1
|
Nari A, Rahman M, Szell PMJ, Semeniuchenko V, Bryce DL. Halogen Bond Strength in Solids Quantified via Zeeman-Perturbed Nuclear Quadrupole Resonance Spectroscopy. J Am Chem Soc 2025; 147:9528-9543. [PMID: 40035563 DOI: 10.1021/jacs.4c17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Proton NMR is a ubiquitous and valuable probe of hydrogen bonds. Conversely, 127I NMR of strong halogen bond (XB) donors is hopeless due to quadrupolar coupling constants (CQ) on the order of GHz. We report here an innovative implementation of Zeeman-perturbed nuclear quadrupole resonance (Zp-NQR) spectroscopy, employing adjustable magnetic fields on the order of mT, which renders possible the acquisition and analysis of spectra of 127I and 79Br nuclei subject to quadrupolar couplings of up to 2.3 GHz in solid powders. This approach is demonstrated on three series of halogen-bonded cocrystals based on so-called "iconic" strong XB donors p-diiodotetrafluorobenzene, sym-trifluorotriiodobenzene, and p-dibromotetrafluorobenzene (27 compounds). Analysis of the spectra using a diagonalization of the Zeeman-quadrupolar Hamiltonian provides CQ values and quadrupolar asymmetry parameters, thereby overcoming various limitations encountered in pure NMR and pure NQR. Inspection of the data reveals strong correlations with geometrical and structural features of the halogen bond, including its length. Dispersion-corrected zeroth-order regular approximation relativistic DFT computations of the interaction energies of the XB donor are strongly correlated with experimental and computed values of CQ(127I) and CQ(79Br). It is concluded that the electric field gradient at the XB donor site is a useful metric for quantifying XB strength in solids. The XB interaction energies range from ∼5 to 10 kcal mol-1 for the systems studied herein. The Zp-NQR approach is amenable to widespread application to diverse problems in the chemical and materials sciences related to energy materials, crystal engineering, and many systems comprising strongly quadrupolar isotopes.
Collapse
Affiliation(s)
- Alireza Nari
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Mubassira Rahman
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Patrick M J Szell
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Volodymyr Semeniuchenko
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
2
|
Abstract
A nearly universal component of NMR crystallography is the ranking of candidate structures based on how well their first-principles-predicted NMR parameters align with the results of solid-state NMR experiments. Here, a novel approach for assigning probabilities to candidate models is proposed that quantifies the likelihood that each model is the correct experimental structure. This method employs hierarchical Bayesian inference and leverages explicit prior probabilities derived from a uniform distribution of potential candidate structures with respect to chi-squared values. The resulting uniform chi-squared (UC) model provides a more cautious estimate of candidate probabilities compared to previous approaches, assigning decreased likelihood to the best-fit structure and increased likelihood to alternate candidates. Although developed here within the context of NMR crystallography, the UC model represents a general method for assigning likelihoods based on chi-squared goodness-of-fit assessments.
Collapse
Affiliation(s)
- Leonard J Mueller
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Hartman JD, Capistran D. Predicting 51V nuclear magnetic resonance observables in molecular crystals. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:416-428. [PMID: 38114304 DOI: 10.1002/mrc.5420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy and quantum chemical density functional theory (DFT) calculations are widely used to characterize vanadium centers in biological and pharmaceutically relevant compounds. Several techniques have been recently developed to improve the accuracy of predicted NMR parameters obtained from DFT. Fragment-based and planewave-corrected methods employing hybrid density functionals are particularly effective tools for solid-state applications. A recent benchmark study involving molecular crystal compounds found that fragment-based NMR calculations using hybrid density functionals improve the accuracy of predicted 51V chemical shieldings by 20% relative to traditional planewave methods. This work extends the previous study, including a careful analysis of 51V chemical shift anisotropy, electric field gradient calculations, and a more extensive test set. The accuracy of planewave-corrected techniques and recently developed fragment-based methods using electrostatic embedding based on the polarized continuum model (PCM) are found to be highly competitive with previous methods. Planewave-corrected methods achieve a 34% improvement in the errors of predicted 51V chemical shieldings relative to planewave. Additionally, planewave-corrected and fragment-based calculations were performed using PCM embedding, improving the accuracy of predicted 51V chemical shielding (CS) tensor principal values by 30% andC q values by 15% relative to traditional planewave methods. The performance of these methods is further examined using a redox-active oxovandium complex and a common 51V NMR reference compound.
Collapse
Affiliation(s)
- Joshua D Hartman
- Department of Chemistry, University of California, Riverside, Riverside, California, USA
| | - Daniel Capistran
- Department of Chemistry, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
4
|
Holmes ST, Schönzart J, Philips AB, Kimball JJ, Termos S, Altenhof AR, Xu Y, O'Keefe CA, Autschbach J, Schurko RW. Structure and bonding in rhodium coordination compounds: a 103Rh solid-state NMR and relativistic DFT study. Chem Sci 2024; 15:2181-2196. [PMID: 38332836 PMCID: PMC10848688 DOI: 10.1039/d3sc06026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
This study demonstrates the application of 103Rh solid-state NMR (SSNMR) spectroscopy to inorganic and organometallic coordination compounds, in combination with relativistic density functional theory (DFT) calculations of 103Rh chemical shift tensors and their analysis with natural bond orbital (NBO) and natural localized molecular orbital (NLMO) protocols, to develop correlations between 103Rh chemical shift tensors, molecular structure, and Rh-ligand bonding. 103Rh is one of the least receptive NMR nuclides, and consequently, there are very few reports in the literature. We introduce robust 103Rh SSNMR protocols for stationary samples, which use the broadband adiabatic inversion-cross polarization (BRAIN-CP) pulse sequence and wideband uniform-rate smooth-truncation (WURST) pulses for excitation, refocusing, and polarization transfer, and demonstrate the acquisition of 103Rh SSNMR spectra of unprecedented signal-to-noise and uniformity. The 103Rh chemical shift tensors determined from these spectra are complemented by NBO/NLMO analyses of contributions of individual orbitals to the 103Rh magnetic shielding tensors to understand their relationship to structure and bonding. Finally, we discuss the potential for these experimental and theoretical protocols for investigating a wide range of materials containing the platinum group elements.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Jasmin Schönzart
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam B Philips
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - James J Kimball
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Sara Termos
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Yijue Xu
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Christopher A O'Keefe
- Department of Chemistry & Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
5
|
Koppe J, Frerichs JE, Hansen MR. Pushing the Detection Limit of Static Wideline NMR Spectroscopy Using Ultrafast Frequency-Swept Pulses. J Phys Chem Lett 2023; 14:10748-10753. [PMID: 38010530 DOI: 10.1021/acs.jpclett.3c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We report a simple design strategy for wideband uniform-rate smooth truncation (WURST) pulses that enables ultrafast frequency sweeps to maximize the sensitivity of Carr-Purcell-Meiboom-Gill (CPMG) acquisition in static wideline nuclear magnetic resonance (NMR). Three compelling examples showcase the advantage of ultrafast frequency sweeps over currently employed WURST-CPMG protocols, demonstrating the potential of investigating materials that are typically inaccessible to static wideline NMR techniques, e.g., paramagnetic solids with short homogeneous transverse relaxation times.
Collapse
Affiliation(s)
- Jonas Koppe
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 28/30, DE-48149 Münster, Germany
- Centre de RMN Très Hauts Champs de Lyon (UMR5082 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Joop Enno Frerichs
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 28/30, DE-48149 Münster, Germany
| | - Michael Ryan Hansen
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 28/30, DE-48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstrasse 40, DE-48149 Münster, Germany
| |
Collapse
|
6
|
Fernández-Alarcón A, Autschbach J. Relativistic Density Functional NMR Tensors Analyzed with Spin-free Localized Molecular Orbitals. Chemphyschem 2023; 24:e202200667. [PMID: 36169984 DOI: 10.1002/cphc.202200667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Indexed: 01/07/2023]
Abstract
The implementation of fast relativistic methods based on density functional theory, in conjunction with localized molecular orbital (LMO) based analysis, allows straightforward interpretations of NMR parameters in terms of contributions from core shells, lone pairs, and bonds, for compounds containing elements from across the periodic table. We present a conceptual review of a frequently used LMO analysis of NMR parameters calculated in the presence of spin-orbit interactions and other relativistic effects. An accompanying example focuses on the 15 N shielding in a heavy metal complex.
Collapse
Affiliation(s)
- Alberto Fernández-Alarcón
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| |
Collapse
|
7
|
Holmes ST, Hook JM, Schurko RW. Nutraceuticals in Bulk and Dosage Forms: Analysis by 35Cl and 14N Solid-State NMR and DFT Calculations. Mol Pharm 2021; 19:440-455. [PMID: 34792373 DOI: 10.1021/acs.molpharmaceut.1c00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study uses 35Cl and 14N solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations for the structural characterization of chloride salts of nutraceuticals in their bulk and dosage forms. For eight nutraceuticals, we measure the 35Cl EFG tensor parameters of the chloride ions and use plane-wave DFT calculations to elucidate relationships between NMR parameters and molecular-level structure, which provide rapid NMR crystallographic assessments of structural features. We employ both 35Cl direct excitation and 1H→35Cl cross-polarization methods to characterize a dosage form containing α-d-glucosamine HCl, observe possible impurity and/or adulterant phases, and quantify the weight percent of the active ingredient. To complement this, we also investigate 14N SSNMR spectroscopy and DFT calculations to characterize nitrogen atoms in the nutraceuticals. This includes a discussion of targeted acquisition experimental protocols (i.e., acquiring a select region of the overall pattern that features key discontinuities) that allow ultrawideline spectra to be acquired rapidly, even for unreceptive samples (i.e., those with long values of T1(14N), short values of T2eff(14N), or very broad patterns). It is hoped that these experimental and computational protocols will be useful for the characterization of various solid forms of nutraceuticals (i.e., salts, polymorphs, hydrates, solvates, cocrystals, amorphous solid dispersions, etc.), help detect impurity and counterfeit solid phases in dosage forms, and serve as a foundation for future NMR crystallographic studies of nutraceutical solid forms, including studies using ab initio crystal structure prediction algorithms.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia.,School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
8
|
NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nat Rev Chem 2021; 5:624-645. [PMID: 37118421 DOI: 10.1038/s41570-021-00309-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
Solid-state magic-angle spinning NMR spectroscopy is a powerful technique to probe atomic-level microstructure and structural dynamics in metal halide perovskites. It can be used to measure dopant incorporation, phase segregation, halide mixing, decomposition pathways, passivation mechanisms, short-range and long-range dynamics, and other local properties. This Review describes practical aspects of recording solid-state NMR data on halide perovskites and how these afford unique insights into new compositions, dopants and passivation agents. We discuss the applicability, feasibility and limitations of 1H, 13C, 15N, 14N, 133Cs, 87Rb, 39K, 207Pb, 119Sn, 113Cd, 209Bi, 115In, 19F and 2H NMR in typical experimental scenarios. We highlight the pivotal complementary role of solid-state mechanosynthesis, which enables highly sensitive NMR studies by providing large quantities of high-purity materials of arbitrary complexity and of chemical shifts calculated using density functional theory. We examine the broader impact of solid-state NMR on materials research and how its evolution over seven decades has benefitted structural studies of contemporary materials such as halide perovskites. Finally, we summarize some of the open questions in perovskite optoelectronics that could be addressed using solid-state NMR. We, thereby, hope to stimulate wider use of this technique in materials and optoelectronics research.
Collapse
|
9
|
Holmes ST, Vojvodin CS, Schurko RW. Dispersion-Corrected DFT Methods for Applications in Nuclear Magnetic Resonance Crystallography. J Phys Chem A 2020; 124:10312-10323. [DOI: 10.1021/acs.jpca.0c06372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Cameron S. Vojvodin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Robert W. Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
10
|
Philips A, Autschbach J. Quadrupolar NMR Relaxation of Aqueous 127I -, 131Xe, and 133Cs +: A First-Principles Approach from Dynamics to Properties. J Chem Theory Comput 2020; 16:5835-5844. [PMID: 32786904 DOI: 10.1021/acs.jctc.0c00581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quadrupolar NMR relaxation rates were computed for aqueous 133Cs+, 131Xe, and 127I- via Kohn-Sham (KS) density functional theory-based ab initio molecular dynamics and KS calculations of the electric field gradient (EFG) tensors along the trajectories. The resulting rates are within a factor of 1-3 of the experimental values and can be compared to available results from classical dynamics and EFGs from electrostatic models with corrections via Sternheimer antishielding factors. Relativistic effects are shown to have an enhancing effect on the magnitude of the EFGs. An analysis of the EFGs was carried out in terms of localized molecular orbitals to elucidate contributions from the solvent versus solute polarization and assess the validity of the Sternheimer approximation for these systems.
Collapse
Affiliation(s)
- Adam Philips
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
11
|
Apih T, Žagar V, Seliger J. NMR and NQR study of polymorphism in carbamazepine. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101653. [PMID: 32101778 DOI: 10.1016/j.ssnmr.2020.101653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Four polymorphic forms of carbamazepine have been simultaneously investigated by 1H NMR and 14N NQR. The results show that the proton spin-lattice relaxation time and the 14N NQR spectra can be used to differentiate between various polymorphic forms. Spontaneous transformations from Form II to Form III and from Form IV to Form III have been investigated through their influence on the 14N NQR spectrum and the proton NMR signal and spin-lattice relaxation. The 14N NQR spectra prove that in the observed polymorphic forms of carbamazepine the hydrogen bonded dimers of carbamazepine molecules are the basic elements of the crystal structure. The dimers are centrosymmetric in Forms III and IV and in metastable polymorphic form occurring during the transformation of Form IV to Form III. Two non-equivalent molecular positions are observed in Form II with the occupation ratio 1:1 and in Form I with the occupation ratio either 2:1 or 3:1. The 14N NQR data are related to the published crystal structures. Possible reasons for the mismatch of the X-ray and NQR data for Forms I and II are discussed.
Collapse
Affiliation(s)
- Tomaž Apih
- "Jožef Stefan" Institute, Jamova 39, Ljubljana, Slovenia
| | - Veselko Žagar
- "Jožef Stefan" Institute, Jamova 39, Ljubljana, Slovenia
| | - Janez Seliger
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Wijesekara AV, Venkatesh A, Lampkin BJ, VanVeller B, Lubach JW, Nagapudi K, Hung I, Gor'kov PL, Gan Z, Rossini AJ. Fast Acquisition of Proton-Detected HETCOR Solid-State NMR Spectra of Quadrupolar Nuclei and Rapid Measurement of NH Bond Lengths by Frequency Selective HMQC and RESPDOR Pulse Sequences. Chemistry 2020; 26:7881-7888. [PMID: 32315472 DOI: 10.1002/chem.202000390] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Fast magic-angle spinning (MAS), frequency selective (FS) heteronuclear multiple quantum coherence (HMQC) experiments which function in an analogous manner to solution SOFAST HMQC NMR experiments, are demonstrated. Fast MAS enables efficient FS excitation of 1 H solid-state NMR signals. Selective excitation and observation preserves 1 H magnetization, leading to a significant shortening of the optimal inter-scan delay. Dipolar and scalar 1 H{14 N} FS HMQC solid-state NMR experiments routinely provide 4- to 9-fold reductions in experiment times as compared to conventional 1 H{14 N} HMQC solid-state NMR experiments. 1 H{14 N} FS resonance-echo saturation-pulse double-resonance (RESPDOR) allowed dipolar dephasing curves to be obtained in minutes, enabling the rapid determination of NH dipolar coupling constants and internuclear distances. 1 H{14 N} FS RESPDOR was used to assign multicomponent active pharmaceutical ingredients (APIs) as salts or cocrystals. FS HMQC also provided enhanced sensitivity for 1 H{17 O} and 1 H{35 Cl} HMQC experiments on 17 O-labeled Fmoc-alanine and histidine hydrochloride monohydrate, respectively. FS HMQC and FS RESPDOR experiments will provide access to valuable structural constraints from materials that are challenging to study due to unfavorable relaxation times or dilution of the nuclei of interest.
Collapse
Affiliation(s)
- Anuradha V Wijesekara
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.,US DOE Ames Laboratory, Ames, IA, 50011, USA
| | - Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.,US DOE Ames Laboratory, Ames, IA, 50011, USA
| | - Bryan J Lampkin
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, 32310, USA
| | - Peter L Gor'kov
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, 32310, USA
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, 32310, USA
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.,US DOE Ames Laboratory, Ames, IA, 50011, USA
| |
Collapse
|
13
|
Self‐Assembly of DNA and RNA Building Blocks Explored by Nitrogen‐14 NMR Crystallography: Structure and Dynamics. Chemphyschem 2020; 21:1044-1051. [DOI: 10.1002/cphc.201901214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Indexed: 12/20/2022]
|
14
|
Jarvis JA, Concistre M, Haies IM, Bounds RW, Kuprov I, Carravetta M, Williamson PTF. Quantitative analysis of 14N quadrupolar coupling using 1H detected 14N solid-state NMR. Phys Chem Chem Phys 2019; 21:5941-5949. [PMID: 30809601 DOI: 10.1039/c8cp06276e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magic-angle spinning solid-state NMR is increasingly utilized to study the naturally abundant, spin-1 nucleus 14N, providing insights into the structure and dynamics of biological and organic molecules. In particular, the characterisation of 14N sites using indirect detection has proven useful for complex molecules, where the 'spy' nucleus provides enhanced sensitivity and resolution. Here we exploit the sensitivity of proton detection, to indirectly characterise 14N sites using a moderate rf field to generate coherence between the 1H and 14N at moderate and fast-magic-angle spinning frequencies. Efficient numerical simulations have been developed that have allowed us to quantitatively analyse the resulting 14N lineshapes to determine both the size and asymmetry of the quadrupolar interaction. Exploiting only naturally occurring abundant isotopes will aid the analysis of materials with the need to resort to isotope labelling, whilst providing additional insights into the structure and dynamics that the characterisation of the quadrupolar interaction affords.
Collapse
Affiliation(s)
- James A Jarvis
- Centre for Biological Sciences, University of Southampton, SO17 1BJ, Southampton, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Philips A, Marchenko A, Ducati LC, Autschbach J. Quadrupolar 14N NMR Relaxation from Force-Field and Ab Initio Molecular Dynamics in Different Solvents. J Chem Theory Comput 2018; 15:509-519. [PMID: 30462503 DOI: 10.1021/acs.jctc.8b00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quadrupolar NMR spin relaxation rates and corresponding line widths were computed for the quadrupolar nucleus 14N for neat acetonitrile as well as for 1-methyl-1,3-imidazole and 1-methyl-1,3,4-triazole in different solvents. Molecular dynamics (MD) was performed with forces from the Kohn-Sham (KS) theory (ab initio MD) and force-field molecular mechanics (classical MD), followed by KS electric field gradient (EFG) calculations. For acetonitrile the agreement of the 14N line width with experiment is very good. Relative line widths for the azole nitrogens are improved over simpler approximations used previously in conjunction with single-point calculations at the multiconfigurational self-consistent field level. Overall, the NMR line widths are computed within a factor of 2 of the experimental values, giving access to reasonable estimates both of the dynamic EFG variance in the solvated systems as well as the associated correlation times that determine the relaxation rates.
Collapse
Affiliation(s)
- Adam Philips
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| | - Alex Marchenko
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry , University of São Paulo , Av. Prof. Lineu Prestes 748 , São Paulo , SP 05508-000 , Brazil
| | - Jochen Autschbach
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
16
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
17
|
Gan Z, Hung I, Nishiyama Y, Amoureux JP, Lafon O, Nagashima H, Trébosc J, Hu B. 14N overtone nuclear magnetic resonance of rotating solids. J Chem Phys 2018; 149:064201. [PMID: 30111134 PMCID: PMC8808743 DOI: 10.1063/1.5044653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 11/14/2022] Open
Abstract
By irradiating and observing at twice the 14N Larmor frequency, overtone (OT) nuclear magnetic resonance (NMR) is capable of obtaining 14NOT spectra without first-order quadrupolar broadening. Direct excitation and detection of the usually "forbidden" double-quantum transition is mediated by the perturbation from the large quadrupole interaction to the spin states quantized by the Zeeman interaction. A recent study [L. A. O'Dell and C. I. Ratcliffe, Chem. Phys. Lett. 514, 168 (2011)] has shown that 14NOT NMR under magic-angle spinning (MAS) can yield high-resolution spectra with typical second-order quadrupolar line shapes allowing the measurement of 14N chemical shift and quadrupolar coupling parameters. This article has also shown that under MAS the main 14NOT peak is shifted by twice the sample spinning frequency with respect to its static position. We present the theory of 14NOT NMR of static or rotating samples and the physical picture of the intriguing spinning-induced shift in the second case. We use perturbation theory for the case of static samples and Floquet theory for rotating samples. In both cases, the results can be described by a so-called OT parameter that scales down the 14NOT radio-frequency (rf) excitation and signal detection. This OT parameter shows that the components of the rf field, which are transverse and longitudinal with respect to the magnetic field, are both effective for 14NOTrf excitation and signal detection. In the case of MAS at angular frequency ωr , the superposition of the excitation and detection components in the OT parameter makes either the +2ωr or -2ωr term the dominant 14NOT signal, depending on the sense of sample spinning with respect to the magnetic field. This leads to an apparent 14NOT signal shifted at twice the spinning frequency. The features of 14NOT NMR spectra for both static and rotating samples are illustrated with simulations. The spinning induced shift and its dependence on the spinning direction are confirmed experimentally by reversing the spinning direction and the field of the 36 T series-connected hybrid magnet at the US National High Magnetic Field Laboratory.
Collapse
Affiliation(s)
- Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | | | | | | | - Hiroki Nagashima
- Univ. Lille, CNRS UMR 8181, UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS UMR 8181, UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
18
|
Zhao L, Pinon AC, Emsley L, Rossini AJ. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:583-609. [PMID: 29193278 DOI: 10.1002/mrc.4688] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Solid-state NMR spectroscopy has become a valuable tool for the characterization of both pure and formulated active pharmaceutical ingredients (APIs). However, NMR generally suffers from poor sensitivity that often restricts NMR experiments to nuclei with favorable properties, concentrated samples, and acquisition of one-dimensional (1D) NMR spectra. Here, we review how dynamic nuclear polarization (DNP) can be applied to routinely enhance the sensitivity of solid-state NMR experiments by one to two orders of magnitude for both pure and formulated APIs. Sample preparation protocols for relayed DNP experiments and experiments on directly doped APIs are detailed. Numerical spin diffusion models illustrate the dependence of relayed DNP enhancements on the relaxation properties and particle size of the solids and can be used for particle size determination when the other factors are known. We then describe the advanced solid-state NMR experiments that have been enabled by DNP and how they provide unique insight into the molecular and macroscopic structure of APIs. For example, with large sensitivity gains provided by DNP, natural isotopic abundance, 13 C-13 C double-quantum single-quantum homonuclear correlation NMR spectra of pure APIs can be routinely acquired. DNP also enables solid-state NMR experiments with unreceptive quadrupolar nuclei such as 2 H, 14 N, and 35 Cl that are commonly found in APIs. Applications of DNP-enhanced solid-state NMR spectroscopy for the molecular level characterization of low API load formulations such as commercial tablets and amorphous solid dispersions are described. Future perspectives for DNP-enhanced solid-state NMR experiments on APIs are briefly discussed.
Collapse
Affiliation(s)
- Li Zhao
- Department of Chemistry, Iowa State University, Ames, IA, USA
- US DOE Ames Laboratory, Ames, IA, USA
| | - Arthur C Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, IA, USA
- US DOE Ames Laboratory, Ames, IA, USA
| |
Collapse
|
19
|
Carnevale D, Ji X, Bodenhausen G. Double cross polarization for the indirect detection of nitrogen-14 nuclei in magic angle spinning NMR spectroscopy. J Chem Phys 2018; 147:184201. [PMID: 29141439 DOI: 10.1063/1.5000689] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nitrogen-14 NMR spectra at fast magic-angle spinning rates can be acquired indirectly by means of two-dimensional techniques based on double cross polarization transfer 1H → 14N →1H. Experimental evidence is given for polycrystalline samples of glycine, l-histidine, and the dipeptide Ala-Gly. Either one-bond or long-range correlations can be favored by choosing the length of the cross polarization contact pulses. Longer contact pulses allow the detection of unprotonated nitrogen sites. In contrast to earlier methods that exploited second-order quadrupolar/dipolar cross-terms, cross polarization operates in the manner of the method of Hartmann and Hahn, even for 14N quadrupolar couplings up to 4 MHz. Simulations explain why amorphous samples tend to give rise to featureless spectra because the 14N quadrupolar interactions may vary dramatically with the lattice environment. The experiments are straightforward to set up and are shown to be effective for different nitrogen environments and robust with respect to the rf-field strengths and to the 14N carrier frequency during cross polarization. The efficiency of indirect detection of 14N nuclei by double cross polarization is shown to be similar to that of isotopically enriched 13C nuclei.
Collapse
Affiliation(s)
- Diego Carnevale
- Departement de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Xiao Ji
- Departement de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Geoffrey Bodenhausen
- Departement de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
20
|
Kubicki DJ, Prochowicz D, Hofstetter A, Péchy P, Zakeeruddin SM, Grätzel M, Emsley L. Cation Dynamics in Mixed-Cation (MA)x(FA)1–xPbI3 Hybrid Perovskites from Solid-State NMR. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b04930] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dominik J. Kubicki
- Laboratory
of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Daniel Prochowicz
- Laboratory
of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Albert Hofstetter
- Laboratory
of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Péter Péchy
- Laboratory
of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shaik M. Zakeeruddin
- Laboratory
of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory
of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Laboratory
of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Shen M, Chen Q, Hu B. Composite pulses in directly and indirectly detected 14N MAS overtone spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:132-136. [PMID: 28169117 DOI: 10.1016/j.ssnmr.2017.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/11/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
14N MAS overtone spectroscopy is mainly limited by narrow excitation bandwidths owing to the use of very long pulses to get stronger signals. We previously reported the use of modified 90° composite pulses for broadband excitation in 1H-{NOTDQ14}D-HMQC experiments at ultra-fast MAS. In this work, we modified the 180° composite pulses, which are originally designed for spin 1/2 nuclei, for both indirect detection in 1H-{NOTDQ14}D-HMQC experiment and direct detection in one-pulse experiment, and found that the modified 180° composite pulses are useful for broadband excitation. Furthermore, we found that the bandwidth can be tailored by simply adjusting the total pulse length.
Collapse
Affiliation(s)
- Ming Shen
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Qun Chen
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Bingwen Hu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
22
|
Veinberg SL, Lindquist AW, Jaroszewicz MJ, Schurko RW. Practical considerations for the acquisition of ultra-wideline 14N NMR spectra. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:45-58. [PMID: 28130009 DOI: 10.1016/j.ssnmr.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Several considerations for the acquisition, processing, and analysis of high quality ultra-wideline (UW) 14N solid-state NMR (SSNMR) powder patterns under static conditions are discussed. It is shown that the 14N quadrupolar parameters may be determined accurately using the frequencies of only two discontinuities in 14N NMR powder patterns that are dominated by the first-order quadrupolar interaction, thereby eliminating the need for the acquisition of the entire pattern and concomitantly reducing experimental time. A framework for utilizing the WURST-CPMG pulse sequence to improve the efficiency of UW 14N SSNMR experiments is explored in two parts: (i) a systematic investigation of the design and parameterization of the WURST pulse is presented, and (ii) the development of the practical aspects of CPMG refocusing for the acquisition of UW 14N SSNMR powder patterns is discussed, with a focus on maximizing both signal-to-noise and resolution, and minimizing spectral distortions. Finally, a strategy is demonstrated that allows for the measurement of the 14N quadrupolar parameters for any nitrogen moiety whose quadrupolar coupling constant falls within the range 0.8≤|CQ|≤1.5MHz, by acquiring only two 14N NMR sub-spectra at strategically located transmitter frequencies; these results are compared to full powder patterns which are acquired using frequency-stepped methods. The methodologies and practical considerations outlined herein are not only useful for the rapid acquisition of UW 14N NMR spectra, but may also be modified and applied for UW NMR of a plethora of quadrupolar and spin-1/2 nuclides.
Collapse
Affiliation(s)
- Stanislav L Veinberg
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Austin W Lindquist
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Michael J Jaroszewicz
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4.
| |
Collapse
|
23
|
Jarvis JA, Haies I, Lelli M, Rossini AJ, Kuprov I, Carravetta M, Williamson PTF. Measurement of 14N quadrupole couplings in biomolecular solids using indirect-detection 14N solid-state NMR with DNP. Chem Commun (Camb) 2017; 53:12116-12119. [DOI: 10.1039/c7cc03462h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Insights into protein structure through the determination of 14N quadrupolar interactions using magic-angle spinning dynamic nuclear polarization NMR.
Collapse
Affiliation(s)
- J. A. Jarvis
- Biological Sciences
- University of Southampton
- Southampton
- UK
| | - I. Haies
- Chemistry Department
- University of Southampton
- Southampton
- UK
| | - M. Lelli
- Centre de RMN à Tres Hauts Champs
- Institut de Sciences Analytiques
- Université de Lyon (CNRS/ENS Lyon/UCB Lyon1)
- 69100 Villeurbanne
- France
| | - A. J. Rossini
- Centre de RMN à Tres Hauts Champs
- Institut de Sciences Analytiques
- Université de Lyon (CNRS/ENS Lyon/UCB Lyon1)
- 69100 Villeurbanne
- France
| | - I. Kuprov
- Chemistry Department
- University of Southampton
- Southampton
- UK
| | - M. Carravetta
- Chemistry Department
- University of Southampton
- Southampton
- UK
| | | |
Collapse
|
24
|
Nemausat R, Gervais C, Brouder C, Trcera N, Bordage A, Coelho-Diogo C, Florian P, Rakhmatullin A, Errea I, Paulatto L, Lazzeri M, Cabaret D. Temperature dependence of X-ray absorption and nuclear magnetic resonance spectra: probing quantum vibrations of light elements in oxides. Phys Chem Chem Phys 2017; 19:6246-6256. [DOI: 10.1039/c6cp08393e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probing the quantum thermal fluctuations of nuclei in light-element oxides using XANES and NMR spectroscopies.
Collapse
Affiliation(s)
- Ruidy Nemausat
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| | - Christel Gervais
- Sorbonne Universités
- UPMC Univ Paris 06
- LCMCP
- Collège de France
- UMR CNRS 7574
| | - Christian Brouder
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| | - Nicolas Trcera
- Synchrotron SOLEIL
- L'Orme des Merisiers
- F-91192 Gif sur Yvette
- France
| | - Amélie Bordage
- ICMMO
- Univ Paris Sud
- Univ Paris-Saclay
- UMR CNRS 8182
- F-91405 Orsay
| | | | | | | | - Ion Errea
- Fisika Aplikatua 1 Saila
- Bilboko Ingeniaritza Eskola
- University of the Basque Country (UPV/EHU)
- 48013 Bilbao
- Spain
| | - Lorenzo Paulatto
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| | - Michele Lazzeri
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| | - Delphine Cabaret
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| |
Collapse
|
25
|
Veinberg SL, Friedl ZW, Lindquist AW, Kispal B, Harris KJ, O'Dell LA, Schurko RW. 14N Solid-State NMR Spectroscopy of Amino Acids. Chemphyschem 2016; 17:4011-4027. [DOI: 10.1002/cphc.201600873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Stanislav L. Veinberg
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Zachary W. Friedl
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Austin W. Lindquist
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Brianna Kispal
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Kristopher J. Harris
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Luke A. O'Dell
- Institute for Frontier Materials; Deakin University; Waurn Ponds Campus Geelong Victoria 3220 Australia
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| |
Collapse
|
26
|
Hartman JD, Kudla RA, Day GM, Mueller LJ, Beran GJO. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals. Phys Chem Chem Phys 2016; 18:21686-709. [PMID: 27431490 DOI: 10.1039/c6cp01831a] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.
Collapse
Affiliation(s)
- Joshua D Hartman
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | | | | | | | |
Collapse
|
27
|
Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR, Kobayashi T, Pruski M, Schurko RW. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys Chem Chem Phys 2016; 18:17713-30. [DOI: 10.1039/c6cp02855a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N and 15N solid-state NMR at natural abundance are used in tandem for the investigation of pharmaceuticals and their polymorphs.
Collapse
Affiliation(s)
| | | | | | - Brianna M. Kispal
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | | | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Iowa State University
- Ames
- USA
- Department of Chemistry
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
28
|
Rossini AJ, Hanrahan MP, Thuo M. Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences. Phys Chem Chem Phys 2016; 18:25284-25295. [DOI: 10.1039/c6cp04279a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fast MAS and proton detection are applied to rapidly acquire wideline solid-state NMR spectra of spin-1/2 and half-integer quadrupolar nuclei.
Collapse
Affiliation(s)
- Aaron J. Rossini
- Iowa State University
- Department of Chemistry
- Ames
- USA
- US DOE Ames Laboratory
| | | | - Martin Thuo
- US DOE Ames Laboratory
- Ames
- USA
- Iowa State University
- Materials Science and Engineering Department
| |
Collapse
|
29
|
Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids. J Chem Theory Comput 2015; 11:5229-41. [DOI: 10.1021/acs.jctc.5b00752] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean T. Holmes
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Robbie J. Iuliucci
- Department
of Chemistry, Washington and Jefferson College, Washington, Pennsylvania 15301, United States
| | - Karl T. Mueller
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Cecil Dybowski
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
30
|
Xu J, Lucier BEG, Sinelnikov R, Terskikh VV, Staroverov VN, Huang Y. Monitoring and Understanding the Paraelectric-Ferroelectric Phase Transition in the Metal-Organic Framework [NH4][M(HCOO)3] by Solid-State NMR Spectroscopy. Chemistry 2015; 21:14348-61. [DOI: 10.1002/chem.201501954] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/08/2022]
|
31
|
Shen M, Trébosc J, O'Dell LA, Lafon O, Pourpoint F, Hu B, Chen Q, Amoureux JP. Comparison of various NMR methods for the indirect detection of nitrogen-14 nuclei via protons in solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 258:86-95. [PMID: 26232366 DOI: 10.1016/j.jmr.2015.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
We present an experimental comparison of several through-space Hetero-nuclear Multiple-Quantum Correlation experiments, which allow the indirect observation of homo-nuclear single- (SQ) or double-quantum (DQ) (14)N coherences via spy (1)H nuclei. These (1)H-{(14)N} D-HMQC sequences differ not only by the order of (14)N coherences evolving during the indirect evolution, t1, but also by the radio-frequency (rf) scheme used to excite and reconvert these coherences under Magic-Angle Spinning (MAS). Here, the SQ coherences are created by the application of center-band frequency-selective pulses, i.e. long and low-power rectangular pulses at the (14)N Larmor frequency, ν0((14)N), whereas the DQ coherences are excited and reconverted using rf irradiation either at ν0((14)N) or at the (14)N overtone frequency, 2ν0((14)N). The overtone excitation is achieved either by constant frequency rectangular pulses or by frequency-swept pulses, specifically Wide-band, Uniform-Rate, and Smooth-Truncation (WURST) pulse shapes. The present article compares the performances of four different (1)H-{(14)N} D-HMQC sequences, including those with (14)N rectangular pulses at ν0((14)N) for the indirect detection of homo-nuclear (i) (14)N SQ or (ii) DQ coherences, as well as their overtone variants using (iii) rectangular or (iv) WURST pulses. The compared properties include: (i) the sensitivity, (ii) the spectral resolution in the (14)N dimension, (iii) the rf requirements (power and pulse length), as well as the robustness to (iv) rf offset and (v) MAS frequency instabilities. Such experimental comparisons are carried out for γ-glycine and l-histidine.HCl monohydrate, which contain (14)N sites subject to moderate quadrupole interactions. We demonstrate that the optimum choice of the (1)H-{(14)N} D-HMQC method depends on the experimental goal. When the sensitivity and/or the robustness to offset are the major concerns, the D-HMQC sequence allowing the indirect detection of (14)N SQ coherences should be employed. Conversely, when the highest resolution and/or adjusted indirect spectral width are needed, overtone experiments are the method of choice. The overtone scheme using WURST pulses results in broader excitation bandwidths than that using rectangular pulses, at the expense of reduced sensitivity. Numerically exact simulations also show that the sensitivity of the overtone (1)H-{(14)N} D-HMQC experiment increases for larger quadrupole interactions.
Collapse
Affiliation(s)
- Ming Shen
- UCCS, CNRS UMR 8181, Univ. Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Julien Trébosc
- UCCS, CNRS UMR 8181, Univ. Lille, Villeneuve d'Ascq 59652, France
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3220, Australia
| | - Olivier Lafon
- UCCS, CNRS UMR 8181, Univ. Lille, Villeneuve d'Ascq 59652, France.
| | | | - Bingwen Hu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Qun Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Jean-Paul Amoureux
- UCCS, CNRS UMR 8181, Univ. Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
32
|
Veinberg SL, Friedl ZW, Harris KJ, O'Dell LA, Schurko RW. Ultra-wideline 14N solid-state NMR as a method for differentiating polymorphs: glycine as a case study. CrystEngComm 2015. [DOI: 10.1039/c5ce00060b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N solid-state NMR is useful for differentiating polymorphs and chemically distinct nitrogen-containing compounds. A case study of glycine is presented.
Collapse
Affiliation(s)
| | - Zachary W. Friedl
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada
| | | | - Luke A. O'Dell
- Institute for Frontier Materials
- Deakin University
- Waurn Ponds Campus
- Geelong, Australia
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada
| |
Collapse
|
33
|
Dib E, Alonso B, Mineva T. DFT-D Study of 14N Nuclear Quadrupolar Interactions in Tetra-n-alkyl Ammonium Halide Crystals. J Phys Chem A 2014; 118:3525-33. [DOI: 10.1021/jp502858n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eddy Dib
- ICGM-MACS, UMR 5253 CNRS-ENSCM-UM2-UM1,
Institut Charles Gerhardt de Montpellier, 8 rue de l’Ecole normale, 34296 Montpellier cedex 5, France
| | - Bruno Alonso
- ICGM-MACS, UMR 5253 CNRS-ENSCM-UM2-UM1,
Institut Charles Gerhardt de Montpellier, 8 rue de l’Ecole normale, 34296 Montpellier cedex 5, France
| | - Tzonka Mineva
- ICGM-MACS, UMR 5253 CNRS-ENSCM-UM2-UM1,
Institut Charles Gerhardt de Montpellier, 8 rue de l’Ecole normale, 34296 Montpellier cedex 5, France
| |
Collapse
|
34
|
Viger-Gravel J, Leclerc S, Korobkov I, Bryce DL. Direct Investigation of Halogen Bonds by Solid-State Multinuclear Magnetic Resonance Spectroscopy and Molecular Orbital Analysis. J Am Chem Soc 2014; 136:6929-42. [DOI: 10.1021/ja5013239] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jasmine Viger-Gravel
- Department
of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Sophie Leclerc
- Department
of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Ilia Korobkov
- Department
of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - David L. Bryce
- Department
of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
35
|
Althaus SM, Mao K, Stringer JA, Kobayashi T, Pruski M. Indirectly detected heteronuclear correlation solid-state NMR spectroscopy of naturally abundant 15N nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 57-58:17-21. [PMID: 24287060 DOI: 10.1016/j.ssnmr.2013.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
Two-dimensional indirectly detected through-space and through-bond (1)H{(15)N} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse (1)H decoupling are evaluated. Remarkable efficiency of polarization transfer can be achieved at a MAS rate of 40 kHz by both cross-polarization and INEPT, which makes these methods applicable for routine characterizations of natural abundance solids. The first measurement of 2D (1)H{(15)N} HETCOR spectrum of natural abundance surface species is also reported.
Collapse
Affiliation(s)
- Stacey M Althaus
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - Kanmi Mao
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - John A Stringer
- Agilent Technologies, 900 South Taft, Loveland, CO 80537, USA
| | - Takeshi Kobayashi
- Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - Marek Pruski
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA.
| |
Collapse
|
36
|
Rossini AJ, Widdifield CM, Zagdoun A, Lelli M, Schwarzwälder M, Copéret C, Lesage A, Emsley L. Dynamic nuclear polarization enhanced NMR spectroscopy for pharmaceutical formulations. J Am Chem Soc 2014; 136:2324-34. [PMID: 24410528 DOI: 10.1021/ja4092038] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy at 9.4 T is demonstrated for the detailed atomic-level characterization of commercial pharmaceutical formulations. To enable DNP experiments without major modifications of the formulations, the gently ground tablets are impregnated with solutions of biradical polarizing agents. The organic liquid used for impregnation (here 1,1,2,2-tetrachloroethane) is chosen so that the active pharmaceutical ingredient (API) is minimally perturbed. DNP enhancements (ε) of between 40 and 90 at 105 K were obtained for the microparticulate API within four different commercial formulations of the over-the-counter antihistamine drug cetirizine dihydrochloride. The different formulations contain between 4.8 and 8.7 wt % API. DNP enables the rapid acquisition with natural isotopic abundances of one- and two-dimensional (13)C and (15)N solid-state NMR spectra of the formulations while preserving the microstructure of the API particles. Here this allowed immediate identification of the amorphous form of the API in the tablet. API-excipient interactions were observed in high-sensitivity (1)H-(15)N correlation spectra, revealing direct contacts between povidone and the API. The API domain sizes within the formulations were determined by measuring the variation of ε as a function of the polarization time and numerically modeling nuclear spin diffusion. Here we measure an API particle radius of 0.3 μm with a single particle model, while modeling with a Weibull distribution of particle sizes suggests most particles possess radii of around 0.07 μm.
Collapse
Affiliation(s)
- Aaron J Rossini
- Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) , 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lucier BEG, Johnston KE, Xu W, Hanson JC, Senanayake SD, Yao S, Bourassa MW, Srebro M, Autschbach J, Schurko RW. Unravelling the Structure of Magnus’ Pink Salt. J Am Chem Soc 2014; 136:1333-51. [DOI: 10.1021/ja4076277] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan E. G. Lucier
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Karen E. Johnston
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Wenqian Xu
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jonathan C. Hanson
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanjaya D. Senanayake
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Siyu Yao
- Center for Computational Science & Engineering, and PKU Green Chemistry Centre, Peking University, Beijing 100871, China
| | - Megan W. Bourassa
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Monika Srebro
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Department
of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Robert W. Schurko
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|
38
|
Viger-Gravel J, Meyer JE, Korobkov I, Bryce DL. Probing halogen bonds with solid-state NMR spectroscopy: observation and interpretation of J(77Se,31P) coupling in halogen-bonded PSe⋯I motifs. CrystEngComm 2014. [DOI: 10.1039/c4ce00345d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Intra-halogen bond J couplings measured via NMR spectroscopy and interpreted using natural localized molecular orbitals offer novel insights into this class of non-covalent interaction.
Collapse
Affiliation(s)
- Jasmine Viger-Gravel
- Department of Chemistry and Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa, Canada
| | - Julia E. Meyer
- Department of Chemistry and Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa, Canada
| | - Ilia Korobkov
- Department of Chemistry and Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa, Canada
| | - David L. Bryce
- Department of Chemistry and Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa, Canada
| |
Collapse
|
39
|
Rossini AJ, Emsley L, O'Dell LA. Dynamic nuclear polarisation enhanced14N overtone MAS NMR spectroscopy. Phys Chem Chem Phys 2014; 16:12890-9. [DOI: 10.1039/c4cp00590b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic nuclear polarisation has been used to obtain solid-state14N overtone NMR spectra with signal enhancement levels of over two orders of magnitude, including natural abundance C–N and H–N correlation spectra.
Collapse
Affiliation(s)
- Aaron J. Rossini
- Centre de RMN à Trés Hauts Champs
- Institut de Sciences Analytiques
- Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1)
- 69100 Villeurbanne, France
| | - Lyndon Emsley
- Centre de RMN à Trés Hauts Champs
- Institut de Sciences Analytiques
- Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1)
- 69100 Villeurbanne, France
| | - Luke A. O'Dell
- Institute for Frontier Materials
- Deakin University
- Geelong, Australia
| |
Collapse
|
40
|
Harris KJ, Veinberg SL, Mireault CR, Lupulescu A, Frydman L, Schurko RW. Rapid Acquisition of14N Solid-State NMR Spectra with Broadband Cross Polarization. Chemistry 2013; 19:16469-75. [DOI: 10.1002/chem.201301862] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 11/09/2022]
|
41
|
O'Dell LA. The WURST kind of pulses in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 55-56:28-41. [PMID: 24183812 DOI: 10.1016/j.ssnmr.2013.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
WURST pulses (wideband, uniform rate, smooth truncation) were first introduced two decades ago by Kupče and Freeman as a means of achieving broadband adiabatic inversion of magnetisation for solution-state (13)C decoupling at high magnetic field strengths. In more recent years these pulses have found use in an increasingly diverse range of applications in solid-state NMR. This article reviews a number of recent developments that take advantage of WURST pulses, including broadband excitation, refocusing and cross polarisation for the acquisition of ultra-wideline powder patterns, signal enhancement for half-integer and integer spin quadrupolar nuclei, spectral editing, direct and indirectly observed (14)N overtone MAS, and symmetry-based homonuclear recoupling. Simple mathematical descriptions of WURST pulses and some brief theory behind their operation in the adiabatic and non-adiabatic regimes are provided, and various practical considerations for their use are also discussed.
Collapse
Affiliation(s)
- Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| |
Collapse
|
42
|
Abstract
Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such large spectral breadths. We have suggested the term ultra-wideline NMR (UWNMR) spectroscopy to describe this set of methodologies. This Account describes recent developments in pulse sequences and strategies for the efficient acquisition of UWNMR spectra. After an introduction to anisotropically broadened NMR patterns, we give a brief history of methods used to acquire UWNMR spectra. We then discuss new acquisition methodologies, including the acquisition of CPMG echo trains and the application of pulses capable of broadband excitation and refocusing. Finally, we present several applications of UWNMR methods that use these broadband pulses.
Collapse
Affiliation(s)
- Robert W. Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| |
Collapse
|
43
|
O'Dell LA, Brinkmann A. 14N overtone NMR spectra under magic angle spinning: experiments and numerically exact simulations. J Chem Phys 2013; 138:064201. [PMID: 23425463 DOI: 10.1063/1.4775592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It was recently shown that high resolution (14)N overtone NMR spectra can be obtained directly under magic angle spinning (MAS) conditions [L. A. O'Dell and C. I. Ratcliffe, Chem. Phys. Lett. 514, 168 (2011)]. Preliminary experimental results showed narrowed powder pattern widths, a frequency shift that is dependent on the MAS rate, and an apparent absence of spinning sidebands, observations which appeared to be inconsistent with previous theoretical treatments. Herein, we reproduce these effects using numerically exact simulations that take into account the full nuclear spin Hamiltonian. Under sample spinning, the (14)N overtone signal is split into five (0, ±1, ±2) overtone sidebands separated by the spinning frequency. For a powder sample spinning at the magic angle, the +2ω(r) sideband is dominant while the others show significantly lower signal intensities. The resultant MAS powder patterns show characteristic quadrupolar lineshapes from which the (14)N quadrupolar parameters and isotropic chemical shift can be determined. Spinning the sample at other angles is shown to alter both the shapes and relative intensities of the five overtone sidebands, with MAS providing the benefit of averaging dipolar couplings and shielding anisotropy. To demonstrate the advantages of this experimental approach, we present the (14)N overtone MAS spectrum obtained from L-histidine, in which powder patterns from all three nitrogen sites are clearly resolved.
Collapse
Affiliation(s)
- Luke A O'Dell
- Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, M40, Ottawa, Ontario K1A 0R6, Canada
| | | |
Collapse
|
44
|
Widdifield CM, Cavallo G, Facey GA, Pilati T, Lin J, Metrangolo P, Resnati G, Bryce DL. Multinuclear Solid-State Magnetic Resonance as a Sensitive Probe of Structural Changes upon the Occurrence of Halogen Bonding in Co-crystals. Chemistry 2013; 19:11949-62. [DOI: 10.1002/chem.201300809] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/10/2013] [Indexed: 01/20/2023]
|
45
|
Jarvis JA, Haies IM, Williamson PTF, Carravetta M. An efficient NMR method for the characterisation of 14N sites through indirect 13C detection. Phys Chem Chem Phys 2013; 15:7613-20. [PMID: 23589073 PMCID: PMC3695532 DOI: 10.1039/c3cp50787d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen is one of the most abundant elements and plays a key role in the chemistry of biological systems. Despite its widespread distribution, the study of the naturally occurring isotope of nitrogen, (14)N (99.6%), has been relatively limited as it is a spin-1 nucleus that typically exhibits a large quadrupolar interaction. Accordingly, most studies of nitrogen sites in biomolecules have been performed on samples enriched with (15)N, limiting the application of NMR to samples which can be isotopically enriched. This precludes the analysis of naturally occurring samples and results in the loss of the wealth of structural and dynamic information that the quadrupolar interaction can provide. Recently, several experimental approaches have been developed to characterize (14)N sites through their interaction with neighboring 'spy' nuclei. Here we describe a novel version of these experiments whereby coherence between the (14)N site and the spy nucleus is mediated by the application of a moderate rf field to the (14)N. The resulting (13)C/(14)N spectra show good sensitivity on natural abundance and labeled materials; whilst the (14)N lineshapes permit the quantitative analysis of the quadrupolar interaction.
Collapse
Affiliation(s)
- James A Jarvis
- Centre for Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | | | | | | |
Collapse
|
46
|
A combined ultra-wideline solid-state NMR and DFT study of 137Ba electric field gradient tensors in barium compounds. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.02.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Frenette M, Cosa G, Friščić T. Characterisation of organic solid forms and real-time in situ monitoring of their transformations using solid-state fluorescence. CrystEngComm 2013. [DOI: 10.1039/c3ce40604k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
O'Dell LA, He R, Pandohee J. Identifying H–N proximities in solid-state NMR using 14N overtone irradiation under fast MAS. CrystEngComm 2013. [DOI: 10.1039/c3ce40967h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azaïs T, Ashbrook SE, Griffin JM, Yates JR, Mauri F, Pickard CJ. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view. Chem Rev 2012; 112:5733-79. [PMID: 23113537 DOI: 10.1021/cr300108a] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, Université Pierre et Marie Curie, CNRS UMR, Collège de France, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rossini AJ, Zagdoun A, Hegner F, Schwarzwälder M, Gajan D, Copéret C, Lesage A, Emsley L. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J Am Chem Soc 2012; 134:16899-908. [PMID: 22967206 DOI: 10.1021/ja308135r] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamic nuclear polarization (DNP) solid-state NMR has been applied to powdered microcrystalline solids to obtain sensitivity enhancements on the order of 100. Glucose, sulfathiazole, and paracetamol were impregnated with bis-nitroxide biradical (bis-cyclohexyl-TEMPO-bisketal, bCTbK) solutions of organic solvents. The organic solvents were carefully chosen to be nonsolvents for the compounds, so that DNP-enhanced solid-state NMR spectra of the unaltered solids could be acquired. A theoretical model is presented that illustrates that for externally doped organic solids characterized by long spin-lattice relaxation times (T(1)((1)H) > 200 s), (1)H-(1)H spin diffusion can relay enhanced polarization over micrometer length scales yielding substantial DNP enhancements (ε). ε on the order of 60 are obtained for microcrystalline glucose and sulfathiazole at 9.4 T and with temperatures of ca. 105 K. The large gain in sensitivity enables the rapid acquisition of (13)C-(13)C correlation spectra at natural isotopic abundance. It is anticipated that this will be a general method for enhancing the sensitivity of solid-state NMR experiments of organic solids.
Collapse
Affiliation(s)
- Aaron J Rossini
- Centre de RMN a Tres Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|