1
|
Ji C, Miao J, Zhao N, Dai Y, Yang J, Qu J, Zhu J, Zhao M. N-nitrosamines induced gender-dimorphic effects on infant rats at environmental levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169196. [PMID: 38097075 DOI: 10.1016/j.scitotenv.2023.169196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The safety of drinking water has always been a concern for people all over the world. N-nitrosamines (NAs), a kind of nitrogenous disinfection by-products (N-DBPs), are generally detected as a mixture in drinking water at home and abroad. Studies have shown that individual NAs posed strong carcinogenicity at high concentrations. However, health risks of NAs at environmental levels (concentrations in drinking water) are still unclear. Therefore, the potential health risks of environmentally relevant NAs exposure in drinking water needs to be conducted. In this study, blood biochemical analysis and metabolomics based on nuclear magnetic resonance (NMR) were performed to comprehensively investigate NAs induced metabolic disturbance in infant rats at environmental levels. Results of blood biochemical indices analysis indicated that AST in the serum of male rats in NAs-treated group exhibited a significant gender-specific difference. Multivariate statistics showed that two and eight significantly disturbed metabolic pathways were identified in the serum samples of NAs-treated male and female rats, respectively. In the urine samples of NAs-treated female rats, glycine, serine, and threonine metabolism pathway was significantly disturbed; while three significantly disturbed metabolic pathways were found in the urine of NAs-treated male rats. Finally, results of spearman correlation coefficients suggested that the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota (data derived from our published paper). Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management. ENVIRONMENTAL IMPLICATION: N-nitrosamines (NAs) are a kind of nitrogenous disinfection by-products (N-DBPs) generated during drinking water disinfection processes. Herein, health risks of NAs at environmental levels (concentrations in drinking water) are investigated using blood biochemical analysis and nuclear magnetic resonance (NMR)-based metabolomics. Results confirmed NAs induced gender-specific on the metabolism in rat and the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota. Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management.
Collapse
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiahui Miao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiawen Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Life Science, Taizhou University, Taizhou 318000, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Singh U, Alsuhaymi S, Al-Nemi R, Emwas AH, Jaremko M. Compound-Specific 1D 1H NMR Pulse Sequence Selection for Metabolomics Analyses. ACS OMEGA 2023; 8:23651-23663. [PMID: 37426221 PMCID: PMC10324067 DOI: 10.1021/acsomega.3c01688] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/13/2023] [Indexed: 07/11/2023]
Abstract
NMR-based metabolomics approaches have been used in a wide range of applications, for example, with medical, plant, and marine samples. One-dimensional (1D) 1H NMR is routinely used to find out biomarkers in biofluids such as urine, blood plasma, and serum. To mimic biological conditions, most NMR studies have been carried out in an aqueous solution where the high intensity of the water peak is a major problem in obtaining a meaningful spectrum. Different methods have been used to suppress the water signal, including 1D Carr-Purcell-Meiboom-Gill (CPMG) presat, consisting of a T2 filter to suppress macromolecule signals and reduce the humped curve in the spectrum. 1D nuclear Overhauser enhancement spectroscopy (NOESY) is another method for water suppression that is used routinely in plant samples with fewer macromolecules than in biofluid samples. Other common 1D 1H NMR methods such as 1D 1H presat and 1D 1H ES have simple pulse sequences; their acquisition parameters can be set easily. The proton with presat has just one pulse and the presat block causes water suppression, while other 1D 1H NMR methods including those mentioned above have more pulses. However, it is not well known in metabolomics studies because it is used only occasionally and in a few types of samples by metabolomics experts. Another effective method is excitation sculpting to suppress water. Herein, we evaluate the effect of method selection on signal intensities of commonly detected metabolites. Different classes of samples including biofluid, plant, and marine samples were investigated, and recommendations on the advantages and limitations of each method are presented.
Collapse
Affiliation(s)
- Upendra Singh
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi
Arabia
| | - Shuruq Alsuhaymi
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi
Arabia
| | - Ruba Al-Nemi
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi
Arabia
| | - Abdul-Hamid Emwas
- Core
Lab of NMR, King Abdullah University of
Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi
Arabia
| |
Collapse
|
3
|
Zhou X, Liang R, Shi Y, Xu Q, Qian L. Metabolic variation and oxidative stress response of blue mussels (Mytilus sp.) perturbed by norfloxacin exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27599-6. [PMID: 37247149 DOI: 10.1007/s11356-023-27599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
Antibiotics are currently widely applied in agricultural cultivation, animal husbandry, and medical treatment, but the effects and ecological risks of antibiotics need to be further investigated. Norfloxacin is one of the most widely applied fluoroquinolone antibiotics and is commonly detected in aquatic ecosystems. In this study, the activities of catalase (CAT) and glutathione S-transferase (GST) in blue mussels (Mytilus sp.) exposed to norfloxacin (from 25 to 200 mg/L) for 2 d of acute exposure and 7 d of subacute exposure were measured. 1H nuclear magnetic resonance (1H-NMR)-based metabolomics was applied to identify the metabolites and to investigate the physiological metabolism of blue mussels (Mytilus sp.) under different concentrations of norfloxacin. The activity of the CAT enzyme was induced in acute exposure, while the activity of GST was inhibited in subacute exposure when the concentration of norfloxacin reached 200 mg/L. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed that the increased concentrations of norfloxacin might cause greater metabolic differences between the treatment and control groups and cause greater metabolic variation within the same treatment group. The contents of taurine in the 150 mg/L acute exposure group were 5.17 times higher than those in the control group. The pathway analysis indicated that exposure to high concentrations of norfloxacin disturbed different pathways involved in energy metabolism, amino acid metabolism, neuroregulation, and the regulation of osmotic pressure. These results may provide a molecular and metabolic view of the effects of norfloxacin and the regulatory mechanism of blue mussels when exposed to extremely high doses of antibiotics.
Collapse
Affiliation(s)
- Xuan Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoyu Liang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiuyun Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Qian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Jang SY, Jung Y, Lee DH, Hwang GS. NMR-based metabolomic analysis of human plasma to examine the effect of exposure to persistent organic pollutants. CHEMOSPHERE 2022; 307:135963. [PMID: 36007736 DOI: 10.1016/j.chemosphere.2022.135963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic environmental toxins, and the level of chemicals accumulated in the body through the food chain has been linked to the incidence of diseases such as type 2 diabetes, cardiovascular disease, and cancer. We analyzed the concentration of POPs and circulating metabolites and investigated the associations between the concentration of plasma metabolites and the levels of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) to determine the effect of the accumulation of POPs in human samples. Metabolic profiling of plasma from 276 Korean participants was performed using 1H nuclear magnetic resonance (NMR) and statistical analyses. The concentrations of PCBs and OCPs in each sample were measured. Correlation analysis and a covariate-adjusted general linear model (GLM) were used to investigate the association of the concentration of POPs with circulating metabolites in human blood samples. We found that four categories of Σ6PCBs and Σ5OCPs based on rank were significantly correlated with 4 and 5 metabolites, respectively, after adjusting for confounding factors, including age, sex, body mass index (BMI), smoking status, alcohol intake, physical activity, triglycerides, and total cholesterol. According to the GLM analyses, 3 metabolites, namely, creatinine, acetate, and formate, among the 4 correlated metabolites were associated with four categories of rank-based Σ6PCBs. On the other hand, the quartiles of the rank-based Σ5OCPs were not associated with any circulating metabolites among the 5 correlated metabolites. Our findings indicate that the metabolites related to short-chain fatty acids and creatine can be useful risk indicators for estimating the effect of PCB exposure.
Collapse
Affiliation(s)
- Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
5
|
Craven CB, Tang Y, Carroll K, An L, Chen B, Li XF. Closing the Gap of Known and Unknown Halogenated Nitrogenous Disinfection Byproducts in Water: Advanced Mass Spectrometry Techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Ford T, Cherr G, Gu JD. Shu-Pei Cheng: A life-long pursuit for Environmental Science and Pollution Control. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1284-1286. [PMID: 34145497 DOI: 10.1007/s10646-021-02438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Tim Ford
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Gary Cherr
- Bodega Marine Laboratory, Coastal & Marine Sciences Institute, Departments of Environmental Toxicology and Nutrition, University of California, 2099 Westshore Road, Bodega Bay, P.O. Box 247, Davis, CA, 94923, USA.
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, The People's Republic of China.
| |
Collapse
|
7
|
Zhou Q, Jiang L, Qiu J, Pan Y, Swanda RV, Shi P, Li AM, Zhang X. Oral Exposure to 1,4-Dioxane Induces Hepatic Inflammation in Mice: The Potential Promoting Effect of the Gut Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10149-10158. [PMID: 32674564 DOI: 10.1021/acs.est.0c01543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1,4-Dioxane is a widely used industrial solvent that has been frequently detected in aquatic environments. However, the hepatotoxicity of long-term dioxane exposure at environmentally relevant concentrations and underlying mechanisms of liver damage remain unclear. In this study, male mice were exposed to dioxane at concentrations of 0.5, 5, 50, and 500 ppm for 12 weeks, followed by histopathological examination of liver sections and multiomics investigation of the hepatic transcriptome, serum metabolome, and gut microbiome. Results showed that dioxane exposure at environmentally relevant concentrations induced hepatic inflammation and caused changes in the hepatic transcriptome and serum metabolic profiles. However, no inflammatory response was observed after in vitro exposure to all concentrations of dioxane and its in vivo metabolites. The gut microbiome was considered to be contributing to this apparently contradictory response. Increased levels of lipopolysaccharide (LPS) may be produced by some gut microbiota, such as Porphyromonadaceae and Helicobacteraceae, after in vivo 500 ppm of dioxane exposure. LPS may enter the blood circulation through an impaired intestinal wall and aggravate hepatic inflammation in mice. This study provides novel insight into the underlying mechanisms of hepatic inflammation induced by dioxane and highlights the need for concerns about environmentally relevant concentrations of dioxane exposure.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Liujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, People's Republic of China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, 244 Garden Avenue, Ithaca, New York 14853, United States
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
8
|
He X, Qi Z, Hou H, Gao J, Zhang XX. Effects of chronic cadmium exposure at food limitation-relevant levels on energy metabolism in mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121791. [PMID: 31818666 DOI: 10.1016/j.jhazmat.2019.121791] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) exposure has been implicated in the perturbation of energy metabolism and the development of cardiometabolic disease, but disease predisposition from chronic low-dose Cd exposure remains unclear. This study employed a mouse model to investigate the toxic effects of chronic Cd exposure at food limitation-relevant levels on energy metabolism and the associated liver and gut microbiome functions. Results showed that the Cd exposure induced the perturbation of energy metabolism in mice, evidenced by the alteration of various metabolites associated with the phosphorogen (adenosine triphosphate-creatine phosphate) system, tricarboxylic acid cycle, and lipid metabolism, as well as the increase of the cardiometabolic risk factor, triglyceride. Moreover, both liver and gut microbiome underwent marked structural/histological and functional alterations, prone to the onset of cardiometabolic disease following the Cd exposure. Certain hepatic transcription factors and gut microbes, specifically PPARα, SREBP1c, HNF4A and the Clostridiales_vadinBB60_group, were identified to be highly correlated with altered urinary metabolites, revealing potential toxicological interactions between the liver and gut microbiome, and energy metabolism. Our findings provide new insights into the progression of metabolic diseases induced by Cd exposure. We also propose a stricter Cd limitation in future food safety standards.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaodong Qi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Hou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jie Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Liang R, Shao X, Shi Y, Jiang L, Han G. Antioxidant defenses and metabolic responses of blue mussels (Mytilus edulis) exposed to various concentrations of erythromycin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134221. [PMID: 31783436 DOI: 10.1016/j.scitotenv.2019.134221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Erythromycin, one of the most widely used macrolide antibiotics, has been detected in various aquatic environments, so erythromycin ecotoxicity should deserve more attention. In this study, blue mussels (Mytilus edulis) were exposed to erythromycin to explore its potential physiological toxicity. After 2d acute and 7d sub-acute exposure to erythromycin, blue mussel glutathione S-transferase (GST) and catalase (CAT) activities were determined with microplate methods and metabolic responses were analyzed using 1H nuclear magnetic resonance (1H NMR). The results revealed that GST was approximately 1.6 times higher in exposed mussels at 200 mg/L and higher concentrations. CAT was about 1.9 times higher in exposed mussels at 200 mg/L, indicating that erythromycin exposure led that blue mussels enhanced antioxidant responses. Low doses of erythromycin exposure had a relatively small impact on the metabolism, while high doses of erythromycin exposure (200 and 400 mg/L) disturbed metabolic balance. With the increase of erythromycin concentrations, the individual metabolic differences within the same treatment groups also increased. The significant increase in alanine, glutamate, taurine, glycine and betaine were observed after acute and subacute exposure. Betaine played an important role in protecting antioxidant enzyme activities through adjusting osmotic pressure. The metabolomic results also showed the modes of erythromycin acted on the energy metabolism, osmoregulation, nerve activities and amino acid metabolism. This study highlighted how metabolomics can provide a comprehensive picture of metabolic responses, although significant antioxidant and metabolic responses were observed at high exposure concentrations.
Collapse
Affiliation(s)
- Ruoyu Liang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiuqing Shao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Longxin Jiang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Guoxiang Han
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhang P, Wang S, He Y, Xu Y, Shi D, Yang F, Yu W, Zhu W, He L. Identifying Metabolic Perturbations and Toxic Effects of Rac-Metalaxyl and Metalaxyl-M in Mice Using Integrative NMR and UPLC-MS/MS Based Metabolomics. Int J Mol Sci 2019; 20:ijms20215457. [PMID: 31683916 PMCID: PMC6862379 DOI: 10.3390/ijms20215457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Although metabolic perturbations are sensitive indicators for low-dose toxic effects, the metabolic mechanisms affected by rac-metalaxyl and metalaxyl-M in mammals from a metabolic profiling perspective remain unclear. In this study, the metabolic perturbations and toxic effects of rac-metalaxyl and metalaxyl-M in mice were carefully investigated using integrative nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based metabolomics. Histopathology, NMR-based untargeted urine profile, multivariate pattern recognition, metabolite identification, pathway analysis, UPLC-MS/MS based targeted serum amino acids, and tryptophan pathway analysis were determined after rac-metalaxyl and metalaxyl-M exposure, individually. Histopathology indicated that metalaxyl-M induced greater hepatocellular inflammatory, necrosis, and vacuolation in mice than rac-metalaxyl at the same exposure dosage. The metabolic perturbations induced by rac-metalaxyl and metalaxyl-M were directly separated using partial least-squares discriminant analysis (PLS-DA). Furthermore, metabolite identification and pathway analysis indicated that rac-metalaxyl mainly induced ten urine metabolite changes and four pathway fluctuations. However, metalaxyl-M induced 19 urine metabolite changes and six pathway fluctuations. Serum amino acids and tryptophan pathway metabolite changes induced by rac-metalaxyl and metalaxyl-M were also different even at the same exposure level. Such results may provide specific insight into the metabolic perturbations and toxic effects of rac-metalaxyl and metalaxyl-M, and contribute to providing available data for health risk assessments of rac-metalaxyl and metalaxyl-M at a metabolomics level.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China.
| | - Sheng Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Yuhan He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China.
| | - Yangyang Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Dongmei Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Furong Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Weizhong Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Qiu J, Cheng J, Xie Y, Jiang L, Shi P, Li X, Swanda RV, Zhou J, Wang Y. 1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways: An integrated omics insight into the underlying mechanisms. CHEMOSPHERE 2019; 228:149-158. [PMID: 31029960 DOI: 10.1016/j.chemosphere.2019.04.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/17/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
1,4-Dioxane (dioxane), an industrial solvent widely detected in environmental and biological matrices, has potential nephrotoxicity. However, the underlying mechanism by which dioxane induces kidney damage remains unclear. In this study, we used an integrated approach, combining kidney transcriptomics and urine metabolomics, to explore the mechanism for the toxic effects of dioxane on the mouse kidney. Transcriptomics profiling showed that exposure to 0.5 mg/L dioxane induced perturbations of multiple signaling pathways in kidneys, such as MAPK and Wnt, although no changes in oxidative stress indicators or anatomical pathology were observed. Exposure to 500 mg/L dioxane significantly disrupted various metabolic pathways, concomitantly with observed renal tissue damage and stimulated oxidant defense system. Urine metabolomic analysis using NMR indicated that exposure to dioxane gradually altered the metabolic profile of urine. Within the full range of altered metabolites, the metabolic pathway containing glycine, serine and threonine was the most significantly altered pathway at the early stage of exposure (3 weeks) in both 0.5 and 500 mg/L dioxane-treated groups. However, with prolonged exposure (9 and 12 weeks), the level of taurine significantly decreased after treatment of 0.5 mg/L dioxane, while exposure to 500 mg/L dioxane significantly increased glutathione levels in urine and decreased arginine metabolism. Furthermore, integrated omics analysis showed that 500 mg/L dioxane exposure induced arginine deficiency by perturbing several genes involved in renal arginine metabolism. Shortage of arginine coupled with increased oxidative stress could lead to renal dysfunction. These findings offer novel insights into the toxicity of dioxane.
Collapse
Affiliation(s)
- Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Jiade Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanci Xie
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Liujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xinying Li
- High School Affiliated to Nanjing Normal University, Nanjing, 210003, China
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, 14853, United States
| | - Jun Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yong Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
12
|
Pandey A, Dhabade P, Kumarasamy A. Inflammatory Effects of Subacute Exposure of Roundup in Rat Liver and Adipose Tissue. Dose Response 2019; 17:1559325819843380. [PMID: 31205454 PMCID: PMC6537504 DOI: 10.1177/1559325819843380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Roundup is a popular herbicide containing glyphosate as an active ingredient. The formulation of Roundup is speculated to have critical toxic effects, one among which is chronic inflammation. The present study analyzed adverse inflammatory effects in the liver and adipose tissue of rats after a subacute exposure of Roundup. Adult male rats were exposed to various doses of Roundup (0, 5, 10, 25, 50, 100 and 250 mg/kg bodyweight [bw] glyphosate) orally, everyday for 14 days. On day 15, liver and adipose tissues from dosed rats were analyzed for inflammation markers. C-reactive protein in liver, cytokines IL-1β, TNF-α, IL-6, and inflammatory response marker, and prostaglandin–endoperoxide synthase were upregulated in liver and adipose of rats exposed to higher (100 and 250 mg/kg bw/d) doses of Roundup. Cumulatively, our data suggest development of inflammation in lipid and hepatic organs upon exposure to Roundup. Furthermore, liver histological studies showed formation of vacuoles, fibroid tissue, and glycogen depletion in the groups treated with doses of higher Roundup. These observations suggest progression of fatty liver disease in Roundup-treated adult rats. In summary, our data suggest progression of multiorgan inflammation, liver scarring, and dysfunction post short-term exposure of Roundup in adult male rats.
Collapse
Affiliation(s)
- Aparamita Pandey
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prachi Dhabade
- Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Anand Kumarasamy
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
13
|
Chen J, Zhang J, Wu X, Chen J, Dai Y, Ma X, Yu Y, Zhang L, Liu C. Disordered Metabolic Profiling in Plasma and Tissues of Mice Infected with Artemisinin-Sensitive and -Resistant Plasmodium berghei K173 Determined by 1H NMR Spectroscopy. J Proteome Res 2019; 18:1970-1993. [PMID: 30931571 DOI: 10.1021/acs.jproteome.8b00782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artemisinin resistance has inevitably emerged in several malaria-endemic areas and led to an incremental clinical failure rate for artemisinin-based combination therapy (ACT), which is strongly recommended by the World Health Organization (WHO). Genetically resilient malaria parasites have evolved antimalarial drug-evasion mechanisms; meanwhile, the metabolic cross-talk between the malaria parasites and the host is of significance during the invasion. The intention of this work, therefore, is to propose a feasible method to discover the systematic metabolic phenotypes of mice invaded with artemisinin-sensitive or -resistant Plasmodium berghei K173 when compared with healthy mice. Biological samples, including plasma, liver, spleen, and kidney, of mice collected after euthanasia at day 7 were subjected to 1H nuclear magnetic resonance spectroscopy. Multivariable data analysis was utilized to estimate the metabolic characteristics of these samples from uninfected and infected mice. In contrast with healthy mice, both sensitive and resistant malaria-parasite-infected models displayed distinct metabolic profiles. Parasite invasion significantly changed the glycolysis, Kreb's cycle, and amino acid metabolism in plasma and tissues. Decreased N, N-dimethylglycine and glycine levels in plasma from the artemisinin-sensitive P. berghei-infected group and increased lactate, lipid, and aspartate in the artemisinin-resistant P. berghei-infected group were observed, respectively. In the liver, the artemisinin-sensitive group up-regulated the glutamate level and down-regulated glutamine. Artemisinin-resistant parasite exposure decreased ethanol and allantoin levels. The levels of myo-inositol and valine in the spleen were increased due to artemisinin-sensitive P. berghei infection, together with decreased trimethylamine N-oxide, phosphocholine, β-glucose, and acetoacetic acid. In the artemisinin-resistant group, the spleen showed a remarkably increased phosphocholine content along with decreased dimethylglycine and arginine levels. In the kidney, artemisinin-sensitive P. berghei K173 caused increased lysine, glutamate, creatine, and 2-hydroxybutyrate as well as decreased ethanol. Artemisinin-resistant P. berghei led to low glycerophosphorylcholine and high acetate, betaine, and hypoxanthine. Mutual and specific altered metabolites and, accordingly, metabolic pathways induced by the infection of artemisinin-sensitive or -resistant P. berghei were therefore screened out. This should be considered a preliminary study to establish a direct relationship with the host metabolic background and artemisinin resistance.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy , Ningxia Medical University , Yinchuan 750004 , China
| | - Juanhong Zhang
- School of Pharmacy , Ningxia Medical University , Yinchuan 750004 , China
| | - Xiuli Wu
- School of Pharmacy , Ningxia Medical University , Yinchuan 750004 , China
| | - Jing Chen
- Institute of Translational Medicine, Medical College , Yangzhou University , Yangzhou 225009 , China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou University , Yangzhou 225009 , China
| | - Yong Dai
- Basic Medical College , Chengdu University of TCM , Chengdu 611137 , China
| | - Xueqin Ma
- School of Pharmacy , Ningxia Medical University , Yinchuan 750004 , China
| | - Yongjie Yu
- School of Pharmacy , Ningxia Medical University , Yinchuan 750004 , China
| | - Liming Zhang
- School of Pharmacy , Ningxia Medical University , Yinchuan 750004 , China
| | - Cheng Liu
- School of Pharmacy , Ningxia Medical University , Yinchuan 750004 , China
| |
Collapse
|
14
|
Fang C, Krasner SW, Chu W, Ding S, Zhao T, Gao N. Formation and speciation of chlorinated, brominated, and iodinated haloacetamides in chloraminated iodide-containing waters. WATER RESEARCH 2018; 145:103-112. [PMID: 30121431 DOI: 10.1016/j.watres.2018.07.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Haloacetamides (HAMs), an emerging class of disinfection by-products, have received increasing attention due to their elevated cyto- and genotoxicity. However, only limited information is available regarding the iodinated analogues. This study investigated the formation and speciation of iodinated haloacetamides (I-HAMs) and their chlorinated/brominated analogues during the chloramination of bromide and/or iodide-containing waters and a model compound solution over various time periods. The rapid formation of diiodoacetamide (DIAM) was observed during chloramination of three simulated samples, whereas brominated (Br-HAMs) and chlorinated haloacetamides (Cl-HAMs) increased slowly with increasing reaction time. To further understand the differences in the formation of HAMs containing different halogens, experiments with the model compound asparagine in the presence/absence of iodide were conducted. Moreover, iodine utilisation factors and iodine incorporation factors were observed to increase significantly faster and were substantially higher than those of bromine. This implied that, compared with bromide, iodide has substantially greater potential to be transformed to the corresponding HAMs during chloramination, similar to that of other classes of DBPs. That is, I-HAMs formed faster than the other species investigated, including Cl-HAMs and Br-HAMs, in the early reaction stages (0-3 h). The effect of the bromide/iodide ratio (i.e., constant iodide, increasing bromide) on I-HAM formation was also examined. With increasing bromide/iodide ratio, the formation of Br-HAMs increased and dichloroacetamide decreased, but the formation of DIAM was largely unchanged. This was consistent with the constant level of iodide in spite of the increasing bromide. Chlorine and ammonia are applied separately during chloramination in water treatment, so the effect of pre-chlorination (before adding ammonia) on the formation and speciation of I-HAMs during in situ chloramination was also evaluated. Effective mitigation of DIAM formation with in situ chloramination was achieved, and the efficiency improved with increasing pre-chlorination time, where iodide was oxidised to iodate. The HAM-associated cytotoxicity was calculated to determine the change in toxicity at different reaction times, bromide/iodide ratios, and pre-chlorination times. A similar trend as the formation of I-HAMs was observed, which increased rapidly in the first 3 h, but decreased somewhat subsequently. When the bromide/iodide ratio and pre-chlorination time was increased, the calculated toxicity of the HAMs increased (due to more formation of Br-HAMs and less Cl-HAMs) and decreased (due to less DIAM formation), respectively.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | | | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Tiantao Zhao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
15
|
|
16
|
Atashgahi S, Shetty SA, Smidt H, de Vos WM. Flux, Impact, and Fate of Halogenated Xenobiotic Compounds in the Gut. Front Physiol 2018; 9:888. [PMID: 30042695 PMCID: PMC6048469 DOI: 10.3389/fphys.2018.00888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
Humans and their associated microbiomes are exposed to numerous xenobiotics through drugs, dietary components, personal care products as well as environmental chemicals. Most of the reciprocal interactions between the microbiota and xenobiotics, such as halogenated compounds, occur within the human gut harboring diverse and dense microbial communities. Here, we provide an overview of the flux of halogenated compounds in the environment, and diverse exposure routes of human microbiota to these compounds. Subsequently, we review the impact of halogenated compounds in perturbing the structure and function of gut microbiota and host cells. In turn, cultivation-dependent and metagenomic surveys of dehalogenating genes revealed the potential of the gut microbiota to chemically alter halogenated xenobiotics and impact their fate. Finally, we provide an outlook for future research to draw attention and attract interest to study the bidirectional impact of halogenated and other xenobiotic compounds and the gut microbiota.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sudarshan A Shetty
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands.,Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, Helsinki, Finland
| |
Collapse
|
17
|
Wang X, Wang D, Zhou Z, Zhu W. Subacute oral toxicity assessment of benalaxyl in mice based on metabolomics methods. CHEMOSPHERE 2018; 191:373-380. [PMID: 29054078 DOI: 10.1016/j.chemosphere.2017.10.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 05/24/2023]
Abstract
In this study, the metabolic responses of mice after 30 days of exposure to benalaxyl were assessed using NMR-based untargeted metabolomics and LC-MS-based targeted profiling of 20 amino acids. Urinary 1H NMR analyses revealed alterations in energy metabolism, lipid metabolism, vitamin B metabolism, the urea cycle and amino acid metabolism, and targeted analyses indicated that the serum levels of asparagine, histidine, lysine and aspartic acid were significantly altered. Additionally, significant oxidative stress was observed in the liver and kidney, although no apparent histopathological injury was observed. The tissue distribution indicated a significant stereoselectivity in the brain, where (-)-R-benalaxyl was enriched. These data provide a comprehensive picture of the subacute toxic effects of benalaxyl in mice. The results of this study suggested that, for a toxicity evaluation, metabolomics analysis is much more sensitive than traditional toxicological methods. The results also highlight the combined use of untargeted and targeted metabolomics approaches in evaluating the health risks of xenobiotics.
Collapse
Affiliation(s)
- Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
18
|
Miao J, Wang D, Yan J, Wang Y, Teng M, Zhou Z, Zhu W. Comparison of subacute effects of two types of pyrethroid insecticides using metabolomics methods. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:161-167. [PMID: 29183587 DOI: 10.1016/j.pestbp.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/06/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
In this study, 1H NMR based metabolomics analysis, LC-MS/MS based serum metabolomics and histopathology techniques were used to investigate the toxic effects of subacute exposure to two types of pyrethroid insecticides bifenthrin and lambda-cyhalothrin in mice. Metabolomic analysis of tissues extracts and serum showed that these two types of pyrethroid insecticides resulted in alterations of metabolites in the liver, kidney and serum of mice. Based on the altered metabolites, several significant pathways were identified, which are associated with gut microbial metabolism, lipid metabolism, nucleotide catabolism, tyrosine metabolism and energy metabolism. The results showed that bifenthrin and lambda-cyhalothrin have similarities in disruption of metabolic pathways in kidney, indicating that the toxicological mechanisms of these two types of insecticides have some likeness to each other. This study may provide novel insight into revealing differences of toxicological mechanisms between these two types of pyrethroid insecticides.
Collapse
Affiliation(s)
- Jiyan Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China.
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Yao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
19
|
Yin J, Wu B, Zhang XX, Xian Q. Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method. CHEMOSPHERE 2017; 185:20-28. [PMID: 28683333 DOI: 10.1016/j.chemosphere.2017.06.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts have been widely found in drinking water. In vitro test found HNMs could induce higher cytotoxicity and genotoxicity than trihalomethanes and haloacetic acids. However, data on toxic effect from in vivo experiment is limited. In this study, bromonitromethane (BNM), bromochloronitromethane (BCNM) and trichloronitromethane (TCNM) were chosen as target HNMs, and exposed to mice for 30 d. Hepatic toxicity and serum metabolic profiles were determined to reveal toxic effects and mechanisms of the three HNMs. Results showed the three HNMs significantly decreased relative liver weight, indicating liver is one of the target organs. Further, the three HNMs exposure damaged hepatic antioxidant defense system, and increased oxidative DNA damage. Nuclear magnetic resonance based metabolomics analysis found amino acid metabolism and carbohydrate metabolism were disturbed by HNMs exposure. Some metabolites in these metabolisms are related to oxidative stress and damage. Combined with above results, BNM had the highest toxicity, followed by BCNM and TCNM, indicating bromo-HNMs had higher toxicity than chloro-HNMs. Induction of oxidative stress is one of the toxicity mechanisms of HNMs. This study firstly provides the insight into in vivo toxicity of HNMs and their underlying mechanisms based on metabolomics methods, which is very useful for their health risk assessment in drinking water.
Collapse
Affiliation(s)
- Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Wang Y, Teng M, Wang D, Yan J, Miao J, Zhou Z, Zhu W. Enantioselective bioaccumulation following exposure of adult zebrafish (Danio rerio) to epoxiconazole and its effects on metabolomic profile as well as genes expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:264-271. [PMID: 28601015 DOI: 10.1016/j.envpol.2017.05.087] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/09/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Although epoxiconazole is the worldwidely used fungicide, limited information is known about its toxic effects and bioaccumulation behavior in freshwater ecosystems. In this study, zebrafish were exposed to epoxiconazole at concentrations of 100 and 1000 μg L-1 for 21 d. 1H NMR-based metabolomics analysis showed that low- and high-dose epoxiconazole exposure resulted in two similar but not identical patterns for the change of endogenous metabolites related to energy, lipid and amino acid metabolism. The expression of genes associated with mitochondrial respiratory chain, ATP synthesis and fatty acid β-oxidation were further measured to explore the reason for the disturbed energy metabolism, finding epoxiconazole had an inhibition effect on the genes expression of the above ways. Significant enantioselectivity was observed with (+)-epoxiconazole enrichment in the bioaccumulation process. These results will be of great importance in understanding the toxic effects induced by epoxiconazole and provide important basis for its comprehensive environmental assessment.
Collapse
Affiliation(s)
- Yao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, PR China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Jiyan Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
21
|
Zhang P, Zhu W, Wang D, Yan J, Wang Y, Zhou Z, He L. A combined NMR- and HPLC-MS/MS-based metabolomics to evaluate the metabolic perturbations and subacute toxic effects of endosulfan on mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18870-18880. [PMID: 28653198 DOI: 10.1007/s11356-017-9534-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Endosulfan is the newly persistent organic pollutants (POPs) added to the Stockholm Convention as its widespread use, persistence, bioaccumulation, long-range transport, endocrine disruption, and toxicity related to various adverse effects. In the present study, male mice were administrated endosulfan at 0, 0.5, and 3.5 mg/kg by gavage for 2 weeks. 1H-NMR-based urinary metabolomics, HPLC-MS/MS-based targeted serum metabolomics, clinical analysis, and histopathology techniques were employed to evaluate the metabolic perturbations of subacute endosulfan exposure. Endosulfan exposures resulted in weight loss, liver inflammation and necrosis, and alterations in serum amino acids and urine metabolomics. Based on altered metabolites, several significantly perturbed pathways were identified including glycine, serine, and threonine metabolism; TCA cycle; pyruvate metabolism; glycolysis or gluconeogenesis; glycerophospholipid metabolism; and glyoxylate and dicarboxylate metabolism. Such pathways were highly related to amino acid metabolism, energy metabolism, and lipid metabolism. In addition, metabolomic results also demonstrated that gut microbiota was remarkably altered after endosulfan exposure. These observations may provide novel insight into revealing the potential toxic mechanism and evaluating the health risk of endosulfan exposure at metabolomic level.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Yao Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
22
|
Deng Y, Zhang Y, Lu Y, Lu K, Bai H, Ren H. Metabolomics evaluation of the in vivo toxicity of bromoacetonitriles: One class of high-risk nitrogenous disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:107-114. [PMID: 27866740 DOI: 10.1016/j.scitotenv.2016.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Bromoacetonitriles (BANs), one class of nitrogenous disinfection byproducts (N-DBPs), have frequently been detected in drinking water. The cytotoxicity and genotoxicity of BANs have been demonstrated in mammalian cells. However, a systematic study of the in vivo toxicity of BANs is rare. In this study, metabolomics combined with histopathology and oxidative stress analysis were used to evaluate the toxicity of BANs in mice. The results indicated that BAN exposure induced liver and kidney injury in mice. Furthermore, the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities decreased, and the level of malonaldehyde (MDA) increased in mice livers due to BANs exposure, which indicated that hepatic oxidative stress was induced. These toxicities increased with an increasing number of bromine at the α carbon. In addition, BAN exposure disrupted the metabolic pathways of amino acid, energy and lipid metabolism in mice. Our results provide evidence for the comprehensive omics endpoints of the in vivo toxicity of BANs.
Collapse
Affiliation(s)
- Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yifeng Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kai Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hao Bai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
23
|
Chu W, Li X, Bond T, Gao N, Bin X, Wang Q, Ding S. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk. WATER RESEARCH 2016; 107:141-150. [PMID: 27837731 DOI: 10.1016/j.watres.2016.10.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/16/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm).
Collapse
Affiliation(s)
- Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Xin Li
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tom Bond
- Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xu Bin
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qiongfang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
24
|
Yan L, Gong C, Zhang X, Zhang Q, Zhao M, Wang C. Perturbation of metabonome of embryo/larvae zebrafish after exposure to fipronil. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:39-45. [PMID: 27723511 DOI: 10.1016/j.etap.2016.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 05/07/2023]
Abstract
The escalating demand for fipronil by the increasing insects' resistance to synthetic pyrethroids placed a burden on aquatic vertebrates. Although awareness regarding the toxicity of fipronil to fish is arising, the integral alteration caused by fipronil remains unexplored. Here, we investigated on the development toxicity of fipronil and the metabolic physiology perturbation at 120h post fertilization through GC-MS metabolomics on zebrafish embryo. We observed that fipronil dose-dependently induced malformations including uninflated swim bladder and bent spine. Further, the "omic" technique hit 26 differential metabolites after exposure to fipronil and five significant signaling pathways. We speculated that changes in primary bile acid synthesis pathway and the content of saturated fatty acid in the chemical-related group indicated the liver toxicity. Pathway of Aminoacyl-tRNA biosynthesis changed by fipronil may relate to the macromolecular synthesis. Concurrently, methane metabolism pathway was also identified while the role in zebrafish needs further determination. Overall, this study revealed several new signaling pathways in fipronil-treated zebrafish embryo/larval.
Collapse
Affiliation(s)
- Lu Yan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenxue Gong
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaofeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
25
|
Chu W, Hu J, Bond T, Gao N, Xu B, Yin D. Water temperature significantly impacts the formation of iodinated haloacetamides during persulfate oxidation. WATER RESEARCH 2016; 98:47-55. [PMID: 27076062 DOI: 10.1016/j.watres.2016.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 06/05/2023]
Abstract
The use of persulfate oxidation processes is receiving increasing interest for the removal of aquatic contaminants. However, it is unknown whether its application in the presence of iodide has the potential to directly form iodinated DBPs. This study investigated formation of six chlorinated, brominated and iodinated di-haloacetamides (DHAcAms) during persulfate oxidation in the presence of bromide and iodide. Formation of the same DHAcAms during chlorination was monitored for comparison. Persulfate oxidation of natural water formed diiodoacetamide (DIAcAm), and heat-activated persulfate, at 45 °C and 55 °C, generated bromoiodoacetamide (BIAcAm) and dibromoacetamide (DBAcAm), besides DIAcAm. At an ambient iodide concentration of 0.3 μM, total DHAcAms increased slightly from 0.43 to 0.57 nM as the water temperature increased from 4 °C to 35 °C, respectively (only DIAcAm detected), then significantly increased to 1.6 nM at 55 °C (DIAcAm, BIAcAm and DBAcAm detected). Equivalent total DHAcAm concentrations in the presence of 3.0 μM iodide were 0.5, 0.91 and 2.1 nM, respectively. Total DHAcAms formed during chlorination, predominantly dichloroacetamide (DCAcAm) and bromochloroacetamide (BCAcAm), were always significantly higher than that during persulfate oxidation. However, an integrated risk assessment showed the toxicity resulting from the DHAcAms was higher during persulfate oxidation than chlorination. An increase in water temperature from 25 °C to 55 °C significantly increased the integrated toxic risk values for both persulfate oxidation and chlorination. Use of persulfate oxidation should be weighed against the formation of high-toxicity iodinated HAcAms in waters with high ambient iodide concentrations.
Collapse
Affiliation(s)
- Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jianglin Hu
- Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tom Bond
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
26
|
Deng Y, Zhang Y, Lu Y, Zhao Y, Ren H. Hepatotoxicity and nephrotoxicity induced by the chlorpyrifos and chlorpyrifos-methyl metabolite, 3,5,6-trichloro-2-pyridinol, in orally exposed mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:507-514. [PMID: 26674679 DOI: 10.1016/j.scitotenv.2015.11.162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/28/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
3,5,6-Trichloro-2-pyridinol (TCP) is a primary degradation product of chlorpyrifos and chlorpyrifos-methyl. TCP has longer half-life in soil and greater solubility in water than its parent compound, and cause wide contamination in environments. However, studies about the toxic effects of TCP are limited and outdate. In this study, 5 mg/kg/day, 50 mg/kg/day, and 150 mg/kg/day TCP were given to male mice through gavage for four weeks. As a result, the final body weights of TCP treated groups were significantly lower than control, and the relative organ weights of the liver and kidney were significantly higher than that of control. In addition, NMR-based metabolomics was used to investigate the toxic effects of TCP. It was found that a total of 39 serum metabolites were significantly changed in the TCP-treated groups, and these metabolites are related to hepatotoxicity and nephrotoxicity. These results were also confirmed by histopathology, serum biochemical, and oxidative stress analysis. In addition, metabolic disturbances due to TCP exposure were also observed based on altered metabolites. As far as we know, these results are the first to show the metabolomic toxicity of TCP, which warrants further research.
Collapse
Affiliation(s)
- Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yifeng Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanping Zhao
- School of Geography Science, Nanjing Normal University, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
27
|
Chu W, Krasner SW, Gao N, Templeton MR, Yin D. Contribution of the Antibiotic Chloramphenicol and Its Analogues as Precursors of Dichloroacetamide and Other Disinfection Byproducts in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:388-396. [PMID: 26636179 DOI: 10.1021/acs.est.5b04856] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dichloroacetamide (DCAcAm), a disinfection byproduct, has been detected in drinking water. Previous research showed that amino acids may be DCAcAm precursors. However, other precursors may be present. This study explored the contribution of the antibiotic chloramphenicol (CAP) and two of its analogues (thiamphenicol, TAP; florfenicol, FF) (referred to collectively as CAPs), which occur in wastewater-impacted source waters, to the formation of DCAcAm. Their formation yields were compared to free and combined amino acids, and they were investigated in filtered waters from drinking-water-treatment plants, heavily wastewater-impacted natural waters, and secondary effluents from wastewater treatment plants. CAPs had greater DCAcAm formation potential than two representative amino acid precursors. However, in drinking waters with ng/L levels of CAPs, they will not contribute as much to DCAcAm formation as the μg/L levels of amino acids. Also, the effect of advanced oxidation processes (AOPs) on DCAcAm formation from CAPs in real water samples during subsequent chlorination was evaluated. Preoxidation of CAPs with AOPs reduced the formation of DCAcAm during postchlorination. The results of this study suggest that CAPs should be considered as possible precursors of DCAcAm, especially in heavily wastewater-impacted waters.
Collapse
Affiliation(s)
- Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai, 200092, China
| | - Stuart W Krasner
- Metropolitan Water District of Southern California , 700 Moreno Avenue, La Verne, California 91750, United States
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai, 200092, China
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, Imperial College London , London SW7 2AZ, U.K
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai, 200092, China
| |
Collapse
|
28
|
Lv L, Yu X, Xu Q, Ye C. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:291-298. [PMID: 26114900 DOI: 10.1016/j.envpol.2015.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/17/2015] [Accepted: 06/21/2015] [Indexed: 05/28/2023]
Abstract
Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water.
Collapse
Affiliation(s)
- Lu Lv
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qian Xu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
29
|
Feng M, Qu R, Habteselassie M, Wu J, Yang S, Sun P, Huang Q, Wang Z. Hepatic Transcriptome Responses in Mice (Mus musculus) Exposed to the Nafion Membrane and Its Combustion Products. PLoS One 2015; 10:e0128591. [PMID: 26057616 PMCID: PMC4461320 DOI: 10.1371/journal.pone.0128591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/28/2015] [Indexed: 11/18/2022] Open
Abstract
Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely used for numerous chemical technologies. Despite its increasing production and use, the toxicity data for N117 and its combustion products remain lacking. Toxicity studies are necessary to avoid problems related to waste disposal in landfills and incineration that may arise. In this study, we investigated the histopathological alterations, oxidative stress biomarker responses, and transcriptome profiles in the liver of male mice exposed to N117 and its combustion products for 24 days. An ion-chromatography system and liquid chromatography system coupled to a hybrid quadrupole time-of-flight mass spectrometry were used to analyze the chemical compositions of these combustion products. The transcriptomics analysis identified several significantly altered molecular pathways, including the metabolism of xenobiotics, carbohydrates and lipids; signal transduction; cellular processes; immune system; and signaling molecules and interaction. These studies provide preliminary data for the potential toxicity of N117 and its combustion products on living organisms and may fill the information gaps in the toxicity databases for the currently used PEMs.
Collapse
Affiliation(s)
- Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Mussie Habteselassie
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States of America
| | - Jun Wu
- College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing 210046, P. R. China
| | - Shaogui Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ping Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- * E-mail: (ZW); (PS)
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States of America
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- * E-mail: (ZW); (PS)
| |
Collapse
|
30
|
Chu W, Li D, Gao N, Templeton MR, Tan C, Gao Y. The control of emerging haloacetamide DBP precursors with UV/persulfate treatment. WATER RESEARCH 2015; 72:340-8. [PMID: 25267364 DOI: 10.1016/j.watres.2014.09.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/03/2014] [Accepted: 09/13/2014] [Indexed: 05/06/2023]
Abstract
Haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs) of health concern in drinking water, have been reported to occur in treated drinking waters at low μg/L levels typically. The objective of this study was to examine the potential of an ultraviolet light/persulfate (UV/PS) oxidation technology to reduce the precursors of HAcAms and also minimize the formation of other N-DBPs upon subsequent chlorination. Low-pressure UV photolysis alone and PS pre-oxidation alone did not significantly affect HAcAm formation, however UV/PS pre-oxidation achieved a statistically significant reduction in HAcAm formation and also reduced bromine incorporation into the HAcAms. UV/PS also showed a good performance in removing the precursors of haloacetonitriles and halonitromethanes prior to chlorination. Therefore, UV/PS has the potential to minimize the formation of a range of N-DBPs in organic nitrogen-rich waters where N-DBP precursors are prevalent. However, these benefits should be weighed against the potential drawbacks of increased bromate and sulfate formation, particularly in high-bromide waters.
Collapse
Affiliation(s)
- Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Dongmei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Chaoqun Tan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuqiong Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
31
|
Zhang Y, Zhao F, Deng Y, Zhao Y, Ren H. Metagenomic and metabolomic analysis of the toxic effects of trichloroacetamide-induced gut microbiome and urine metabolome perturbations in mice. J Proteome Res 2015; 14:1752-61. [PMID: 25609144 DOI: 10.1021/pr5011263] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disinfection byproducts (DBPs) in drinking water have been linked to various diseases, including colon, colorectal, rectal, and bladder cancer. Trichloroacetamide (TCAcAm) is an emerging nitrogenous DBP, and our previous study found that TCAcAm could induce some changes associated with host-gut microbiota co-metabolism. In this study, we used an integrated approach combining metagenomics, based on high-throughput sequencing, and metabolomics, based on nuclear magnetic resonance (NMR), to evaluate the toxic effects of TCAcAm exposure on the gut microbiome and urine metabolome. High-throughput sequencing revealed that the gut microbiome's composition and function were significantly altered after TCAcAm exposure for 90 days in Mus musculus mice. In addition, metabolomic analysis showed that a number of gut microbiota-related metabolites were dramatically perturbed in the urine of the mice. These results may provide novel insight into evaluating the health risk of environmental pollutants as well as revealing the potential mechanism of TCAcAm's toxic effects.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanping Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
32
|
Chu W, Gao N, Yin D, Krasner SW, Mitch WA. Impact of UV/H2O2 pre-oxidation on the formation of haloacetamides and other nitrogenous disinfection byproducts during chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12190-8. [PMID: 25251305 DOI: 10.1021/es502115x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Haloacetamides (HAcAms), an emerging class of nitrogen-based disinfection byproducts (N-DBPs) of health concern in drinking water, have been found in drinking waters at μg/L levels. However, there is a limited understanding about the formation, speciation, and control of halogenated HAcAms. Higher ultraviolet (UV) doses and UV advanced oxidation (UV/H2O2) processes (AOPs) are under consideration for the treatment of trace organic pollutants. The objective of this study was to examine the potential of pretreatment with UV irradiation, H2O2 oxidation, and a UV/H2O2 AOP for minimizing the formation of HAcAms, as well as other emerging N-DBPs, during postchlorination. We investigated changes in HAcAm formation and speciation attributed to UV, H2O2 or UV/H2O2 followed by the application of free chlorine to quench any excess hydrogen peroxide and to provide residual disinfection. The results showed that low-pressure UV irradiation alone (19.5-585 mJ/cm(2)) and H2O2 preoxidation alone (2-20 mg/L) did not significantly change total HAcAm formation during subsequent chlorination. However, H2O2 preoxidation alone resulted in diiodoacetamide formation in two iodide-containing waters and increased bromine utilization. Alternatively, UV/H2O2 preoxidation using UV (585 mJ/cm(2)) and H2O2 (10 mg/L) doses typically employed for trace contaminant removal controlled the formation of HAcAms and several other N-DBPs in drinking water.
Collapse
Affiliation(s)
- Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai, 200092, China
| | | | | | | | | |
Collapse
|
33
|
Deng Y, Zhang Y, Zhang R, Wu B, Ding L, Xu K, Ren H. Mice in vivo toxicity studies for monohaloacetamides emerging disinfection byproducts based on metabolomic methods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8212-8218. [PMID: 24941154 DOI: 10.1021/es502010v] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Haloacetamides (HAcAms) as a new class of nitrogenous disinfection byproducts (N-DBPs) have been widely detected in drinking water and reclaimed water. Cytotoxicity and genotoxicity of monoHAcAms are determined by the leaving tendency of the halogens and decrease following a rank order of iodoacetamide (IAcAm)>bromoacetamide (BAcAm)≫chloroacetamide (CAcAm). However, the in vivo toxicity date for monoHAcAms is limited. In this study, hepatic oxidative stress and metabolomics responses in mice corresponding to monoHAcAms exposure were investigated. Exposure to the monoHAcAms decreased the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the levels of malonaldehyde (MDA) and increased the level of 8-hydroxy-2-deoxyguanosine (8-OHdG), indicating that each exposure generated oxidative stress in mice liver. Metabolomic alterations were also induced by each monoHAcAms exposure. In addition, disruptions of metabolic pathways, related to amino acid, energy and lipid metabolism, were identified based on the significantly changed metabolites. These data, for the first time, provide a comprehensive view for the toxic effects of monoHAcAms.
Collapse
Affiliation(s)
- Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhang Y, Deng Y, Zhao Y, Ren H. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent. JOURNAL OF HAZARDOUS MATERIALS 2014; 272:52-58. [PMID: 24675614 DOI: 10.1016/j.jhazmat.2014.02.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ((1)H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yanping Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|