1
|
Xiong J, Sun B, Zhang S, Qin L, Zhang J, Jiang H. A novel one-step immunoassay using mesoporous core-shell Pd@Pt nanoparticles as an alternative to horseradish peroxidase for amantadine detection. Talanta 2025; 291:127898. [PMID: 40058143 DOI: 10.1016/j.talanta.2025.127898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025]
Abstract
The inherent limitations of natural enzymes hinder their stable application under harsh conditions, highlighting the urgent need for a stable alternative signal tracer. Herein, core-shell palladium@platinum (Pd@Pt) nanoparticles (NPs) with mesoporous and dendritic nanostructures were synthesized using a modified ultrasound-assisted chemical reduction method, resulting in a 25 % improvement in relative activity compared to previously reported methods. The yielding nanoparticles exhibited enhanced peroxidase-like activity with specific activity of 54.4 U/mg, and their Michaelis constant and maximum reaction velocity were 6.2 and 48 timers higher, respectively, than those of horseradish peroxidase (HRP). The Pd@Pt NPs were conjugated with antibodies via electrostatic adsorption, demonstrating their potential as a viable alternative to HRP. The rough surface structure of the Pd@Pt NPs not only enhanced the efficiency of antibody immobilization to approximately 90 %, but also, through a pH-regulated antibody immobilization strategy, facilitated the orientation of antibody recognition regions, thereby improving inhibition efficiency. A one-step immunoassay based on the Pd@Pt NPs immunoprobe was then developed, with amantadine (AMD) serving as a proof of concept. The proposed method showed a 2.8-fold increase in sensitivity, a 400-fold expansion in the linear range, and a 1-h reduction in detection time compared to the traditional "gold standard" ELISA. The practical applicability of the proposed method was validated in real chicken and pork samples, with coefficients of variation all less than 17.49 %, and a strong correlation with commercial kits was observed. These results suggest that Pd@Pt NPs are a promising signal-generating probe with significant potential as an alternative to HRP, offering improvements in sensitivity, linear range, stability, and other key performance characteristics.
Collapse
Affiliation(s)
- Jincheng Xiong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Li Y, Liao Q, Ji P, Jie S, Wu C, Tong K, Zhu M, Zhang C, Li H. Accelerated Selective Electrooxidation of Ethylene Glycol and Inhibition of C-C Dissociation Facilitated by Surficial Oxidation on Hollowed PtAg Nanostructures via In Situ Dynamic Evolution. JACS AU 2025; 5:714-726. [PMID: 40017736 PMCID: PMC11862955 DOI: 10.1021/jacsau.4c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
Electro-upgrading of low-cost alcohols such as ethylene glycol is a promising and sustainable approach for the production of value-added chemicals while substituting energy-consuming OER in water splitting. However, the sluggish kinetics and possibility of C-C dissociation make the design of selective and efficient electrocatalysts challenging. Herein, we demonstrate the synthesis of a hollowed bimetallic PtAg nanostructure through an in situ dynamic evolution method that could efficiently drive the selective electrochemical ethylene glycol oxidation reaction (EGOR). The resulting mild surficial oxidation has intrinsically improved EGOR activity, exhibiting a remarkable performance toward glycolate (selectivity up to 99.2% and faradic efficiency ∼97%) at high current density with low overpotential (355 mA·cm-2 at 1.0 V, 16.3 A·mgPt -1), exceeding prior outcomes. Through comprehensive operando characterization and theoretical calculations, this study systematically reveals that the in situ formation of Pt-O(H)ad is pivotal for modulating the electronic structure of surface and facilitating the selective electrooxidation and adsorption of -CH2OH. The competitive C-C dissociation pathway toward HCOO- is concurrently inhibited in comparison to Pt. An industrial-level current coupled with hydrogen production at low cell voltages was also achieved. These findings offer more in-depth mechanistic understanding of the EGOR's reaction pathway mediated by surface environment in Pt-based electrocatalysts.
Collapse
Affiliation(s)
- Yuhan Li
- Shanghai
Key Laboratory of Rare Earth Functional Materials and Education Ministry
Key Laboratory of Resource Chemistry, Shanghai
Normal University, Shanghai 200234, P. R. China
| | - Qingliang Liao
- Shanghai
Key Laboratory of Rare Earth Functional Materials and Education Ministry
Key Laboratory of Resource Chemistry, Shanghai
Normal University, Shanghai 200234, P. R. China
| | - Peiyi Ji
- Shanghai
Key Laboratory of Rare Earth Functional Materials and Education Ministry
Key Laboratory of Resource Chemistry, Shanghai
Normal University, Shanghai 200234, P. R. China
| | - Sheng Jie
- Shanghai
Key Laboratory of Rare Earth Functional Materials and Education Ministry
Key Laboratory of Resource Chemistry, Shanghai
Normal University, Shanghai 200234, P. R. China
| | - Chunjie Wu
- Shanghai
Key Laboratory of Rare Earth Functional Materials and Education Ministry
Key Laboratory of Resource Chemistry, Shanghai
Normal University, Shanghai 200234, P. R. China
| | - Kunyi Tong
- Shanghai
Key Laboratory of Rare Earth Functional Materials and Education Ministry
Key Laboratory of Resource Chemistry, Shanghai
Normal University, Shanghai 200234, P. R. China
| | - Minghui Zhu
- State
Key
Laboratory of Chemical Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Chenhao Zhang
- Shanghai
Key Laboratory of Rare Earth Functional Materials and Education Ministry
Key Laboratory of Resource Chemistry, Shanghai
Normal University, Shanghai 200234, P. R. China
| | - Hui Li
- Shanghai
Key Laboratory of Rare Earth Functional Materials and Education Ministry
Key Laboratory of Resource Chemistry, Shanghai
Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
3
|
Campbell E, Brown A, Nguyen HTM, He K, Batmunkh M, Zhong YL. Recent Advances in Selective Chemical Etching of Nanomaterials for High-Performance Electrodes in Electrocatalysis and Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409552. [PMID: 39719666 DOI: 10.1002/smll.202409552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/14/2024] [Indexed: 12/26/2024]
Abstract
To move beyond an energy economy dominated by fossil fuel utilization, high-performance electrochemical cells must be designed for energy storage and conversion. Selective etching is a promising, cost-effective solution-processing method for the large-scale top-down production of nanomaterials for high-performance electrodes. This review outlines general methodologies and mechanisms by which selective etching can be applied to create nanomaterials, including various template-assisted, facet-selective, and electrochemical methods, as well as in-depth case studies of state-of-the-art research involving selectively etched nanomaterials for electrocatalytic and energy storage applications. In addition, the standard design strategies by which the electrochemical performance of selectively etched nanomaterials is enhanced, including increased surface area, morphology, diffusion channels, heterojunction interfaces, and facet reactivity, are discussed. This review provides a foundation of knowledge for researchers seeking the rational design of nanomaterials for electrode application through selective etching.
Collapse
Affiliation(s)
- Eric Campbell
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alex Brown
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Huynh Tam Minh Nguyen
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Kelin He
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Munkhbayar Batmunkh
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Yu Lin Zhong
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| |
Collapse
|
4
|
Xu Z, Hu X, Jiang X, Zhu S, Lei K, Pi Y, Jiang K, Zheng S. 2D Carbon-Anchored Platinum-Based Nanodot Arrays as Efficient Catalysts for Methanol Oxidation Reaction. SMALL METHODS 2024:e2401717. [PMID: 39679765 DOI: 10.1002/smtd.202401717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Ultrafine Pt-based alloy nanoparticles supported on carbon substrates have attracted significant attention due to their catalytic potential. Nevertheless, ensuring the stability of these nanoparticles remains a critical challenge, impeding their broad application. In this work, novel nanodot arrays (NAs) are introduced where superfine alloy nanoparticles are uniformly implanted in a 2D carbon substrate and securely anchored. Electrochemical testing of the PtCo NAs demonstrates exceptional methanol oxidation reaction (MOR) activity, achieving 1.25 A mg-1. Moreover, the PtCo NAs exhibit outstanding stability throughout the testing period, underscoring the effectiveness of the anchoring mechanism. Comprehensive characterization and theoretical calculations reveal that the 2D carbon-anchored structure optimizes the electronic structure and coordination environment of Pt, restricts nanoparticle migration, and suppresses transition metal dissolution. This strategy represents a major advancement in addressing the stability limitations of ultrafine nanoparticles in catalytic applications and offers broader insights into the design of next-generation catalysts with enhanced durability and performance.
Collapse
Affiliation(s)
- Zhen Xu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xing Hu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaojie Jiang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Shan Zhu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Kaixiang Lei
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Kezhu Jiang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Shijian Zheng
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
5
|
Tang S, He B, Liu Y, Wang L, Liang Y, Wang J, Jin H, Wei M, Ren W, Suo Z, Xu Y. A dual-signal mode electrochemical aptasensor based on tetrahedral DNA nanostructures for sensitive detection of citrinin in food using PtPdCo mesoporous nanozymes. Food Chem 2024; 460:140739. [PMID: 39116770 DOI: 10.1016/j.foodchem.2024.140739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Citrinin (CIT) is a mycotoxin with nephrotoxicity and hepatotoxicity, presenting a significant threat to human health that is often overlooked. Therefore, a dual-signal mode (DPV and SWV) aptasensor for citrinin (CIT) detection was constructed based on tetrahedral DNA nanostructures (TDN) in this study. Furthermore, PtPdCo mesoporous nanozymes exhibit catalase-like catalytic functions, generating significant electrochemical signals through a Fenton-like reaction. Meanwhile their excellent Methylene Blue (MB) loading capability ensures independent dual signal outputs. The RecJf exonuclease-assisted (RecJf Exo-assisted) process can expand the linear detection range, enabling further amplification of the signal. Under optimized conditions, the constructed aptaensor exhibited excellent detection performance with limits of detection (LODs) of 7.67 × 10-3 ng·mL-1 (DPV mode) and 1.57 × 10-3 ng·mL-1 (SWV mode). Due to its multiple signal amplification and highly accurate dual-signal mode detection capability, this aptasensor shows promising potential for the in situ detection.
Collapse
Affiliation(s)
- Shi Tang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Yao Liu
- Henan Scientific Research Platform Service Center, Zhengzhou, Henan 450003, PR China
| | - Longdi Wang
- COFCO Lijin (Tianjin) Grain and Oil Co., Ltd., Tianjin, 300112, PR China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
6
|
Nandan R, Nara H, Nam HN, Phung QM, Ngo QP, Na J, Henzie J, Yamauchi Y. Tailored Design of Mesoporous Nanospheres with High Entropic Alloy Sites for Efficient Redox Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402518. [PMID: 39031636 PMCID: PMC11425213 DOI: 10.1002/advs.202402518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Indexed: 07/22/2024]
Abstract
High Entropy Alloys (HEAs) are a versatile material with unique properties, tailored for various applications. They enable pH-sensitive electrocatalytic transformations like hydrogen evolution reaction (HER) and hydrogen oxidation reactions (HOR) in alkaline media. Mesoporous nanostructures with high surface area are preferred for these electrochemical reactions, but designing mesoporous HEA sis challenging. To overcome this challenge, a low-temperature triblock copolymer-assisted wet-chemical approach is developed to produce mesoporous HEA nanospheres composed of PtPdRuMoNi systems with sufficient entropic mixing. Owing to active sites with inherent entropic effect, mesoporous features, and increased accessibility, optimized HEA nanospheres promote strong HER/HOR performance in alkaline medium. At 30 mV nominal overpotential, it exhibits a mass activity of ≈167 (HER) and 151 A gPt -1 (HOR), far exceeding commercial Pt-C electrocatalysts (34 and 48 A gPt -1) and many recently reported various alloys. The Mott-Schottky analysis reveals HEA nanospheres inherit high charge carrier density, positive flat band potential, and smaller charge transfer barrier, resulting in better activity and faster kinetics. This micelle-assisted synthetic enable the exploration of the compositional and configurational spaces of HEAs at relatively low temperature, while simultaneously facilitating the introduction of mesoporous nanostructures for a wide range of catalytic applications.
Collapse
Affiliation(s)
- Ravi Nandan
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Hiroki Nara
- Waseda Research Institute for Science and EngineeringWaseda University3‐4‐1 OkuboShinjukuTokyo169‐8555Japan
| | - Ho Ngoc Nam
- Department of Materials Process EngineeringGraduate School of EngineeringNagoya UniversityNagoya464‐8603Japan
| | - Quan Manh Phung
- Department of ChemistryGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8601Japan
| | - Quynh Phuong Ngo
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Jongbeom Na
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Joel Henzie
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Yusuke Yamauchi
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Department of Materials Process EngineeringGraduate School of EngineeringNagoya UniversityNagoya464‐8603Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- Department of Plant & Environmental New ResourcesKyung Hee University1732, Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| |
Collapse
|
7
|
Wen X, Nazemi SA, da Silva RR, Moth-Poulsen K. The Effect of the Pd Precursors on the Shape of Hollow Ag-Pd Alloy Nanoparticles Using Ag Nanocubes as Seeds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11268-11273. [PMID: 37505905 PMCID: PMC10433512 DOI: 10.1021/acs.langmuir.3c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Hollow Ag-Pd nanoparticles have potentially high catalytic performance owing to their larger surface area compared to their corresponding solid nanoparticles. We successfully fabricated hollow Ag-Pd alloy nanodendrites and nanoboxes by using different Pd precursors (H2PdCl4 and Pd(acac)2) to achieve large surface area nanoboxes. Interestingly, the use of a H2PdCl4 precursor led to the formation of hollow nanodendrite structures, whereas the slower reduction of Pd(acac)2 led to the formation of hollow nanoboxes. The microstructure and chemical composition of Ag-Pd nanoparticles and properties of their growth solutions were investigated by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and ultraviolet-visible spectroscopy.
Collapse
Affiliation(s)
- Xin Wen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412-96 Gothenburg, Sweden
| | - Seyed Amirabbas Nazemi
- Department
of Physics, Engineering, Earth, Environmental sciences, and Mechanics, University of Grenoble Alpes, 38400 Saint Martin d’Hères, France
- School
of Life Science, University of Applied Sciences
and Arts Northwestern Switzerlanz, Hofackerstrasee 30, Muttenz CH-4132, Switzerland
| | - Robson Rosa da Silva
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412-96 Gothenburg, Sweden
- NanoScientifica
Scandinavia AB, Stena Center, Studio 4166, 41 292 Gothenburg, Sweden
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412-96 Gothenburg, Sweden
- The
Institute of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193 Barcelona, Spain
- Catalan
Institution for Research & Advanced Studies, ICREA, Pg. Llu′ıs Companys
23, 08010 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard
Maristany 10−14, 08019 Barcelona, Spain
| |
Collapse
|
8
|
Kang Y, Cretu O, Kikkawa J, Kimoto K, Nara H, Nugraha AS, Kawamoto H, Eguchi M, Liao T, Sun Z, Asahi T, Yamauchi Y. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat Commun 2023; 14:4182. [PMID: 37443103 PMCID: PMC10344865 DOI: 10.1038/s41467-023-39157-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
Multimetallic alloys (MMAs) with various compositions enrich the materials library with increasing diversity and have received much attention in catalysis applications. However, precisely shaping MMAs in mesoporous nanostructures and mapping the distributions of multiple elements remain big challenge due to the different reduction kinetics of various metal precursors and the complexity of crystal growth. Here we design a one-pot wet-chemical reduction approach to synthesize core-shell motif PtPdRhRuCu mesoporous nanospheres (PtPdRhRuCu MMNs) using a diblock copolymer as the soft template. The PtPdRhRuCu MMNs feature adjustable compositions and exposed porous structures rich in highly entropic alloy sites. The formation processes of the mesoporous structures and the reduction and growth kinetics of different metal precursors of PtPdRhRuCu MMNs are revealed. The PtPdRhRuCu MMNs exhibit robust electrocatalytic hydrogen evolution reaction (HER) activities and low overpotentials of 10, 13, and 28 mV at a current density of 10 mA cm-2 in alkaline (1.0 M KOH), acidic (0.5 M H2SO4), and neutral (1.0 M phosphate buffer solution (PBS)) electrolytes, respectively. The accelerated kinetics of the HER in PtPdRhRuCu MMNs are derived from multiple compositions with synergistic interactions among various metal sites and mesoporous structures with excellent mass/electron transportation characteristics.
Collapse
Affiliation(s)
- Yunqing Kang
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Ovidiu Cretu
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Kikkawa
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Koji Kimoto
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hiroki Nara
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hiroki Kawamoto
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki, 312-0033, Japan
| | - Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yusuke Yamauchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan.
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
9
|
Shi Y, Zhang L, Zhou H, Liu R, Nie S, Ye G, Wu F, Niu W, Han JL, Wang AJ. Te-induced fabrication of Pt 3PdTe 0.2 alloy nanocages by the self-diffusion of Pd atoms with unique MOR electrocatalytic performance. NANOSCALE ADVANCES 2023; 5:2804-2812. [PMID: 37205282 PMCID: PMC10187029 DOI: 10.1039/d2na00576j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
The key to the application of direct methanol fuel cells is to improve the activity and durability of Pt-based catalysts. Based on the upshift of the d-band centre and exposure to more Pt active sites, Pt3PdTe0.2 catalysts with significantly enhanced electrocatalytic performance for the methanol oxidation reaction (MOR) were designed in this study. A series of different Pt3PdTex (x = 0.2, 0.35, and 0.4) alloy nanocages with hollow and hierarchical structures were synthesized using cubic Pd nanoparticles as sacrificial templates and PtCl62- and TeO32- metal precursors as oxidative etching agents. The Pd nanocubes were oxidized into an ionic complex, which was further co-reduced with Pt and Te precursors by reducing agents to form the hollow Pt3PdTex alloy nanocages with a face-centred cubic lattice. The sizes of the nanocages were around 30-40 nm, which were larger than the Pd templates (18 nm) and the thicknesses of the walls were 7-9 nm. The Pt3PdTe0.2 alloy nanocages exhibited the highest catalytic activities and stabilities toward the MOR after electrochemical activation in sulfuric acid solution. CO-stripping tests suggested the enhanced CO-tolerant ability due to the doping of Te. The specific activity of Pt3PdTe0.2 for the MOR reached 2.71 mA cm-2 in acidic conditions, which was higher than those of Pd@Pt core-shell and PtPd1.5 alloy nanoparticles and commercial Pt/C. A DMFC with Pt3PdTe0.2 as the anodic catalyst output a higher power density by 2.6 times than that of commercial Pt/C, demonstrating its practicable application in clean energy conversions. Density functional theory (DFT) confirmed that the alloyed Te atoms altered the electron distributions of Pt3PdTe0.2, which could lower the Gibbs free energy of the rate-determining methanol dehydrogenation step and greatly improve the MOR catalytic activity and durability.
Collapse
Affiliation(s)
- Yuhe Shi
- School of Science, Harbin Institute of Technology Shenzhen 518055 China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology Shenzhen 518055 China
| | - Huiwen Zhou
- School of Science, Harbin Institute of Technology Shenzhen 518055 China
| | - Ruanshan Liu
- School of Science, Harbin Institute of Technology Shenzhen 518055 China
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd Heze 274400 China
| | - Guojie Ye
- Hynar Water Group Co., Ltd Shenzhen 518052 China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Anhui 230026 China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Anhui 230026 China
| | - Jing Long Han
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen 518055 China
- State Key Laboratory of Urban Water Resource and Environment (Shenzhen), Harbin Institute of Technology Shenzhen 518055 China
| | - Ai Jie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen 518055 China
- State Key Laboratory of Urban Water Resource and Environment (Shenzhen), Harbin Institute of Technology Shenzhen 518055 China
| |
Collapse
|
10
|
Guo K, Xu D, Xu L, Li Y, Tang Y. Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications. MATERIALS HORIZONS 2023; 10:1234-1263. [PMID: 36723011 DOI: 10.1039/d2mh01408d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inorganic nanodendrites (NDs) have become a kind of advanced nanomaterials with broad application prospects because of their unique branched architecture. The structural characteristics of nanodendrites include highly branched morphology, abundant tips/edges and high-index crystal planes, and a high atomic utilization rate, which give them great potential for usage in the fields of electrocatalysis, sensing, and therapeutics. Therefore, the rational design and controlled synthesis of inorganic (especially noble metals) nanodendrites have attracted widespread attention nowadays. The development of synthesis strategies and characterization methodology provides unprecedented opportunities for the preparation of abundant nanodendrites with interesting crystallographic structures, morphologies, and application performances. In this review, we systematically summarize the formation mechanisms of noble metal nanodendrites reported in recent years, with a special focus on surfactant-mediated mechanisms. Some typical examples obtained by innovative synthetic methods are then highlighted and recent advances in the application of noble metal nanodendrites are carefully discussed. Finally, we conclude and present the prospects for the future development of nanodendrites. This review helps to deeply understand the synthesis and application of noble metal nanodendrites and may provide some inspiration to develop novel functional nanomaterials (especially electrocatalysts) with enhanced performance.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
11
|
Liu W, Wang Y, Wang Y, Li X, Qi K, Wang J, Xu H. Black Silver Nanocubes@Amino Acid-Encoded Highly Branched Gold Shells with Efficient Photothermal Conversion for Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:236-248. [PMID: 36538335 DOI: 10.1021/acsami.2c14436] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancers are among the leading causes of death currently. Conventional radiotherapy and chemotherapy are of limited use in the treatment of some tumors due to their high toxicity and drug resistance. Plasma photothermal therapy has attracted extensive attention for the treatment of tumors due to photothermal properties of plasmonic nanoparticles, such as gold (Au) nanoparticles, to achieve local hyperthermia with low toxicity and high efficiency. Herein, we report a kind of special black noble-metal core-shell nanostructure, with silver (Ag) nanocubes as the core and amino acid-encoded highly branched Au nanorods as the shells (l-CAg@Au and d-CAg@Au). The proposed growth of l-CAg@Au and d-CAg@Au nanocomposites was an amino acid-encoded Stranski-Krastanov mode. Both l-CAg@Au and d-CAg@Au exhibited outstanding photothermal conversion compared to the core-shell structure without amino acids (Ag@Au). d-CAg@Au possessed the best photothermal conversion efficiency (87.28%) among the composite nanoparticles. The antitumor therapeutic efficacy of as-prepared samples was evaluated in vitro and in vivo, and apoptosis analysis was done via flow cytometry. This work reports novel insights for the preparation of special bimetallic branched structures and broadens the application of metal nanomaterials in photothermal tumor therapy.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Yuqi Wang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Xiaohan Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Kai Qi
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|
12
|
Li H, Zhao H, Tao B, Xu G, Gu S, Wang G, Chang H. Pt-Based Oxygen Reduction Reaction Catalysts in Proton Exchange Membrane Fuel Cells: Controllable Preparation and Structural Design of Catalytic Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4173. [PMID: 36500796 PMCID: PMC9735689 DOI: 10.3390/nano12234173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) have attracted extensive attention because of their high efficiency, environmental friendliness, and lack of noise pollution. However, PEMFCs still face many difficulties in practical application, such as insufficient power density, high cost, and poor durability. The main reason for these difficulties is the slow oxygen reduction reaction (ORR) on the cathode due to the insufficient stability and catalytic activity of the catalyst. Therefore, it is very important to develop advanced platinum (Pt)-based catalysts to realize low Pt loads and long-term operation of membrane electrode assembly (MEA) modules to improve the performance of PEMFC. At present, the research on PEMFC has mainly been focused on two areas: Pt-based catalysts and the structural design of catalytic layers. This review focused on the latest research progress of the controllable preparation of Pt-based ORR catalysts and structural design of catalytic layers in PEMFC. Firstly, the design principle of advanced Pt-based catalysts was introduced. Secondly, the controllable preparation of catalyst structure, morphology, composition and support, and their influence on catalytic activity of ORR and overall performance of PEMFC, were discussed. Thirdly, the effects of optimizing the structure of the catalytic layer (CL) on the performance of MEA were analyzed. Finally, the challenges and prospects of Pt-based catalysts and catalytic layer design were discussed.
Collapse
Affiliation(s)
- Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Zhao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Boran Tao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoxiao Xu
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guofu Wang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Haixin Chang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Lelouche SNK, Biglione C, Horcajada P. Advances in plasmonic-based MOF composites, their bio-applications and perspectives in this field. Expert Opin Drug Deliv 2022; 19:1417-1434. [PMID: 36176048 DOI: 10.1080/17425247.2022.2130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nanomaterials have been used for bio-applications since the late 20st century. In an attempt to tailor and optimize their properties, and by extension their efficiency, composites have attracted considerable attention. In this regard, recent studies on plasmonic nanoparticles and metal-organic framework (NP@MOF) composites suggested these materials show great promise in this field. AREAS COVERED This review focused on the more recent scientific advances in the synthetic strategies to optimize plasmonic MOF nanocomposites currently available, as well as their bio-application, particularly as biosensors and therapy. EXPERT OPINION Plasmonic MOF nanocomposites have shown great potential as they combine the properties of both materials with proven efficiency in bio-application. On the one hand, nanoMOFs have proven their potential particularly as drug nanocarriers, owing to their exceptional porosity and tunability. On the other hand, plasmonic nanoparticles have been an asset for imaging and phototherapy. Different strategies have been reported to develop these nanocomposites, mainly including core-shell, encapsulation, and in situ reduction. In addition, advanced composite structures should be considered, such as mixed metal nanoparticles, hollow structures or the combination of several approaches. Specifically, plasmonic MOF nanocomposites prove to be attractive stimuli responsive drug delivery systems, phototherapeutic agents as well as highly sensitive biosensors.
Collapse
Affiliation(s)
- Sorraya N K Lelouche
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
14
|
Ying J, Lenaerts S, Symes MD, Yang X. Hierarchical Design in Nanoporous Metals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106117. [PMID: 35900062 PMCID: PMC9507373 DOI: 10.1002/advs.202106117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Indexed: 05/28/2023]
Abstract
Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and TechnologySun Yat‐sen University (SYSU)Zhuhai519082P. R. China
| | - Silvia Lenaerts
- Research Group of Sustainable Energy and Air Purification (DuEL), Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Mark D. Symes
- WestCHEM, School of ChemistryUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Xiao‐Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
15
|
Guo K, Teng Y, Guo R, Meng Y, Fan D, Hao Q, Zhang Y, Li Y, Xu D. Engineering ultrathin PdAu nanoring via a facile process for electrocatalytic ethanol oxidation. J Colloid Interface Sci 2022; 628:53-63. [PMID: 35973257 DOI: 10.1016/j.jcis.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Ultrathin nanoframes with more available electrocatalytic active sites on both internal and external surfaces have attracted great attention especially in the field of electrocatalysis. Herein, we report a facile process to prepare PdAu nanorings (NRs) in aqueous solution without adding any organic ligands. The growth mechanism of PdAu NRs was explored in detail. The Au precursors were reduced into Au clusters around the edges of Pd nanosheets (NSs) via galvanic replacement, then the center of Pd NSs was oxidatively etched by Cl-/O2, and finally the Pd and Au atoms on the edge sites were rearranged to form uniform PdAu alloy. PdAu NRs with different ratios and ternary PdAuPt NRs could be easily prepared using this strategy. Owing to the synergistically structural and compositional advantages, Pd79Au21 NRs exhibited higher electrocatalytic activity and stability, as well as low activation energy (Ea) for the ethanol electrooxidation reaction.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuxiang Teng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ruonan Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yang Meng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Dongping Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiaoqiao Hao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yan Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
16
|
Sun L, Lv H, Feng J, Guselnikova O, Wang Y, Yamauchi Y, Liu B. Noble-Metal-Based Hollow Mesoporous Nanoparticles: Synthesis Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201954. [PMID: 35695354 DOI: 10.1002/adma.202201954] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 06/15/2023]
Abstract
As second-generation mesoporous materials, mesoporous noble metals (NMs) are of significant interest for their wide applications in catalysis, sensing, bioimaging, and biotherapy owing to their structural and metallic features. The introduction of interior hollow cavity into NM-based mesoporous nanoparticles (MNs), which subtly integrate hierarchical hollow and mesoporous structure into one nanoparticle, produces a new type of hollow MNs (HMNs). Benefiting from their higher active surface, better electron/mass transfer, optimum electronic structure, and nanoconfinement space, NM-based HMNs exhibit their high efficiency in enhancing catalytic activity and stability and tuning catalytic selectivity. In this review, recent progress in the design, synthesis, and catalytic applications of NM-based HMNs is summarized, including the findings of the groups. Five main strategies for synthesizing NM-based HMNs, namely silica-assisted surfactant-templated nucleation, surfactant-templated sequential nucleation, soft "dual"-template, Kirkendall effect in synergistic template, and galvanic-replacement-assisted surfactant template, are described in detail. In addition, the applications in ethanol oxidation electrocatalysis and hydrogenation reactions are discussed to highlight the high activity, enhanced stability, and optimal selectivity of NM-based HMNs in (electro)catalysis. Finally, the further outlook that may lead the directions of synthesis and applications of NM-based HMNs is prospected.
Collapse
Affiliation(s)
- Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ji Feng
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Olga Guselnikova
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
17
|
Hollow Multicomponent Capsules for Biomedical Applications: A Comprehensive Review. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractHollow capsules with multi-shelled or multicomponent structures are essential materials for various applications. Biomedical applications like disease diagnosis, therapy, and monitoring have special significance as they aim to improve health conditions. This review demonstrated a comprehensive overview of hollow, multifunctional structures incorporating meaningful use of nanotechnology and its’ unique prospects in medicine such as patient-specific treatment, multimodal imaging, multimodal therapy, simultaneous delivery of drugs and imaging probes, and actively targeted delivery. The internal hollow cavity provides safe and controlled drug release while also enabling transport of functional moieties to target sites. This review explored the performance of different organic, inorganic, and metallic multicomponent capsules that have been reported for biomedical applications, mainly diagnostic imaging and drug delivery. Material compositions, morphologies, and synthesis strategies involved in fabricating such multifunctional systems have been discussed in detail. It is expected that with time, more sophisticated and precise systems will come to light as the outcome of ongoing concentrated research efforts.
Collapse
|
18
|
Zhu L, Song K, Yi C. One-Pot Aqueous Synthesis of Porous Hollow PdCu Alloy Nanoparticles for Enhanced Ethanol Electrooxidation. Inorg Chem 2022; 61:5474-5478. [PMID: 35362950 DOI: 10.1021/acs.inorgchem.2c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bimetallic PdCu porous hollow nanoparticles (PHNs) with hierarchical nanostructures and well-alloyed compositions were precisely synthesized through a one-pot aqueous synthetic route. Bimetallic PdCu PHNs exhibited multiple enhancement synergies and thus performed well in ethanol oxidation electrocatalysis with remarkable activity and stability. This work expedites rational design and synthesis of the high-hierarchy alloy electrocatalysts for fuel cell electrocatalysis.
Collapse
Affiliation(s)
- Luyu Zhu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Chenglin Yi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Du D, Geng Q, Ma L, Ren S, Li JX, Dong W, Hua Q, Fan L, Shao R, Wang X, Li C, Yamauchi Y. Mesoporous PdBi nanocages for enhanced electrocatalytic performances by all-direction accessibility and steric site activation. Chem Sci 2022; 13:3819-3825. [PMID: 35432914 PMCID: PMC8966753 DOI: 10.1039/d1sc06314f] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
An effective yet simple approach was developed to synthesize mesoporous PdBi nanocages for electrochemical applications. This technique relies on the subtle utilization of the hydrolysis of a metal salt to generate precipitate cores in situ as templates for navigating the growth of mesoporous shells with the assistance of polymeric micelles. The mesoporous PdBi nanocages are then obtained by excavating vulnerable cores and regulating the crystals of mesoporous metallic skeletons. The resultant mesoporous PdBi nanocages exhibited excellent electrocatalytic performance toward the ethanol oxidation reaction with a mass activity of 3.56 A mg-1_Pd, specific activity of 17.82 mA cm-2 and faradaic efficiency of up to 55.69% for C1 products.
Collapse
Affiliation(s)
- Dawei Du
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Qinghong Geng
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Lian Ma
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Siyu Ren
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jun-Xuan Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Weikang Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 China
| | - Qingfeng Hua
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Longlong Fan
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 China
| | - Xiaoming Wang
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University Shantou 515063 China
| | - Cuiling Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
20
|
Zhang J, Zhong Y, Zhang C, Zhang J, Zhuang Z. Mesoporous Core-Shell Pd@Pt Nanospheres as Oxidase Mimics with Superhigh Catalytic Efficiency at Room Temperature. J Phys Chem Lett 2022; 13:2137-2143. [PMID: 35226486 DOI: 10.1021/acs.jpclett.1c03921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesoporous Pt-Pd bimetallic core-shell nanospheres (mPd@Pt NSs) with palladium-rich cores and platinum-rich shells were synthesized via a simple, two-step, wet chemical strategy mediated by nitrogen-doped carbon dots. The BET surface area of mPd@Pt NSs was found to be 210.4 m2·g-1, which is significantly higher than the currently reported unsupported Pt-based nanomaterials. Because of the large active surface area, the as-prepared mPd@Pt NSs show superhigh oxidase activity and exhibit excellent oxidase-like catalytic efficiency with a catalytic constant (Kcat) as high as 2.1 × 103 s-1 at room temperature, which is of the same order of magnitude as the natural horseradish peroxidase (HRP) (Kcat = 4.3 × 103 s-1) at 37 °C and five-fold greater than the reported Kcat values of oxidase-like nanozyme obtained at 30 °C.
Collapse
Affiliation(s)
- Jingyun Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yajun Zhong
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Chunyan Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Junyu Zhang
- Instrumental Analysis Center, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhenjing Zhuang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
21
|
Wang Y, Lv H, Sun L, Liu B. Mesoporous Noble Metal-Metalloid/Nonmetal Alloy Nanomaterials: Designing Highly Efficient Catalysts. ACS NANO 2021; 15:18661-18670. [PMID: 34910448 DOI: 10.1021/acsnano.1c10112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesoporous metals have received increasing attention in catalysis and related applications because of their novel physicochemical properties and functional geometric features. Control of multicomponent compositions and crystalline structures of mesoporous metals is critical for their applications. Recently, mesoporous metals have gradually expanded from traditional metal-metal alloys to metal-metalloid/nonmetal alloys with random solids and/or ordered intermetallics. As new, highly efficient nanocatalysts, mesoporous metal-metalloid/nonmetal alloys not only increase the utilization efficiency of precious noble metals and accelerate electron/mass transfer but also introduce new functions and optimize the surface electronic structure of metal sites, all of which enhance their catalytic activity and stability and tune their catalytic selectivity. In this Perspective, we focus on the latest developments in this area, including the findings from our group regarding the rational design and targeted synthesis of mesoporous noble metal-metalloid/nonmetal alloy nanocatalysts. We summarize the current synthetic strategies for mesoporous noble metal-metalloid/nonmetal alloys and discuss key effects of crystalline mesoporosity and metalloid/nonmetal alloys in enhancing catalytic performances of noble metal catalysts. We also describe the current bottlenecks and major challenges to explore further directions in synthesis and applications of mesoporous noble metal-metalloid/nonmetal alloys.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
22
|
Li M, Xia Z, Luo M, He L, Tao L, Yang W, Yu Y, Guo S. Structural Regulation of Pd‐Based Nanoalloys for Advanced Electrocatalysis. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Zhonghong Xia
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Mingchuan Luo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Lin He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Lu Tao
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Shaojun Guo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| |
Collapse
|
23
|
Dou S, Hu C, Shi L, Zhang W, Zhou S, Yan P, D'Souza L, Isimjan TT, Yang X. Well‐Dispersed Ru‐Clusters Decorating Nanobox‐Structured CoP Synergistically Catalyze the NaBH
4
Hydrolysis and Electro‐Reductive H
2
Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202100768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shasha Dou
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Chuan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Luyan Shi
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Wanyu Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Shuqing Zhou
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Puxuan Yan
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Lawrence D'Souza
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
24
|
Kwon T, Kumari N, Kumar A, Lim J, Son CY, Lee IS. Au/Pt‐Egg‐in‐Nest Nanomotor for Glucose‐Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Taewan Kwon
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Jongwon Lim
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Chang Yun Son
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE) Yonsei University Seoul 03722 South Korea
| |
Collapse
|
25
|
Li G, Zhang W, Luo N, Xue Z, Hu Q, Zeng W, Xu J. Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1926. [PMID: 34443756 PMCID: PMC8401639 DOI: 10.3390/nano11081926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.
Collapse
Affiliation(s)
- Gaojie Li
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenshuang Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Na Luo
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Qingmin Hu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Wen Zeng
- School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
26
|
Kwon T, Kumari N, Kumar A, Lim J, Son CY, Lee IS. Au/Pt-Egg-in-Nest Nanomotor for Glucose-Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angew Chem Int Ed Engl 2021; 60:17579-17586. [PMID: 34107153 DOI: 10.1002/anie.202103827] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Indexed: 01/16/2023]
Abstract
Nanostructures converting chemical energy to mechanical work by using benign metabolic fuels, have huge implications in biomedical science. Here, we introduce Au/Pt-based Janus nanostructures, resembling to "egg-in-nest" morphology (Au/Pt-ENs), showing enhanced motion as a result of dual enzyme-relay-like catalytic cascade in physiological biomedia, and in turn showing molecular-laden transport to living cells. We developed dynamic-casting approach using silica yolk-shell nanoreactors: first, to install a large Au-seed fixing the silica-yolk aside while providing the anisotropically confined concave hollow nanospace to grow curved Pt-dendritic networks. Owing to the intimately interfaced Au and Pt catalytic sites integrated in a unique anisotropic nest-like morphology, Au/Pt-ENs exhibited high diffusion rates and displacements as the result of glucose-converted oxygen concentration gradient. High diffusiophoresis in cell culture media increased the nanomotor-membrane interaction events, in turn facilitated the cell internalization. In addition, the porous network of Au/Pt-ENs facilitated the drug-molecule cargo loading and delivery to the living cells.
Collapse
Affiliation(s)
- Taewan Kwon
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jongwon Lim
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
27
|
Qiu HJ, Johnson I, Chen L, Cong W, Ito Y, Liu P, Han J, Fujita T, Hirata A, Chen M. Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. NANOSCALE 2021; 13:10916-10924. [PMID: 34128521 DOI: 10.1039/d1nr02074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy.
Collapse
Affiliation(s)
- Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Isaac Johnson
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Luyang Chen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weitao Cong
- Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200062, China
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China and WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Jiuhui Han
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Takeshi Fujita
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Akihiko Hirata
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. and WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
28
|
Huang L, Zheng X, Gao G, Zhang H, Rong K, Chen J, Liu Y, Zhu X, Wu W, Wang Y, Wang J, Dong S. Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction. J Am Chem Soc 2021; 143:6933-6941. [PMID: 33915042 DOI: 10.1021/jacs.1c00656] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interfacial electron engineering between noble metal and transition metal carbide is identified as a powerful strategy to improve the intrinsic activity of electrocatalytic oxygen reduction reaction (ORR). However, this short-range effect and the huge structural differences make it a significant challenge to obtain the desired electrocatalyst with atomically thin noble metal layers. Here, we demonstrated the combinatorial strategies to fabricate the heterostructure electrocatalyst of Mo2C-coupled Pd atomic layers (AL-Pd/Mo2C) by precise control of metal-organic framework confinement and covalent interaction. Both atomic characterizations and density functional theory calculations uncovered that the strong electron effect imposed on Pd atomic layers has intensively regulated the electronic structures and d-band center and then optimized the reaction kinetics. Remarkably, AL-Pd/Mo2C showed the highest ORR electrochemical activity and stability, which delivered a mass activity of 2.055 A mgPd-1 at 0.9 V, which is 22.1, 36.1, and 80.3 times higher than Pt/C, Pd/C, and Pd nanoparticles, respectively. The present work has developed a novel approach for atomically noble metal catalysts and provides new insights into interfacial electron regulation.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Ge Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Rong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongqin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xinyang Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
29
|
Zhang X, Li H, Yang J, Lei Y, Wang C, Wang J, Tang Y, Mao Z. Recent advances in Pt-based electrocatalysts for PEMFCs. RSC Adv 2021; 11:13316-13328. [PMID: 35423850 PMCID: PMC8697640 DOI: 10.1039/d0ra05468b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 01/30/2023] Open
Abstract
In order to reduce the cost and improve the performance of proton exchange membrane fuel cells (PEMFCs), it is imperative to further enhance the activity and durability of Pt based electrocatalysts for the oxygen reduction reaction (ORR). This article analyzes the latest advances in Pt-based ORR electrocatalysts, including the Pt alloys, Pt–M core–shell structures, particle size effects, support effects, doping in Pt/PtM and post treatment. In addition, the performance of some of the developed novel electrocatalysts in membrane electrode assemblies (MEA) is also included for comparison, as they are rarely available and the superior activity and durability exhibited in RDE frequently doesn't translate into MEA. In this paper, the latest progress in the design of Pt-based ORR electrocatalysts is reviewed, including the understanding of research progress in the synthesis of high activity and high stability catalysts.![]()
Collapse
Affiliation(s)
- Xuewei Zhang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China.,Weichai Power Co., Ltd. Weifang 261061 Shandong China
| | - Haiou Li
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China.,Weichai Power Co., Ltd. Weifang 261061 Shandong China
| | - Jian Yang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Yijie Lei
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Cheng Wang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Jianlong Wang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Yaping Tang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Zongqiang Mao
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| |
Collapse
|
30
|
Li M, Li Z, Fu G, Tang Y. Recent Advances in Amino-Based Molecules Assisted Control of Noble-Metal Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007179. [PMID: 33709573 DOI: 10.1002/smll.202007179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Morphology-control synthesis is an effective means to tailor surface structure of noble-metal nanocrystals, which offers a sensitive knob for tuning their electrocatalytic properties. The functional molecules are often indispensable in the morphology-control synthesis through preferential adsorption on specific crystal facets, or controlling certain crystal growth directions. In this review, the recent progress in morphology-control synthesis of noble-metal nanocrystals assisted by amino-based functional molecules for electrocatalytic applications are focused on. Although a mass of noble-metal nanocrystals with different morphologies have been reported, few review studies have been published related to amino-based molecules assisted control strategy. A full understanding for the key roles of amino-based molecules in the morphology-control synthesis is still necessary. As a result, the explicit roles and mechanisms of various types of amino-based molecules, including amino-based small molecules and amino-based polymers, in morphology-control of noble-metal nanocrystals are summarized and discussed in detail. Also presented in this progress are unique electrocatalytic properties of various shaped noble-metal nanocrystals. Particularly, the optimization of electrocatalytic selectivity induced by specific amino-based functional molecules (e.g., polyallylamine and polyethyleneimine) is highlighted. At the end, some critical prospects, and challenges in terms of amino-based molecules-controlled synthesis and electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 79407, USA
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
31
|
Wan Z, Bai X, Mo H, Yang J, Wang Z, Zhou L. Multi-porous NiAg-doped Pd alloy nanoparticles immobilized on reduced graphene oxide/CoMoO4 composites as a highly active electrocatalyst for direct alcohol fuel cell. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Xiao YX, Ying J, Tian G, Zhang XQ, Janiak C, Ozoemena KI, Yang XY. PtPd hollow nanocubes with enhanced alloy effect and active facets for efficient methanol oxidation reaction. Chem Commun (Camb) 2021; 57:986-989. [DOI: 10.1039/d0cc06876d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alternating-reduction approach is developed to fabricate PtPd hollow nanocubes with highly catalytically-favoured {100} facets and enhanced alloy effect for efficient methanol oxidation reaction.
Collapse
Affiliation(s)
- Yu-Xuan Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering, Wuhan University of Technology
- Wuhan
- China
| | - Jie Ying
- School of Chemical Engineering and Technology
- Sun Yat-sen University (SYSU), (Guangdong, Zhuhai) & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)
- Zhuhai
- China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering, Wuhan University of Technology
- Wuhan
- China
| | - Xue-Qi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering, Wuhan University of Technology
- Wuhan
- China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Private Bag 3
- Johannesburg 2050
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering, Wuhan University of Technology
- Wuhan
- China
- School of Chemical Engineering and Technology
- Sun Yat-sen University (SYSU), (Guangdong, Zhuhai) & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)
| |
Collapse
|
33
|
Barman BK, Sarkar B, Nandan R, Nanda KK. Ruthenium nanodendrites on reduced graphene oxide: an efficient water and 4-nitrophenol reduction catalyst. NEW J CHEM 2021. [DOI: 10.1039/d0nj05565d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and efficient protocol is reported for the elegant design of reduced graphene oxide (rGO)-supported Ru nanodendrites for promotion of electrochemical water reduction in a wide pH range as well as for environmental remediation.
Collapse
Affiliation(s)
- Barun Kumar Barman
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| | - Bidushi Sarkar
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| | - Ravi Nandan
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| | - Karuna Kar Nanda
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
34
|
Su Y, Song Z, Zhu W, Mu Q, Yuan X, Lian Y, Cheng H, Deng Z, Chen M, Yin W, Peng Y. Visible-Light Photocatalytic CO2 Reduction Using Metal-Organic Framework Derived Ni(OH)2 Nanocages: A Synergy from Multiple Light Reflection, Static Charge Transfer, and Oxygen Vacancies. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04020] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanhui Su
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Zhilong Song
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Wei Zhu
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Qiaoqiao Mu
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Xuzhou Yuan
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Yuebin Lian
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Hang Cheng
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Zhao Deng
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Muzi Chen
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Wanjian Yin
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Yang Peng
- Soochow Institute of Energy and Material Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| |
Collapse
|
35
|
High-index faceted noble metal nanostructures drive renewable energy electrocatalysis. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2019.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Araujo RB, Martín-Yerga D, Santos ECD, Cornell A, Pettersson LG. Elucidating the role of Ni to enhance the methanol oxidation reaction on Pd electrocatalysts. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Zhou M, Li C, Fang J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem Rev 2020; 121:736-795. [DOI: 10.1021/acs.chemrev.0c00436] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
38
|
A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nat Protoc 2020; 15:2980-3008. [PMID: 32839575 DOI: 10.1038/s41596-020-0359-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
High-surface-area mesoporous materials expose abundant functional sites for improved performance in applications such as gas storage/separation, catalysis, and sensing. Recently, soft templates composed of amphiphilic surfactants and block copolymers have been used to introduce mesoporosity in various materials, including metals, metal oxides and carbonaceous compounds. In particular, mesoporous metals are attractive in electrocatalysis because their porous networks expose numerous unsaturated atoms on high-index facets that are highly active in catalysis. In this protocol, we describe how to create mesoporous metal films composed of gold, palladium, or platinum using block copolymer micelle templates. The amphiphilic block copolymer micelles are the sacrificial templates and generate uniform structures with tunable pore sizes in electrodeposited metal films. The procedure describes the electrodeposition in detail, including parameters such as micelle diameters, deposition potentials, and deposition times to ensure reproducibility. The micelle diameters can be controlled by swelling the micelles with different solvent mixtures or by using block copolymer micelles with different molecular weights. The deposition potentials and deposition times allow further control of the mesoporous structure and its thickness, respectively. Procedures for example applications are included: glucose oxidation, ethanol oxidation and methanol oxidation reactions. The synthetic methods for preparation of mesoporous metal films will take ~4 h; the subsequent electrochemical tests will take ~5 h for glucose sensing and ~3 h for alcohol oxidation reaction.
Collapse
|
39
|
Kani K, Henzie J, Dag Ö, Wood K, Iqbal M, Lim H, Jiang B, Salomon C, Rowan AE, Hossain MSA, Na J, Yamauchi Y. Electrochemical Synthesis of Mesoporous Architectured Ru Films Using Supramolecular Templates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002489. [PMID: 32767535 DOI: 10.1002/smll.202002489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The electrochemical synthesis of mesoporous ruthenium (Ru) films using sacrificial self-assembled block polymer micelles templates, and its electrochemical surface oxidation to RuOx is described. Unlike standard methods such as thermal oxidation, the electrochemical oxidation method described here retains the mesoporous structure. Ru oxide materials serve as high-performance supercapacitor electrodes due to their excellent pseudocapacitive behavior. The mesoporous architectured film shows superior specific capacitance (467 F g-1Ru ) versus a nonporous Ru/RuOx electrode (28 F g-1Ru ) that is prepared via the same method but omitting the pore-directing polymer. Ultrahigh surface area materials will play an essential role in increasing the capacitance of this class of energy storage devices because the pseudocapacitive redox reaction occurs on the surface of electrodes.
Collapse
Affiliation(s)
- Kenya Kani
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Joel Henzie
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ömer Dag
- Department of Chemistry and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawara Rd, Lucas Heights, NSW, 2234, Australia
| | - Muhammad Iqbal
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, 4030000, Chile
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-dareo, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
40
|
Yuan M, Xu H, Wang Y, Jin L, Wang C, Chen C, Wang Y, Shang H, Du Y. Three‐Dimensional PdCuRu Alloy Porous Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution Reaction in Varied Electrolytes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| |
Collapse
|
41
|
Chu C, Bao Z, Sun M, Wang X, Zhang H, Chen W, Sui Y, Li J, Zhuang Y, Wang D. NIR Stimulus-Responsive PdPt Bimetallic Nanoparticles for Drug Delivery and Chemo-Photothermal Therapy. Pharmaceutics 2020; 12:E675. [PMID: 32709022 PMCID: PMC7408621 DOI: 10.3390/pharmaceutics12070675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
The combination of chemotherapy and phototherapy has attracted increasing attention for cancer treatment in recent years. In the current study, porous PdPt bimetallic nanoparticles (NPs) were synthesized and used as delivery carriers for the anti-cancer drug doxorubicin (DOX). DOX@PdPt NPs were modified with thiol functionalized hyaluronic acid (HA-SH) to generate DOX@PdPt@HA NPs with an average size of 105.2 ± 6.7 nm. Characterization and in vivo and in vitro assessment of anti-tumor effects of DOX@PdPt@HA NPs were further performed. The prepared DOX@PdPt@HA NPs presented a high photothermal conversion efficiency of 49.1% under the irradiation of a single 808 nm near-infrared (NIR) laser. Moreover, NIR laser irradiation-induced photothermal effect triggered the release of DOX from DOX@PdPt@HA NPs. The combined chemo-photothermal treatment of NIR-irradiated DOX@PdPt@HA NPs exerted a stronger inhibitory effect on cell viability than that of DOX or NIR-irradiated PdPt@HA NPs in mouse mammary carcinoma 4T1 cells in vitro. Further, the in vivo combination therapy, which used NIR-irradiated DOX@PdPt@HA NPs in a mouse tumor model established by subcutaneous inoculation of 4T1 cells, was demonstrated to achieve a remarkable tumor-growth inhibition in comparison with chemotherapy or photothermal therapy alone. Results of immunohistochemical staining for caspase-3 and Ki-67 indicated the increased apoptosis and decreased proliferation of tumor cells contributed to the anti-tumor effect of chemo-photothermal treatment. In addition, DOX@PdPt@HA NPs induced negligible toxicity in vivo. Hence, the developed nanoplatform demonstrates great potential for applications in photothermal therapy, drug delivery and controlled release.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dongkai Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.C.); (Z.B.); (M.S.); (X.W.); (H.Z.); (W.C.); (Y.S.); (J.L.); (Y.Z.)
| |
Collapse
|
42
|
Jia B, Sun D, Zhao W, Xu F, Huang F. Controllable Conversion of CdNCN Nanoparticles into Various Chalcogenide Nanostructures for Photo-driven Applications. Chemistry 2020; 26:7955-7960. [PMID: 32301529 DOI: 10.1002/chem.202000790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Semiconductor nanocrystals of tunable shell/core configurations have great potential in photo-driven applications such as photoluminescence and photocatalysis, but few strategies realize a controllable synthesis with respect to both the size of the core and the shell with high crystallinity. Here, a new synthetic method based on cadmium cyanamide (CdNCN) nanoparticle anion exchange reactions was developed to access solid or hollow CdSe nanocrystals with tunable size and CdNCN@CdS heterostructures with modulated shell/core thickness. The gradual shift and narrow width of photoluminescence features demonstrate the high crystallinity and monodispersity of the resulting CdSe nanocrystals. In the CdNCN@CdS heterostructures, synergistic effects of the photocarrier separation is observed between the CdS shell and CdNCN core, which leads to great improvement in photocatalysis with optimized shell/core ratio.
Collapse
Affiliation(s)
- Bingquan Jia
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Du Sun
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Wei Zhao
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Fangfang Xu
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,National Laboratory for Molecular Sciences and, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
43
|
Kumar A, Kumari N, Dubbu S, Kumar S, Kwon T, Koo JH, Lim J, Kim I, Cho Y, Rho J, Lee IS. Nanocatalosomes as Plasmonic Bilayer Shells with Interlayer Catalytic Nanospaces for Solar‐Light‐Induced Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sateesh Dubbu
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sumit Kumar
- Center for Soft and Living MatterInstitute for Basic Science (IBS) and Department of Biomedical EngineeringSchool of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Jung Hun Koo
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Jongwon Lim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Inki Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Yoon‐Kyoung Cho
- Center for Soft and Living MatterInstitute for Basic Science (IBS) and Department of Biomedical EngineeringSchool of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Junsuk Rho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| |
Collapse
|
44
|
Lu W, Xia X, Wei X, Li M, Zeng M, Guo J, Cheng S. Nanoengineering 2D Dendritic PdAgPt Nanoalloys with Edge-Enriched Active Sites for Enhanced Alcohol Electroxidation and Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21569-21578. [PMID: 32309921 DOI: 10.1021/acsami.0c01690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lots of research studies reveal that the surface atoms on the top/bottom facets of the nanosheets are the key features in enhancing electrocatalytic activity while the edge and corner sites of electrocatalysts often possess superior activity. Herein, we report 2D dendritic PdAgPt ternary nanoalloys with abundant crystal defects such as steps, twin boundary, and atomic holes, which can effectively work as catalytic active-sites. The morphology of PdAgPt nanoalloys can be regulated readily from dendritic nanosheets to nanowheels. Compared with binary Pd68Ag32 nanodendrites, Pd62Pt38 nanospheres, and Pt/C catalyst, the composition- and morphology-optimized Pd43Ag21Pt36 nanowheels exhibit the best mass/specific activity and stability for methanol/ethanol oxidation reaction (MOR/EOR). The mass peak current density for EOR/MOR of Pd43Ag21Pt36 is 7.08/3.50 times of the Pt/C catalyst. Simultaneously, the hydrogen evolution reaction performance of the Pd43Ag21Pt36 nanowheels in terms of the lowest overpotential of 9 mv at a current density of 10 mA/cm2 and high electrochemical stability is much better than that of binary Pd68Ag32 nanodendrites, Pd62Pt38 nanospheres, and Pt/C.
Collapse
Affiliation(s)
- Wenya Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xinyue Xia
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xiaoxu Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Manman Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Guo
- Testing & Analysis Center, Soochow University, Suzhou 215123, China
| | - Si Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
45
|
Kumar A, Kumari N, Dubbu S, Kumar S, Kwon T, Koo JH, Lim J, Kim I, Cho YK, Rho J, Lee IS. Nanocatalosomes as Plasmonic Bilayer Shells with Interlayer Catalytic Nanospaces for Solar-Light-Induced Reactions. Angew Chem Int Ed Engl 2020; 59:9460-9469. [PMID: 32237185 DOI: 10.1002/anie.202001531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/19/2022]
Abstract
Interest and challenges remain in designing and synthesizing catalysts with nature-like complexity at few-nm scale to harness unprecedented functionalities by using sustainable solar light. We introduce "nanocatalosomes"-a bio-inspired bilayer-vesicular design of nanoreactor with metallic bilayer shell-in-shell structure, having numerous controllable confined cavities within few-nm interlayer space, customizable with different noble metals. The intershell-confined plasmonically coupled hot-nanospaces within the few-nm cavities play a pivotal role in harnessing catalytic effects for various organic transformations, as demonstrated by "acceptorless dehydrogenation", "Suzuki-Miyaura cross-coupling" and "alkynyl annulation" affording clean conversions and turnover frequencies (TOFs) at least one order of magnitude higher than state-of-the-art Au-nanorod-based plasmonic catalysts. This work paves the way towards next-generation nanoreactors for chemical transformations with solar energy.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sateesh Dubbu
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS) and Department of Biomedical Engineering, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jung Hun Koo
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jongwon Lim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS) and Department of Biomedical Engineering, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
46
|
Tian X, Zhao X, Su YQ, Wang L, Wang H, Dang D, Chi B, Liu H, Hensen EJM, Lou XWD, Xia BY. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2020; 366:850-856. [PMID: 31727830 DOI: 10.1126/science.aaw7493] [Citation(s) in RCA: 544] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/09/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Development of efficient and robust electrocatalysts is critical for practical fuel cells. We report one-dimensional bunched platinum-nickel (Pt-Ni) alloy nanocages with a Pt-skin structure for the oxygen reduction reaction that display high mass activity (3.52 amperes per milligram platinum) and specific activity (5.16 milliamperes per square centimeter platinum), or nearly 17 and 14 times higher as compared with a commercial platinum on carbon (Pt/C) catalyst. The catalyst exhibits high stability with negligible activity decay after 50,000 cycles. Both the experimental results and theoretical calculations reveal the existence of fewer strongly bonded platinum-oxygen (Pt-O) sites induced by the strain and ligand effects. Moreover, the fuel cell assembled by this catalyst delivers a current density of 1.5 amperes per square centimeter at 0.6 volts and can operate steadily for at least 180 hours.
Collapse
Affiliation(s)
- Xinlong Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Xiao Zhao
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Ya-Qiong Su
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Lijuan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Hongming Wang
- Institute for Advanced Study, Nanchang University, 999 Xuefu Road, Nanchang, PR China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Bin Chi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
47
|
Lv F, Gong Y, Cao Y, Deng Y, Liang S, Tian X, Gu H, Yin JJ. A convenient detection system consisting of efficient Au@PtRu nanozymes and alcohol oxidase for highly sensitive alcohol biosensing. NANOSCALE ADVANCES 2020; 2:1583-1589. [PMID: 36132318 PMCID: PMC9416945 DOI: 10.1039/d0na00002g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/26/2020] [Indexed: 06/12/2023]
Abstract
Effective alcohol detection represents a substantial concern not only in the context of personal and automobile safety but also in clinical settings as alcohol is a contributing factor in a wide range of health complications including various types of liver cirrhoses, strokes, and cardiovascular diseases. Recently, many kinds of nanomaterials with enzyme-like properties have been widely used as biosensors. Herein, we have developed a convenient detection method that combines Au@PtRu nanozymes and alcohol oxidase (AOx). We found that the Au@PtRu nanorods exhibited peroxidase-like catalytic activity that was much higher than the catalytic activities of the Au and Au@Pt nanorods. The Au@PtRu nanorod-catalyzed generation of hydroxyl radicals in the presence of H2O2 was used to develop an alcohol sensor by monitoring the H2O2 formed by the oxidation of alcohol to acetaldehyde in the presence of AOx. When coupled with AOx, alcohol was detected down to 23.8 μM in a buffer solution for biological assays. Notably, alcohol was successfully detected in mouse blood samples with results comparable to that from commercial alcohol meters. These results highlight the potential of the Au@PtRu nanorods with peroxidase-like activity for alcohol detection, which opens up a new avenue for nanozyme development for biomedical applications.
Collapse
Affiliation(s)
- Feng Lv
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University Suzhou 215123 P. R. China
| | - Yuzhu Gong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University Suzhou 215123 P. R. China
| | - Yingying Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University Suzhou 215123 P. R. China
| | - Yaoyao Deng
- School of Chemical Engineering and Materials, Changzhou Institute of Technology Changzhou 213032 P. R. China
| | - Shufeng Liang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 China
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Affiliated Hospital of Shanxi Medical University Taiyuan Shanxi 030013 China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 China
| | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University Suzhou 215123 P. R. China
| | - Jun-Jie Yin
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration College Park Maryland 20740 USA
| |
Collapse
|
48
|
Kang YS, Jung JY, Choi D, Sohn Y, Lee SH, Lee KS, Kim ND, Kim P, Yoo SJ. Formation Mechanism and Gram-Scale Production of PtNi Hollow Nanoparticles for Oxygen Electrocatalysis through In Situ Galvanic Displacement Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16286-16297. [PMID: 32167736 DOI: 10.1021/acsami.9b22615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Galvanic displacement reaction has been considered a simple method for fabricating hollow nanoparticles. However, the formation of hollow interiors in nanoparticles is not easily achieved owing to the easy oxidization of transition metals, which results in mixed morphologies, and the presence of surfactants on the nanoparticle surface, which severely deteriorates the catalytic activity. In this study, we developed a facile gram-scale methodology for the one-pot preparation of carbon-supported PtNi hollow nanoparticles as an efficient and durable oxygen reduction electrocatalyst without using stabilizing agents or additional processes. The hollow structures were evolved from sacrificial Ni nanoparticles via an in situ galvanic displacement reaction with a Pt precursor, directly following a preannealing process. By sampling the PtNi/C hollow nanoparticles at various reaction times, the structural formation mechanism was investigated using transmission electron microscopy with energy-dispersive X-ray spectroscopy mapping/line-scan profiling. We found out that the structure and morphology of the PtNi hollow nanoparticles were controlled by the acidity of the metal precursor solution and the nanoparticle core size. The synthesized PtNi hollow nanoparticles acted as an oxygen reduction electrocatalyst, with a catalytic activity superior to that of a commercial Pt catalyst. Even after 10 000 cycles of harsh accelerated durability testing, the PtNi/C hollow electrocatalyst showed high performance and durability. We concluded that the Pt-rich layers on the PtNi hollow nanoparticles improved the catalytic activity and durability considerably.
Collapse
Affiliation(s)
- Yun Sik Kang
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae Young Jung
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju 54896, Republic of Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju 55324, Republic of Korea
- Department of Materials Science & Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| | - Daeil Choi
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yeonsun Sohn
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Soo-Hyoung Lee
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Nam Dong Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju 55324, Republic of Korea
| | - Pil Kim
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
49
|
Zhang Y, Liu Q, Ma CB, Wang Q, Yang M, Du Y. Point-of-care assay for drunken driving with Pd@Pt core-shell nanoparticles-decorated ploy(vinyl alcohol) aerogel assisted by portable pressure meter. Am J Cancer Res 2020; 10:5064-5073. [PMID: 32308768 PMCID: PMC7163434 DOI: 10.7150/thno.42601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol abuse causes health problems and security accidents. A reliable and sensitive detection system for alcohol has been an instinctive demand in law enforcement and forensic. More efforts are demanded in developing new sensing strategy preferably with portable and non-invasive traits for the pushforward of point-of-care (POC) device popularization. Methods: We developed a POC diagnosis system for alcohol assay with the aid of alcohol oxidase (AOX) pre-joining in the system as well as Pd@Pt core-shell nanoparticles (abbreviated to Pd@Pt) that were decorated on ploy(vinyl alcohol) aerogel with amphiphilicity. Biological samples like saliva and whole blood can be absorbed by the aerogel in a quick process, in which the analyte would go through a transformation from alcohol, H2O2, to a final production of O2, causing an analyte dose-dependent signal change in the commercial portable pressure meter. The cascade reactions are readily catalyzed by AOX and Pd@Pt, of which the latter one possesses excellent peroxidase-like activity. Results: Our design has smartness embodied in the aerogel circumvents the interference from methanol which is more ready to be catalyzed by AOX. Under the optimal conditions, the limit of detection for alcohol was 0.50 mM in saliva, and is able to distinguish the driving under the influence (DUI) (1.74 mM in saliva) and driving while impaired (DWI) (6.95 mM in saliva) in the national standard of China. Conclusion: Our proof-of-concept study provides the possibility for the establishment of POC device for alcohol and other target detection, not only owing to the sensing qualification but also thanks to the architecture of such sensor that has great flexibility by replacing the AOX with glucose oxidase (GOX), thenceforth realizing the accurate detection of glucose in 0.5% whole blood sample. With the advantages of easy accessibility and anti-interference ability, our sensor exhibits great potential for quantitative diagnostics in biological system.
Collapse
|
50
|
Liu Z, Pan C, Li W, Wei S, Zhang M, Chen S. A self-template strategy to prepare hollow NiMoS4 nanospheres supported on Ni foam as advanced supercapacitor electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|