes the decarbonylative coupling of arylcarboxylic acid 2-pyridyl esters with terminal alkynes to afford 1,2-disubstituted acetylenes. (Hetero)aryl, alkyl, and silylacetylenes and various electron-donating and -withdrawing group-substituted arylcarboxylic acid 2-pyridyl esters can be used in this transformation, with a range of functional groups showing compatibility.
Collapse
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jing-Jing Nie
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
16
|
Kornet MM, Müller TJJ. Recent Advances in Sequentially Pd-Catalyzed One-Pot Syntheses of Heterocycles. Molecules 2024; 29:5265. [PMID: 39598654 PMCID: PMC11596252 DOI: 10.3390/molecules29225265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Sequential Pd-catalyzed one-pot synthetic methodologies have emerged as a powerful and versatile approach in organic synthesis, enabling the construction of complex heterocyclic architectures with high efficiency, selectivity, and atom economy. This review discusses key advancements in multistep, sequentially Pd-catalyzed one-pot processes for accessing heterocyclic derivatives, focusing on classic reactions like Suzuki-Miyaura, Sonogashira, Heck, and hydroamination and extending to specialized techniques such as directed C-H activation. The concatenation of these steps has advanced the scope of one-pot strategies. A section is dedicated to exploring the cooperative use of palladium with other metals, particularly copper, ruthenium, and gold, which has broadened the range of accessible heterocyclic derivatives. Highlighted applications include the synthesis of biologically and pharmaceutically relevant compounds, such as tris(hetero)aryl systems, spiro-oxindoles, and indole derivatives. These one-pot strategies not only streamline synthesis but also align with green chemistry principles by minimizing purification steps and reducing waste and energy consumption. The review also addresses current challenges and limitations in these methodologies, offering insights into ongoing efforts to optimize reaction conditions and expand the applicability of sequential Pd-catalyzed processes.
Collapse
Affiliation(s)
- Maryna M. Kornet
- Institut für Organische Chemie und Makromolekulare Chemie, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Laboratory for Biotechnology of Physiologically Active Substances, Faculty of Biology, Zaporizhzhia National University, 66 Universytetska Str., 69600 Zaporizhzhia, Ukraine
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Saha N, Vidya FNU, Xie R, Agarwal V. Halogenase-Assisted Alkyne/Aryl Bromide Sonogashira Coupling for Ribosomally Synthesized Peptides. J Am Chem Soc 2024; 146:30009-30013. [PMID: 39441838 PMCID: PMC11544707 DOI: 10.1021/jacs.4c12210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
We describe the enzymatic bromination of ribosomally synthesized peptides and develop protocols for Sonogashira coupling of peptidic aryl bromides with a panel of alkynes. Using this workflow, entirely new chemical handles are introduced onto ribosomal peptides, including but not limited to terminal alkynes, which enable further diversification via alkyne-azide click chemistry. Regiospecific enzymatic installation of the aryl bromide circumvents genetic code expansion and passivation of other reactive handles on the peptide chain, representing the applicability of biocatalysts in peptide modification chemistry.
Collapse
Affiliation(s)
- Nirmal Saha
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - F. N. U. Vidya
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Ramon Xie
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
Ahmad Mir S, Firdous S, Shahid Maqbool M, Hussain G, Yaqoob Bhat M, Malik FA, Khalid Yousuf S. Sonogashira coupling-based synthesis and in vitro cytotoxic evaluation of C-2 alkynyl derivatives of withaferin A. Steroids 2024; 212:109526. [PMID: 39486668 DOI: 10.1016/j.steroids.2024.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Affiliation(s)
- Shabir Ahmad Mir
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P 201002, India
| | - Sameera Firdous
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India
| | - Mir Shahid Maqbool
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P 201002, India; Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India
| | - Gulzar Hussain
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P 201002, India
| | - Mohammad Yaqoob Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P 201002, India
| | - Fayaz A Malik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P 201002, India; Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India
| | - Syed Khalid Yousuf
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P 201002, India.
| |
Collapse
|
19
|
Ionova VA, Dmitrieva AV, Abel AS, Sergeev AD, Evko GS, Yakushev AA, Gontcharenko VE, Nefedov SE, Roznyatovsky VA, Cheprakov AV, Averin AD, Magdesieva TV, Beletskaya IP. Di(pyridin-2-yl)amino-substituted 1,10-phenanthrolines and their Ru(II)-Pd(II) dinuclear complexes: synthesis, characterization and application in Cu-free Sonogashira reaction. Dalton Trans 2024; 53:17021-17035. [PMID: 39355929 DOI: 10.1039/d4dt02067g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Dinuclear complexes bearing Ru(II) photoactive centers are of interest for the development of efficient dual catalysts for many photocatalyzed reactions. Ditopic polypyridine ligands, bis(pyridin-2-yl)amino-1,10-phenanthrolines, containing an additional coordination site (bis(pyridin-2-yl)amine, dpa) at positions 3, 4 or 5 of the 1,10-phenanthroline core (Phen-3NPy2, Phen-4NPy2 and Phen-5NPy2) were synthesized. They were used as bridging ligands to obtain dinuclear complexes [(bpy)2Ru(Phen-NPy2)PdCl2](PF6)2 (Ru(Phen-NPy2)Pd) in good yields via stepwise complexation. In these complexes Ru(II) is coordinated to 1,10-phenanthroline, while Pd(II) is bound to the dpa chelating moiety, as established by NMR spectroscopy and X-ray single crystal analysis. The influence of the position of dpa in the phenanthroline ring on the structural, optical and electrochemical properties of Ru(Phen-NPy2)Pd complexes was studied. The complexes exhibit photoluminescence in argon-saturated MeCN solution with maxima in the range of 615-625 nm, with emission quantum yields ranging from 0.11 to 0.15 for Ru(Phen-NPy2) complexes and from 0.018 to 0.026 for dinuclear Ru(Phen-NPy2)Pd complexes. All the complexes absorb visible light in the range of 370-470 nm with high extinction coefficients and can be considered useful as photocatalysts. The Ru2+/3+ potential in Ru(Phen-NPy2)Pd complexes showed no significant dependence on the dpa position, while the Pd2+/0 reduction potential was significantly lower for Ru(Phen-3NPy2)Pd and Ru(Phen-4NPy2)Pd, than for Ru(Phen-5NPy2)Pd (-0.57 V and -0.72 V vs. Ag/AgCl, KCl(sat.), respectively). The complexes were used as photoactivated precatalysts in Cu-free Sonogashira coupling under blue LEDs (12 W) irradiation. The reaction proceeded roughly three times faster when Ru(Phen-4NPy2)Pd and Ru(Phen-3NPy2)Pd were used as catalyst precursors compared to the mixed catalytic system Ru(bpy)3(PF6)2/(RNPy2)PdCl2.
Collapse
Affiliation(s)
- Violetta A Ionova
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Alena V Dmitrieva
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Anton S Abel
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Aleksandr D Sergeev
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Grigory S Evko
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Alexei A Yakushev
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Victoria E Gontcharenko
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53, Leninsky Prospect, Moscow, 119991, Russia
- Higher School of Economics, Faculty of Chemistry, National Research University, 20 Miasnitskaya Street, Moscow, 101000, Russia
| | - Sergei E Nefedov
- N.S. Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky pr., 31, Moscow, 119991, Russia
| | - Vitaly A Roznyatovsky
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Andrey V Cheprakov
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Alexei D Averin
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Tatiana V Magdesieva
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Irina P Beletskaya
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia.
| |
Collapse
|
20
|
Lee S, Song G, Jeong KS. Stimuli-Responsive Molecular Duplexes Displaying Duplex-to-Duplex Switching. Angew Chem Int Ed Engl 2024; 63:e202410884. [PMID: 38937392 DOI: 10.1002/anie.202410884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Synthetic duplexes with high stabilities have promising potential for mimicking biomolecular functions and developing supramolecular smart materials. Herein, we describe the synthesis and stimuli-responsive properties of molecular duplexes derived from indolocarbazole-pyridine (I-P) oligomers. These duplexes adopt nonclassical helical structures, stabilized by I-P hydrogen-bonding pairs in anhydrous chlorinated solvents. Notably, the longest duplex 62 (11-mer)2 displays remarkable stability, forming twenty hydrogen bonds; its exchange energy barrier was determined to be ΔG≠=22.0 kcal ⋅ mol-1 at 75 °C in anhydrous (CDCl2)2. Upon the addition of water, a hydrated duplex 62 (11-mer)2⊃10H2O was formed, with one water molecule inserted between each I-P hydrogen-bonding pair. The Hill coefficient (n) for this process is 6.1, demonstrating extremely positive cooperativity. Conversely, the hydrated duplex 62 (11-mer)2⊃10H2O was completely converted into the original anhydrous duplex 62 (11-mer)2 when the temperature was increased. Interconversion between these two distinct duplexes can be repeatedly carried out by varying the temperature. Furthermore, reversible switching between hetero-duplexes and homo-duplexes was also demonstrated by controlling the temperature, with concomitant changes in the characteristic emission signals.
Collapse
Affiliation(s)
- Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
21
|
Borys AM, Hevia E. Alkali-metal nickelates: catalytic cross-coupling, clusters and coordination complexes. Chem Commun (Camb) 2024; 60:11052-11067. [PMID: 39248168 PMCID: PMC11382342 DOI: 10.1039/d4cc03548h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Alkali-metal nickelates are a class of highly reactive heterobimetallic complexes derived from Ni(0)-olefins and polar organo-alkali-metal reagents. First reported over 50 years ago, it is only in recent years that these overlooked complexes have found formidable roles in sustainable catalysis and beyond. In this article, we will showcase the emerging catalytic applications of lithium nickelates and discuss the mechanisms by which these heterobimetallic complexes facilitate challenging cross-coupling reactions. We will also review the unique structure and bonding of alkali-metal nickelates, as interrogated by X-ray crystallography and complementary bonding analysis, and finally explore the diverse coordination and co-complexation chemistry of these heterobimetallic complexes.
Collapse
Affiliation(s)
- Andryj M Borys
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland.
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland.
| |
Collapse
|
22
|
Tlahuext-Aca A, Nguyen QD, Gao Y, Sati GC, Zhao J, Valco D. Palladium-Catalyzed Cross-Coupling of Aryl Bromides and Chlorides with Trimethylsilylalkynes under Mild Conditions. J Org Chem 2024; 89:13762-13767. [PMID: 39219445 DOI: 10.1021/acs.joc.4c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, we disclose a palladium-catalyzed cross-coupling of aryl bromides and chlorides with trimethylsilylalkynes under mild reaction conditions. This method utilizes commercially available and air stable palladium precatalysts and avoids the use of copper cocatalysts. Moreover, it allows for the synthesis of a wide range of disubstituted alkynes in high yields with excellent functional group tolerance. The utility of the developed method was further demonstrated via the late-stage alkynylation of pharmaceuticals and natural bioactive compounds.
Collapse
Affiliation(s)
- Adrian Tlahuext-Aca
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Quyen D Nguyen
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Yang Gao
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Girish C Sati
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Jinpeng Zhao
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Daniel Valco
- Corteva Agriscience, Reactive Chemicals SME, Indianapolis, Indiana 46268, United States
| |
Collapse
|
23
|
Zhao Q, Zhao X, Liu Z, Ge Y, Ruan J, Cai H, Zhang S, Ye C, Xiong Y, Chen W, Meng G, Liu Z, Zhang J. Constructing Pd and Cu Crowding Single Atoms by Protein Confinement to Promote Sonogashira Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402971. [PMID: 39011789 DOI: 10.1002/adma.202402971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Indexed: 07/17/2024]
Abstract
For multicenter-catalyzed reactions, it is important to accurately construct heterogeneous catalysts containing multiple active centers with high activity and low cost, which is more challenging compared to homogeneous catalysts because of the low activity and spatial confinement of active centers in the loaded state. Herein, a convenient protein confinement strategy is reported to locate Pd and Cu single atoms in crowding state on carbon coated alumina for promoting Sonogashira reaction, the most powerful method for constructing the acetylenic moiety in molecules. The single-atomic Pd and Cu centers take advantage in not only the maximized atomic utilization for low cost, but also the much-enhanced performance by facilitating the activation of aryl halides and alkynes. Their locally crowded dispersion brings them closer to each other, which facilitates the transmetallation process of acetylide intermediates between them. Thus, the Sonogashira reaction is drove smoothly by the obtained catalyst with a turnover frequency value of 313 h-1, much more efficiently than that by commercial Pd/C and CuI catalyst, conventional Pd and Cu nanocatalysts, and mixed Pd and Cu single-atom catalyst. The obtained catalyst also exhibits the outstanding durability in the recycling test.
Collapse
Affiliation(s)
- Qinying Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xudong Zhao
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Zhiyi Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yi Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxiong Ruan
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Hongyi Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shasha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zhiliang Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
24
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Hussain I, Rahman MM. Utilizing Nanostructured Materials for Hydrogen Generation, Storage, and Diverse Applications. Chem Asian J 2024; 19:e202300593. [PMID: 37787825 DOI: 10.1002/asia.202300593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/04/2023]
Abstract
The rapid advancement of refined nanostructures and nanotechnologies offers significant potential to boost research activities in hydrogen storage. Recent innovations in hydrogen storage have centered on nanostructured materials, highlighting their effectiveness in molecular hydrogen storage, chemical storage, and as nanoconfined hydride supports. Emphasizing the importance of exploring ultra-high-surface-area nanoporous materials and metals, we advocate for their mechanical stability, rigidity, and high hydride loading capacities to enhance hydrogen storage efficiency. Despite the evident benefits of nanostructured materials in hydrogen storage, we also address the existing challenges and future research directions in this domain. Recent progress in creating intricate nanostructures has had a notable positive impact on the field of hydrogen storage, particularly in the realm of storing molecular hydrogen, where these nanostructured materials are primarily utilized.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ijaz Hussain
- Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
25
|
Tallarita R, Jacobsen LM, Bandaru SSM, Elvers BJ, Schulzke C. The Role of -OEt Substituents in Molybdenum-Assisted Pentathiepine Formation-Access to Diversely Functionalized Azines. Molecules 2024; 29:3806. [PMID: 39202885 DOI: 10.3390/molecules29163806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
1,2,3,4,5-pentathiepines (PTEs) are naturally occurring polysulfides of increasing scientific interest based on their identified pharmacological activities. Artificial PTEs with N-heterocyclic backbones are efficiently synthesized via mediation by a molybdenum-oxo-bistetrasulfido complex. A common feature of all precursor alkynes successfully used to date in this reaction is the presence of a -CH(OEt)2 group since the previously postulated mechanism requires the presence of one OEt- as the leaving group, and the second must become a transient ethoxonium moiety. This raised the question of whether there really is a need for two, maybe only one, or possibly even zero ethoxy substituents. This research problem was systematically addressed by respective variations in the precursor-alkyne derivatives and by employing one related allene species. It was found that the total absence of ethoxy substituents prevents the formation of PTEs entirely, while the presence of a single ethoxy group results in the possibility to distinctly functionalize the position on the resulting N-heterocyclic pyrrole five ring in the target compound. This position was previously exclusively occupied by an -OEt for all products of the molybdenum-mediated reaction. The allene was applied with similar success as precursor as with the related alkyne. The now-employable significant change in precursor composition gives access to a whole new PTE subfamily, allowing further modulation of (physico)-chemical properties such as solubility, and provides additional insight into the mechanism of PTE formation; it comprises a merely partial validation of the previous hypothesis. The new alkyne precursors and pentathiepines were characterized by a variety of instrumental analyses (NMR, mass spec, UV-vis) and in six cases (one alkyne precursor, one unexpected side product, and four PTEs) by single-crystal X-ray diffraction. Syntheses, isolation procedures, analytical data, and the impact of the findings on the previously proposed mechanism are described in detail herein.
Collapse
Affiliation(s)
- Roberto Tallarita
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Lukas M Jacobsen
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Siva S M Bandaru
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Benedict J Elvers
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Carola Schulzke
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
26
|
Marghalani R, Cueny ES. Stability of metal-metal interactions in transmetallation intermediates based on electronics of bridging arene ligands determined through pyridine titrations. Dalton Trans 2024. [PMID: 39091234 DOI: 10.1039/d4dt01828a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In this contribution, we prepare the dinuclear complex [(CNCF)(PPh3)Pt-Au(PPh3)]+ (2-F) supported by an electron deficient derivative of 2,6-diphenylpyridine (CNC), 2,6-di(4-fluorophenyl)pyridine (CNCF). Solution state spectroscopic data and solid-state structural data reveals formation of the desired dinuclear complex occurs and that it remains intact in solution. The solid state structure of 2-F, compared to [(CNC)(PPh3)Pt-Au(PPh3)]+ (2), reveals a substantial change in the C-Au-P bond angle. We postulated that this change in bond angle arises due to a weaker interaction between [(PPh3)Au]+ and (CNCF)Pt(PPh3) (1-F) vs. (CNC)Pt(PPh3) (1). Through pyridine titration experiments, we demonstrate that the interaction is indeed weaker between [(PPh3)Au]+ and 1-Fvs. 1. Cyclic voltammetry (CV) experiments confirm that 1-F is less electron rich than 1. DFT calculations demonstrate that the HOMO of 1 and 1-F is not dz2, helping explain the differences in electrochemical behavior of 1 and 1-F and bonding between 1 and 1-F with [(PPh3)Au]+.
Collapse
Affiliation(s)
- Rana Marghalani
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA.
| | - Eric S Cueny
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA.
| |
Collapse
|
27
|
Zhou P, Wang C, Wan G, Zheng W, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent Metal-Catalyzed Oxidative Alkynylation of 2-Arylthiazoles with Terminal Alkynes under Air Conditions. J Org Chem 2024; 89:10953-10964. [PMID: 39016014 DOI: 10.1021/acs.joc.4c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Regiodivergent transition-metal-catalyzed oxidative C5- and ortho-alkynylation of 2-arylthiazoles have been demonstrated. Namely, Pd(II)-catalysis selectively generated C5-alkynylated products from the reaction of 2-arylthiazoles and terminal alkynes. In contrast, Ru(II)-catalysis exclusively provided ortho-alkynylated products from the same substrates. This protocol features a wide substrate scope, good functional group tolerance, high atom-economy, and exclusive regioselectivity. The alkynylated products can be readily converted into highly valuable synthons, which hold potential for applications in the fields of medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Cheng Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Guibin Wan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Weining Zheng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
28
|
Sakai M, Fujio S, Imayoshi A, Sasamori T, Okada K, Imai Y, Hasegawa M, Tsubaki K. Synthesis and Optical Properties of Binaphthyl Derivatives with Comprehensive Introduction of Phenylethynyl Groups. Chem Asian J 2024; 19:e202400159. [PMID: 38794837 DOI: 10.1002/asia.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
In this study, compounds with phenylethynyl (PE) groups introduced at all of the possible positions of the methylene-bridged structure of the 1,1'-bi-2-naphthol backbone (3-PE to 8-PE) were synthesized. Compounds with four or six phenylethynyl groups (3,6-PE, 4,6-PE, 5,6-PE, 6,7-PE, and 3,4,6-PE) were also synthesized. The key reaction for the synthesis of these compounds was the Sonogashira reaction using halogen scaffolds. The new transformation methods include (1) selective bromination of the 5-position of the binaphthyl skeleton and (2) bromination of the 6-position and then iodination of the 4-position, followed by the Sonogashira reaction of iodine at the 4-position and lithiation and protonation of bromine at the 6-position. The optical properties of the compounds were evaluated. The extension of the π system greatly differed depending on the position of the phenylethynyl group. 4-PE, 4,6-PE, and 3,4,6-PE, in which the phenylethynyl groups were introduced in the extended direction of the naphthalene linkage axis, showed longer absorption and emission wavelengths and higher fluorescence quantum yields than the other compounds. In circularly polarized luminescence measurements, 7-PE showed a relatively large glum value, an interesting finding that reverses the sense.
Collapse
Affiliation(s)
- Misato Sakai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Shinya Fujio
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Takahiro Sasamori
- Department of Chemistry, Institute of Pure and Applied Sciences, and, Tsukuba Research Center for Energy Materials Sciences (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Keita Okada
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Masashi Hasegawa
- Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
29
|
Andler O, Kazmaier U. Synthesis and biological evaluation of moiramide B derivatives. Org Biomol Chem 2024; 22:5284-5288. [PMID: 38864222 DOI: 10.1039/d4ob00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Moiramide B is a peptide-polyketide hybrid with a bacterial origin and interesting antibiotic activity. Besides its structurally conserved peptide part, it contains a highly variable fatty acid side chain. We modified this part of the molecule by introducing a terminal alkyne, and we then subjected it to click reactions and Sonogashira couplings. This provided a library of moiramide B derivatives with high and selective in vivo activities against S. aureus.
Collapse
Affiliation(s)
- Oliver Andler
- Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany.
| | - Uli Kazmaier
- Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany.
| |
Collapse
|
30
|
González-Fernández E, Marinus N, Dhankhar J, Linden A, Čorić I. Control over Anion Coordination on Pd(II), Cu(I), and Ag(I) with Regioisomeric Phosphine-Carboxylate Ligands. Chemistry 2024; 30:e202401215. [PMID: 38688855 DOI: 10.1002/chem.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The coordination of anionic donors is involved at various stages of catalytic cycles in transition-metal catalysis, but control over the spatial positioning of anions around a metal center is a challenge in coordination chemistry. Here we show that regioisomeric phosphine-carboxylate ligands provide spatial anion control on palladium(II) centers by favoring either κ2, cis-κ1, or trans-κ1 coordination of the carboxylate donor. Additionally, the palladium(II) carboxylates, which contain a methyl donor, upon protonation, deliver metal-alkyl complexes that feature a coordinated carboxylic acid. Such complexes can be considered as models for the minima that follow the concerted metalation-deprotonation transition state for C-H activation. The predictability of the coordination modes is further demonstrated on silver(I) and copper(I) centers, for which less common structures of mononuclear and dinuclear complexes can be obtained by using spatial anion control. Our results demonstrate the potential for spatial control over carboxylate anions in coordination chemistry.
Collapse
Affiliation(s)
- Elisa González-Fernández
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Nittert Marinus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
31
|
Zhou P, Liang X, Xu Z, Chen H, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent C-H alkynylation of 2-arylthiazoles switched by Ru II and Pd II catalysis. Chem Commun (Camb) 2024; 60:6679-6682. [PMID: 38860866 DOI: 10.1039/d4cc02254h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Two complementary regiodivergent C-H alkynylations of 2-arylthiazoles are reported. When RuII catalysis is employed, an aryl ortho-alkynylation process is favored. The alkynylated products are gained in good yields. With the use of PdII catalysis, a thiazole C5-alkynylation process is developed, allowing for the construction of C5-alkynylated products. This strategy not only expands the methods for the functionalization of 2-arylthiazoles, but also provides new opportunities for the rapid assembly of complex molecular structures, which may have great potential in organic synthesis, medicinal chemistry, and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xinyao Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zekun Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Honggu Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
32
|
Foster M, Dangerfield EM, Timmer MSM, Stocker BL, Wilkinson BL. Probing Isosteric Replacement for Immunoadjuvant Design: Bis-Aryl Triazole Trehalolipids are Mincle Agonists. ACS Med Chem Lett 2024; 15:899-905. [PMID: 38894898 PMCID: PMC11181483 DOI: 10.1021/acsmedchemlett.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Herein, we report the modular synthesis and immunological activity of seven bis-aryl triazole trehalolipids (1a-1g) as Brartemicin analogs. The compounds comprised one or two octyloxy (C8) alkyl chains and were synthesized using the venerable CuAAc reaction between the respective aryl acetylenes and a trehalose diazide. A Mincle reporter cell assay revealed that all lipidated analogs activated Mincle. Two compounds, 1c and 1d, produced strong Mincle-dependent immune responses in vitro. The activity was dependent on the degree of alkylation and regiochemistry, with 1c and 1d showing significantly increased IL-1β production in vitro compared to monoalkylated compounds and dialkylated compounds lacking ortho substitution. Molecular docking of 1c positioned the triazole in proximity to Arg-183, which may offer additional interactions that could explain the binding affinity for this class of ligand. These findings demonstrate the capability of triazole-linked Brartemicin analogs as Mincle-mediated Th1/Th17 vaccine adjuvants.
Collapse
Affiliation(s)
- Michael
J. Foster
- School
of Science and Technology, University of
New England, Armidale 2351, Australia
| | - Emma M. Dangerfield
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Mattie S. M. Timmer
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bridget L. Stocker
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Brendan L. Wilkinson
- School
of Science and Technology, University of
New England, Armidale 2351, Australia
| |
Collapse
|
33
|
Atmaca H, Ilhan S, Çamli Pulat Ç, Dundar BA, Zora M. Evaluation of Novel Spiro-pyrrolopyridazine Derivatives as Anticancer Compounds: In Vitro Selective Cytotoxicity, Induction of Apoptosis, EGFR Inhibitory Activity, and Molecular Docking Analysis. ACS OMEGA 2024; 9:23713-23723. [PMID: 38854531 PMCID: PMC11154717 DOI: 10.1021/acsomega.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Cancer, characterized by uncontrolled cell proliferation, remains a global health challenge. Despite advancements in cancer treatment, drug resistance and adverse effects on normal cells remain challenging. The epidermal growth factor receptor (EGFR), a transmembrane tyrosine kinase protein, is crucial in controlling cell proliferation and is implicated in various cancers. Here, the cytotoxic and apoptotic potential of 21 newly synthesized spiro-pyrrolopyridazine (SPP) derivatives was investigated on breast (MCF-7), lung (H69AR), and prostate (PC-3) cancer cells. XTT assay was used for cytotoxicity assessment. Flow cytometry and western blot (WB) analyses were conducted for apoptosis detection. Additionally, the EGFR inhibitory potential of these derivatives was evaluated via a homogeneous time-resolved fluorescence (HTRF) assay, and WB and molecular docking studies were conducted to analyze the binding affinities of SPP10 with EGFR. SPPs, especially SPP10, exhibit significant cytotoxicity across MCF-7, H69AR, and PC-3 cancer cells with IC50 values of 2.31 ± 0.3, 3.16 ± 0.8, and 4.2 ± 0.2 μM, respectively. Notably, SPP10 demonstrates selective cytotoxicity against cancer cells with a low impact on nontumorigenic cells (IC50 value: 26.8 ± 0.4 μM). Flow cytometric analysis demonstrated the potent induction of apoptotic cell death by SPP10 in all of the tested cancer cells. Western blot analysis revealed the involvement of key apoptotic proteins, with SPP10 notably inhibiting antiapoptotic Bcl-2 while inducing pro-apoptotic Bax and cytochrome c. SPP10 exhibited significant EGFR kinase inhibitory activity, surpassing the efficacy of the reference drug erlotinib. Molecular docking studies support these findings, revealing strong binding affinities of SPP10 with both wild-type and mutated EGFR. The study underscores the significance of heterocyclic compounds, particularly spiro-class heterocyclic molecules, in advancing cancer research. Overall, SPP10 emerges as a promising candidate for further investigations in cancer treatment, combining potent cytotoxicity, apoptotic induction, and targeted EGFR inhibition.
Collapse
Affiliation(s)
- Harika Atmaca
- Department
of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa 45140, Turkey
| | - Suleyman Ilhan
- Department
of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa 45140, Turkey
| | - Çisil Çamli Pulat
- Applied
Science Research Center, Manisa Celal Bayar
University, Manisa 45140, Turkey
| | - Buse Aysen Dundar
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Metin Zora
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
34
|
Cao J, Ding W, Zou G. Tetrabutylammonium Bromide (TBAB)-Promoted, Pd/Cu-Catalyzed Sonogashira Coupling of N-Tosyl Aryltriazenes. Org Lett 2024; 26:4576-4580. [PMID: 38775280 DOI: 10.1021/acs.orglett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Sonogashira coupling of N-tosyl aryltriazenes is reported to offer arylalkynes in yields up to 92% with the aid of tetrabutylammonium bromide (TBAB) as a dual activator for both the palladium catalyst and aryltriazenes. Common functional groups could be well tolerated, although large electronic effects from alkynes were observed. TBAB-assisted oxidative addition of palladium(0) to aryltriazene instead of in situ formed arylhalide has been proposed to initiate the catalytic cycle.
Collapse
Affiliation(s)
- Jun Cao
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| |
Collapse
|
35
|
Qunies AM, Spitznagel BD, Du Y, Peprah PK, Mohamed YK, Weaver CD, Emmitte KA. Structure-Activity Relationship Studies in a Series of Xanthine Inhibitors of SLACK Potassium Channels. Molecules 2024; 29:2437. [PMID: 38893312 PMCID: PMC11173529 DOI: 10.3390/molecules29112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.
Collapse
Affiliation(s)
- Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Paul K. Peprah
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yasmeen K. Mohamed
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
36
|
Ponomarev AV, Danilkina NA, Okuneva JS, Vidyakina AA, Khmelevskaya EA, Bunev AS, Rumyantsev AM, Govdi AI, Suarez T, Alabugin IV, Balova IA. Facile synthesis of diiodoheteroindenes and understanding their Sonogashira cross-coupling selectivity for the construction of unsymmetrical enediynes. Org Biomol Chem 2024; 22:4096-4107. [PMID: 38695707 DOI: 10.1039/d4ob00530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Electrophile-promoted cyclizations of functionalized alkynes offer a useful tool for constructing halogen-substituted heterocycles primed for further derivatization. Preinstallation of an iodo-substituent at the alkyne prior to iodo-cyclization opens access to ortho di-iodinated heterocyclic precursors for the preparation of unsymmetrical heterocycle-fused enediynes. This general approach was used to prepare 2,3-diiodobenzothiophene, 2,3-diiodoindole, and 2,3-diiodobenzofuran, a useful family of substrates for systematic studies of the role of heteroatoms on the regioselectivity of cross-coupling reactions. Diiodobenzothiophene showed much higher regioselectivity for Sonogashira cross-coupling at C2 than diiodoindole and diiodobenzofuran. As a result, benzothiophene can be conveniently involved in a one-pot sequential coupling with two different alkynes, yielding unsymmetrical benzothiophene-fused enediynes. On the other hand, the Sonogashira reaction of diiodoindole and diiodobenzofuran formed considerable amounts of di-substituted enediynes in addition to the monoalkyne product by coupling at C2. Interestingly, no C3-monocoupling products were observed for all of the diiodides, suggesting that the incorporation of the 1st alkyne at C2 activates the C3 position for the 2nd coupling. Additional factors affecting regioselectivity were detected, discussed and connected, through computational analysis, to transmetalation being the rate-determining step for the Sonogashira reaction. Several enediynes synthesized showed cytotoxic activity, which is not associated with DNA strand breaks typical of natural enediyne antibiotics.
Collapse
Affiliation(s)
- Alexander V Ponomarev
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Julia S Okuneva
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Aleksandra A Vidyakina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Ekaterina A Khmelevskaya
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Alexander S Bunev
- Medicinal Chemistry Center, Tolyatti State University, 445020 Tolyatti, Russia
| | - Andrey M Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Thomas Suarez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| |
Collapse
|
37
|
Maroneze A, Caldeira F, Back DF, Wayne Nogueira C, Zeni G. Nucleophilic Selenocyclization Reaction of Benzodiynes Promoted by Sodium Selenide: Synthesis of Isoselenochromenes. Chem Asian J 2024; 19:e202400225. [PMID: 38497690 DOI: 10.1002/asia.202400225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
We describe here the synthesis of isoselenochromenes via a nucleophilic selenocyclization reaction of benzodiynes with sodium selenide. The central parameters that affect this cyclization reaction were studied, and the best reaction conditions were applied to different substrates to determine the scope of the method. The results indicated that isoselenochromenes were obtained in higher yields when the reactions were performed by the addition of NaBH4 (3 equiv), at room temperature, under nitrogen atmosphere, to a solution of elemental selenium (2 equiv) in dimethylformamide (2 mL). After 1 h, a benzodiynes (0.25 mmol) solution in EtOH (3 mL) was added at room temperature. The reaction was stirred at 75 °C until the starting material was consumed. The best conditions were applied to benzodiynes having electron-rich, electron poor aromatic rings, and alkyl groups directly bonded to the alkynes. The same reaction condition was extended to isothiochromene derivatives but failed to prepare isotelurochromenes. The isoselenochromenes were easily transformed into three new classes of organoselenium compounds using classical methods available in the literature. We also conducted several control experiments to propose a reaction mechanism.
Collapse
Affiliation(s)
- Adriano Maroneze
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Fabíola Caldeira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Davi F Back
- Laboratório de Materiais Inorgânicos, Departamento de Química, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
38
|
Dilday T, Abt M, Ramos-Solís N, Dayal N, Larocque E, Oblak AL, Sintim HO, Yeh ES. Identification and characterization of a potent and selective HUNK inhibitor for treatment of HER2+ breast cancer. Cell Chem Biol 2024; 31:989-999.e7. [PMID: 38307028 PMCID: PMC11102337 DOI: 10.1016/j.chembiol.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2)-targeted agents have proven to be effective, however, the development of resistance to these agents has become an obstacle in treating HER2+ breast cancer. Evidence implicates HUNK as an anti-cancer target for primary and resistant HER2+ breast cancers. In this study, a selective inhibitor of HUNK is characterized alongside a phosphorylation event in a downstream substrate of HUNK as a marker for HUNK activity in HER2+ breast cancer. Rubicon has been established as a substrate of HUNK that is phosphorylated at serine (S) 92. Findings indicate that HUNK-mediated phosphorylation of Rubicon at S92 promotes both autophagy and tumorigenesis in HER2/neu+ breast cancer. HUNK inhibition prevents Rubicon S92 phosphorylation in HER2/neu+ breast cancer models and inhibits tumorigenesis. This study characterizes a downstream phosphorylation event as a measure of HUNK activity and identifies a selective HUNK inhibitor that has meaningful efficacy toward HER2+ breast cancer.
Collapse
Affiliation(s)
- Tinslee Dilday
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Nicole Ramos-Solís
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Neetu Dayal
- Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Elizabeth Larocque
- Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Adrian L Oblak
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN 46202, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
39
|
Gangemi CMA, Monforte M, Arrigo A, Bonaccorsi PM, Conoci S, Iaconis A, Puntoriero F, Franco D, Barattucci A. Synthesis of Bodipy-Tagged Galactoconjugates and Evaluation of Their Antibacterial Properties. Molecules 2024; 29:2299. [PMID: 38792159 PMCID: PMC11124175 DOI: 10.3390/molecules29102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
As a development of our research on biocompatible glycoconjugate probes and specifically multi-chromophoric systems, herein, we report the synthesis and early bactericidal tests of two luminescent glycoconjugates whose basic structure is characterized by two boron dipyrromethene difluoride (BODIPY) moieties and three galactoside rings mounted on an oligophenylene ethynylene (OPE) skeleton. BODIPY fluorophores have found widespread application in many branches of biology in the last few decades. In particular, molecular platforms showing two different BODIPY groups have unique photophysical behavior useful in fluorescence imaging. Construction of the complex architecture of the new probes is accomplished through a convergent route that exploits a series of copper-free Heck-Cassar-Sonogashira cross-couplings. The great emergency due to the proliferation of bacterial infections, in conjunction with growing antibiotic resistance, requires the production of new multifunctional drugs and efficient methods for their targeted delivery to control bacteria-associated diseases. Preliminary studies of the glycoconjugate properties as antibacterial agents against representatives of Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) pathogens, which are associated with chronic infections, indicated significant bactericidal activity ascribable to their structural features.
Collapse
Affiliation(s)
- Chiara Maria Antonietta Gangemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Maura Monforte
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Antonino Arrigo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Paola Maria Bonaccorsi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Sabrina Conoci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
- LAB Sense Beyond Nano—URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, 98166 Messina, Italy
| | - Antonella Iaconis
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Domenico Franco
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| | - Anna Barattucci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (C.M.A.G.); (M.M.); (A.A.); (P.M.B.); (S.C.); (A.I.); (F.P.)
| |
Collapse
|
40
|
Stevens JE, Miller JD, Fitzsimmons MC, Moore CE, Thomas CM. Z-selective dimerization of terminal alkynes by a (PNNP)Fe II complex. Chem Commun (Camb) 2024; 60:5169-5172. [PMID: 38639737 DOI: 10.1039/d4cc00469h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A tetradentate bis(amido)bis(phosphine) FeII complex, (PNNP)Fe, is shown to activate the terminal C-H bond of aryl alkynes across its Fe-Namide bonds. (PNNP)Fe is also shown to catalytically dimerize terminal aryl alkynes to produce 1,3-enynes with Z : E ratios as high as 96 : 4 with yields up to 95% and loadings as low as 1 mol% at 30 °C in 2 h. A plausible metal-ligand cooperative mechanism invoking a vinylidene intermediate is proposed.
Collapse
Affiliation(s)
- Jeremiah E Stevens
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Justin D Miller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Matthew C Fitzsimmons
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Shi L, Zhang N, Xue Z, Luo G. Mechanistic Insights into Rare-Earth-Catalyzed Alternating Copolymerization through C-H Polyaddition of Functionalized Organic Compounds to Unconjugated Dienes. Inorg Chem 2024; 63:8079-8091. [PMID: 38663005 DOI: 10.1021/acs.inorgchem.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Density functional theory (DFT) calculations have been conducted to elucidate the detailed mechanisms of yttrium-catalyzed C-H polyaddition of 1,4-dimethoxybenzene (DMB) to 1,4-divinylbenzene (DVB). It was computationally determined that DMB not only serves as a substrate but also performs a crucial role as a ligand, stabilizing the catalytically active species and promoting alkene insertion. Side pathways involving Cβ-H activation and C═C continuous insertion were excluded due to steric and electronic factors, respectively, explaining why the reaction occurred efficiently and selectively to give perfectly alternating DMB-DVB polymers. Interestingly, the theoretical prediction of the reactivity of N,N-dimethyl-1,4-phenylenediamine and 2,2'-biethyl-4,4'-bipyridine reveals significant differences in the coordination effects of these substrates, leading to distinct mechanisms, primarily influenced by their steric effects. These findings shed new light on the previously overlooked role of substrate ligand effects in rare-earth-catalyzed step-growth copolymerization reactions.
Collapse
Affiliation(s)
- Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
42
|
Burcevs A, Sebris A, Traskovskis K, Chu HW, Chang HT, Jovaišaitė J, Juršėnas S, Turks M, Novosjolova I. Synthesis of Fluorescent C-C Bonded Triazole-Purine Conjugates. J Fluoresc 2024; 34:1091-1097. [PMID: 37460821 DOI: 10.1007/s10895-023-03337-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 05/02/2024]
Abstract
A design toward C-C bonded 2,6-bis(1H-1,2,3-triazol-4-yl)-9H-purine and 2-piperidinyl-6-(1H-1,2,3-triazol-4-yl)-9H-purine derivatives was established using the combination of Mitsunobu, Sonogashira, copper (I) catalyzed azide-alkyne cycloaddition, and SNAr reactions. 11 examples of 2,6-bistriazolylpurine and 14 examples of 2-piperidinyl-6-triazolylpurine intermediates were obtained, in 38-86% and 41-89% yields, respectively. Obtained triazole-purine conjugates expressed good fluorescent properties which were studied in the solution and in the thin layer film for the first time. Quantum yields reached up to 49% in DMSO for bistriazolylpurines and up to 81% in DCM and up to 95% in DMSO for monotriazolylpurines. Performed biological studies in mouse embryo fibroblast, human keratinocyte, and transgenic adenocarcinoma of the mouse prostate cell lines showed that most of obtained triazole-purine conjugates are not cytotoxic. The 50% cytotoxic concentration of the tested derivatives was in the range from 59.6 to 1528.7 µM.
Collapse
Affiliation(s)
- Aleksejs Burcevs
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Armands Sebris
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Kaspars Traskovskis
- Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Han-Wei Chu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Justina Jovaišaitė
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekis av. 3, Vilnius, LT-10257, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekis av. 3, Vilnius, LT-10257, Lithuania
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Irina Novosjolova
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia.
| |
Collapse
|
43
|
Yang KC, Zheng SL, Wen Z, Zhang YS, Ni HL, Chen L. Dehydrative alkynylation of 3-hydroxyisoindolinones with terminal alkynes for the synthesis of 3-alkynylated 3,3-disubstituted isoindolinones. Org Biomol Chem 2024; 22:3453-3458. [PMID: 38596838 DOI: 10.1039/d4ob00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A brand-new procedure for the synthesis of 3-alkynylated 3,3-disubstituted isoindolinones has been disclosed via a HOTf or Fe(OTf)3-catalyzed dehydrative alkynylation of 3-hydroxyisoindolinones with terminal alkynes. Aryl, alkenyl and alkyl terminal alkynes are suitable to couple with a broad range of 3-hydroxyisoindolinones to afford the desired products in moderate to good yields. This protocol features the use of an inexpensive catalyst, mild reaction conditions, broad substrate scope and easy elaboration of the products.
Collapse
Affiliation(s)
- Kai-Cheng Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Shi-Lu Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Zhong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Yu-Shan Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jing An Road, Chengdu 610066, P. R. China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| |
Collapse
|
44
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
45
|
Borys AM, Vedani L, Hevia E. Stoichiometric and Catalytic Lithium Nickelate-Mediated C-F Bond Alkynylation of Fluoroarenes. J Am Chem Soc 2024; 146:10199-10205. [PMID: 38545862 DOI: 10.1021/jacs.4c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Low-valent nickelates have recently been shown to be key intermediates that facilitate challenging cross-coupling reactions under mild conditions. Expanding the synthetic potential of these heterobimetallic complexes, herein we report the success of trilithium nickelate Li3(TMEDA)3Ni(C≡C-Ph)3 in promoting stoichiometric C-F activation of assorted aryl fluorides furnishing novel mixed Li/Ni(0) or Li/Ni(II) species depending on the substrate and conditions employed. These stoichiometric successes can be upgraded to catalytic regimes to enable the atom-efficient alkynylation of aryl fluorides and polyfluoroarenes with lithium acetylides and precatalyst Ni(COD)2, which operates without the intervention of external ligands, Cu cocatalysts, or additives.
Collapse
Affiliation(s)
- Andryj M Borys
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| | - Luca Vedani
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| |
Collapse
|
46
|
Irie Y, Yokoshima S. Total Synthesis of Putative Melognine. J Am Chem Soc 2024; 146:9526-9531. [PMID: 38546412 DOI: 10.1021/jacs.4c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Total synthesis of melognine was accomplished. A 10-membered cyclic alkyne was prepared via an intramolecular SN2 reaction of a nosylamide. Enyne metathesis of the cyclic alkyne under an atmosphere of ethylene afforded a 1,3-diene. Intramolecular cycloaddition of a nitrone and an azomethine ylide with the 1,3-diene moiety constructed the characteristic highly fused skeleton. Further transformation, including ring-closing metathesis, resulted in the synthesis of melognine, whose NMR spectra did not match the reported data. Close inspection of the spectra of melognine in the literature suggested that the structure of melognine might be identical with that of a known alkaloid, melodinine L.
Collapse
Affiliation(s)
- Yui Irie
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
47
|
Tost M, Kazmaier U. Synthesis and Late-Stage Modification of (-)-Doliculide Derivatives Using Matteson's Homologation Approach. Mar Drugs 2024; 22:165. [PMID: 38667782 PMCID: PMC11051198 DOI: 10.3390/md22040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
(-)-Doliculide, a marine cyclodepsipeptide derived from the Japanese sea hare, Dolabella auricularia, exhibits potent cytotoxic properties, sparking interest in the field of synthetic chemistry. It is comprised of a peptide segment and a polyketide moiety, rendering it amenable to Matteson's homologation methodology. This technique facilitates the diversification of the distinctive polyketide side chain, thereby permitting the introduction of functional groups in late stages for modifications of the derived compounds and studies on structure-activity relationships.
Collapse
Affiliation(s)
| | - Uli Kazmaier
- Organic Chemistry, Saarland University, Campus Building C4.2, D-66123 Saarbruecken, Germany;
| |
Collapse
|
48
|
Sil S, Krishnapriya AU, Mandal P, Kuniyil R, Mandal SK. Cross-Coupling Between Aryl Halides and Aryl Alkynes Catalyzed by an Odd Alternant Hydrocarbon. Chemistry 2024:e202400895. [PMID: 38584581 DOI: 10.1002/chem.202400895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/09/2024]
Abstract
Catalytic cross-coupling between aryl halides and alkynes is considered an extremely important organic transformation (popularly known as the Sonogashira coupling) and it requires a transition metal-based catalyst. Accomplishing such transformation without any transition metal-based catalyst in the absence of any external stimuli such as heat, photoexcitation or cathodic current is highly challenging. This work reports transition-metal-free cross-coupling between aryl halides and alkynes synthesizing a rich library of internal alkynes without any external stimuli. A chemically double-reduced phenalenyl (PLY)-based molecule with the super-reducing property was employed for single electron transfer to activate aryl halides generating reactive aryl radicals, which subsequently react with alkyne. This protocol covers not only various types of aryl, heteroaryl and polyaryl halides but also applies to a large variety of aromatic alkynes at room temperature. With a versatile substrate scope successfully tested on more than 75 entries, this radical-mediated pathway has been explained by several control experiments. All the key reactive intermediates have been characterized with spectroscopic evidence. Detailed DFT calculations have been instrumental in portraying the mechanistic pathway. Furthermore, we have successfully extended this transition-metal-free catalytic strategy for the first time towards solvent-free cross-coupling between solid aryl halide and alkyne substrates.
Collapse
Affiliation(s)
- Swagata Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | | | - Pallabi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology, Palakkad, Palakkad, 678557, Kerala, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
49
|
Duan X, Shi H, Yue Y, Song W. Au-allenylidene promoted decarboxylative annulation to access unsaturated γ-lactams/lactones. Chem Commun (Camb) 2024; 60:3926-3929. [PMID: 38497367 DOI: 10.1039/d4cc00200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A novel Au-allenylidene promoted decarboxylative annulation by intramolecular α-nucleophilic addition has been disclosed. The unsaturated cyclic ethynylethylene carbamates/carbonates can be converted to unique nucleophiles attached with alkylidene ketenes by sequential decarboxylation and oxidation processes. Such alkylidene ketenes can be rapidly trapped by intramolecular α-attacking annulation to generate potential biological active unsaturated γ-lactams/lactones with broad scope, facile post-modification, high regioselectivity and efficiency.
Collapse
Affiliation(s)
- Xuelun Duan
- Central Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Haotian Shi
- Central Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Yangyang Yue
- Central Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Wangze Song
- Central Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
50
|
Zhang Y, Zhu L, Song X, Wang XJ, Zhu B, Ouyang Q, Du W, Chen YC. Pd(0)-Catalyzed Asymmetric Cyclization/Coupling Cascade of Alkyne-Tethered Unsaturated Carbonyls: Development and Mechanism Elucidation. J Am Chem Soc 2024; 146:5977-5986. [PMID: 38395050 DOI: 10.1021/jacs.3c12685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
While the Pd(0)-catalyzed cyclization of alkyne-tethered unsaturated carbonyl substrates has been reported, the mechanism has not been well elucidated, and the potential asymmetric version remains to be developed. Here, we disclose that a chiral Pd(0) complex can efficiently promote the desymmetrizative cyclization of alkyne-tethered cyclohexadienones in CH3OH, and the resultant Pd(II) intermediates further undergo an array of tandem coupling reactions, including Suzuki, Sonogashira, and even chemoselective reduction by CH3OH in the absence of additional coupling partners. As a result, a broad spectrum of hydrobenzofuran derivatives, having a tetra- or trisubstituted exo-alkene motif, is constructed with moderate to outstanding enantioselectivity in an exclusive cis-difunctionalization pattern. In addition, this enantioselective protocol can be well expanded to linear alkyne-tethered unsaturated carbonyls, and a new desymmetrizative and asymmetric cyclization/coupling cascade of bis-alkyne-tethered enones is further realized efficiently, furnishing diversely structured frameworks with high stereoselectivity. Moreover, kinetic transformation for various racemic alkyne-tethered enones can be accomplished under similar catalytic conditions, and unusual kinetic reactions by chemoselectively undertaking Suzuki or Sonogashira coupling, or reduction by CH3OH, occur sequentially, finally yielding two types of chiral products, both with high enantioselectivity via either ligand- or substrate-based control. The experimental results demonstrate that the current Pd(0)-based strategy is superior to the classical Pd(II)-catalyzed carbopalladation/cyclization process of the identical substrates with regard to enantioselectivity and synthetic versatility. Moreover, density functional theory calculations are conducted to rationalize the Pd(0)-catalyzed oxidative cyclometalation pathway in the key cyclization step, which leads to the observed cis-difunctionalized products exclusively.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xue Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Jun Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|