1
|
Kai N, Kono H, Stünkel T, Imoto D, Zanasi R, Monaco G, Summa FF, Scott LT, Yagi A, Itami K. Stable cationic nanobelts synthesized by chemical oxidation of methylene-bridged [6]cycloparaphenylene. Chem Sci 2025:d5sc01305d. [PMID: 40276639 PMCID: PMC12017067 DOI: 10.1039/d5sc01305d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Nanobelts are cyclic arenes that only consist of annulated structures. Recently, various types of nanobelts have been synthesized and their unique properties have been unveiled. However, cationic nanobelts without heteroatoms have been rarely synthesized, and their properties are of significant interest from both fundamental and application perspectives. Herein, we report the synthesis of radical cationic and dicationic hydrocarbon nanobelts by chemical oxidation of methylene-bridged [6]cycloparaphenylene ([6]MCPP). These cationic species are remarkably stable in air, which made it possible to measure and uncover their structural and electronic properties. Notably, the [6]MCPP dicationic salt has sharp absorption and fluorescence bands at longer wavelengths than those of neutral [6]MCPP, close to the near-infrared region. From both experimental and theoretical investigation, the existence of a strong diatropic belt current in [6]MCPP dication was indicated. In addition, a longer lifetime was observed for the hexamethyl[6]MCPP dicationic salt than for the [6]MCPP dicationic salt in solution.
Collapse
Affiliation(s)
- Nobushige Kai
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Hideya Kono
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Timo Stünkel
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Daiki Imoto
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Riccardo Zanasi
- Dipartimento di Chimica e Biologia "A. Zambelli", Università Degli Studi di Salerno Fisciano 84084 SA Italy
| | - Guglielmo Monaco
- Dipartimento di Chimica e Biologia "A. Zambelli", Università Degli Studi di Salerno Fisciano 84084 SA Italy
| | - Francesco F Summa
- Dipartimento di Chimica e Biologia "A. Zambelli", Università Degli Studi di Salerno Fisciano 84084 SA Italy
| | - Lawrence T Scott
- Department of Chemistry, University of Nevada Reno Nevada 89557-0216 USA
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya 464-8602 Japan
- Molecule Creation Laboratory, RIKEN Cluster for Pioneering Research Wako Saitama 351-0198 Japan
| |
Collapse
|
2
|
Yamasumi K, Horita H, Haketa Y, Seki S, Bulgarevich K, Takimiya K, Shimogawa H, Maeda H. Charge-Segregated Ion-Pairing Assemblies Comprising Dipolar π-Electronic Cations. Chemistry 2025; 31:e202404781. [PMID: 39916513 DOI: 10.1002/chem.202404781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Indexed: 02/19/2025]
Abstract
Two pentamethine dyes with nearly identical structures but slightly different dipole moments were prepared as ion pairs. The ion pairs provided charge-segregated assemblies stabilized by dipole-dipole interactions between the positively charged π-electronic systems. The stacking structure of the bromo-substituted pentamethine cation was more stabilized by a larger dipole moment, as suggested by energy decomposition analysis. Depending on the packing arrangements, highly electric conductive properties were observed owing to charge-segregated structures, as also correlated with the theoretically estimated transfer integrals.
Collapse
Affiliation(s)
- Kazuhisa Yamasumi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Hiroki Horita
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | | | - Kazuo Takimiya
- Center for Emergent Matter Science (CEMS) RIKEN, Wako, 351-0198, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan
| | | | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
3
|
Chen L, Cao Y, Huo H, Lu S, Hou Y, Tan T, Li X, Liu F, Zhang M. Metallacycle-cored luminescent ionic liquid crystals with trigonal symmetry. Chem Sci 2025; 16:4992-4997. [PMID: 40007669 PMCID: PMC11848405 DOI: 10.1039/d4sc07318e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Herein, we report the preparation of a series of metallacycle-cored liquid crystals with hexagonal and trigonal symmetries based on the self-assembly of tri(ethyl glycol) (TEG)-functionalized diplatinum(ii) ligands and alkyl chain-appendant tetraphenylethylene (TPE) derivatives. Interestingly, with the increase of the density of the TEG units in the metallacycles, the phase separation between TEG and alkyl chains reduces the symmetry of the columnar phase from hexagonal p6mm to trigonal p3m1, which significantly enhances the aggregation of TPE units and thus increases the emission of the system, resulting in fluorescence quantum yield as high as 47.4% in the mesogenic phase. Moreover, the positive charges of the metallacycles endow these liquid crystals with good ionic conductivity at room temperature, making them potential candidates for optoelectronics.
Collapse
Affiliation(s)
- Long Chen
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Key Laboratory of Catalytic Materials and Technology of Shaanxi Province, Kaili Catalyst & New Materials Co., Ltd Xi'an 710201 P. R. China
| | - Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Haohui Huo
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 P. R. China
| | - Yali Hou
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Tianyi Tan
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Mingming Zhang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
4
|
Aoki N, Tang Y, Zeng X, Ichikawa T. Design of Functional Gyroid Minimal Surfaces Transporting Proton Based Solely on Surface Hopping Conduction Mechanism. Macromol Rapid Commun 2025; 46:e2400619. [PMID: 39491048 DOI: 10.1002/marc.202400619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Surface proton hopping conduction (SPHC) mechanisms is an important proton conduction mechanism in conventional polymer electrolytes, along with the Grotthuss and vehicle mechanisms. Due to the small diffusion coefficient of protons in the SPHC mechanism, few studies have focused on the SPHC mechanism. Recently, it has been found that a dense alignment of SO3 - groups significantly lowers the activation energy in the SPHC mechanism, enabling fast proton conduction. In this study, a series of polymerizable amphiphilic-zwitterions is prepared, forming bicontinuous cubic liquid-crystalline assemblies with gyroid symmetry in the presence of suitable amounts of bis(trifluoromethanesulfonyl) imide (HTf2N) and water. In situ polymerization of these compounds yields gyroid-nanostructured polymer films, as confirmed by synchrotron small-angle X-ray scattering experiments. The high proton conductivity of the films on the order of 10-2 S cm-1 at 40 °C and relative humidity of 90% is based solely on the SPHC mechanism.
Collapse
Affiliation(s)
- Nanami Aoki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Yumin Tang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Takahiro Ichikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| |
Collapse
|
5
|
Hennes LM, Behringer C, Farshad M, Schaefer JL, Whitmer JK. Controlling Electrostatics To Enhance Conductivity in Structured Electrolytes. J Phys Chem Lett 2025; 16:1590-1596. [PMID: 39905692 DOI: 10.1021/acs.jpclett.4c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Solid-state electrolytes are currently being explored as a safe material capable of addressing consumer energy-storage demands. Solid polymer electrolytes, in particular, offer a high energy density and improved safety when compared to liquid-based electrolytes, but tend to have a significantly lower ionic conductivity. We hypothesize structured ionic liquids can enhance conductivity compared to polymer electrolytes. Here, we explore the performance of these materials through coarse-grained molecular dynamics simulation. While we observe similar phase behavior (incorporating solid, smectic, and liquid phases) to that seen in experiments, we also observe significantly more mobility in the cationic species compared to the anionic species before the system reaches an arrest transition. We further discuss how the general results within this paper can guide further studies and target the design of new highly conductive solid electrolytes with the potential to enable the use of multivalent ionic species as ion conductors.
Collapse
Affiliation(s)
- Logan M Hennes
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Chloe Behringer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mohsen Farshad
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer L Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Rim M, Kim W, Kang DG, Pham HH, Wi Y, Oh M, Ko H, De Sio L, Kim DY, Jeong KU. Counter Ions Determine Self-Assembled Nanostructure and Activation Energy of Ion-Conductive Mesogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410713. [PMID: 39895171 DOI: 10.1002/smll.202410713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/22/2025] [Indexed: 02/04/2025]
Abstract
By varying counter ions of ion-conductive mesogens (ICMs) from bromide (Br), to tetrafluoroborate (BF4), and to bis(trifluoromethanesulfonyl)imide (TFSI), the ionic conductivity of ICM is systematically investigated based on their self-assembled nanostructure and activation energy. Thermal and phase transition behaviors of ICM-Br, -BF4, and -TFSI exhibit significant variation based on the anion type. These differences are further reflected in the self-assembled nanostructures of the ICMs, which are characterized through X-ray and electron diffraction experiments. Ionic conductivity measured by electrochemical impedance spectroscopy and activation energy calculated by Arrhenius equation allow us to build the relationship between self-assembled nanostructures of ICMs and their activation energy. The constructed relationship between self-assembled nanostructures and activation energy can provide valuable insights for the development of novel ion-conductive materials.
Collapse
Affiliation(s)
- Minwoo Rim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Woojin Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong-Gue Kang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huu Huan Pham
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Youngjae Wi
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Mintaek Oh
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyeyoon Ko
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Luciano De Sio
- Department of Medico-Surgical Science and Biotechnologies, Center for Biophotonics, Sapienza University of Rome, Latina, 04100, Italy
| | - Dae-Yoon Kim
- Functional Composite Materials Research Center Korea Institute of Science and Technology, Wanju, 55324, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
7
|
Li L, Mei Y, Sun Z, Liu X, Zhang J, Sun T, Xiong C, Guo P, Zhang S, Xiong L, Lu Y, Xu Y, Huang J. Optical and Electrical Dual-Mode Detection of a Carcinogenic Substance Based on Synergy of Liquid Crystals and Ionic Liquids. ACS Sens 2025; 10:329-338. [PMID: 39745348 DOI: 10.1021/acssensors.4c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of N-nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC). The optical mode derived from LCs provides the sensor with a visual identification recognizable by the naked eye, while the electrical mode derived from ILs offers a quantitative detection capability. It is noteworthy that the synergistic effect of the IL and LC enhances the performance of both optical and electrical modes. Unique sensing mechanisms derived from the interaction between NDEA and IL-LC endow the sensor with excellent selectivity. As a proof of concept, a portable kit based on a dual-mode sensor has been developed for the real-time and on-site analysis of N-nitrosamine impurities in pharmaceuticals. This work provides valuable insights and a theoretical foundation for developing portable multimode chemical sensors.
Collapse
Affiliation(s)
- Li Li
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yixuan Mei
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zejun Sun
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Tongrui Sun
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Chonghao Xiong
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Pu Guo
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Shiqi Zhang
- School of Mechanical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai 200434, P. R. China
| | - Yang Lu
- Suzhou Novartis Technical Development Co., Ltd., 18-1 Tonglian Road, Suzhou 215537, P. R. China
| | - Yang Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai 200434, P. R. China
| |
Collapse
|
8
|
Lange A, Kapernaum N, Wojnarowska Z, Holtzheimer L, Mies S, Williams V, Gießelmann F, Taubert A. Sulfobetaine ionic liquid crystals based on strong acids: phase behavior and electrochemistry. Phys Chem Chem Phys 2025; 27:844-860. [PMID: 39661016 DOI: 10.1039/d4cp03060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A group of new zwitterion based ionic liquid crystals (ILCs) have been synthesized. Depending on the counter anion (mesylate or hydrogen sulfate) the phase behavior of the resulting ILCs is quite different. Mesylate based ILCs show complex phase behavior with multiple phases depending on the alkyl chain length. In contrast, hydrogen sulfate based systems always exhibit Colr phases irrespective of the alkyl chain length. The latter show much larger ILC mesophase windows and are thermally stable up to ca. 200 °C. All ILCs show reasonable ionic conductivities of up to 10-4 S cm-1 at elevated temperatures, making these ILCs candidates for intermediate temperature ionic conductors.
Collapse
Affiliation(s)
- Alyna Lange
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Nadia Kapernaum
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Zaneta Wojnarowska
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Lea Holtzheimer
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Stefan Mies
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Vance Williams
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Frank Gießelmann
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
9
|
Hong J, Xing Z, Li D, Hu B, Xu K, Hu X, Hu T, Chen Y. Managing Solvent Complexes to Amplify Ripening Process by Covalent Interaction Driving Force Under External Field for Perovskite Photovoltaic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409971. [PMID: 39552249 DOI: 10.1002/adma.202409971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Up to now, post-annealing is most commonly used to post treat the perovskite film to accelerate the ripening process. Nonetheless, the top-down crystallization mechanism impedes the efficient desolvation of solvent complexes. Thus, residual solvent complexes tend to accumulate at the bottom of the film during the ripening process and deteriorate the device. Here, a new strategy with unique concept is promoted to amplify ripening process of perovskite film, in which a nematic thermotropic liquid crystal (LC) molecular is introduced to facilitate the conversion of solvent complexes by utilizing the liquid crystalline behavior under external field. Upon the concurrent application of thermal and force fields, the covalent interaction between LC and solvent complexes generates a driving force, which promotes upward migration of solvent complexes, thereby facilitating their engagement in the ripening process. In addition, the driving force under external fields assists the flattening of grain boundary grooves. Therefore, film quality is improved efficiently with amplified ripening process and adequately handled buried interface. Based on the positive effects, the devices achieve a champion efficiency of 25.24%, and sustained ≈75% of its initial efficiency level even after undergoing a damp heat test (85 °C/85% RH) for 1400 h.
Collapse
Affiliation(s)
- Jiajie Hong
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhi Xing
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Dengxue Li
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Biao Hu
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Kaiqin Xu
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Ting Hu
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|
10
|
Parmar S, Dean W, Do C, Browning JF, Klein JM, Gurkan BE, McDaniel JG. Structural Properties of [N1888][TFSI] Ionic Liquid: A Small Angle Neutron Scattering and Polarizable Molecular Dynamics Study. J Phys Chem B 2024; 128:11313-11327. [PMID: 39498611 PMCID: PMC11571223 DOI: 10.1021/acs.jpcb.4c06255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
In this study, we investigate the quaternary ammonium-based ionic liquid (QAIL), methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, [N1888][TFSI], utilizing small angle neutron scattering (SANS) measurements and polarizable molecular dynamics (MD) simulations to characterize the short- and long-range liquid structure. Scattering structure factors show signatures of three length scales in reciprocal space indicative of alternating polarity (k ∼ 0.44 Å-1), charge (k ∼ 0.75 Å-1), and neighboring or adjacent (k ∼ 1.46 Å-1) domains. Excellent agreement between simulation and experimental scattering structure factors validates various simulation analyses that provide detailed atomistic characterization of the different length scale correlations. The first solvation shell structure is illustrated by obtaining radial, angular, dihedral, and combined distribution functions, where two dominant spatial motifs, N+···N- and N+···O-, compete for optimal packing around the polar head of the [N1888]+ cation. Intermediate and long-range structures are governed by the balance between local electroneutrality and octyl chain networking, respectively. By computing the charge-correlation structure factor, SZZ, and the spatial extent of the octyl chain network using graph theory, the bulk-phase structure of [N1888][TFSI] is characterized in terms of electrostatic screening and apolar domain formation length scales.
Collapse
Affiliation(s)
- Shehan
M. Parmar
- Department
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - William Dean
- Chemical
and Biomolecular Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Changwoo Do
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James F. Browning
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey M. Klein
- MPA-11:
Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Burcu E. Gurkan
- Chemical
and Biomolecular Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jesse G. McDaniel
- Department
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| |
Collapse
|
11
|
Liang Y, Liu X, Hu X, Li X, Liu N, Xiao Y. Terminal halogen-containing rod-like liquid crystals: Synthesis, self-assembly, photophysical and mechanochromism properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124676. [PMID: 38909400 DOI: 10.1016/j.saa.2024.124676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Five series of cyanostilbene-based rod-like liquid crystals containing one different terminal atom (H, F, Cl, Br and I) at one end and one terminal aliphatic chain with different numbers of carbon atoms at the other end were reported by Suzuki coupling and Knoevenagel reactions. The influence of terminal halogen atoms and terminal chain length on the self-assembly, AIE behavior, temperature-dependent emission and mechanochromism behavior was explored by POM, DSC, XRD, SEM, absorption spectra and emission spectra. All the compounds are enantiotropic liquid crystals. The lowest non-halogen substituted homologue exhibited solo N phase, but the higher non-halogen substituted homologues exhibited mesogenic transition from SmA phase to N phase upon rising temperature. All the lowest halogen substituted homologues exhibited mesogenic transition from SmA phase to N phase upon rising temperature and all the higher homologues only exhibited SmA. The distinct mesogenic phase transition could be attributed to the intermolecular interaction produced by terminal halogen and the rigidity of the terminal aliphatic chain. All the non-halogen substituted compounds and halogen substituted compounds with smaller terminal halogen atom (F, Cl and Br atom) exhibited AIE behaviors, whereas the iodinated compounds exhibited extremely weak emission in solution and aggregated states due to the heavy atoms effect. These compounds also exhibited distinct solid-state emission with blue or cyan fluorescence, which could be quenched by increasing temperature. The reversible mechanochromism behavior was also achieved in all the compounds. The mechanical force induced quench in emission in non-halogen substituted compounds and halogen substituted compounds with smaller terminal halogen atom (F, Cl and Br atom), whereas enhancement in iodinated compounds. The reversible mechanochromism behavior endowed these compounds with potential applications in rewritable paper and anti-counterfeiting. The interesting properties in these liquid crystals would be attributed to the balance of the halogen-halogen interactions, heavy atom effect, steric-hindrance effect and chain length. These investigations would be helpful to understand the relationship between chemical structures and properties.
Collapse
Affiliation(s)
- Yurun Liang
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Xiaotong Liu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Xiuning Hu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Xuehong Li
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Nana Liu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Yulong Xiao
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China.
| |
Collapse
|
12
|
Tantipanjaporn A, Kung KYK, Deng JR, Wong MK. Modular synthesis of pentacyclic-fused pyranoquinoliziniums as organelle-selective fluorescent probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124524. [PMID: 38824759 DOI: 10.1016/j.saa.2024.124524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
On basis of their unique chemical and photophysical properties, and excellent biological activities, quinoliziniums have been widely used in various research fields. Herein, modular synthetic strategies for efficient synthesis of novel fluorescent quinoliziniums by using one-pot and stepwise rhodium(III)-catalyzed C-H annulations were developed. In the one-pot synthesis, the reaction between 2-aryl-4-quinolones (1) and 1,2-diarylalkynes (2) proceeded in a chemo- and regioselective manner to give quinolinone-fused isoquinolines (3) and pentacyclic-fused pyranoquinoliziniums (4). The structural diversity of pentacyclic-fused pyranoquinoliziniums (4) was expanded by the stepwise synthesis from 3 and 2, allowing the strategic incorporation of electron-donating (OMe and OH) and electron-withdrawing (Cl) substituents on the top and bottom parts of the pyranoquinoliziniums (4). These newly synthesized pyranoquinoliziniums (4) exhibited tunable absorptions (455-532 nm), emissions (520-610 nm), fluorescence lifetime (0.3-5.6 ns), large Stokes shifts (up to 120 nm), and excellent fluorescence quantum yields (up to 0.73) upon adjusting the different substituents. The the unique arrangement of N and O atoms and extended π-conjugation of 4 could cause the relocation of HOMO comparing with our previous quinoliziniums. Importantly, pyranoquinoliziniums (4a-4g and 4i) targeted the mitochondria, while 4h was localized in lysosome. Due to the remarkable photophysical properties and the potential for organelle targeting of the novel class of quinoliziniums, they could be further applied for biological, chemical and material applications.
Collapse
Affiliation(s)
- Ajcharapan Tantipanjaporn
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ka-Yan Karen Kung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jie-Ren Deng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
13
|
Chen S, Taing H, Ahmida M, He HY, Carr A, Muchall HM, Eichhorn SH. Core charge of imidazolium annulated triphenylene derivatives induces discotic columnar mesomorphism. SOFT MATTER 2024; 20:7854-7864. [PMID: 39315415 DOI: 10.1039/d4sm00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Thermotropic ionic liquid crystals have remained a relatively little studied group of materials despite their many potential applications as anisotropic ionic liquids and charge (ion and electron/hole) transporting materials. Particularly rare are core charged discotic liquid crystals because their synthesis is usually more involved, and their molecular design is less established. Presented here is a straightforward and versatile synthetic approach to imidazolium annulated triphenylene derivatives. Their neutral imidazole precursors are not liquid crystalline while the imidazolium salts display hexagonal discotic columnar mesophases over a wide range of temperatures and as low as 47 °C. Computational studies at the DFT and PM6 levels of theory confirmed much higher stacking energies for the imidazolium salts compared to the neutral imidazole precursors. They also predicted the anions of columnar stacks of imidazolium salts to be positioned in the bay-positions next to the imidazolium unit and in-plane with the polyaromatic system. The anions were stabilized in the bay position by multiple interactions with partially positively charged H atoms and do not interfere with π-π stacking.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Hi Taing
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Mohamed Ahmida
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Hong Yi He
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Aiden Carr
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Heidi M Muchall
- Department of Chemistry and Biochemistry, and Centre for Research in Molecular Modeling (CERMM) Concordia University, 7141 Sherbrooke St. West, Montreal Quebec H4B 1R6, Canada.
| | - S Holger Eichhorn
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| |
Collapse
|
14
|
Marín I, Castillo-Vallés M, Merino RI, Folcia CL, Barberá J, Ros MB, Serrano JL. Ionic Bent-Core Pillar[ n]arenes: From Liquid Crystals to Nanoaggregates and Functional Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9793-9805. [PMID: 39398374 PMCID: PMC11468781 DOI: 10.1021/acs.chemmater.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Herein, we report the first examples of supramolecular systems from bent-core-based pillar[n]arenes through ionic bonds. These ionic materials have been prepared by the interaction of an amino-ended pillar[5]arene (P5N10) and three different carboxylic acids, including bent-core moieties. The bent-core units are based on ester, biphenyl, and azobenzene structures bearing two different flexible spacers between the carboxyl group and the central bent-core aromatic units. The ionic pairs segregate the molecular blocks, leading to columnar liquid crystal organizations. These ionic supramolecular compounds exhibit interesting results as proton-conductive materials. Furthermore, the introduction of azobenzene units in the bent-core structure has provided a photoresponse to the proton conduction materials. Interestingly, the amphiphilic character generated by the ionic pairs and the hydrophobic bent-core structures allows their molecular self-assembly in water solution, resulting in aggregates of appealing morphologies. The structural modifications of the bent-core units (i.e., connecting bonds at the lateral structure and spacer lengths) provide an attractive analysis on the relationship between the chemical structure and the morphology of the aggregates (fibers, chiral ribbons, nanotubes...). Additionally, the self-assembly process and evolution of the aggregates from fibers to nanotubes have been studied with several techniques.
Collapse
Affiliation(s)
- Iván Marín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Martín Castillo-Vallés
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rosa I. Merino
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - César L. Folcia
- Departamento
de Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, E-48080 Bilbao, Spain
| | - Joaquín Barberá
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M. Blanca Ros
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L. Serrano
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
15
|
Biswas S, Saikia AK. Cascade Alkynyl Prins Cyclization and Aza-Michael Reaction: En Route to Regioselective Pyrano- and Isochromenoquinoline Scaffolds. J Org Chem 2024; 89:14454-14471. [PMID: 39302023 DOI: 10.1021/acs.joc.4c01916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A metal-free, Lewis acid approach for the regioselective synthesis of dihydropyranoquinoline scaffolds has been unveiled. The methodology employs a cascade alkynyl Prins-aza-Michael reaction sequence to deliver the products in good to excellent yields. The strategy features mild reaction conditions, broad substrate scope, and high functional group tolerance. The protocol has been further extended to include isochromenoquinoline derivatives. The utility of the reaction lies in the synthesis of highly fused polycyclic N,O-heterocycles via intramolecular Heck coupling. Additionally, a Rh(III)-catalyzed annulation results in the formation of highly fluorescent pentacyclic ammonium salts in excellent yields. Photophysical studies reveal that these pentacyclic ammonium salts exhibit strong emission in the green region (500-550 nm).
Collapse
Affiliation(s)
- Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
16
|
Ichikawa T, Obara S, Yamaguchi S, Tang Y, Kato T, Zeng X. Design of V-shaped ionic liquid crystals: atropisomerisation ability and formation of double-gyroid molecular assemblies. Chem Commun (Camb) 2024; 60:11279-11282. [PMID: 39196639 DOI: 10.1039/d4cc03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We designed V-shaped ionic liquid crystals with two sterically congested ionic parts at the vertex. Depending on the degree of steric hindrance, atropisomerisation occurred in solution. All compounds formed bicontinuous cubic phases with double-gyroid structures in the bulk state, partially owing to the co-existence of atropisomers with opposite chirality.
Collapse
Affiliation(s)
- Takahiro Ichikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Soki Obara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Saori Yamaguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Yumin Tang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Toshiyo Kato
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
17
|
Bendaoud U, Bhowmik PK, Chen SL, Han H, Cox SL, Liebsch J, Ros MB, Selvi Velayutham T, Aripin NFK, Martinez-Felipe A. Modulating the Conductivity of Light-Responsive Ionic Liquid Crystals. Molecules 2024; 29:4459. [PMID: 39339454 PMCID: PMC11434579 DOI: 10.3390/molecules29184459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
In this work, we describe the phase behaviour and the dielectric and conductivity response of new light-responsive ionic liquid crystals, ILCs, which can be applied as controllable electrolytes. The materials include two different dicationic viologens, the asymmetric 6BP18 and the symmetric EV2ON(Tf)2, containing bistriflimide as the counterions, mixed with 5% and 50% molar, respectively, of one new photoresponsive mesogen called CNAzO14. These mixtures exhibit liquid crystal behaviour, light responsiveness through the E-Z photoisomerisation of the azobenzene groups in CNAzO14, and strong dielectric responses. The 5%-CNAzO14/Ev2ON(Tf)2 mixture displays direct current conductivities in the 10-7 S·cm-1 range, which can be increased by a two-fold factor upon the irradiation of UV light at 365 nm. Our findings set the grounds for designing new smart ionic soft materials with nanostructures that can be tuned and used for energy conversion and storage applications.
Collapse
Affiliation(s)
- Umama Bendaoud
- Chemical Processes and Materials Research Group, Just Transition Lab, Centre for Energy Transition, School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK; (U.B.); (J.L.)
| | - Pradip K. Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Si L. Chen
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Haesook Han
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Seonghyeok L. Cox
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Jasmin Liebsch
- Chemical Processes and Materials Research Group, Just Transition Lab, Centre for Energy Transition, School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK; (U.B.); (J.L.)
- Department of Chemistry, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK
| | - M. Blanca Ros
- Instituto de Nanociencia y Materiales de Aragón, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-CSIC, Campus San Francisco, E-50009 Zaragoza, Spain;
| | - Thamil Selvi Velayutham
- Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nurul Fadhilah Kamalul Aripin
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK
| | - Alfonso Martinez-Felipe
- Chemical Processes and Materials Research Group, Just Transition Lab, Centre for Energy Transition, School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK; (U.B.); (J.L.)
| |
Collapse
|
18
|
Santos AFM, Figueirinhas JL, Dionísio M, Godinho MH, Branco LC. Ionic Liquid Crystals as Chromogenic Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4563. [PMID: 39336305 PMCID: PMC11432927 DOI: 10.3390/ma17184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/30/2024]
Abstract
Ionic liquid crystals (ILCs), a class of soft matter materials whose properties can be tuned by the wise pairing of the cation and anion, have recently emerged as promising candidates for different applications, combining the characteristics of ionic liquids and liquid crystals. Among those potential uses, this review aims to cover chromogenic ILCs. In this context, examples of photo-, electro- and thermochromism based on ILCs are provided. Furthermore, thermotropic and lyotropic ionic liquid crystals are also summarised, including the most common chemical and phase structures, as well as the advantages of confining these materials. This manuscript also comprises the following main experimental techniques used to characterise ILCs: Differential Scanning Calorimetry (DSC), Polarised Optical Microscopy (POM) and X-Ray Powder Diffraction (XRD). Chromogenic ILCs can be interesting smart materials for energy and health purposes.
Collapse
Affiliation(s)
- Andreia F M Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - João L Figueirinhas
- CeFEMA and Department of Physics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria H Godinho
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Luis C Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
19
|
Kugizaki R, Haketa Y, Kamada K, Maeda H. Ion-Pairing Assemblies of Anion-Responsive π-Electronic Systems That Have Noncovalently Assisted Expanded Planar Region. Chemistry 2024; 30:e202401932. [PMID: 38837549 DOI: 10.1002/chem.202401932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Arylethynyl-substituted dipyrrolyldiketone BF2 complexes as anion-responsive π-electronic molecules exhibited characteristic electronic properties derived from conformation changes upon anion binding, which caused an increase in UV/vis absorption and associated two-photon absorption. The anion complexes showed expanded planar regions assisted by intramolecular interactions, resulting in charge-by-charge ion-pairing assemblies in the solid state.
Collapse
Affiliation(s)
- Rio Kugizaki
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kenji Kamada
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, 563-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
20
|
Kolmangadi MA, Wani YM, Schönhals A, Nikoubashman A. Coarse-Grained Simulations of Columnar Ionic Liquid Crystals: Comparison with Experiments. J Phys Chem B 2024; 128:8215-8222. [PMID: 39163525 DOI: 10.1021/acs.jpcb.4c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
We simulate a homologous series of guanidinium-based columnar ionic liquid crystals (ILCs) using coarse-grained molecular dynamics (MD) simulations with the Martini force field. We systematically vary the length of alkyl side chains, ILC-n (n = 8, 12, 16), and compare our results with previous experimental findings. Experimentally, ILC-8 exhibits a narrow mesophase window and weak columnar order, while ILC-12 and ILC-16 display a broad mesophase window and high columnar order. The MD simulations show that ILC-8 forms a percolated structure, whereas the longer chain analogues self-assemble into columns, with columnar assembly becoming more prominent as the side chain length increases, in qualitative agreement with the experiments. Furthermore, the intercolumnar distance increases monotonically with increasing side chain length and decreases with increasing temperature. Finally, we find that the diffusion coefficient and ionic conductivity decrease substantially with increasing chain length, consistent with experimental observations. We attribute this decrease in mobility to the formation of hexagonally ordered columns, which restrict transport more than percolated networks.
Collapse
Affiliation(s)
- Mohamed A Kolmangadi
- Bundesantalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Yashraj M Wani
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Andreas Schönhals
- Bundesantalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
21
|
Takahashi S, Murai M, Hattori Y, Seki S, Yanai T, Yamaguchi S. Sulfur-Bridged Cationic Diazulenomethenes: Formation of Charge-Segregated Assembly with High Charge-Carrier Mobility. J Am Chem Soc 2024; 146:22642-22649. [PMID: 39092507 DOI: 10.1021/jacs.4c07122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sulfur-bridged cationic diazulenomethenes were synthesized and exhibited high stability even under basic conditions due to the delocalization of positive charge over the whole π-conjugated skeleton. As a result of the effective delocalization and the absence of orthogonally oriented bulky substituents, the cationic π-conjugated skeletons formed a π-stacked array with short interfacial distances. A derivative with SbF6- as a counter anion formed a charge-segregated assembly in the crystalline state, rather than the generally favored charge-by-charge arrangement of oppositely charged species based on electrostatic interactions. Theoretical calculations suggested that the destabilization caused by electrostatic repulsion between two positively charged π-conjugated skeletons is compensated by the dispersion forces. In addition, the counter anion SbF6- played a role in regulating the molecular alignment through F⋯H-C and F-S interactions, which resulted in the charge-segregated alignment of the cationic π-skeletons. This characteristic assembled structure gave rise to a high charge-carrier mobility of 1.7 cm2 V-1 s-1 as determined using flash-photolysis time-resolved microwave conductivity.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Masahito Murai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Yusuke Hattori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
22
|
Li Z, Raab A, Kolmangadi MA, Busch M, Grunwald M, Demel F, Bertram F, Kityk AV, Schönhals A, Laschat S, Huber P. Self-Assembly of Ionic Superdiscs in Nanopores. ACS NANO 2024; 18:14414-14426. [PMID: 38760015 PMCID: PMC11155240 DOI: 10.1021/acsnano.4c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperature-dependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes' hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic-hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Aileen Raab
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mohamed Aejaz Kolmangadi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Mark Busch
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marco Grunwald
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Felix Demel
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Florian Bertram
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andriy V. Kityk
- Faculty of
Electrical Engineering, Czestochowa University
of Technology, Al. Armii
Krajowej 17, 42-200 Czestochowa, Poland
| | - Andreas Schönhals
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
- Institut
für Chemie, Technische Universität
Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Sabine Laschat
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
23
|
Roy R, Chick P, York E, Rawling T. Cytotoxicity of acridinium-based ionic liquids: Structure-activity relationship and mechanistic studies. Chem Biol Interact 2024; 396:111042. [PMID: 38735455 DOI: 10.1016/j.cbi.2024.111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Ionic liquids (ILs) are a class of low melting point salts with physicochemical properties suitable for a range of industrial applications such as chemical processing and battery design. Major challenges to the wide-scale adoption of ILs in industry include their eco- and cytotoxic effects, however, this opens up the possibility of the use of ILs use as novel anticancer agents. Understanding the structural features that promote IL cytotoxicity is therefore important. Key structural features that can impact IL cytotoxicity include size and lipophilicity of the cationic head group. In this study, the cytotoxic effects of acridinium-based ILs containing relatively large tri- and tetracyclic cations were evaluated. It was found that 9-phenylacridinium-based ILs are potent cytotoxic agents that reduce the viability of human MDA-MB-231 breast cancer cells with IC50 concentrations in the nanomolar range. In mechanistic studies, it was found that unlike the pyridinium-based analogue, [C16Py][I], acridinium-based ILs did not inhibit oxidative phosphorylation or induce reactive oxygen species formation, and may instead target other mitochondrial processes or components such as mitochondrial DNA.
Collapse
Affiliation(s)
- Ritik Roy
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Phoenix Chick
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Edward York
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
24
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
25
|
Pontoni D, DiMichiel M, Murphy BM, Honkimäki V, Deutsch M. Ordering of ionic liquids at a charged sapphire interface: Evolution with cationic chain length. J Colloid Interface Sci 2024; 661:33-45. [PMID: 38295701 DOI: 10.1016/j.jcis.2024.01.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
HYPOTHESIS Room Temperature Ionic Liquids (RTILs) bulk's molecular layering dominates their structure also at the RTIL/sapphire interface, increasing the layer spacing with the cationic alkyl chain length n. However, the negatively-charged sapphire surface compresses the layers, increases the layering range, and affects the intra-layer structure in yet unknown ways. EXPERIMENTS X-ray reflectivity (XR) off the RTIL/sapphire interface, for a broad homologous RTIL series 1-alkyl-3-methylimidazolium bis(trifluoromethansulfonyl)imide, hitherto unavailable for any RTIL. FINDINGS RTIL layers against the sapphire, exhibit two spacings: da and db. da is n-varying, follows the behavior of the bulk spacing but exhibits a downshift, thus showing significant layer compression, and over twofold polar slab thinning. The latter suggests exclusion of anions from the interfacial region due to the negative sapphire charging by x-ray-released electrons. The layering range is larger than the bulk's. db is short and near n-independent, suggesting polar moieties' layering, the coexistence mode of which with the da-spaced layering is unclear. Comparing the present layering with the bulk's and the RTIL/air interface's provides insight into the Coulomb and dispersion interaction balance dominating the RTIL's structure and the impact thereon of the presence of a charged solid interface.
Collapse
Affiliation(s)
- Diego Pontoni
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Marco DiMichiel
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Bridget M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Kiel D-24098, Germany; Ruprecht-Haensel Laboratory, Kiel University, Kiel D-24118, Germany
| | - Veijo Honkimäki
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Moshe Deutsch
- Physics Dept. & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
26
|
Ruan H, Lu K, Meng S, Zhao Q, Ren H, Wu Y, Wang C, Tan S. Lyotropic Lamellar Nanostructures Enabled High-Voltage Windows, Efficient Charge Transport, and Thermally Safe Solid-State Electrolytes for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310186. [PMID: 38059820 DOI: 10.1002/smll.202310186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Developing electrolytes combining solid-like instinct stability and liquid-like conducting performance will be satisfactory for efficient and durable Li-ion batteries. Herein lamellar lyotropic liquid crystals (LLCs) demonstrate high-voltage windows, efficient charge transport, and inherent thermal safety as solid-state electrolytes in lithium-ion batteries. Lamellar LLCs are simply prepared by nanosegregation of [C16Mim][BF4] and LiBF4/Propylene carbonate (PC) liquid solutions, which induce lamellar assembly of the liquids as dynamic conducting pathways. Broadened liquid conducting pathways will boost the conducting performance of the LLC electrolytes. The lyotropic lamellar nanostructures enable liquid-like ion conductivity of the LLC electrolytes at ambient temperatures, as well as provide solid-like stability for the electrolytes to resist high voltage and flammability overwhelming to LiBF4/PC liquid electrolytes. Despite minor consumption of PC solvents (34.5 wt.%), the lamellar electrolytes show energy conversion efficiency comparable to the liquid electrolytes (PC wt. 92.8%) in Li/LiFePO4 batteries under ambient temperatures even at a 2 C current density, and exhibit attractively robust stability after 200th cyclic charge/discharge even under 60 °C. The work demonstrates LLC electrolytes have great potential to supersede traditional liquid electrolytes for efficient and durable Lithium-ion (Li-ion) batteries.
Collapse
Affiliation(s)
- Hao Ruan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Kai Lu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Shengxi Meng
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Qiang Zhao
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Haisheng Ren
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| |
Collapse
|
27
|
Egorova KS, Kibardin AV, Posvyatenko AV, Ananikov VP. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem Rev 2024; 124:4679-4733. [PMID: 38621413 DOI: 10.1021/acs.chemrev.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
28
|
Ebert M, Lange A, Müller M, Wuckert E, Gießelmann F, Klamroth T, Zens A, Taubert A, Laschat S. Counterion effects on the mesomorphic and electrochemical properties of guanidinium salts. Phys Chem Chem Phys 2024; 26:11988-12002. [PMID: 38573315 DOI: 10.1039/d4cp00356j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Ionic liquid crystals (ILCs) combine the ion mobility of ionic liquids with the order and self-assembly of thermotropic mesophases. To understand the role of the anion in ILCs, wedge-shaped arylguanidinium salts with tetradecyloxy side chains were chosen as benchmark systems and their liquid crystalline self-assembly in the bulk phase as well as their electrochemical behavior in solution were studied depending on the anion. Differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (WAXS, SAXS) experiments revealed that for spherical anions, the phase width of the hexagonal columnar mesophase increased with the anion size, while for non-spherical anions, the trends were less clear cut. Depending on the anion, the ILCs showed different stability towards electrochemical oxidation and reduction with the most stable being the PF6 based compound. Cyclic voltammetry (CV) and density functional theory (DFT) calculations suggest a possible contribution of the guanidinium cation to the oxidation processes.
Collapse
Affiliation(s)
- Max Ebert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Alyna Lange
- Institut für Chemie, Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany.
| | - Michael Müller
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Eugen Wuckert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Frank Gießelmann
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Tillmann Klamroth
- Institut für Chemie, Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany.
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Andreas Taubert
- Institut für Chemie, Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany.
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| |
Collapse
|
29
|
Del Giudice N, Voegeli G, Strub JM, Heinrich B, Douce L. Ionic Liquid Crystals Based on Loop-Shaped Copper(I) Complexes. Inorg Chem 2024; 63:6103-6110. [PMID: 38497643 DOI: 10.1021/acs.inorgchem.4c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This paper describes the synthesis and characterization of liquid crystals based on loop-shaped cationic copper(I) complexes of a multidentate ligand. Their synthesis involves the one-pot reaction of an alkyloxy-decorated pyridine-aldehyde unit with a diamine (2,2'-(ethylenedioxy)bis(ethylamine)) spacer to form in situ a pyridine-imine quadridentate-N4-donor ligand, L, which is able to chelate a copper(I) center associated with various noncoordinating anions. All of these compounds were characterized by NMR, IR, and electronic absorption spectroscopy, and more particularly by X-ray diffraction and mass spectroscopy, enabling unambiguous assignment of the [ML]+ mononuclear nature of the cationic components. The presence of six flexible alkyloxy chains at each end of the ligand associated with the rigidity of the core complex causes induction of a liquid crystal state with a columnar self-organized architecture, where the columns are packed in a hexagonal two-dimensional network.
Collapse
Affiliation(s)
- Nicolas Del Giudice
- Département des Matériaux Organiques, Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504), Université de Strasbourg/CNRS, 23 Rue du Loess, F-67000 Strasbourg, France
| | - Guillaume Voegeli
- Département des Matériaux Organiques, Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504), Université de Strasbourg/CNRS, 23 Rue du Loess, F-67000 Strasbourg, France
| | - Jean-Marc Strub
- LSMBO, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, 67000 Strasbourg, France
| | - Benoît Heinrich
- Département des Matériaux Organiques, Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504), Université de Strasbourg/CNRS, 23 Rue du Loess, F-67000 Strasbourg, France
| | - Laurent Douce
- Département des Matériaux Organiques, Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504), Université de Strasbourg/CNRS, 23 Rue du Loess, F-67000 Strasbourg, France
| |
Collapse
|
30
|
Hu YL, Liu XB, Yang LL. Novel and highly efficient transformation of carbon dioxide into 2-oxazolidinones over Al-MCM-41 mesoporous-supported ionic liquids. ENVIRONMENTAL TECHNOLOGY 2024; 45:1855-1869. [PMID: 36476067 DOI: 10.1080/09593330.2022.2156816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A type of Al-MCM-41 supported dual imidazolium ionic liquids were constructed and efficiently used as catalysts for the synthesis of 2-oxazolidinones from epoxides, amines, and CO2. The influence of the different catalysts and reaction parameters on the catalytic behaviours was investigated. Al-MCM-41@ILTiCl5 was identified as the most excellent catalyst because it could efficiently promote the three-component cycloaddition of CO2, epoxide, and amines to form the corresponding 2-oxazolidinones in high to excellent yields (84∼96%) with excellent selectivities (98∼99.7%). In addition, the recovery and reuse performances of Al-MCM-41@ILTiCl5 were examined. The catalyst could be recovered by simple filtration and reused six times without a change in the catalytic activity. Green reaction conditions, operational simplicity, feasibility, and sustainability of the functionalized catalyst are the main highlights of the present protocol.
Collapse
Affiliation(s)
- Yu Lin Hu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, People's Republic of China
| | - Xiao Bing Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, People's Republic of China
| | - Li Li Yang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, People's Republic of China
| |
Collapse
|
31
|
Haketa Y, Komatsu K, Sei H, Imoba H, Ota W, Sato T, Murakami Y, Tanaka H, Yasuda N, Tohnai N, Maeda H. Enhanced solid-state phosphorescence of organoplatinum π-systems by ion-pairing assembly. Chem Sci 2024; 15:964-973. [PMID: 38239682 PMCID: PMC10793596 DOI: 10.1039/d3sc04564a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Anion binding and ion pairing of dipyrrolyldiketone PtII complexes as anion-responsive π-electronic molecules resulted in photophysical modulations, as observed in solid-state phosphorescence properties. Modifications to arylpyridine ligands in the PtII complexes significantly impacted the assembling behaviour and photophysical properties of anion-free and anion-binding (ion-pairing) forms. The PtII complexes, in the presence of guest anions and their countercations, formed various anion-binding modes and ion-pairing assembled structures depending on constituents and forms (solutions and crystals). The PtII complexes emitted strong phosphorescence in deoxygenated solutions but showed extremely weak phosphorescence in the solid state owing to self-association. In contrast, the solid-state ion-pairing assemblies with tetraalkylammonium cations exhibited enhanced phosphorescence owing to the formation of hydrogen-bonding 1D-chain PtII complexes dispersed by stacking with aliphatic cations. Theoretical studies revealed that the enhanced phosphorescence in the solid-state ion-pairing assembly was attributed to preventing the delocalisation of the electron wavefunction over PtII complexes.
Collapse
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Kaifu Komatsu
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Hiroi Sei
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| | - Hiroki Imoba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| | | | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University Kyoto 606-8103 Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Yu Murakami
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Nobuhiro Yasuda
- Beamline Division, Japan Synchrotron Radiation Research Institute Sayo 679-5198 Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| |
Collapse
|
32
|
Uniyal P, Das S, Panwar S, Kukreti N, Nainwal P, Bhatia R. A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences. Curr Drug Deliv 2024; 21:1197-1210. [PMID: 37815183 DOI: 10.2174/0115672018255191230921035859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023]
Abstract
Ionic liquids (ILs) are poorly-coordinated ionic salts that can exist as a liquid at room temperatures (or <100 °C). ILs are also referred to as "designer solvents" because so many of them have been created to solve particular synthetic issues. ILs are regarded as "green solvents" because they have several distinctive qualities, including better ionic conduction, recyclability, improved solvation ability, low volatility, and thermal stability. These have been at the forefront of the most innovative fields of science and technology during the past few years. ILs may be employed in new drug formulation development and drug design in the field of pharmacy for various functions such as improvement of solubility, targeted drug delivery, stabilizer, permeability enhancer, or improvement of bioavailability in the development of pharmaceutical or vaccine dosage formulations. Ionic liquids have become a key component in various areas such as synthetic and catalytic chemistry, extraction, analytics, biotechnology, etc., due to their superior abilities along with highly modifiable potential. This study concentrates on the usage of ILs in various pharmaceutical applications enlisting their numerous purposes from the delivery of drugs to pharmaceutical synthesis. To better comprehend cuttingedge technologies in IL-based drug delivery systems, highly focused mechanistic studies regarding the synthesis/preparation of ILs and their biocompatibility along with the ecotoxicological and biological effects need to be studied. The use of IL techniques can address key issues regarding pharmaceutical preparations such as lower solubility and bioavailability which plays a key role in the lack of effectiveness of significant commercially available drugs.
Collapse
Affiliation(s)
- Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Shibam Das
- Department of pharmaceutical technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Surbhi Panwar
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India
| |
Collapse
|
33
|
Roy R, York E, Pacchini E, Rawling T. Effects of cationic head group structure on cytotoxicity and mitochondrial actions of amphiphilic ionic liquids. Food Chem Toxicol 2024; 183:114202. [PMID: 38007213 DOI: 10.1016/j.fct.2023.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Ionic liquids (ILs) are a class of low melting point salts with physicochemical properties that make them suitable for a range of industrial applications. Accumulating evidence suggests that certain ILs are cytotoxic and potential environmental pollutants, thus understanding the structural features that promote IL cytotoxicity is important. Amphiphilic ionic liquids (AmILs), a class of ILs with lipophilic N-alkyl chains, containing aromatic head groups are generally more cytotoxic than their aliphatic counterparts, however the impact of other head group properties are less clear. This study therefore sought to provide new structure activity relationship (SAR) insights regarding the role of the cationic head group on AmIL cytotoxicity. A series of AmILs bearing a range of structurally diverse aromatic cations varying in size, charge, and lipophilicity was synthesised and screened against human MDA-MB-231 breast cancer cells. It was found that larger and more lipophilic head groups increased cytotoxicity, although the magnitude of the changes were modest. The mitochondrial effects of representative ILs were assessed. The AmILs induced mitochondrial dysfunction in MDA-MB-231 cells at cytotoxic concentrations, suggesting that they target mitochondria. The new SAR information from this study may assist in the design of AmILs with controlled cytotoxicity.
Collapse
Affiliation(s)
- Ritik Roy
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Edward York
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ethan Pacchini
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
34
|
Wu M, Wang H, Li Y, Chen R, Zhou H, Yang S, Xu D, Li K, An Z, Liu SF, Liu Z. Crystallization Regulation by Self-Assembling Liquid Crystal Template Enables Efficient and Stable Perovskite Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202313472. [PMID: 37941519 DOI: 10.1002/anie.202313472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
It is found that the disordered growth of bottom perovskite film deteriorates the buried interface of perovskite solar cells (PSCs), so developing a new material to modify the buried interface for regulating the crystal growth and defect passivation is an effective approach for improving the photovoltaic performance of PSCs. Here, we developed a new ionic liquid crystal (ILC, 1-Dodecyl-3-methylimidazolium tetrafluoroborate) as both crystal regulator and defect passivator to modify the buried interface of PSCs. The high lattice matching between this ILC and perovskite promotes preferential growth of perovskite film along [001] direction, while the oriented ILC with mesomorphic phase has a strong chemical interaction with perovskite to passivate the interface defect, as a result, the modified buried interface exhibits suppressed defects, improved band alignment, reduced nonradiative recombination losses, and enhanced charge extraction. The ILC-modified PSC delivers a power conversion efficiency of 24.92 % and maintains 94 % of the original value after storage in ambient for 3000 h.
Collapse
Affiliation(s)
- Meizi Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hongyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Ran Chen
- School of Materials Science and Engineering, Xi' an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Hui Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shaomin Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Dongfang Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Kun Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
35
|
Siddiquee A, Parray Z, Anand A, Tasneem S, Hasan N, Alamier WM, Ageeli AA, Wani FA, Singh P, Patel R. Binding Study of Antibacterial Drug Ciprofloxacin with Imidazolium-Based Ionic Liquids Having Different Halide Anions: A Spectroscopic and Density Functional Theory Analysis. ACS OMEGA 2023; 8:42699-42710. [PMID: 38024745 PMCID: PMC10653064 DOI: 10.1021/acsomega.3c05100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Herein, we have shown the interaction of an antibiotic drug ciprofloxacin (CIP) with three surface-active ionic liquids (ILs), having the same cation and different anions, namely, 1-decyl-3-methylimidazoliumtetrafluoroborate [C10mim][BF4], 1-decyl-3-methylimidazolium bromide [C10mim][Br], and 1-decyl-3-methylimidazolium chloride [C10mim][Cl]. This study has been performed by exploiting various spectroscopic techniques such as steady-state fluorescence, time-resolved fluorescence, and UV-visible spectroscopy. The fluorescence emission study of CIP with ILs was performed at various concentrations of all the three ILs. The emission spectra of CIP decreased in the presence of ILs, suggesting complex formation between CIP-IL. The effect of different concentrations of ILs on the emission spectra of CIP was exploited in terms of quenching and binding parameters. Further, fluorescence emission study was validated by the time-resolved fluorescence technique by measuring the average lifetime (τavg) of CIP in the presence of all the three ILs. The τavg value of the drug changed with the addition of ILs, which suggests complex formation between the drug and ILs. This complex formation was also confirmed by UV-visible spectroscopy results of CIP with all the three ILs. Further, for evaluating the thermodynamic parameters of the CIP-IL interactions, isothermal titration calorimetry (ITC) was performed. The ITC experiment yielded the thermodynamic parameters, ΔH (change in the enthalpy of association), ΔG (Gibbs free energy change), ΔS (entropy change), and binding constant (Ka). The binding parameters driven by ITC revealed that CIP-IL interactions are spontaneous in nature and enthalpy-driven, involving hydrophobic forces. Further, the classical density functional theory (DFT) calculations were performed, which provided deep insight for CIP-IL complex formation.
Collapse
Affiliation(s)
- Abrar Siddiquee
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zahoor Parray
- Department
of Chemistry, IIT Delhi, Hauz Khaus Campus, New Delhi 110016, India
| | - Aashima Anand
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shadma Tasneem
- Department
of Chemistry, Faculty of Science, Jazan
University, P.O. Box 2097, Jazan 45142, Saudi Arabia
| | - Nazim Hasan
- Department
of Chemistry, Faculty of Science, Jazan
University, P.O. Box 2097, Jazan 45142, Saudi Arabia
| | - Waleed M. Alamier
- Department
of Chemistry, Faculty of Science, Jazan
University, P.O. Box 2097, Jazan 45142, Saudi Arabia
| | - Abeer A. Ageeli
- Department
of Chemistry, Faculty of Science, Jazan
University, P.O. Box 2097, Jazan 45142, Saudi Arabia
| | - Farooq Ahmad Wani
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prashant Singh
- Department
of Chemistry, ARSD College, Delhi University, New Delhi 110021, India
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
36
|
Moustafa AHE, Abdel-Rahman HH, Hagar M, Aouad MR, Rezki N, Bishr SAA. Anticorrosive performance of newly synthesized dipyridine based ionic liquids by experimental and theoretical approaches. Sci Rep 2023; 13:19197. [PMID: 37932361 PMCID: PMC10628253 DOI: 10.1038/s41598-023-45822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Two newly synthetic nontoxic dipyridine-based ionic liquids (PILs) with the same chain lengths and different polar groups were investigated: bispyridine-1-ium tetrafluoroborate (BPHP, TFPHP) with terminal polar groups Br and CF3, respectively, on Carbon steel (CS) in 8M H3PO4 as corrosion inhibitors. Their chemical structure was verified by performing 1HNMR and 13CNMR. Their corrosion inhibition was investigated by electrochemical tests, especially as mass transfer with several characterizations: Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM-EDX), UV-visible, Atomic force microscope, Atomic absorbance spectroscopy, X-ray Photoelectron Spectroscopy and Gloss value. Theoretical calculation using density functional theory by calculating several parameters, molecular electrostatic potential, Fukui Indices, and Local Dual Descriptors were performed to demonstrate the reactivity behavior and the reactive sites of two molecules with a concentration range (1.25-37.5 × 10-5 M) and temperature (293-318 K). The maximum inhibition efficiency (76.19%) and uniform coverage were sufficient for BPHP at an optimum concentration of 37.5 × 10-5 M with the lowest temperature of 293 K. TFPHP recorded 71.43% at the same conditions. Two PILs were adsorbed following the El-Awady adsorption isotherm, including physicochemical adsorption. The computational findings agree with Electrochemical measurements and thus confirm CS's corrosion protection in an aggressive environment.
Collapse
Affiliation(s)
- Amira Hossam Eldin Moustafa
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria, 21321, Egypt.
| | - Hanaa H Abdel-Rahman
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria, 21321, Egypt
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria, 21321, Egypt
- Faculty of Advanced Basic Sciences, Alamein International University, Alamein, Matrouh Governorate, Egypt
| | - Mohamed R Aouad
- Chemistry Department, College of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Nadjet Rezki
- Chemistry Department, College of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Sherif A A Bishr
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria, 21321, Egypt
| |
Collapse
|
37
|
Zhang W, Komatsu H, Maruyama S, Kaminaga K, Matsumoto Y. Ionic Liquid Crystal Thin Film as Switching Layer in Nonvolatile Resistive Memory. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37910855 DOI: 10.1021/acsami.3c13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In this study, we propose the use of an ionic liquid crystal (ILC) as a new resistive switching layer in nonvolatile resistive random-access memory (ReRAM) devices. The high-quality vacuum-deposited ILC films of 1-hexadecyl-3-methylimidazolium hexafluorophosphate ([C16mim][PF6]) enabled to demonstrate the first operation of ReRAM devices with a low set voltage of ∼1 V and stable switching behavior for up to ∼44 cycles. The key to the successful operation is that the ILC layer is in the liquid crystal phase (smectic A), where the electric double layers formed at the electrode-ILC interfaces play a significant role. The results of basic electrical properties and I-V curve fittings suggested the following operation principle: the formation and rupture of charge-composed filaments within the ILC film, where the current conduction is primarily governed by the trap charge limited current (TCLC) mechanism. These achievements will pave the way for advanced studies of ILC-based electronic devices.
Collapse
Affiliation(s)
- Wenzhong Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Haruka Komatsu
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Kenichi Kaminaga
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yuji Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
38
|
Gustavsson L, Lv ZP, Cherian T, Seppälä W, Liljeström V, Peng B, Huotari S, Rannou P, Ikkala O. Heating-Induced Switching to Hierarchical Liquid Crystallinity Combining Colloidal and Molecular Order in Zwitterionic Molecules. ACS OMEGA 2023; 8:39345-39353. [PMID: 37901556 PMCID: PMC10601052 DOI: 10.1021/acsomega.3c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Hierarchical self-assemblies of soft matter involving triggerable or switchable structures at different length scales have been pursued toward multifunctional behaviors and complexity inspired by biological matter. They require several and balanced competing attractive and repulsive interactions, which provide a grand challenge in particular in the "bulk" state, i.e., in the absence of plasticizing solvents. Here, we disclose that zwitterionic bis-n-tetradecylphosphobetaine, as a model compound, shows a complex thermally switchable hierarchical self-assembly in the solvent-free state. It shows polymorphism and heating-induced reversible switching from low-temperature molecular-level assemblies to high-temperature hierarchical self-assemblies, unexpectedly combining colloidal and molecular self-assemblies, as inferred by synchrotron small-angle X-ray scattering (SAXS). The high-temperature phase sustains birefringent flow, indicating a new type of hierarchical thermotropic liquid crystallinity. The high-temperature colloidal-level SAXS reflections suggest indexation as a 2D oblique pattern and their well-defined layer separation in the perpendicular direction. We suggest that the colloidal self-assembled motifs are 2D nanoplatelets formed by the lateral packing of the molecules, where the molecular packing frustration between the tightly packed zwitterionic moieties and the coiled alkyl chains demanding more space limits the lateral platelet growth controlled by the alkyl stretching entropy. An indirect proof is provided by the addition of plasticizing ionic liquids, which relieve the ionic dense packings of zwitterions, thus allowing purely smectic liquid crystallinity without the colloidal level order. Thus, molecules with a simple chemical structure can lead to structural hierarchy and tunable complexity in the solvent-free state by balancing the competing long-range electrostatics and short-range nanosegregations.
Collapse
Affiliation(s)
- Lotta Gustavsson
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Zhong-Peng Lv
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Tomy Cherian
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Wille Seppälä
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Ville Liljeström
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Bo Peng
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Simo Huotari
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Patrice Rannou
- Université
Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, Grenoble
INP, LEPMI, 38000 Grenoble, France
| | - Olli Ikkala
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| |
Collapse
|
39
|
Fu J, Liu JY, Zhang GH, Zhu QH, Wang SL, Qin S, He L, Tao GH. Boost of Gas Adsorption Kinetics of Covalent Organic Frameworks via Ionic Liquid Solution Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302570. [PMID: 37229752 DOI: 10.1002/smll.202302570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Adsorption, storage, and conversion of gases (e.g., carbon dioxide, hydrogen, and iodine) are the three critical topics in the field of clean energy and environmental mediation. Exploring new methods to prepare high-performance materials to improve gas adsorption is one of the most concerning topics in recent years. In this work, an ionic liquid solution process (ILSP), which can greatly improve the adsorption kinetic performance of covalent organic framework (COF) materials for gaseous iodine, is explored. Anionic COF TpPaSO3 H is modified by amino-triazolium cation through the ILSP method, which successfully makes the iodine adsorption kinetic performance (K80% rate) of ionic liquid (IL) modified COF AC4 tirmTpPaSO3 quintuple compared with the original COF. A series of experimental characterization and theoretical calculation results show that the improvement of adsorption kinetics is benefited from the increased weak interaction between the COF and iodine, due to the local charge separation of the COF skeleton caused by the substitution of protons by the bulky cations of ILs. This ILSP strategy has competitive help for COF materials in the field of gas adsorption, separation, or conversion, and is expected to expand and improve the application of COF materials in energy and environmental science.
Collapse
Affiliation(s)
- Jie Fu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jia-Ying Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shuang-Long Wang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Song Qin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
40
|
Martos M, Pastor IM. Nickel-Imidazolium Low Transition Temperature Mixtures with Lewis-Acidic Character. Molecules 2023; 28:6338. [PMID: 37687182 PMCID: PMC10490159 DOI: 10.3390/molecules28176338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Low transition temperature mixtures (LTTMs) are a new generation of solvents that have found extensive application in organic synthesis. The interactions between the components often generate highly activated, catalytically active species, thus opening the possibility of using LTTMs as catalysts, rather than solvents. In this work, we introduce a nickel-based imidazolium LTTM, study its thermal behavior and explore its catalytic activity in the solvent-free allylation of heterocycles with allylic alcohols. This system is effective in this reaction, affording the corresponding products in excellent yield without the need for additional purifications, thus resulting in a very environmentally friendly protocol.
Collapse
Affiliation(s)
| | - Isidro M. Pastor
- Institute of Organic Synthesis, University of Alicante, ctra. San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690 Alicante, Spain;
| |
Collapse
|
41
|
Sengupta R, Hashimoto H, Haketa Y, Sakai H, Hasobe T, Maeda H. Bidipyrrin Au III Complex as a Helical Charged π-Electronic System. Org Lett 2023; 25:6040-6045. [PMID: 37552586 DOI: 10.1021/acs.orglett.3c02214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A series of ion pairs based on a bidipyrrin-AuIII complex that acts as a stable helical π-electronic cation have been prepared via ion-pair metathesis. The helical cation, which exhibits NIR absorption and phosphorescence emission, formed solid-state ion-pairing assemblies, whose assembling modes depended on the properties of coexisting counteranions.
Collapse
Affiliation(s)
- Rima Sengupta
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Haruka Hashimoto
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
42
|
Yao J, Saielli G, Meng F, Wang Y. Phase coexistence in [C 22/C 1MIm] +[NO 3] - ionic-liquid mixtures and first-order phase transitions from homogeneous liquid to smectic B by varying the cation ratio. Phys Chem Chem Phys 2023; 25:21595-21603. [PMID: 37551110 DOI: 10.1039/d3cp01670f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We perform molecular dynamics simulations to investigate the transition processes of [C22/C1MIm]+[NO3]- binary mixtures by varying the cation ratio of C22 to C1 at a fixed temperature of 400 K. The cation ratio is tuned by ranging C22 percentage from 0% to 100% with a fixed number of 4096 total simulated ion pairs. Our simulated-annealing results indicate that, at 400 K, pure C1 is a homogeneous liquid whilst pure C22 is an ionic liquid crystal (ILC) of smectic-B (SmB) type. With increasing C22 percentage, the system goes through a first-order phase transition from homogeneous liquid to nano-fragment liquid in the range from 15% to 17.5%, during which some of the individual cationic alkyl side chains locally aggregate to form small bundles "floating" in the polar "solvent" composed of anions and cationic head groups. Although the side chains in each bundle are parallelly aligned, the bundles distribute randomly without a global orientation. As the C22 percentage further increases, another first-order phase transition occurs to bring the system into the SmB ILC phase. Particularly, when the C22 percentage is in the range from 45% to 50%, the SmB phase coexists with the liquid phase containing both individual and bundled alkyl side chains.
Collapse
Affiliation(s)
- Jie Yao
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P. O. Box 2735, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Giacomo Saielli
- CNR Institute on Membrane Technology, Unit of Padova, Via Marzolo, 1 - 35131, Padova, Italy
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1 - 35131, Padova, Italy
| | - Fanlong Meng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P. O. Box 2735, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, 325001, China
| | - Yanting Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P. O. Box 2735, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, 325001, China
| |
Collapse
|
43
|
Stolberg MA, Paren BA, Leon PA, Brown CM, Winter G, Gordiz K, Concellón A, Gómez-Bombarelli R, Shao-Horn Y, Johnson JA. Lamellar Ionenes with Highly Dissociative, Anionic Channels Provide Lower Barriers for Cation Transport. J Am Chem Soc 2023; 145:16200-16209. [PMID: 37459594 DOI: 10.1021/jacs.3c05053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Solid polymer electrolytes have the potential to enable safer and more energy-dense batteries; however, a deeper understanding of their ion conduction mechanisms, and how they can be optimized by molecular design, is needed to realize this goal. Here, we investigate the impact of anion dissociation energy on ion conduction in solid polymer electrolytes via a novel class of ionenes prepared using acyclic diene metathesis (ADMET) polymerization of highly dissociative, liquid crystalline fluorinated aryl sulfonimide-tagged ("FAST") anion monomers. These ionenes with various cations (Li+, Na+, K+, and Cs+) form well-ordered lamellae that are thermally stable up to 180 °C and feature domain spacings that correlate with cation size, providing channels lined with dissociative FAST anions. Electrochemical impedance spectroscopy (EIS) and differential scanning calorimetry (DSC) experiments, along with nudged elastic band (NEB) calculations, suggest that cation motion in these materials operates via an ion-hopping mechanism. The activation energy for Li+ conduction is 59 kJ/mol, which is among the lowest for systems that are proposed to operate via an ion conduction mechanism that is decoupled from polymer segmental motion. Moreover, the addition of a cation-coordinating solvent to these materials led to a >1000-fold increase in ionic conductivity without detectable disruption of the lamellar structure, suggesting selective solvation of the lamellar ion channels. This work demonstrates that molecular design can facilitate controlled formation of dissociative anionic channels that translate to significant enhancements in ion conduction in solid polymer electrolytes.
Collapse
Affiliation(s)
- Michael A Stolberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Benjamin A Paren
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pablo A Leon
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gavin Winter
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kiarash Gordiz
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yang Shao-Horn
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Grunwald MA, Hagenlocher SE, Turkanovic L, Bauch SM, Wachsmann SB, Altevogt LA, Ebert M, Knöller JA, Raab AR, Schulz F, Kolmangadi MA, Zens A, Huber P, Schönhals A, Bilitiewski U, Laschat S. Does thermotropic liquid crystalline self-assembly control biological activity in amphiphilic amino acids? - tyrosine ILCs as a case study. Phys Chem Chem Phys 2023. [PMID: 37366119 DOI: 10.1039/d3cp00485f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0-3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmAd) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Colh), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against Escherichia coli ΔTolC and Staphylococcus aureus) and promising selectivity ratio in favour of antimicrobial activity.
Collapse
Affiliation(s)
- Marco André Grunwald
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Selina Emilie Hagenlocher
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Larissa Turkanovic
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Soeren Magnus Bauch
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | | - Luca Alexa Altevogt
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Max Ebert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Julius Agamemnon Knöller
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Aileen Rebecca Raab
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Finn Schulz
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Patrick Huber
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, D-21073 Hamburg, Germany
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, D-22605 Hamburg, Germany
- Centre for Hybrid Nanostructures ChyN, University Hamburg, D-21073 Hamburg, Germany.
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und-prüfung (BAM), D-12205 Berlin, Germany.
| | - Ursula Bilitiewski
- AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung, Inhoffenstr. 7, D-38124 Braunschweig, Germany.
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| |
Collapse
|
45
|
Yokoyama M, Okayasu Y, Kobayashi Y, Tanaka H, Haketa Y, Maeda H. Ion-Pairing Assemblies of Dithienylnitrophenol-Based π-Electronic Anions Stabilized by Intramolecular Interactions. Org Lett 2023; 25:3676-3681. [PMID: 37172277 DOI: 10.1021/acs.orglett.3c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dithienylnitrophenols were synthesized as precursors of π-electronic anions, which were stabilized by intramolecular chalcogen bonding, forming various ion pairs in combination with cations. The modes of solid-state charge-by-charge assemblies, along with solution-state stacking and photoinduced electron transfer behaviors, were modulated by the constituent ionic species.
Collapse
Affiliation(s)
- Miyu Yokoyama
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
46
|
Mazzilli V, Satoh K, Saielli G. Phase behaviour of mixtures of charged soft disks and spheres. SOFT MATTER 2023; 19:3311-3324. [PMID: 37093590 DOI: 10.1039/d3sm00223c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have investigated the phase behaviour of mixtures of soft disks (Gay-Berne oblate ellipsoids, GB) and soft spheres (Lennard-Jones, LJ) with opposite charge as a model of ionic liquid crystals and colloidal suspensions. We have used constant volume Molecular Dynamics simulations and fixed the stoichiometry of the mixture in order to have electroneutrality; three systems have been selected GB : LJ = 1 : 2, GB : LJ = 1 : 1 and GB : LJ = 2 : 1. For each system we have selected three values of the scaled point charge q* of the GB particles, namely 0.5, 1.0 and 2.0 (and a corresponding negative scaled charge of the LJ particles that depends on the stoichiometric ratio). We have found a very rich mesomorphism with the formation, as a function of the scaled temperature, of the isotropic phase, the discotic nematic phase, the hexagonal columnar phase and crystal phases. While the structure of the high temperature phases was similar in all systems, the hexagonal columnar phases exhibited a highly variable morphology depending on the scaled charge and stoichiometry. On the one hand, GB : LJ = 1 : 2 systems form lamellar structures, akin to smectic phases, with an alternation of layers of disks (exhibiting an hexagonal columnar phase) and layers of LJ particles (in the isotropic phase). On the other hand, for the 2 : 1 stoichiometry we observe the formation of a frustrated hexagonal columnar phase with an alternating tilt direction of the molecular axis. We rationalize these findings based on the structure of the neutral ion pair dominating the behaviour at low temperature and high charge.
Collapse
Affiliation(s)
- Valerio Mazzilli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR-ITM, Institute on Membrane Technology, Padova Unit, Via Marzolo, 1, 35131 Padova, Italy
| | - Katsuhiko Satoh
- Department of Chemistry, Osaka Sangyo University, Daito, Osaka, 574-8530, Japan.
| | - Giacomo Saielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR-ITM, Institute on Membrane Technology, Padova Unit, Via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
47
|
Hutskalov I, Linden A, Čorić I. Directional Ionic Bonds. J Am Chem Soc 2023; 145:8291-8298. [PMID: 37027000 PMCID: PMC10119990 DOI: 10.1021/jacs.3c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Covalent and ionic bonds represent two fundamental forms of bonding between atoms. In contrast to bonds with significant covalent character, ionic bonds are of limited use for the spatial structuring of matter because of the lack of directionality of the electric field around simple ions. We describe a predictable directional orientation of ionic bonds that contain concave nonpolar shields around the charged sites. Such directional ionic bonds offer an alternative to hydrogen bonds and other directional noncovalent interactions for the structuring of organic molecules and materials.
Collapse
Affiliation(s)
- Illia Hutskalov
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
48
|
Liu J, Schaefer JL. Li + Conduction in Glass-Forming Single-Ion Conducting Polymer Electrolytes with and without Ion Clusters. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Jiacheng Liu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer L. Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
49
|
Algieri V, Algieri C, Costanzo P, Fiorani G, Jiritano A, Olivito F, Tallarida MA, Trombetti F, Maiuolo L, De Nino A, Nesci S. Novel Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles and Biochemical Valuation on F 1F O-ATPase and Mitochondrial Permeability Transition Pore Formation. Pharmaceutics 2023; 15:498. [PMID: 36839821 PMCID: PMC9967880 DOI: 10.3390/pharmaceutics15020498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
An efficient, eco-compatible, and very cheap method for the construction of fully substituted pyrazoles (Pzs) via eliminative nitrilimine-alkene 1,3-dipolar cycloaddition (ENAC) reaction was developed in excellent yield and high regioselectivity. Enaminones and nitrilimines generated in situ were selected as dipolarophiles and dipoles, respectively. A deep screening of the employed base, solvent, and temperature was carried out to optimize reaction conditions. Recycling tests of ionic liquid were performed, furnishing efficient performance until six cycles. Finally, a plausible mechanism of cycloaddition was proposed. Then, the effect of three different structures of Pzs was evaluated on the F1FO-ATPase activity and mitochondrial permeability transition pore (mPTP) opening. The Pz derivatives' titration curves of 6a, 6h, and 6o on the F1FO-ATPase showed a reduced activity of 86%, 35%, and 31%, respectively. Enzyme inhibition analysis depicted an uncompetitive mechanism with the typical formation of the tertiary complex enzyme-substrate-inhibitor (ESI). The dissociation constant of the ESI complex (Ki') in the presence of the 6a had a lower order of magnitude than other Pzs. The pyrazole core might set the specific mechanism of inhibition with the F1FO-ATPase, whereas specific functional groups of Pzs might modulate the binding affinity. The mPTP opening decreased in Pz-treated mitochondria and the Pzs' inhibitory effect on the mPTP was concentration-dependent with 6a and 6o. Indeed, the mPTP was more efficiently blocked with 0.1 mM 6a than with 1 mM 6a. On the contrary, 1 mM 6o had stronger desensitization of mPTP formation than 0.1 mM 6o. The F1FO-ATPase is a target of Pzs blocking mPTP formation.
Collapse
Affiliation(s)
- Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Mitochondrial Biochemistry Lab, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Giulia Fiorani
- Department Molecular Sciences and Nanosystems, University Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, VE, Italy
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Matteo Antonio Tallarida
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Mitochondrial Biochemistry Lab, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, CS, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Mitochondrial Biochemistry Lab, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| |
Collapse
|
50
|
Guschlbauer J, Niedzicki L, Jacob L, Rzeszotarska E, Pociecha D, Kaszyński P. Liquid Crystalline Electrolytes Derived from the 1,12-Disubstituted [closo-CB11H12]– Anion. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|