1
|
Tang W, Zhong H. Developing Methylmercury-Targeted Strategies to Safeguard Rice Consumers. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:213-217. [PMID: 40144321 PMCID: PMC11934198 DOI: 10.1021/envhealth.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 03/28/2025]
Abstract
Mitigating mercury (Hg) risk in the rice-paddy system is crucial for safeguarding food safety and human health, as rice is a main source of human exposure to neurotoxic methylmercury (MeHg). Current mitigation strategies predominantly focus on reducing the availability of inorganic Hg (IHg) for Hg methylation, achieved primarily through Hg emission control and in situ Hg immobilization. While these IHg-targeted approaches have effectively reduced MeHg bioaccumulation and subsequent human exposure, their efficacy is largely undermined by Hg transformations and fluctuating environmental conditions due to the complex and protracted pathway linking IHg from environmental sources to MeHg at the point of human exposure. In light of recent advancements in MeHg-related transformations, we emphasize the development of MeHg-targeted strategies to improve the overall efficiency of Hg risk management in rice-paddy systems. MeHg-targeted strategies include microbial regulation to diminish net MeHg production, facilitating MeHg demethylation in soils, and promoting the in vivo MeHg degradation within rice plants. Although these approaches are still in their nascent stages, they hold significant promise due to their potential high mitigation efficacy and reduced uncertainties, owing to the shorter pathway between MeHg production and human exposure. Integrating IHg- and MeHg-targeted strategies offers a comprehensive and synergistic approach, paving the way for more effective mitigation of human exposure to MeHg in rice-paddy systems.
Collapse
Affiliation(s)
- Wenli Tang
- School of Environment, Nanjing
University, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing, Jiangsu Province 210023, China
| | - Huan Zhong
- School of Environment, Nanjing
University, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
2
|
Huang T, Imran. Mitigating cadmium contamination in soil using Biochar, sulfur-modified Biochar, and other organic amendments. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:874-887. [PMID: 39865581 DOI: 10.1080/15226514.2025.2454515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Biochar is a novel approach to remediating heavy metal-contaminated soil. Using various organic amendments like phyllosilicate-minerals (PSM), compost, biochar (BC) and sulfur-modified biochar (SMB), demonstrates superior adsorption capacity and stability compared to unmodified biochar (BC). The adsorption mechanisms of SMB are identified for its potential to increase soil-pH and reduce available cadmium (Cd). The study reveals the potential of BC and SMB in immobilizing Cd in contaminated soil. SMB demonstrated the highest adsorption capacity for Cd, followed by BC, PSM, and compost, with capacities ranging from 7.47 to 17.67 mg g-1. Both BC and SMB exhibit high adsorption capacities (12.82 and 17.67 mg g-1, respectively) and low desorption percentages (4.46-6.23%) at ion strengths of 0.01 to 0.1 mol-L-1 and pH levels ranging from 5 to 7. SMB showed a higher adsorption capacity (17.67 mg g-1) and lower desorption percentage (4.46-6.23%) compared to BC. The adsorption mechanism involves surface-precipitation, ion exchange, and the formation of Cd(OH)2 and CdCO3 precipitates, as well as interactions between Cd and organic sulfur, leading to more stable-Cd and CdHS+ compounds. Adding 1% SMB increased soil pH and significantly reduced available Cd, demonstrating its potential for pollutant remediation. The study underscores the promise of SMB in providing a sustainable solution for Cd-contaminated soil remediation.
Collapse
Affiliation(s)
- Tianzhi Huang
- Research Center of Rural Environmental Protection and Green Low-carbon Development, Mianyang Teachers College, Sichuan, China
| | - Imran
- College of Engineering, Agriculture Aviation Innovation Lab, South China Agriculture University, Guangzhou, China
- Ministry of Agriculture, Extension Wing, Govt of Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Wang L, Liu H, Wang F, Wang Y, Xiang Y, Chen Y, Wang J, Wang D, Shen H. The different effects of molybdate on Hg(II) bio-methylation in aerobic and anaerobic bacteria. Front Microbiol 2024; 15:1376844. [PMID: 39015741 PMCID: PMC11249568 DOI: 10.3389/fmicb.2024.1376844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
In nature, methylmercury (MeHg) is primarily generated through microbial metabolism, and the ability of bacteria to methylate Hg(II) depends on both bacterial properties and environmental factors. It is widely known that, as a metabolic analog, molybdate can inhibit the sulfate reduction process and affect the growth and methylation of sulfate-reducing bacteria (SRB). However, after it enters the cell, molybdate can be involved in various intracellular metabolic pathways as a molybdenum cofactor; whether fluctuations in its concentration affect the growth and methylation of aerobic mercury methylating strains remains unknown. To address this gap, aerobic γ-Proteobacteria strains Raoultella terrigena TGRB3 (B3) and Pseudomonas putida TGRB4 (B4), as well as an obligate anaerobic δ-Proteobacteria strain of the SRB Desulfomicrobium escambiense CGMCC 1.3481 (DE), were used as experimental strains. The growth and methylation ability of each strain were analyzed under conditions of 500 ng·L-1 Hg(II), 0 and 21% of oxygen, and 0, 0.25, 0.50, and 1 mM of MoO4 2-. In addition, in order to explore the metabolic specificity of aerobic strains, transcriptomic data of the facultative mercury-methylated strain B3 were further analyzed in an aerobic mercuric environment. The results indicated that: (a) molybdate significantly inhibited the growth of DE, while B3 and B4 exhibited normal growth. (b) Under anaerobic conditions, in DE, the MeHg content decreased significantly with increasing molybdate concentration, while in B3, MeHg production was unaffected. Furthermore, under aerobic conditions, the MeHg productions of B3 and B4 were not influenced by the molybdate concentration. (c) The transcriptomic analysis showed several genes that were annotated as members of the molybdenum oxidoreductase family of B3 and that exhibited significant differential expression. These findings suggest that the differential expression of molybdenum-binding proteins might be related to their involvement in energy metabolism pathways that utilize nitrate and dimethyl sulfoxide as electron acceptors. Aerobic bacteria, such as B3 and B4, might possess distinct Hg(II) biotransformation pathways from anaerobic SRB, rendering their growth and biomethylation abilities unaffected by molybdate.
Collapse
Affiliation(s)
- Lanjing Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Hang Liu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Feng Wang
- Research Center of Biology, Southwest University, Chongqing, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Chongqing Engineering Research Center for Agricultural Non-Point Source Pollution Control, Chongqing, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yongyi Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jiwu Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Chongqing Engineering Research Center for Agricultural Non-Point Source Pollution Control, Chongqing, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing, China
- Research Center of Biology, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Imran. Lead stabilization and remediation strategy with soil amendment in situ immobilization in contaminated range lands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2064-2073. [PMID: 38944679 DOI: 10.1080/15226514.2024.2372850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
In situ immobilization is a potential approach that can be used to remediate low-to-medium levels of heavy-metal in contaminated-soil. There is little known about how modifications to soil characteristics may affect Pb's release from soil. The four different amendments, triple-superphosphate and attapulgite were combined in Ad-1; zeolite and triple-superphosphate were in Ad-2; hydroxyapatite and humus were in Ad-3; and nano-carbon. These amendments are mostly made of phyllosilicate minerals, humus, base minerals, and nano-carbon, respectively. Results revealed that the test amendments' maximal Pb-adsorption capacity varied from 7.47 to 17.67 mg g-1. Surface precipitation and ion-exchange were found to be the main mechanisms for Pb-adsorption by Ad-1 and Ad-2, while Ad-3 and Ad-4 were promising among the all, according to analysis of the modifications both before and after Pb loading. When the pH dropped (7-1) or the ion-strength rose (0-0.2 M), there was a discernible rise in the Pb-desorption percentages from the amendments. It was determined that Ad-3 and Ad-4 were more effective in situ immobilizing lead in contaminated-soils because of their high adsorption capacities (12.82 and 17.67 mg g-1) and low-desorption percentages (4.46-6.23%) at ion-strengths of 0.01-0.1 mol L-1 and pH levels ranging from 5 to 7.
Collapse
Affiliation(s)
- Imran
- College of Engineering, South China Agriculture University, Guangzhou, China
| |
Collapse
|
5
|
Wang W, Wu S, Sui X, Cheng S. Phytoremediation of contaminated sediment combined with biochar: Feasibility, challenges and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133135. [PMID: 38056263 DOI: 10.1016/j.jhazmat.2023.133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The accumulation of contaminants in sediments is accelerated by human activities and poses a major threat to ecosystems and human health. In recent years, various remediation techniques have been developed for contaminated sediments. In this review, a bibliometric analysis of papers on sediment remediation indexed in the WOS database between 2009 and 2023 was conducted using VOSviewer. We describe the development of biochar and plants for sediment contaminant removal. However, the single processes of biochar remediation and phytoremediation can be impeded by (i) low efficiency, (ii) poor tolerance of plants towards pollutants, (iii) difficulty in biochar to degrade pollutants, and (iv) biochar aging causing secondary pollution. Fortunately, combination remediation, realized through the combination of biochar and plants, can overcome the shortcomings of their individual applications. Therefore, we suggest that the remediation of contaminants in sediments can be accomplished by combining biochar with macrophytes and considering multiple limiting factors. Here, we explore the challenges that co-remediation with biochar and macrophytes will face in achieving efficient and sustainable sediment remediation, including complex sediment environments, interaction mechanisms of biochar-macrophyte-microorganisms, emerging pollutants, and integrated life cycle assessments, which can provide references for combined biochar and plant remediation of sediments in the future.
Collapse
Affiliation(s)
- Weicong Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuangqi Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueqing Sui
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
7
|
Chen W, Yu Z, Yang X, Wang T, Li Z, Wen X, He Y, Zhang C. Unveiling the Role of Dissolved Organic Matter on the Hg Phytoavailability in Biochar-Amended Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3761. [PMID: 36834455 PMCID: PMC9963283 DOI: 10.3390/ijerph20043761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/13/2023]
Abstract
Biochar can effectively reduce the phytoavailability of mercury (Hg) in soil, but the mechanisms are not fully understood. In this study, the dynamic changes in Hg content adsorbed by the biochar (BC-Hg), Hg phytoavailability in the soil (P-Hg), and soil dissolved organic matter (DOM) characteristics were determined over a 60-day treatment period. Biochar obtained at 300 °C, 500 °C and 700 °C reduced the P-Hg concentration assessed by MgCl2 extraction by 9.4%, 23.5% and 32.7%, respectively. However, biochar showed a very limited adsorption on Hg, with the maximum BC-Hg content only accounting for 1.1% of the total amount. High-resolution scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS) results showed that the proportion of Hg atoms in biochar after 60 d was barely detectable. Biochar treatment can shift soil DOM toward higher aromatic content and molecular weight. Additionally, the addition of high-temperature biochar increased more humus-like components, but low-temperature biochar increased more protein-like components. Correlation analysis and partial least squares path modeling (PLS-PM) showed that biochar promoted humus-like fractions formation to reduce the Hg phytoavailability. This research has deepened the understanding of the mechanisms by which biochar stabilizes Hg in agricultural soils.
Collapse
Affiliation(s)
- Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
8
|
Washburn SJ, Damond J, Sanders JP, Gilmour CC, Ghosh U. Uptake Mechanisms of a Novel, Activated Carbon-Based Equilibrium Passive Sampler for Estimating Porewater Methylmercury. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2052-2064. [PMID: 35698924 PMCID: PMC9420783 DOI: 10.1002/etc.5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
We describe the validation of a novel polymeric equilibrium passive sampler comprised of agarose gel with embedded activated carbon particles (ag+AC), to estimate aqueous monomethylmercury (MeHg) concentrations. Sampler behavior was tested using a combination of idealized media and realistic sediment microcosms. Isotherm bottle experiments with ag+AC polymers were conducted to constrain partitioning to these materials by various environmentally relevant species of MeHg bound to dissolved organic matter (MeHgDOM) across a range of sizes and character. Log of partitioning coefficients for passive samplers (Kps ) ranged from 1.98 ± 0.09 for MeHg bound to Suwannee River humic acid to 3.15 ± 0.05 for MeHg complexed with Upper Mississippi River natural organic matter. Reversible equilibrium exchange of environmentally relevant MeHg species was demonstrated through a series of dual isotope-labeled exchange experiments. Isotopically labeled MeHgDOM species approached equilibrium in the samplers over 14 days, while mass balance was maintained, providing strong evidence that the ag+AC polymer material is capable of equilibrium measurements of environmentally relevant MeHg species within a reasonable deployment time frame. Samplers deployed across the sediment-water interface of sediment microcosms estimated both overlying water and porewater MeHg concentrations within a factor of 2 to 4 of measured values, based on the average measured Kps values for species of MeHg bound to natural organic matter in the isotherm experiments. Taken together, our results indicate that ag+AC polymers, used as equilibrium samplers, can provide accurate MeHg estimations across many site chemistries, with a simple back-calculation based on a standardized Kps. Environ Toxicol Chem 2022;41:2052-2064. © 2022 SETAC.
Collapse
Affiliation(s)
- Spencer J. Washburn
- Smithsonian Environmental Research Center, 647 Contees
Wharf Road, Edgewater, Maryland 21037, United States
| | - Jada Damond
- Department of Chemical, Biochemical, and Environmental
Engineering University of Maryland Baltimore County, 5200 Westland Blvd., Baltimore,
Maryland 21250, United States
| | - James P. Sanders
- US Environmental Protection Agency, Office of Pollution
Prevention and Toxics, Washington, DC 20460, United States
| | - Cynthia C. Gilmour
- Smithsonian Environmental Research Center, 647 Contees
Wharf Road, Edgewater, Maryland 21037, United States
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental
Engineering University of Maryland Baltimore County, 5200 Westland Blvd., Baltimore,
Maryland 21250, United States
| |
Collapse
|
9
|
Li HH, Tsui MTK, Ku P, Chen H, Yin Z, Dahlgren RA, Parikh SJ, Wei J, Hoang TC, Chow AT, Cheng Z, Zhu XM. Impacts of Forest Fire Ash on Aquatic Mercury Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11835-11844. [PMID: 35905396 DOI: 10.1021/acs.est.2c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) is a ubiquitous contaminant in the environment and its methylated form, methylmercury (MeHg), poses a worldwide health concern for humans and wildlife, primarily through fish consumption. Global production of forest fire ash, derived from wildfires and prescribed burns, is rapidly increasing due to a warming climate, but their interactions with aqueous and sedimentary Hg are poorly understood. Herein, we compared the differences of wildfire ash with activated carbon and biochar on the sorption of aqueous inorganic Hg and sedimentary Hg methylation. Sorption of aqueous inorganic Hg was greatest for wildfire ash materials (up to 0.21 μg g-1 or 2.2 μg g-1 C) among all of the solid sorbents evaluated. A similar Hg adsorption mechanism for activated carbon, biochar made of walnut, and wildfire ash was found that involves the formation of complexes between Hg and oxygen-containing functional groups, especially the -COO group. Notably, increasing dissolved organic matter from 2.4 to 70 mg C L-1 remarkably reduced Hg sorption (up to 40% reduction) and increased the time required to reach Hg-sorbent pseudo-equilibrium. Surprisingly, biochar and wildfire ash, but not activated carbon, stimulated MeHg production during anoxic sediment incubation, possibly due to the release of labile organic matter. Overall, our study indicates that while wildfire ash can sequester aqueous Hg, the leaching of its labile organic matter may promote production of toxic MeHg in anoxic sediments, which has an important implication for potential MeHg contamination in downstream aquatic ecosystems after wildfires.
Collapse
Affiliation(s)
- Han-Han Li
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT , Hong Kong SAR, China
| | - Peijia Ku
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Huan Chen
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Georgetown, South Carolina 29442, United States
| | - Ziyu Yin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Tham C Hoang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Alex T Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Georgetown, South Carolina 29442, United States
| | - Zhang Cheng
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Mei Zhu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Quoc TN, Jung MC. Sequential Application of Column Leaching and Plant Uptake Tests to Assess the Effect of Various Commercial Amendments on Cu Immobilization in Ultra-High Cu-Contaminated Soil. TOXICS 2022; 10:toxics10040185. [PMID: 35448446 PMCID: PMC9031981 DOI: 10.3390/toxics10040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
The presence of copper (Cu)-contaminated soil has increased recently due to agricultural and industrial activities. Immobilization techniques using soil amendments have attracted significant research because of their cost-effectiveness, eco-friendliness, and community acceptance. This study used various commercial amendments, including magnetite (M), talc (T), activated carbon (AC), and cornstarch (CS), to immobilize Cu in soil contaminated by acidic waste materials with Cu in Korea (9546 ± 5 mg/kg). To evaluate the immobilizing effect of these amendments, this study applied a sequential process of column leaching and plant uptake tests to observe the ability of Cu to remain in soil with and without amendments through the Cu removal rate. The amendments were characterized by SEM, XRD, and specific surface area and applied to the soil at a rate of 2% (w/w). The first stage of evaluation, i.e., the column leaching test, was conducted by continuously pumping distilled water (DW) for 28 days, and the second stage of evaluation, i.e., the plant uptake test, was started immediately after by planting 10-day-old lettuce seedlings for 28 days. The experimental results showed that all of the amendments had a significant effect on Cu immobilization Cu in soil (p < 0.05), and the T treatment showed the highest efficiency in Cu immobilization, with only 47.0% Cu loss compared to 73.5% in the control soil when assessed by sequential column leaching and plant uptake tests. In conclusion, this study provides an effective assessment method to evaluate the effect of amendments on Cu immobilization in soil, as well as providing feasible options to immobilize Cu using commercial amendments.
Collapse
Affiliation(s)
| | - Myung-Chae Jung
- Correspondence: ; Tel.: +82-2-3408-3004; Fax: +82-2-3408-3556
| |
Collapse
|
11
|
Bailon MX, Park M, Solis KL, Na Y, Chaudhary DK, Kim S, Hong Y. Reduction in mercury bioavailability to Asian clams (Corbicula fluminea) and changes in bacterial communities in sediments with activated carbon amendment. CHEMOSPHERE 2022; 291:132700. [PMID: 34710454 DOI: 10.1016/j.chemosphere.2021.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/23/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Activated carbon (AC) amendment is considered as one of the alternatives for managing and remediating mercury (Hg) contaminated sediments because of its high sorptive capacity and potential to immobilize the contaminant. For this study, the underlying mechanisms that control the reduction of Hg bioavailability in AC-amended estuarine sediments were investigated in box microcosm set-ups with 28-day Asian clam bioassay experiments. The application of diffusive gradients in thin film technique (DGT) revealed that the total mercury and methylmercury levels in sediment pore water decreased by 60%-75% in 1%-3% AC-amended sediments. This decrease subsequently led to a linear reduction in the Hg body burden in Asian clams, even at 1% sorbent mixing. These observations implied that AC amendment reduced the net flux of Hg into the pore water and overlying water, resulting in reduced Hg bioaccumulation in benthic organisms. The addition of AC to sediment also led to reduced dissolved organic carbon and several biogeochemical indicators (HS-, Mn, and Fe) in the pore water. Furthermore, the 16 S rRNA gene amplicon sequencing analysis revealed noticeable alterations in the microbial communities after AC amendment. The predominant phylum was Firmicutes in control sediment, Bacteroidetes in 1% AC-amended sediment, and Proteobacteria in both 2% and 3% AC-amended sediment samples. The genera-level analysis showed that the relative abundance of the Hg-methylators decreased as the level of AC amendment increased. These observations suggested that AC amendment decreased Hg bioavailability not only by physicochemical sorption but also by changing geochemical species and shifting the microbial community composition.
Collapse
Affiliation(s)
- Mark Xavier Bailon
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea; Department of Science and Technology, Philippine Science High School - Central Luzon Campus, Lily Hill, Clark Freeport Zone, Mabalacat City, Pampanga, 2010, Philippines
| | - Minoh Park
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Kurt Louis Solis
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Yeong Na
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Sungpyo Kim
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, South Korea.
| |
Collapse
|
12
|
Cervi EC, Hudson M, Rentschler A, Clark S, Brown SS, Burton GA. Evaluation of Capping Materials to Reduce Zinc Flux from Sediments in a Former Mining Pit Lake. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:193-200. [PMID: 34856002 DOI: 10.1002/etc.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/07/2021] [Accepted: 11/18/2021] [Indexed: 05/09/2023]
Abstract
Wilson Mine is a former vanadium mine site located in the Ouachita Mountains near Hot Springs, Arkansas. The site, which drains via two streams to Lake Catherine, has undergone extensive reclamation to significantly reduce groundwater and surface water contact with mine spoils. One of the streams passes through a former mine pit forming East Wilson Pond, and flux from pit lake sediments can result in elevated metal, that is, zinc (Zn), concentrations in overlying water. To mitigate potential risks, an investigation was conducted to evaluate the efficacy of capping materials for partitioning Zn-contaminated sediments from overlying water in East Wilson Pond. A 28-day laboratory study compared the effectiveness of capping materials including combinations of limestone, bentonite clay, and gravel for mitigating Zn flux, including under reasonable worst-case conditions (pH 5.5) encountered in the hypolimnion. Dissolved Zn was monitored over time in overlying water and in sediment porewaters within untreated controls and within the capping layer of treated systems. The use of limestone and/or bentonite clay improved buffering capacity compared to the noncapped control, and pH declined gradually but only modestly in the overlying water and porewater of all treated systems. Concentrations of Zn in overlying water of the noncapped control increased from approximately 30 to 100 µg/L during the study period, while concentrations in the overlying water and porewater of systems containing capping materials remained low (10-30 µg/L). The results demonstrated the effectiveness of the capping materials for neutralizing pH and reducing Zn flux, and a three-layer cap consisting of limestone (top) + bentonite clay (middle) + gravel (bottom) was determined to be most effective. These results were used to inform the selection of materials for the application of a cap to reduce Zn flux from the pit lake sediments. Environ Toxicol Chem 2022;41:193-200. © 2021 SETAC.
Collapse
Affiliation(s)
- Eduardo Cimino Cervi
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Michelle Hudson
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison Rentschler
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Sean Clark
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven S Brown
- Environmental Remediation and Restoration, The Dow Chemical Company, Midland, Michigan, USA
| | - G Allen Burton
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Effect of Commercial Amendments on Immobilization of Arsenic, Copper, and Zinc in Contaminated Soil: Comprehensive Assessing to Plant Uptake Combined with a Microbial Community Approach. MINERALS 2021. [DOI: 10.3390/min11101143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying the proper chemical and biological materials as soil amendments is a great concern because they replace soil properties and subsequently change the soil quality. Hence, this study was conducted to evaluate the effects of a diverse range of soil amendments including bentonite (B), talc (T), activated carbon (AC), and cornstarch (CS) in form of sole and composite on the immobilization and bioavailability of As, Cu, and Zn. The amendments were characterized by SEM, FT-IR, and XRF, and applied at 2% (w/w) in the experimental pots with an Asteraceae (i.e., lettuce) for 45 days to monitor plant growth parameters and soil microbial community. Soil pH from 6.1 ± 0.02 significantly increased in the amended soils with the maximum value found for TAC (7.4 ± 0.04). The results showed that soil amendments reduced easily in an exchangeable fractionation of As, Cu, and Zn with the maximum values found for BAC by 66.4%, AC by 84.2%, and T by 89.7% respectively. Adding B, T, AC, and their composites induced dry biomass of lettuce >40 wt.%, while CS and its composites did not affect the dry biomass of the plant. The average content of Cu and Zn in plant tissues decreased >45 wt.% in B, AC, and their composites amended soils; meanwhile, AC and its composites mitigated As uptake by >30 wt.% in lettuce. The results of Biolog Ecoplate showed that the amending soils improved the microbial community, especially for composites (e.g., TCS). The results demonstrated that adding composites amendments provided an efficient method for the immobilization of metals and metalloids, and also induced plant growth parameters and microbial community.
Collapse
|
14
|
Goñez-Rodríguez L, Johs A, Lowe KA, Carter KE, Löffler FE, Mayes MA. Evaluation of engineered sorbents for the sorption of mercury from contaminated bank soils: a column study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22651-22663. [PMID: 33420931 PMCID: PMC8113147 DOI: 10.1007/s11356-020-12073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
As a global environmental pollutant, mercury (Hg) threatens our water resources and presents a substantial risk to human health. The rate and extent of immobilization of Hg2+ (hereafter, Hg) on engineered sorbents (Thiol-SAMMS®, pine biochar, SediMite™, Organoclay™ PM-199, and quartz sand as a control) was evaluated using flow-through column experiments. The effectiveness of the sorbents was based on (1) the percentage of Hg removed in relation to the total amount of Hg passing the sorbent column, and (2) the rate of Hg uptake compared to the nonreactive tracer bromide (Br-). All sorbents removed Hg to a certain extent, but none of the sorbents removed all the Hg introduced to the columns. Thiol-SAMMS showed the highest mean percentage of Hg removed (87% ± 2.9%), followed by Organoclay PM-199 (71% ± 0.4%), pine biochar (57% ± 22.3%), SediMite (61% ± 0.8%), and the control quartz sand (11% ± 5.6%). Thiol-SAMMS was the only sorbent to exhibit retardation of Hg in comparison to the conservative tracer Br-. For the remaining sorbents, Br- along with low concentrations of Hg were eluted within the first 3 pore volumes, indicating limited retardation of Hg. Overall, removal of Hg by sorbents was substantial, suggesting that sorbents might be suitable for deployment in contaminated environments. High concentrations of DOM leaching from the soil columns likely influenced the speciation of Hg and inhibited sorption to the sorbents. Incomplete removal of Hg by any sorbent suggests that additional optimization is needed to increase efficiency.
Collapse
Affiliation(s)
- Leroy Goñez-Rodríguez
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Kenneth A Lowe
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Kimberly E Carter
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Melanie A Mayes
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
15
|
The Effect of Granular Activated Carbon and Biochar on the Availability of Cu and Zn to Hordeum sativum Distichum in Contaminated Soil. PLANTS 2021; 10:plants10050841. [PMID: 33922010 PMCID: PMC8143515 DOI: 10.3390/plants10050841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023]
Abstract
The presence of heavy metals in the soil could impose serious problems on soil-plant systems due to the accumulation of heavy metals in plants. Even vital elements such as Cu and Zn have a toxic effect in the case of excessive intake by living organisms. The present work aimed to investigate the content of loosely bound (exchangeable, complexed, and specifically sorbed) compounds of Cu and Zn and their availability to spring barley (Hordeum sativum distichum) in contaminated Haplic Chernozem soil under the conditions of a model experiment (five approximate permissible concentrations (APC) and 10 APC of metal). Changes in the bioavailability of the metals upon application of carbon sorbents were observed. An increase in loosely bound metal compounds has been shown under conditions of soil contamination with metals (up to 57% of the total content). The increase in the availability of Cu in the soil was mainly due to the formation of complexed metal forms with organic matter (up to 17%). The availability of Zn was found to be associated with an increase in exchangeable (up to 21%) and specifically sorbed compounds (up to 27%). Granular activated carbon (GAC) and biochar have high sorption properties. A decrease in the content of loosely bound compounds of metals was established, especially in the most mobile forms such as exchangeable and complexed forms. The introduction of sorbents into the soil opened up a new venue for binding heavy metals in situ, eventually leading to a decrease in their bioavailability. The inactivation of Cu and Zn in the soil upon the application of sorbents led to a decrease in metal absorption by spring barley. The highest efficiency of biochar application was established at a dose of 2.5% and 5% in soil contaminations of 5 APC and 10 APC of Cu or Zn. The efficiency of the use of sorbents was more influenced by the dose of application than by the type of sorbent. There was no significant difference between biochar and GAC. Stabilization and inactivation of metals may improve soil fertility and plant growth.
Collapse
|
16
|
Wang Y, Zhang Y, Ok YS, Jiang T, Liu P, Shu R, Wang D, Cao X, Zhong H. Biochar-impacted sulfur cycling affects methylmercury phytoavailability in soils under different redox conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124397. [PMID: 33183839 DOI: 10.1016/j.jhazmat.2020.124397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Recently, there has been increasing interest in reducing methylmercury (MeHg) phytoavailability using biochar, although the underlying mechanisms are not fully understood. By combining lab-scale batch incubation with pot and field validations, we demonstrate that biochar-impacted sulfur cycling in soils and MeHg-soil binding play key roles in controlling MeHg phytoavailability. (1) Under anoxic conditions, biochar-associated sulfate and biochar-facilitated microbial sulfate reduction enhanced the production of reduced inorganic sulfur species as acid-volatile sulfide (AVS) in soils by 122%, facilitating MeHg binding with soils and thus reducing MeHg phytoavailability. (2) In contrast, under oxic conditions, the reduced inorganic sulfur was oxidized (resulting in a 68-91% decrease in AVS), which released soil-bound MeHg and increased MeHg phytoavailability. The proposed mechanisms could explain the distinct effects of biochar amendment on MeHg bioaccumulation observed under anoxic (10-88% lower in rice grains) and oxic conditions (48-84% higher in wheat grains). Our results dispute the commonly held assumption that reduced MeHg phytoavailability under biochar amendment can be primarily attributed to MeHg-biochar binding. Therefore, the potential increased risk of MeHg in oxic soils following biochar amendment should be evaluated in more detail.
Collapse
Affiliation(s)
- Yongjie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, PR China
| | - Yue Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Tao Jiang
- College of Resources Environment, Southwest University, Chongqing 400716, PR China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Rd., Wuhan 430074, PR China
| | - Rui Shu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Dingyong Wang
- College of Resources Environment, Southwest University, Chongqing 400716, PR China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
17
|
Zhang Y, Bland GD, Yan J, Avellan A, Xu J, Wang Z, Hoelen TP, Lopez-Linares F, Hatakeyama ES, Matyjaszewski K, Tilton RD, Lowry GV. Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1231-1241. [PMID: 33404237 DOI: 10.1021/acs.est.0c05470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Technologies for removal of mercury from produced water and hydrocarbon phases are desired by oil and gas production facilities, oil refineries, and petrochemical plants. Herein, we synthesize and demonstrate the efficacy of an amphiphilic, thiol-abundant (11.8 wt % S, as thiol) polymer nanogel that can remove environmentally relevant mercury species from both produced water and the liquid hydrocarbon. The nanogel disperses in both aqueous and hydrocarbon phases. It has a high sorption affinity for dissolved Hg(II) complexes and Hg-dissolved organic matter complexes found in produced water and elemental (Hg0) and soluble Hg-alkyl thiol species found in hydrocarbons. X-ray absorption spectroscopy analysis indicates that the sorbed mercury is transformed to a surface-bound Hg(SR)2 species in both water and hydrocarbon regardless of its initial speciation. The nanogel had high affinity to native mercury species present in real produced water (>99.5% removal) and in natural gas condensate (>85% removal) samples, removing majority of the mercury species using only a 50 mg L-1 applied dose. This thiolated amphiphilic polymeric nanogel has significant potential to remove environmentally relevant mercury species from both water and hydrocarbon at low applied doses, outperforming reported sorbents like sulfur-impregnated activated carbons because of the mass of accessible thiol groups in the nanogel.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Garret D Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Astrid Avellan
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiang Xu
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas P Hoelen
- Chevron Energy Technology Company, San Ramon, California 94583, United States
| | | | - Evan S Hatakeyama
- Chevron Energy Technology Company, San Ramon, California 94583, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert D Tilton
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
18
|
Wang AO, Ptacek CJ, Mack EE, Blowes DW. Impact of multiple drying and rewetting events on biochar amendments for Hg stabilization in floodplain soil from South River, VA. CHEMOSPHERE 2021; 262:127794. [PMID: 32771706 DOI: 10.1016/j.chemosphere.2020.127794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Frequent drying and rewetting due to flooding/precipitation and drainage events in floodplains induces changes in biogeochemical conditions that may influence the effectiveness of in situ Hg stabilization using biochars as soil amendments. This study evaluated two selected biochars anaerobic digestate (DIG) and sulfurized hardwood (MOAK)) as potential amendment materials in moderately reduced floodplain soil under repeated drying and rewetting events using a modified humidity cell protocol. Enhanced release of filter-passing (0.45-μm) total Hg (THg) and MeHg was observed at early times. Elevated concentrations of 0.45-μm THg were associated with DOC and Mn in sediment control and biochar-amended systems. Elevated concentrations of MeHg were associated with Mn in the MOAK-amended system. Thereafter, decreases in 0.45-μm (up to 57%) and unfiltered THg (up to 93%) were observed. As wetting and drying events continued, decreases in pH and alkalinity as well as increases in SO42- (up to 796 mg L-1) and Ca (up to 215 mg L-1) were observed in the MOAK-amended systems with the microbial community shifted towards sulfur-oxidizing bacteria, indicating microbially-driven oxidation of MOAK. Although results of S K-edge X-ray absorption near edge structure (XANES) analysis suggest polysulfur is the predominant S phase in both MOAK- and DIG-amended systems, microbially-driven oxidation of DIG was not observed. Polysulfur in MOAK from the sulfurization process is more bioavailable to sulfur oxidizing communities than in DIG under the repeated drying and wetting conditions. Results of this study suggest biogeochemical conditions as well as biochar properties should be considered when planning full-scale field applications.
Collapse
Affiliation(s)
- Alana O Wang
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.
| | - E Erin Mack
- Formerly at E. I. Du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE, 19805, USA
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
19
|
Kanwar VS, Sharma A, Srivastav AL, Rani L. Phytoremediation of toxic metals present in soil and water environment: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44835-44860. [PMID: 32981020 DOI: 10.1007/s11356-020-10713-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals are one of the most hazardous inorganic contaminants of both water and soil environment composition. Normally, heavy metals are non-biodegradable in nature because of their long persistence in the environment. Trace amounts of heavy metal contamination may pose severe health problems in human beings after prolonged consumption. Many instrumental techniques such as atomic absorption spectrophotometry, inductively coupled plasma-mass spectrometry, X-ray fluorescence, neutron activation analysis, etc. have been developed to determine their concentration in water as well as in the soil up to ppm, ppb, or ppt levels. Recent advances in these techniques along with their respective advantages and limitations are being discussed in the present paper. Moreover, some possible remedial phytoremediation approaches (phytostimulation, phytoextraction, phyotovolatilization, rhizofiltration, phytostabilization) have been presented for the removal of the heavy metal contamination from the water and soil environments.
Collapse
Affiliation(s)
- Varinder Singh Kanwar
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India
| | - Ajay Sharma
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India.
| | - Lata Rani
- School of Basic Sciences, Chitkara University, Solan, Himachal Pradesh, 174103, India
| |
Collapse
|
20
|
Chen Y, Yu W, Zheng R, Li JY, Zhang L, Wang Q, Yin J, Jin L. Magnetic activated carbon (MAC) mitigates contaminant bioavailability in farm pond sediment and dietary risks in aquaculture products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139185. [PMID: 32485365 DOI: 10.1016/j.scitotenv.2020.139185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are among the contaminants of concern in aquaculture ponds due to their frequent detection and high bioaccumulation in aquatic products and hence high dietary risks to human beings. In this study, magnetic activated carbon (MAC) was added as a stabilization and removal adsorbent to native pond sediment with known contamination of HMs and PAHs to reduce the tissue residues and dietary risks of HMs and PAHs in a model aquaculture species (Venerupis philippinarum) in the course of a 28-day bioaccumulation experiment. Meanwhile, passive sampling techniques based on diffusive gradient in thin films (DGT) and polydimethylsiloxane (PDMS) were applied to sense the bioavailable fraction of HMs and PAHs in sediment during the stabilization process. The results showed that 3% dosage of MAC to sediment achieved the most cost-effective stabilization for HMs and PAHs. A remarkable decrease was observed with the tissue residues of HMs and PAHs in V. philippinarum (28-47% for HMs and ~76% for ∑PAHs), which was quantitatively linked to the decline in their bioavailable concentrations in sediment pore water (31-46% for HMs and ~76% for ∑PAHs). Consequently, the target hazard quotients (THQs) posed by HMs and incremental lifetime cancer risks (ILCRs) by PAHs in V. philippinarum were reduced by 38% and 46%, respectively. Along with the magnetic recovery of ~70% MAC from the sediment, HMs (4.8-13%) and PAHs (2-60%) can be effectively removed. We further established a multi-domain equilibrium sorption model that was able to predict the optimal amendment of MAC for quantitative mitigation of bioavailable PAHs in sediment pore water within a certain range of MAC dosage. Future studies are warranted to explore the applicability domain of MAC for in situ remediation in aquaculture ponds to ensure the quality of farming organisms or to serve other purposes in aquatic systems.
Collapse
Affiliation(s)
- Yiqin Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjian Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ruyi Zheng
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Li Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
21
|
Zhang W, Tan X, Gu Y, Liu S, Liu Y, Hu X, Li J, Zhou Y, Liu S, He Y. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. CHEMOSPHERE 2020; 250:126268. [PMID: 32234619 DOI: 10.1016/j.chemosphere.2020.126268] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
The effectiveness of rice waste biochars on heavy metal and metalloid abatement and detoxification was investigated using comprehensive studies based on As and Cd immobilization, bioaccumulation in tubifex, and microbial community changes in contaminated sediment. The remediation effects of biochars produced at different pyrolytic temperatures (400-700 °C) were evaluated. Bioaccumulation of heavy metal and metalloid in the tubifex tissue and change of indigenous microbial community under treatment of different biochars were assessed. Biochars produced at 700 °C exhibited greater effect on decreasing the concentrations of As and Cd in aqueous phase, and TCLP extractable and bioavailable metal(loid) in solid phase of sediment. The concentration of As and Cd in water phase decreased by 26%-89% and 22%-71% under the treatment of straw biochar, and decreased by 13%-92% and 5%-64% under the treatment of rice husk biochar, respectively. As and Cd contents in the tubifex tissue were positively correlated with their concentrations in aqueous phase. High-temperature biochars significantly reduced metal(loid) bioaccumulation in tubifex. The richness and biodiversity of microbial community were both greater in all biochars remediated sediment compared to non-treated sediment. These results indicated that rice waste biochars could effectively inhibit the bio-availability and toxicity of heavy metal and metalloid in sediment, and the higher-temperature biochar exhibited better performance.
Collapse
Affiliation(s)
- Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Shaobo Liu
- College of Architecture and Art, Central South University, Changsha, 410083, PR China.
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, PR China
| | - Jiang Li
- College of Architecture and Art, Central South University, Changsha, 410083, PR China
| | - Yahui Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Sijia Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuan He
- Center of Changsha Public Engineering Construction, Changsha, 410013, China
| |
Collapse
|
22
|
Ji X, Liu C, Zhang M, Yin Y, Pan G. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles. WATER RESEARCH 2020; 173:115563. [PMID: 32059129 DOI: 10.1016/j.watres.2020.115563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In mercury (Hg)-polluted eutrophic waters, algal blooms are likely to aggravate methylmercury (MeHg) production by causing intensified hypoxia and enriching organic matter at the sediment-water interface. The technology of interfacial oxygen (O2) nanobubbles is proven to alleviate hypoxia and may have potential to mitigate the risks of MeHg formation. In this study, incubation column experiments were performed using sediment and overlying water samples collected from the Baihua Reservoir (China), which is currently suffering from co-contamination of Hg and eutrophication. The results indicated that after the application of O2 nanobubbles, the %MeHg (ratio of MeHg to total Hg) in the overlying water and surface sediment decreased by up to 76% and 56% respectively. In addition, the MeHg concentrations decreased from 0.54 ± 0.15 to 0.17 ± 0.01 ng L-1 in the overlying water and from 56.61 ± 9.23 to 25.48 ± 4.08 ng g-1 in the surface sediment. The decline could be attributed to the alleviation of anoxia and the decrease of labile organic matter and bioavailable Hg. In addition, hgcA gene abundances in the overlying water and surface sediment decreased by up to 69% and 44% after the addition of O2 nanobubbles, as is consistent with MeHg occurrence in such areas. Accordingly, this work proposed a promising strategy of using interfacial oxygen nanobubbles to alleviate the potentially enhanced MeHg production during algal bloom outbreaks in Hg-polluted eutrophic waters.
Collapse
Affiliation(s)
- Xiaonan Ji
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chengbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Meiyi Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Gang Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Beijing Advanced Science and Innovation Center, Chinese Academy of Sciences, Beijing, 101407, PR China; Center of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK.
| |
Collapse
|
23
|
Wang AO, Ptacek CJ, Blowes DW, Finfrock YZ, Paktunc D, Mack EE. Use of hardwood and sulfurized-hardwood biochars as amendments to floodplain soil from South River, VA, USA: Impacts of drying-rewetting on Hg removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136018. [PMID: 32050399 DOI: 10.1016/j.scitotenv.2019.136018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/24/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Periodic flooding and drying conditions in floodplains affect the mobility and bioavailability of Hg in aquatic sediments and surrounding soils. Sulfurized materials have been recently proposed as Hg sorbents due to their high affinity to bind Hg, while sulfurizing organic matter may enhance methylmercury (MeHg) production, offsetting the beneficial aspects of these materials. This study evaluated hardwood biochar (OAK) and sulfurized-hardwood biochar (MOAK) as soil amendments for controlling Hg release in a contaminated floodplain soil under conditions representative of periodic flooding and drying in microcosm experiments in three stages: (1) wet biochar amended-systems with river water in an anoxic environment up to 200 d; (2) dry selected reaction vessels in an oxic environment for 90 d; (3) rewet such vessels with river water in an anoxic environment for 90 d. In Stage 1, greater Hg removal (17-98% for unfiltered total Hg (THg) and 47-99% for 0.45-μm THg) and lower MeHg concentrations (<20 ng L-1) were observed in MOAK-amended systems (10%MOAKs). In Stage 3, release of Hg in 10%MOAKs was eight-fold lower than in soil controls (SedCTRs), while increases in aqueous (up to 21 ng L-1) and solid (up to 88 ng g-1) MeHg concentrations were observed. The increases in MeHg corresponded to elevated aqueous concentrations of Mn, Fe, SO42-, and HS- in Stage 3. Results of S K-edge X-ray absorption near edge structure (XANES) analysis suggest oxidation of S in Stage 2 and formation of polysulfur in Stage 3. Results of pyrosequencing analysis indicate sulfate-reducing bacteria (SRB) became abundant in Stage 3 in 10%MOAKs. The shifts in biogeochemical conditions in 10%MOAKs in Stage 3 may increase the bioavailability of Hg to methylating bacteria. The results suggest limited impacts on Hg removal during drying and rewetting, while changes in biogeochemical conditions may affect MeHg production in sulfurized biochar-amended systems.
Collapse
Affiliation(s)
- Alana O Wang
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada.
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Y Zou Finfrock
- CLS@APS, Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA; Science Division, Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Dogan Paktunc
- CanmetMINING, Natural Resource Canada, Ottawa, ON K1A 0G1, Canada
| | - E Erin Mack
- Formerly E. I. du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE 19805, USA
| |
Collapse
|
24
|
Ting Y, Ch'ng BL, Chen C, Ou MY, Cheng YH, Hsu CJ, Hsi HC. A simulation study of mercury immobilization in estuary sediment microcosm by activated carbon/clay-based thin-layer capping under artificial flow and turbation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135068. [PMID: 31780157 DOI: 10.1016/j.scitotenv.2019.135068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
In-situ thin layer capping (TLC) is a promising sediment remediation approach that has been shown effective in immobilizing contaminants from releasing to natural biotas and human beings. This research intended to comprehend the effectiveness of Hg immobilization by TLC under turbation condition via a microcosm study. Three TLC caps with different activated carbon (AC)/clay combinations were applied to actual Hg-contaminated estuary sediment (76.0 ± 2.6 mg-Hg/kg). The caps with AC (3%) + bentonite (3%) and AC (3%) + kaolin (3%) were efficient in reducing both total mercury (THg) and methylmercury (MeHg) concentrations in overlying water by 75-95% and 64-98%, respectively, in the later stage of 75-d operation. In contrast, the AC (3%) + montmorillonite (3%) cap did not show a significant reduction on THg and MeHg in the overlying water, probably due to the unstable, suspension property of montmorillonite. The stable caps showed higher resistance to Hg breakthrough under occasional turbation events; however, a labile cap appeared to have dramatic Hg breakthrough when turbation occurred. It is therefore essential to note that with unstable caps, turbation events may result in unwanted secondary resuspension of contaminants.
Collapse
Affiliation(s)
- Yu Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Boon-Lek Ch'ng
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Chi Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Meng-Yuan Ou
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Yung-Hua Cheng
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Che-Jung Hsu
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
25
|
Eckley CS, Gilmour CC, Janssen S, Luxton TP, Randall PM, Whalin L, Austin C. The assessment and remediation of mercury contaminated sites: A review of current approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136031. [PMID: 31869604 PMCID: PMC6980986 DOI: 10.1016/j.scitotenv.2019.136031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 04/13/2023]
Abstract
Remediation of mercury (Hg) contaminated sites has long relied on traditional approaches, such as removal and containment/capping. Here we review contemporary practices in the assessment and remediation of industrial-scale Hg contaminated sites and discuss recent advances. Significant improvements have been made in site assessment, including the use of XRF to rapidly identify the spatial extent of contamination, Hg stable isotope fractionation to identify sources and transformation processes, and solid-phase characterization (XAFS) to evaluate Hg forms. The understanding of Hg bioavailability for methylation has been improved by methods such as sequential chemical extractions and porewater measurements, including the use of diffuse gradient in thin-film (DGT) samplers. These approaches have shown varying success in identifying bioavailable Hg fractions and further study and field applications are needed. The downstream accumulation of methylmercury (MeHg) in biota is a concern at many contaminated sites. Identifying the variables limiting/controlling MeHg production-such as bioavailable inorganic Hg, organic carbon, and/or terminal electron acceptors (e.g. sulfate, iron) is critical. Mercury can be released from contaminated sites to the air and water, both of which are influenced by meteorological and hydrological conditions. Mercury mobilized from contaminated sites is predominantly bound to particles, highly correlated with total sediment solids (TSS), and elevated during stormflow. Remediation techniques to address Hg contamination can include the removal or containment of Hg contaminated materials, the application of amendments to reduce mobility and bioavailability, landscape/waterbody manipulations to reduce MeHg production, and food web manipulations through stocking or extirpation to reduce MeHg accumulated in desired species. These approaches often rely on knowledge of the Hg forms/speciation at the site, and utilize physical, chemical, thermal and biological methods to achieve remediation goals. Overall, the complexity of Hg cycling allows many different opportunities to reduce/mitigate impacts, which creates flexibility in determining suitable and logistically feasible remedies.
Collapse
Affiliation(s)
- Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101, USA.
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037-0028, USA.
| | - Sarah Janssen
- USGS Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - Todd P Luxton
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Paul M Randall
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Lindsay Whalin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| | - Carrie Austin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| |
Collapse
|
26
|
Wang J, Shaheen SM, Anderson CWN, Xing Y, Liu S, Xia J, Feng X, Rinklebe J. Nanoactivated Carbon Reduces Mercury Mobility and Uptake by Oryza sativa L: Mechanistic Investigation Using Spectroscopic and Microscopic Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2698-2706. [PMID: 32045518 DOI: 10.1021/acs.est.9b05685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) contamination of paddy field poses a health risk to rice consumers, and its remediation is a subject of global scientific attention. In recent years focus has been given to in situ techniques which reduce the risk of Hg entering the food chain. Here, we investigate the use of nanoactivated carbon (NAC) as a soil amendment to minimize Hg uptake by rice plants. Application of 1-3% NAC to soil (by weight) reduced Hg concentration in the pore water (by 61-76%) and its bioaccumulation in the tissues of rice plants (by 15-63%), relative to the corresponding control. Specifically, NAC reduced the Hg concentration of polished rice by 47-63% compared to the control, to a level that was 29-49% lower than the food safety value (20 ng g-1) defined by the Chinese government. The NAC induced a change in Hg binding from organic matter to nano-HgS in the soil as a function of soil amendment. This Hg speciation transformation might be coupled to the reduction of sulfoxide to reduced sulfur species (S0) by NAC. The NAC amendment may be a practical and effective solution to mitigate the risk of Hg transferring from contaminated soil to rice grains at locations around the world.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, P. R. China
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Kingdom of Saudi Arabia
- University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Christopher W N Anderson
- Environmental Sciences, School of Agriculture and Environment, Massey University, 4442 Palmerston North, New Zealand
| | - Ying Xing
- School of Chemistry and Materials Science, Guizhou Normal University, 550001 Guiyang, P. R. China
| | - Shirong Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, P. R. China
| | - Jicheng Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, P. R. China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
- University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul 05006, Republic of Korea
| |
Collapse
|
27
|
Sanders JP, McBurney A, Gilmour CC, Schwartz GE, Washburn S, Kane Driscoll SB, Brown SS, Ghosh U. Development of a Novel Equilibrium Passive Sampling Device for Methylmercury in Sediment and Soil Porewaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:323-334. [PMID: 31692059 PMCID: PMC9188764 DOI: 10.1002/etc.4631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
We explored the concept of equilibrium passive sampling for methylmercury (MeHg) using the strategy developed for hydrophobic organic chemicals. Passive sampling should allow prediction of the concentration of the chemically labile fraction of MeHg in sediment porewaters based on equilibrium partitioning into the sampler, without modeling diffusion rates through the sampler material. Our goals were to identify sampler materials with the potential to mimic MeHg partitioning into animals and sediments and provide reversible sorption in a time frame appropriate for in situ samplers. Candidate materials tested included a range of polymers embedded with suitable sorbents for MeHg. The most promising were activated carbon (AC) embedded in agarose, thiol-self-assembled monolayers on mesoporous supports embedded in agarose, and cysteine-functionalized polyethylene terephthalate, which yielded log sampler-water partition coefficients of 2.8 to 5 for MeHgOH and MeHg complexed with dissolved organic matter (Suwannee River humic acid). Sampler equilibration time in sediments was approximately 1 to 2 wk. Investigation of the MeHg accumulation mechanism by AC embedded in agarose suggested that sampling was kinetically influenced by MeHg interactions with AC particles and not limited by diffusion through the gel for this material. Also, AC exhibited relatively rapid desorption of Hg and MeHg, indicating that this sorbent is capable of reversible, equilibrium measurements. In sediment:water microcosms, porewater concentrations made with isotherm-calibrated passive samplers agreed within a factor of 2 (unamended sediment) or 4 (AC-amended sediment) with directly measured concentrations. The present study demonstrates a potential new approach to passive sampling of MeHg. Environ Toxicol Chem 2020;39:323-334. © 2019 SETAC.
Collapse
Affiliation(s)
- James P Sanders
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Alyssa McBurney
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | | | - Grace E Schwartz
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Spencer Washburn
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | | | | | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Ji X, Liu C, Pan G. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109888. [PMID: 31706242 DOI: 10.1016/j.ecoenv.2019.109888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Eutrophication can induce hypoxia/anoxia and rich organic matter at the sediment-water interface in surface waters. When eutrophic waters are impacted with mercury (Hg) pollution, methylmercury (MeHg) production ability (MPA) of surface sediment would increase and more MeHg might be produced. To tackle this risk, this study firstly collected samples of surface sediment and overlying water from a typical eutrophic lake-Taihu Lake. Then from a sediment-water simulation system, we demonstrated that eutrophic waters were able to methylate Hg spontaneously, and that sediment is the major Hg sink in the system. After the addition of HgCl2 solution (approximately 1 mg L-1 in the slurry), MeHg concentrations in the sediment increased by 11.7 times after 48 h. The subsequent column experiments proved that O2 nanobubbles could significantly decrease the MPA of surface sediment, by up to 48%. Furthermore, we found that O2 nanobubbles could remediate anoxia mainly by increasing dissolved oxygen (from 0 to 2.1 mg L-1), oxidation-reduction potentials (by 37% on average), and sulfate (by 31% on average) in the overlying water. In addition, O2 nanobubbles could also help decrease organic matter concentration, as was revealed by the decline of dissolved organic carbon in the overlying water (by up to 57%) and total organic carbon in surface sediment (by up to 37%). The remediation of anoxia and reduction of organic matter could contribute to the decrease of hgcA gene abundance (by up to 86%), and thus result in the reduction of MPA after the addition of O2 nanobubbles. This study revealed the risk of MeHg production in case Hg pollution occurs in eutrophic waters and proposed a feasible solution for MeHg remediation.
Collapse
Affiliation(s)
- Xiaonan Ji
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chengbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Gang Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Beijing Advanced Science and Innovation Center, Chinese Academy of Sciences, Beijing, 101407, PR China; Center of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK.
| |
Collapse
|
29
|
Pal D, Maiti SK. An approach to counter sediment toxicity by immobilization of heavy metals using waste fish scale derived biosorbent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109833. [PMID: 31654862 DOI: 10.1016/j.ecoenv.2019.109833] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The utilization of fish scale-derived biosorbent for immobilization of cadmium and lead in polluted sediment was thoroughly investigated in this study. Fish scale (FS) biomass was chemically and physically treated. The FS biomass treated with acid (0.1 M HCl), alkali (0.1 M NaOH) and hydrothermally, showed minimum removal capacity. While, FS treated hydrothermally along with acid showed the maximum removal efficiency of metal ions. We used different dosages (0%, 2.5%, 5%, 10%, 15%, and 20%) of FS biosorbent in the sediment. Isotherm modelling showed that this biosorbent can hold 89.30 and 92.65 mg/g of Cd and Pb on its surface. This indicated that prepared FS biosorbent has enough potential to adsorb Cd and Pb ions on its surface from the sediment. Compared to the control, sediment treated with 20% FS showed the highest immobilization capacities for Pb (92.9%), and Cd (87.9%). The values of partition coefficient (Kd) increased by 83% for Pb and 78% for Cd, which specified that availability of free ions of Pb and Cd in the aquatic system was successfully decreased. The sediment treated with 20% FS biosorbent showed 70-80% immobilization of Cd and Pb from mobile and exchangeable fractions that ultimately decreased the bioavailability of metal ions to the biota. Inclusively, compared to control, sediment served with 20% FS biosorbent showed higher level of Pb and Cd ions in residual fraction near by 80%. The prepared FS biosorbent had shown its potential in immobilizing the Cd and Pb ions from sediment as a cheap and ecologically feasible method for amendment.
Collapse
Affiliation(s)
- Divya Pal
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| | - Subodh Kumar Maiti
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| |
Collapse
|
30
|
Johs A, Eller VA, Mehlhorn TL, Brooks SC, Harper DP, Mayes MA, Pierce EM, Peterson MJ. Dissolved organic matter reduces the effectiveness of sorbents for mercury removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:410-416. [PMID: 31299573 DOI: 10.1016/j.scitotenv.2019.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) contamination of soils and sediments impacts numerous environments worldwide and constitutes a challenging remediation problem. In this study, we evaluate the impact of dissolved organic matter (DOM) on the effectiveness of eight sorbent materials considered for Hg remediation in soils and sediments. The materials include both engineered and unmodified materials based on carbon, clays, mesoporous silica and a copper alloy. Initially, we investigated the kinetics of Hg(II) complexation with DOM for a series of Hg:DOM ratios. Steady-state Hg-DOM complexation occurred within 48 to 120 h, taking longer time at higher Hg:DOC (dissolved organic carbon) molar ratios. In subsequent equilibrium experiments, Hg(II) was equilibrated with DOM at a defined Hg:DOC molar ratio (2.4 · 10-6) for 170 h and used in batch experiments to determine the effect of DOM on Hg partition coefficients and sorption isotherms by comparing Hg(II) and Hg-DOM. Hg sorption capacities of all sorbents were severely limited in the presence of DOM as a competing ligand. Thiol-SAMMS®, SediMite™ and pine biochar were most effective in reducing Hg concentrations. While pine biochar and lignin-derived carbon processed at high temperatures released negligible amounts of anions into solution, leaching of sulfate and chloride was observed for most engineered sorbent materials. Sulfate may stimulate microbial communities harboring sulfate reducing bacteria, which are considered one of the primary drivers of microbial mercury methylation in the environment. The results highlight potential challenges arising from the application of sorbents for Hg remediation in the field.
Collapse
Affiliation(s)
- Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA.
| | - Virginia A Eller
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Tonia L Mehlhorn
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Scott C Brooks
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - David P Harper
- Center for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996, USA
| | - Melanie A Mayes
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Mark J Peterson
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| |
Collapse
|
31
|
Wang X, Gu Y, Tan X, Liu Y, Zhou Y, Hu X, Cai X, Xu W, Zhang C, Liu S. Functionalized Biochar/Clay Composites for Reducing the Bioavailable Fraction of Arsenic and Cadmium in River Sediment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2337-2347. [PMID: 31343777 DOI: 10.1002/etc.4542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/09/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Biochar has frequently been used for the treatment of heavy metal pollution in water and soil; its effect on contaminated sediments requires further research. To improve the ability of biochar to immobilize heavy metals in sediment, we prepared a functionalized biochar/attapulgite composite by pyrolysis of the clay attapulgite and zinc chloride-pretreated rice straw biomass. Compared with the original biochar, the biochar/attapulgite composite had a large increase in specific surface area, pore volume, oxygen-containing functional groups, and cation exchange capacity. Biochar effectively improved the dispersibility of attapulgite as a matrix. The results showed that the biochar/attapulgite composite effectively reduced the bioavailable fraction of arsenic (As) and cadmium (Cd) in river sediment, which was a great improvement compared with the raw biochar. After the sediment was treated with different biochar/attapulgite composites, the concentrations of As and Cd in the overlying water and the porewater, and the content of acid-extractable and toxicity characteristic leaching procedure (TCLP)-extractable As and Cd in the solid phase of the sediment decreased significantly. Both zinc chloride activation and attapulgite improved As and Cd immobilization in sediment when we used the biochar/attapulgite composite. The results suggest that biochar/attapulgite composite can be used as an efficient in situ sorbent amendment to improve the heavy metal immobilization ability of the sediment. Environ Toxicol Chem 2019;38:2337-2347. © 2019 SETAC.
Collapse
Affiliation(s)
- Xiaohua Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
- College of Architecture and Urban Planning, Hunan City University, Yiyang, People's Republic of China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Yahui Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, People's Republic of China
| | - XiaoXi Cai
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
- College of Art and Design, Hunan First Normal University, Changsha, People's Republic of China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Shaoheng Liu
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde, Hunan, People's Republic of China
| |
Collapse
|
32
|
Muller KA, Brandt CC, Mathews TJ, Brooks SC. Methylmercury sorption onto engineered materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:481-488. [PMID: 31170637 DOI: 10.1016/j.jenvman.2019.05.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Four commercially available sorbents (BioChar (BC), ThiolSAMMS® (TS), SediMite (SM), and Organoclay™ PM-199 (OC-199)) were tested for their ability to sorb methylmercury (MeHg) and MeHg complexed with dissolved organic matter (DOM). Testing sorption behavior with DOM is more representative of the environmental conditions and mercury speciation expected during in-situ remediation efforts. Isotherms were fit using a robust, iterative re-weighting scheme. This fitting approach improves upon the traditionally used indirect sorption method by removing the dependence between aqueous and solid phase concentrations in isotherm fitting. Developed isotherms show that without DOM, BC, TS, and SM adsorbed similar amounts of MeHg while OC-199 sorbed substantially less MeHg. Below an equilibrium concentration of 5.6 ng L-1 BC was the best performing sorbent, between 5.6 and 20.9 ng L-1 SM sorbed the most MeHg, and above an equilibrium concentration of 20.9 ng L-1 TS outperformed the other sorbents. BC and OC-199 showed indication of MeHg sorption saturation over the tested concentration range of 3.5-680 ng L-1. With DOM, SM outperformed the other sorbents at equilibrium concentrations less than 0.98 ng L-1 and TS was the superior MeHg:DOM sorbent at higher concentrations. MeHg:DOM sorption was controlled by DOM-sorbent interactions. DOM decreased MeHg sorption onto BC and SM whereas TS exhibited similar sorption with and without DOM. OC-199 had slightly higher MeHg uptake with DOM. East Fork Poplar Creek (EFPC), an industrially Hg contaminated site, was used as a case study example to build a relationship between aqueous and fish MeHg concentrations and subsequently compare the cost of sorbent materials required to meet regulatory objectives. For this case study, SM provided the most cost-effective sorbent option for in-situ remediation efforts to reduce aqueous MeHg concentrations.
Collapse
Affiliation(s)
- Katherine A Muller
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, United States
| | - Craig C Brandt
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, United States
| | - Teresa J Mathews
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, United States
| | - Scott C Brooks
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, United States.
| |
Collapse
|
33
|
Zhang C, Shan B, Jiang S, Tang W. Effects of the pyrolysis temperature on the biotoxicity of Phyllostachys pubescens biochar in the aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:48-57. [PMID: 31121452 DOI: 10.1016/j.jhazmat.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/12/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
The use of biochar as an adsorbent for environmental remediation has been attracting increasing interest. However, biochar can contain contaminants such as polycyclic aromatic hydrocarbons (PAHs) and metals (e.g., Cu, Pb, and Zn). We prepared Phyllostachys pubescens biochars at temperatures between 400 and 700 °C. The biochars were used in bioassays using Vibrio qinghaiensis Q67, Daphnia magna, Pseudokirchneriella subcapitata, and Limnodrilus hoffmeisteri to characterize the toxicities and effects of the biochars. The PAH, Cu, Pb, and Zn contents of the biochars were 8.59-14.67, 1.82-3.26, 1.17-3.53, and 8.76-16.47 mg/kg, respectively. The biochars gave maximum P. subcapitata, D. magna, and V. qinghaiensis Q67 inhibition rates of 6.47%, 6.70%, and 29.87%, respectively. The biochars produced at high pyrolysis temperatures (≥600 °C) had low acute biotoxicities to L. hoffmeisteri and barely affected L. hoffmeisteri biomass, reproduction, and lipid content. The biochars may therefore be suitable for sediment remediation.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shixin Jiang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei, 056038, PR China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
34
|
Reinfelder JR, Janssen SE. Tracking legacy mercury in the Hackensack River estuary using mercury stable isotopes. JOURNAL OF HAZARDOUS MATERIALS 2019; 375:121-129. [PMID: 31054529 DOI: 10.1016/j.jhazmat.2019.04.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 04/05/2019] [Accepted: 04/21/2019] [Indexed: 05/24/2023]
Abstract
Spatial redistribution of legacy mercury (Hg) contamination in the Hackensack River estuary (New Jersey, USA) was evaluated using mercury stable isotopes. Total Hg varied from 0.06 to 3.8 μg g-1 in sediment from the tidal Hackensack River and from 15 to 154 μg g-1 near historically contaminated sites in upper Berry's Creek, a tributary of the Hackensack River. δ202Hg values for total Hg from Berry's Creek and Hackensack River estuaries varied over a fairly narrow range (-0.44‰ to -0.21‰), but were highest for sediment from upper Berry's Creek. Isotope mixing plots show that residual legacy mercury from upper Berry's Creek is partially diluted by a low concentration and low δ202Hg pool of mercury associated with low organic matter content sediments similar to those in Newark Bay. Based on an isotope mixing model, we estimate that upper Berry's Creek contributes 21%-82% of the mercury in sediments in the Hackensack River estuary and its tidal tributaries, including upstream marsh habitats far from the primary source. Our results show that mercury stable isotopes can be used to track the redistribution of mercury in tidal ecosystems and highlight the potentially large areas which may be affected by legacy mercury contamination in estuaries.
Collapse
Affiliation(s)
- John R Reinfelder
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 United States.
| | - Sarah E Janssen
- United States Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562 United States
| |
Collapse
|
35
|
Li S, Wang M, Zhao Z, Li X, Chen S. Use of soil amendments to reduce cadmium accumulation in rice by changing Cd distribution in soil aggregates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20929-20938. [PMID: 31115810 DOI: 10.1007/s11356-019-05431-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The objectives of this study were to investigate the response of cadmium (Cd) distribution and stability in soil aggregates as affected by applying different amendments and to understand the relationship between changes in soil aggregates and alleviation of Cd phytotoxicity to rice after amendment application. In the present study, rice (Oryza sativa L.) was cultivated on a Cd-polluted soil. Five soil amendments were applied, which are as follows: rice husk biochar (BC), Fe-added rice husk biochar (Fe-BC), attapulgite-based mixture (AM), zeolite-based mixture (ZM), and cow manure-based mixture (MM). The effect on Cd redistribution in soil and Cd accumulation in rice plant was evaluated. The results showed that the five amendments applied at the rate of 3% (w/w) significantly increased soil pH and decreased Cd mobility in soil and Cd accumulation in rice plants. The reduction rate of Cd content in rice grains ranged from 41 to 62% after amendment application. The remediation efficiency of the different amendments for decreasing Cd accumulation in rice tissues followed the order of Fe-BC > MM > BC > ZM > AM. Adding amendments promoted the formation of large aggregates (0.2-2.0 mm) with more mass loading of Cd and enhanced aggregate stability. Comparatively, Fe-BC was more effective than others for remediation of acid Cd-polluted paddy soil, as a significantly decreased Cd concentration in rice grain after its application was observed. Structural equation modeling (SEM) analysis revealed that DTPA-extractable Cd in small aggregates was the main factor affecting Cd accumulation in rice grain; soil pH directly affected aggregate stability; and aggregate stability was closely related to Cd availability in different size soil particles. These results indicated that the applied amendments were effective in reducing Cd bioavailability, most likely through raising the soil pH, improving aggregate stability, and re-distributing Cd from smaller soil aggregates to larger ones.
Collapse
Affiliation(s)
- Shanshan Li
- School of Land Science and Technology, China University of Geosciences, 100083, Beijing, People's Republic of China
| | - Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China.
| | - Zhongqiu Zhao
- School of Land Science and Technology, China University of Geosciences, 100083, Beijing, People's Republic of China
| | - Xiaoyue Li
- School of Land Science and Technology, China University of Geosciences, 100083, Beijing, People's Republic of China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China.
| |
Collapse
|
36
|
Gai K, Avellan A, Hoelen TP, Lopez-Linares F, Hatakeyama ES, Lowry GV. Impact of mercury speciation on its removal from water by activated carbon and organoclay. WATER RESEARCH 2019; 157:600-609. [PMID: 31003075 DOI: 10.1016/j.watres.2019.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 05/21/2023]
Abstract
Mercury (Hg) speciation can affect its removal efficiency by adsorbents. This study assessed the removal of dissolved inorganic Hg(II) species (Hg(II)*), β-HgS nanoparticles (HgS NP), and Hg complexed with dissolved organic matter (Hg-DOM) by three sorbents: activated carbon (AC), sulfur-impregnated activated carbon (SAC), and organoclay (OC). The effect of ionic composition, solution ionic strength, and natural organic matter (NOM) concentration on the removal of each Hg species was also evaluated. The three adsorbents were all effective in removing Hg(II)*, Hg-DOM, and HgS NPs. Increasing ionic strength decreased the removal of Hg(II)* species due to the formation of ionic Hg species with lower affinity for the sorbents. Added NOM decreased the removal of Hg(II)* and HgS NPs by all sorbents with the OC sorbent being most susceptible to NOM fouling. On a surface area-normalized basis, the OC removed all types of Hg species better than the AC and SAC samples. Moreover, adsorbed Hg-DOM transformed to a β-HgS phase on the OC, but not for AC and SAC. These studies indicate that both Hg speciation and the water quality parameters need to be considered when designing sorbent-based emission controls to meet Hg removal targets.
Collapse
Affiliation(s)
- Ke Gai
- Carnegie Mellon University, Pittsburgh, PA, 15213, United States; Center for Environmental Implications of Nanotechnology, Pittsburgh, PA, 15213, United States
| | - Astrid Avellan
- Carnegie Mellon University, Pittsburgh, PA, 15213, United States; Center for Environmental Implications of Nanotechnology, Pittsburgh, PA, 15213, United States
| | - Thomas P Hoelen
- Chevron Energy Technology Company, Richmond, CA, 94802, United States
| | | | - Evan S Hatakeyama
- Chevron Energy Technology Company, Richmond, CA, 94802, United States
| | - Gregory V Lowry
- Carnegie Mellon University, Pittsburgh, PA, 15213, United States; Center for Environmental Implications of Nanotechnology, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
37
|
Wang J, Shaheen SM, Swertz AC, Rennert T, Feng X, Rinklebe J. Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:687-693. [PMID: 30889465 DOI: 10.1016/j.jhazmat.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/11/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
We investigated effects of the application of a sulfur-modified organoclay (SMOC) at doses of 1%, 3% and 5% (w/w) on the geochemical fractionation of mercury (Hg) and its accumulation by pea and corn in a polluted floodplain soil. Soil Hg was fractionated sequentially to five operationally defined fractions as follows: F1: water soluble Hg; F2: "human stomach acid" soluble Hg; F3: organo-chelated Hg; F4: elemental Hg; and F5: Hg-sulfur-compounds/residual Hg. The high dosage of SMOC caused a decrease of Hg in F3 (18%) and F5 (36-63%), and 6.7 fold increase of Hg in the mobile fraction (MF = F1+F2) as compared to control soil. The transformation of Hg from F5 to the MF in SMOC-treated soil might be due to the associated decrease of soil pH. Pea accumulated more Hg than corn. Mercury contents were larger in roots than in shoots of both plants and increased significantly by a factor of up to 11 by SMOC addition. The potential transformation of Hg from the hardly soluble to the MF by SMOC addition and the associated increase of Hg accumulation by plants imply a great potential of the SMOC for enhancing Hg phytoremediation.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia.
| | - Ann-Christin Swertz
- University of Wuppertal, Faculty of Mechanical Engineering and Safety Engineering, Department of Safety Technology and Environmental Protection, Rainer-Gruenter-Straße, 42119 Wuppertal, Germany.
| | - Thilo Rennert
- Department of Soil Chemistry and Pedology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Str. 27, 70599 Stuttgart, Germany.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Iron Sulfide Minerals as Potential Active Capping Materials for Mercury-Contaminated Sediment Remediation: A Minireview. SUSTAINABILITY 2019. [DOI: 10.3390/su11061747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several innovative approaches have been proposed in recent years to remediate contaminated sediment to reduce human health and environmental risk. One of the challenges of sediment remediation stems from its unfeasible high cost, especially when ex situ strategies are selected. Therefore, in situ methods such as active capping have been emerging as possible options for solving sediment problems. Active capping methods have been extensively tested in field-scale sediment remediation for organic pollutants (e.g., PCBs, PAHs, DDT) contamination with good sequestration efficiency; however, these methods have not been widely tested for control of heavy metal pollutants, such as mercury (Hg). In this review, the potentials of using iron sulfide minerals to sequestrate Hg were discussed. Iron sulfide minerals are common in the natural environment and have shown good effectiveness in sequestrating Hg by adsorption or precipitation. Iron sulfides can also be synthesized in a laboratory and modified to enhance their sequestration ability for Hg. Some of the potential advantages of iron sulfides are pointed out here. Additional tests to understand the possibility of applying iron sulfides as active caps to remediate complicated environment systems should be conducted.
Collapse
|
39
|
Schwartz GE, Sanders JP, McBurney AM, Brown SS, Ghosh U, Gilmour CC. Impact of dissolved organic matter on mercury and methylmercury sorption to activated carbon in soils: implications for remediation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:485-496. [PMID: 30724289 DOI: 10.1039/c8em00469b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Activated carbon (AC) amendments have shown promise in reducing inorganic mercury (Hg(ii) complexes, "Hg") and methylmercury (MeHg) risk in contaminated soils. However, the effectiveness of AC in Hg and MeHg immobilization has varied among studies, suggesting that site biogeochemistry might dictate efficacy. In this study, we examined the effect of dissolved organic matter (DOM) on MeHg and Hg sorption to AC. We evaluated the impact of Suwannee River Humic Acid (SRHA) on sorption to AC directly using an isotherm approach and in a soil/AC mixture using slurry microcosms. Aqueous sorption coefficients to AC (log KAC) for Hg-SRHA and MeHg-SRHA complexes were one to two orders of magnitude lower (Hg-SRHA = 4.53, MeHgSRHA = 4.35) than those for chloride complexes (HgCl2 = 6.55, MeHgCl = 4.90) and more closely resembled the log KAC of SRHA (3.64). In anoxic, sulfidic soil slurries, the KAC for sulfide species appeared stronger than for chloride or SRHA species for both Hg and MeHg. AC significantly reduced porewater concentrations of both ambient MeHg and a fresh Me199Hg spike, and the addition of up to 60 mg L-1 SRHA did not reduce sorption to AC. The AC also reduced ambient Hg and 201Hg porewater concentrations, but as SRHA concentration increased, the magnitude of solid phase sorption decreased. Speciation modeling revealed that SRHA may have impacted Hg distribution to the solid phase by reducing HgS precipitation. This study highlights the need for site-specific evaluation of AC efficacy and the value in developing biogeochemical models of AC performance for Hg control.
Collapse
Affiliation(s)
- Grace E Schwartz
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Wang AO, Ptacek CJ, Blowes DW, Gibson BD, Landis RC, Dyer JA, Ma J. Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:549-561. [PMID: 30368184 DOI: 10.1016/j.scitotenv.2018.10.213] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 05/09/2023]
Abstract
Hardwood biochar (pyrolyzed at 700 °C), a potential candidate for Hg removal, has been proposed for use as reactive capping mats along groundwater discharge zones or riverbanks to control release of Hg from contaminated riverbank sediments. Frequent flooding and drainage in fluvial settings can influence the effectiveness of remediation systems in contaminated riverbank sediments and floodplain soils. This study evaluated the effectiveness of Hg removal using hardwood biochar under hydrogeochemical conditions representative of those present within a reactive capping mat installed in a fluvial setting. Two sets of treatment columns, containing 50% v.v biochar and quartz sand, were subjected to 100 weekly wetting/drying cycles that included dry air, water-saturated air, and drainage using leachate derived from two source columns as input solutions: 1. Passing simulated acid rain water through floodplain soil, 2. Passing river water through riverbank sediment. In both treatment columns, >80% of the Hg was retained on the biochar without promoting Hg methylation and the release of other unintended dissolved constituents (including N, P, DOC). Results from solidphase extraction analyses suggest that Hg accumulated near the air/biochar-sand interface (0-2 cm) in the treatment columns at low loadings but was present at greater depths at higher loadings. Results of micro X-ray fluorescence (μ-XRF) mapping and micro X-ray absorption near edge structure (μ-XANES) for the biochar collected at depths 0-2 cm in treatment columns suggest retention of Hg-bearing particles derived from riverbank sediment and floodplain soil within the pore structure of the biochar. Sulfur K-edge XANES analysis of the unused biochar and the biochar after treatment suggest formation of Hg complexes on the biochar surface. These results indicate that hardwood biochar is potentially an effective media for application in reactive mats for controlling Hg discharging from contaminated riverbank sediments.
Collapse
Affiliation(s)
- Alana O Wang
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Blair D Gibson
- Formerly at Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Richard C Landis
- Formerly at E.I. du Pont de Nemours and Company, Wilmington, DE 19085, USA
| | - James A Dyer
- Formerly at E.I. du Pont de Nemours and Company, Wilmington, DE 19085, USA
| | - Jing Ma
- Formerly at Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
41
|
Vlassopoulos D, Kanematsu M, Henry EA, Goin J, Leven A, Glaser D, Brown SS, O'Day PA. Manganese(iv) oxide amendments reduce methylmercury concentrations in sediment porewater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1746-1760. [PMID: 30393799 DOI: 10.1039/c7em00583k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Manganese(iv) oxide (pyrolusite, birnessite) mineral amendments can reduce dissolved MeHg concentrations in sediment theoretically by inhibiting microbial sulfate reduction, which is a major methylation pathway in sediments. Anaerobic sediment slurry microcosms in which Hg methylation was stimulated by addition of labile organic carbon (acetate) and HgCl2 showed that manganese(iv) oxide reduced the percent MeHg in slurry porewater (filtered), by 1-2 orders of magnitude relative to controls. Sediment-water mesocosms with pyrolusite or birnessite either directly mixed into the top 5 cm or applied in a thin (5 cm) sand layer over sediment showed reductions in percent MeHg in porewater of 66-69% for pyrolusite and 81-89% for birnessite amendment. A thin sand layer alone resulted in 65% reduction. CO2 respirometry experiments showed that the amendments stimulated microbial activity. Microbial community census by PCR and DNA sequencing indicated that the addition of Mn(iv) oxides did not significantly alter the indigenous sediment microbial community structure, although a small increase in abundance of iron and manganese reducers was observed after a 2 week incubation period. The mechanism of decreasing MeHg relative to Hg concentrations in porewater likely involved an increase in the importance of Mn(iv) reduction (relative to sulfate reduction) in heterotrophic microbial metabolism in the sediments amended with Mn(iv) oxides. Manganese reduction was confirmed as the predominant biogeochemical redox process by microelectrode voltammetry profiling of the sediment microcosms, although adsorption to Mn oxide surfaces, enhanced MeHg demethylation, and abiotic reduction of Mn(iv) also may have been involved in reducing percent MeHg and suppressing net MeHg production. These results represent a novel approach for mitigating MeHg impacts from sediments with potential applicability to a range of aquatic settings including intertidal zones, tidal marshes, seasonal wetlands, reservoirs, and lakes.
Collapse
|
42
|
Gilmour C, Bell JT, Soren AB, Riedel G, Riedel G, Kopec AD, Bodaly RA. Distribution and biogeochemical controls on net methylmercury production in Penobscot River marshes and sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:555-569. [PMID: 29864668 DOI: 10.1016/j.scitotenv.2018.05.276] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 05/28/2023]
Abstract
The distribution of mercury and methylmercury (MeHg) in sediment, mudflats, and marsh soils of the Hg-contaminated tidal Penobscot River was investigated, along with biogeochemical controls on production. Average total Hg in surface samples (0-3 cm) ranged from 100 to 1200 ng/g; average MeHg ranged from 5 to 50 ng/g. MeHg was usually highest at or near the surface except in highly mobile mudflats. Although total Hg concentrations in the Penobscot are elevated, it is the accumulation of MeHg that stands out in comparison to other ecosystems. Surface soils in the large Mendall Marsh, about 17 km downstream from the contamination source, contained particularly high %MeHg (averaging 8%). In Mendall marsh soil porewaters, MeHg often accounted for more than half of total Hg. Salt marshes are areas of particular concern in the Penobscot River, for they are depositional environments for a Hg-contaminated mobile pool of river sediment, hot spots for net MeHg production, and sources of risk to marsh animals. We hypothesized that exceptionally low mercury partitioning between the solid and aqueous phases (with log Kd averaging ~4.5) drives high MeHg in Penobscot marshes. The co-occurrence of iron and sulfide in filtered soil porewaters, sometimes both above 100 μM, suggests the presence of nanoparticulate and/or colloidal metal sulfides. These colloids may be stabilized by high concentrations of aromatic and potentially sulfurized dissolved organic matter (DOM) in marsh soils. Thus, Hg in Penobscot marsh soils appears to be in a highly available for microbial methylation through the formation of DOM-associated HgS complexes. Additionally, low partitioning of MeHg to marsh soils suggests high MeHg bioavailability to animals. Overall, drivers of high MeHg in Penobscot marshes include elevated Hg in soils, low partitioning of Hg to solids, high Hg bioavailability for methylation, rapidly shifting redox conditions in surface marsh soils, and high rates of microbial activity.
Collapse
Affiliation(s)
- Cynthia Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States.
| | - James Tyler Bell
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Ally Bullock Soren
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Georgia Riedel
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Gerhardt Riedel
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | | | - R A Bodaly
- Penobscot River Mercury Study, Bangor, ME, US.
| |
Collapse
|
43
|
Zhang C, Shan B, Zhu Y, Tang W. Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1768-1776. [PMID: 30072221 DOI: 10.1016/j.envpol.2018.07.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Biochar has potential for application for in situ metal-contaminated sediment remediation, mainly because of its cost-effectiveness. In this study, the effectiveness of Phyllostachys pubescens (PP) biochar for immobilization of cadmium (Cd) chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) by decreasing the bioavailable fraction was investigated using a series of laboratory sediment remediation microcosms. The results demonstrated that biochar could significantly reduce the bioavailable fraction of metals (except for Cr) by diffusive gradients in thin film (DGT) measurement in porewater. Additionally, amended sediment treated with 15% w/w biochar resulted in 79.71%, 73.20%, 54.86%, 49.75%, 31.16% and 0.99% reductions in the acid-soluble fraction for Cu, Pb, Ni, Zn, Cd, and Cr, respectively. Similarly, bioaccumulation of metals (except for Cr) by Limnodrilus hoffmeisteri was reduced by 18.45%-59.15% in biochar amended sediment. PP biochar at 15% could also reduce the inhibition or lethality rate by 37.5%, 18.1% and 36.3% for Chlorella vulgaris, Daphnia magna and luminescent bacteria Vibrio qinghaiensis, respectively. Overall, these results demonstrate the potential for biochar application for in situ sediment remediation.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yaoyao Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
44
|
Sanders JP, Andrade NA, Menzie CA, Amos CB, Gilmour CC, Henry EA, Brown SS, Ghosh U. Persistent reductions in the bioavailability of PCBs at a tidally inundated Phragmites australis marsh amended with activated carbon. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2496-2505. [PMID: 29870109 DOI: 10.1002/etc.4186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/19/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
In situ amendment of sediments with highly sorbent materials like activated carbon (AC) is an increasingly viable strategy to reduce the bioavailability of persistent, sediment-associated contaminants to benthic communities. Because in situ sediment remediation is an emerging strategy, much remains to be learned about the field conditions under which amendments can be effective, the resilience of amendment materials toward extreme weather conditions, and the optimal design of engineered applications. We report the results of a multiyear, pilot-scale field investigation designed to measure the persistence and efficacy of AC amendments to reduce the bioavailability of polychlorinated biphenyls (PCBs) in an intertidal Phragmites marsh. The amendments tested were granular AC (GAC), GAC with a layer of sand, and a pelletized fine AC. Key metrics presented include vertically resolved black carbon concentrations in sediment and PCB concentrations in sediment, porewater, and several invertebrate species. The results demonstrate that all 3 amendments withstood Hurricane Sandy and remained in place for the duration of the study, successfully reducing porewater PCB concentrations by 34 to 97%. Reductions in invertebrate bioaccumulation were observed in all amendment scenarios, with pelletized fine AC producing the most pronounced effect. The present findings support the use of engineered AC amendments in intertidal marshes and can be used to inform amendment design, delivery, and monitoring at other contaminated sediment sites. Environ Toxicol Chem 2018;37:2496-2505. © 2018 SETAC.
Collapse
Affiliation(s)
- James P Sanders
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore, Maryland, USA
- Exponent, Alexandria, Virginia, USA
| | - Natasha A Andrade
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore, Maryland, USA
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Charles A Menzie
- Exponent, Alexandria, Virginia, USA
- Sediment Solutions, Ellicott City, Maryland, USA
| | - C Bennett Amos
- Exponent, Alexandria, Virginia, USA
- Sediment Solutions, Ellicott City, Maryland, USA
| | | | | | | | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore, Maryland, USA
- Sediment Solutions, Ellicott City, Maryland, USA
| |
Collapse
|
45
|
Taneez M, Hurel C, Mady F, Francour P. Capping of marine sediments with valuable industrial by-products: Evaluation of inorganic pollutants immobilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:714-721. [PMID: 29723821 DOI: 10.1016/j.envpol.2018.04.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
In-situ capping of polluted sediment is considered as an inexpensive and effective treatment technology to immobilize contaminants in a short time. In this remediation technique sediments are capped by placing a layer of sand, clean sediment or other materials over sediments in order to mitigate risk. In this study, low cost industrial by products (bauxaline, steel slag, and mixture of the two products) were applied as capping agents. A bench scale laboratory experiment in aquariums was performed to evaluate their effects on Cd, Zn, As, and Cr mobility from an artificially contaminated marine sediment. Without capping, all the contaminants are constantly released with various kinetic depending of mineral oxidation or dissolution or leaching. Nevertheless, release did not exceed 31% of the initial amount of pollutant. Capping sediment with steel slag, bauxaline and their mixture totally captured Cd, Zn, and As. In the case of Cr, only steel slag actively blocked its release. A kinetic model was developed to model As and Cr release, with and without capping. The release times for Cr and As from the sediment were close to 6 days. In the presence of capping agents, the capture time for Cr was found to be 57 days for steel slag, and 7 days for bauxaline. Despite a high capture time, steel slag was the best capping agent since bauxaline matrix was a source of Cr and rapidly released it (release time = 1 day). The results indicated that steel slag and its mixture additive can be used as potential capping materials for the remediation of contaminated sites due to their significant entrapping of Cd, Zn, As, and Cr.
Collapse
Affiliation(s)
- Mehwish Taneez
- International Islamic University, Sulaiman Bin Abdullah Aba Al-Khail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Islamabad, Pakistan; Université de Nice Sophia Antipolis, Laboratoire des Ecosystèmes Marins Côtiers et Réponses aux Stress (ECOMERS), CNRS, Nice, France.
| | - Charlotte Hurel
- Université de Nice Sophia Antipolis, Laboratoire de Physique de la Matière Condensée (LPMC), UMR, CNRS, 7010, Nice, France
| | - Franck Mady
- Université de Nice Sophia Antipolis, Laboratoire de Physique de la Matière Condensée (LPMC), UMR, CNRS, 7010, Nice, France
| | - Patrice Francour
- Université de Nice Sophia Antipolis, Laboratoire des Ecosystèmes Marins Côtiers et Réponses aux Stress (ECOMERS), CNRS, Nice, France
| |
Collapse
|
46
|
Ting Y, Chen C, Ch'ng BL, Wang YL, Hsi HC. Using raw and sulfur-impregnated activated carbon as active cap for leaching inhibition of mercury and methylmercury from contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2018; 354:116-124. [PMID: 29729600 DOI: 10.1016/j.jhazmat.2018.04.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/21/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Sulfur-impregnated activated carbon (SAC) has been reported with a high affinity to Hg, but little research has done on understanding its potential as active cap for inhibition of Hg release from contaminated sediments. In this study, high-quality coconut-shell activated carbon (AC) and its derived SAC were examined and shown to have great affinity to both aqueous Hg2+ and methylmercury (MeHg). SAC had greater partitioning coefficients for Hg2+ (KD = 9.42 × 104) and MeHg (KD = 7.661 × 105) as compared to those for AC (KD = 3.69 × 104 and 2.25 × 105, respectively). However, AC appeared to have greater inhibition in total Hg (THg) leaching from sediment (14.2-235.8 mg-Hg/kg-sediment) to porewater phase as compared to SAC. 3 wt% AC amendment in sediment (235.8 mg/kg Hg) was the optimum dosage causing the porewater THg reduction by 99.88%. Moreover, significant inhibition in both THg and MeHg releases within the 83-d trial microcosm tests was demonstrated with active caps composed of SAC + bentonite, SAC + clean sediment, and AC + bentonite. While both AC and SAC successfully reduce the porewater Hg in sediment environment, the smaller inhibition in Hg release by SAC as compared to that by raw AC may suggest that possibly formed HgS nanoparticles could be released into the porewater that elevates the porewater Hg concentration.
Collapse
Affiliation(s)
- Yu Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Chi Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Boon-Lek Ch'ng
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Ying-Lin Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 71, Chou-Shan Rd., Taipei 106, Taiwan.
| |
Collapse
|
47
|
Adsorption and Desorption of Cd by Soil Amendment: Mechanisms and Environmental Implications in Field-Soil Remediation. SUSTAINABILITY 2018. [DOI: 10.3390/su10072337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In China, 1/5 of the total farmland area is Cd-enriched; the wide occurrence of Cd-contaminated soil in China has already posed significant public health risk and deserves immediate action. In situ immobilization has been regarded as one of the most promising agricultural extension-technologies for remediating low-to-medium levels of heavy metal contaminated land in China. Although extensive research has been conducted to examine the effectiveness of different amendments on remediation of Cd-contaminated soils, the influence of changed soil properties on secondary release of Cd from Cd-amendment to soil is rarely known. The objective of this study was to evaluate the effectiveness of four soil amendments (denoted as Ad1, Ad2, Ad3 and Ad4, their main components being clay mineral, base mineral, humus and biochar, respectively) on reducing Cd availability and increasing Cd stability in soil. The maximum adsorption capacity of test amendments on Cd ranged from 7.47 to 17.67 mg g−1. The characterizations of test amendments before and after Cd loading provided the evidence that surface precipitation and ion exchange were the main reasons for Ad1 and Ad2 to adsorb Cd, and complexation was for Ad3 and Ad4. In addition, there was significant increase in the desorption percentages of Cd from amendments as pH decreased (from 7 to 1) or ion strength increased (from 0 to 0.2 M). Comparatively, Ad3 and Ad4 could be more effective for in situ immobilization of Cd in contaminated soils, due to their high adsorption capacities (12.82 and 17.67 mg g−1, respectively) and low desorption percentages (4.46–6.23%) at pH from 5 to 7 and ion strengths from 0.01 to 0.1 mol L−1. The results obtained in this study could provide a guideline for in-situ remediation of Cd polluted field-soil in China.
Collapse
|
48
|
Gomez-Eyles JL, Ghosh U. Enhanced biochars can match activated carbon performance in sediments with high native bioavailability and low final porewater PCB concentrations. CHEMOSPHERE 2018; 203:179-187. [PMID: 29614411 DOI: 10.1016/j.chemosphere.2018.03.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
A bench scale study was conducted to evaluate the effectiveness of in situ amendments to reduce the bioavailability of pollutants in sediments from a site impacted with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and cadmium. The amendments tested included fine and coarse coal-based activated carbons (AC), an enhanced pinewood derived biochar (EPB), organoclay, and coke dosed at 5% of sediment dry weight. Strong reductions in total PCB porewater concentrations were observed in sediments amended with the fine AC (94.9-99.5%) and EPB (99.6-99.8%). More modest reductions were observed for the coarse AC, organoclay, and coke. Strong reductions in porewater PCB concentrations were reflected in reductions in total PCB bioaccumulation in fresh water oligochaetes for both the fine AC (91.9-96.0%) and EPB (96.1-96.3%). Total PAH porewater concentrations were also greatly reduced by the fine AC (>96.1%) and EPB (>97.8%) treatments. EPB matched or slightly outperformed the fine AC throughout the study, despite sorption data indicating a much stronger affinity of PCBs for the fine AC. Modeling EPB and fine AC effectiveness on other sediments confirmed the high effectiveness of the EPB was due to the very low final porewater concentrations and differences in the native bioavailability between sediments. However, low bulk density and poor settling characteristics make biochars difficult to apply in an aquatic setting. Neither the EPB nor the fine AC amendments were able to significantly reduce Cd bioavailability.
Collapse
Affiliation(s)
- Jose L Gomez-Eyles
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
49
|
Gilmour C, Bell T, Soren A, Riedel G, Riedel G, Kopec D, Bodaly D, Ghosh U. Activated carbon thin-layer placement as an in situ mercury remediation tool in a Penobscot River salt marsh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:839-848. [PMID: 29216592 DOI: 10.1016/j.scitotenv.2017.11.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
The efficacy of thin layer in situ soil amendments was tested as a potential tool for methylmercury (MeHg) risk mitigation in Penobscot River, ME, salt marsh. Salt marshes are sites of high MeHg accumulation within the Penobscot, and key targets for remediation. The study was a fully-crossed small plot study, with four treatments (activated carbon (AC), biochar, FeCl2, and lime) and unamended controls at two sites. Plots were monitored for two years. Porewater MeHg concentrations were the main endpoint, with impacts on sediment biogeochemistry as a secondary study goal. AC-based SediMite™ was effective in reducing MeHg, and to a less extent total Hg, in surficial pore waters. AC reduced MeHg concentrations by >90% at the one month time point, and continued to significantly reduce pore water MeHg through about a year. AC was less effective in reducing total Hg in pore water, yielding about 70% reduction at one month, and 50-65% reduction at 8months. Biochar provided lower, and more variable reduction in porewater MeHg, but was not effective in reducing total Hg. Biochar amendment also increased soil MeHg. Neither FeCl2 nor lime amendments reduced pore water Hg or MeHg levels. About 50% of AC treatment applied as SediMite™ pellets was retained in marsh soils after one year. This study is one of the first field trials of in situ amendment for MeHg remediation. Our results show that thin-layer AC placement is a potential remediation tool for Hg risk to biota, especially in marshes where net MeHg accumulation is often strong.
Collapse
Affiliation(s)
- Cynthia Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States.
| | - Tyler Bell
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Ally Soren
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Georgia Riedel
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Gerhardt Riedel
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Dianne Kopec
- Penobscot River Mercury Study, Bangor, ME, United States
| | - Drew Bodaly
- Penobscot River Mercury Study, Bangor, ME, United States
| | - Upal Ghosh
- University of Maryland Baltimore County, Chemical, Biochemical and Environmental Engineering, Baltimore, MD, United States
| |
Collapse
|
50
|
Liu P, Ptacek CJ, Elena KMA, Blowes DW, Gould WD, Finfrock YZ, Wang AO, Landis RC. Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:114-122. [PMID: 29304450 DOI: 10.1016/j.jhazmat.2017.12.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
The application of biochar to treat mercury (Hg) in the environment is being proposed on an increasing basis due to its widespread availability and cost effectiveness. However, the efficiency of Hg removal by biochars is variable due to differences in source material composition. In this study, a series of batch tests were conducted to evaluate the effectiveness of sulfurized biochars (calcium polysulfide and a dimercapto-related compound, respectively) for Hg removal; Hg-loaded biochars were then characterized using synchrotron-based techniques. Concentrations of Hg decreased by >99.5% in solutions containing the sulfurized biochars. Sulfur X-ray absorption near-edge structure (XANES) analyses indicate a polysulfur-like structure in polysulfide-sulfurized biochar and a thiol-like structure (shifted compared to dimercapto) in the dimercapto-sulfurized biochar. Micro-X-ray fluorescence (μ-XRF) mapping and confocal X-ray micro-fluorescence imaging (CXMFI) analyses indicate Hg is distributed primarily on the edges of sulfurized biochar and throughout unmodified biochar particles. Hg extended X-ray absorption fine structure (EXAFS) analyses show Hg in enriched areas is bound to chlorine (Cl) in the unmodified biochar and to S in sulfurized biochars. These results indicate that Hg removal efficiency is enhanced after sulfurization through the formation of strong bonds (Hg-S) with S-functional groups in the sulfurized biochars.
Collapse
Affiliation(s)
- Peng Liu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei, 430074, PR China; Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.
| | - Krista M A Elena
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - W Douglas Gould
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Y Zou Finfrock
- Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada; CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Alana O Wang
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Richard C Landis
- I. Du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE 19805, USA
| |
Collapse
|