1
|
Wang F, Sui J, Wang Z, Ling S, Zhang W, Yan Y, Qi J, Luo X. IrO 2/MnO 2 metal oxide-support interaction enables robust acidic water oxidation. J Colloid Interface Sci 2025; 683:160-169. [PMID: 39673928 DOI: 10.1016/j.jcis.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
The sluggish kinetics, poor stability, and high iridium loading in acidic oxygen evolution reaction (OER) present significant challenges for proton exchange membrane water electrolyzers (PEMWE). While supported catalysts can enhance the utilization and activity of Ir atoms, they often fail to mitigate the detrimental effects of over-oxidation and dissolution of Ir. Here, we leverage the redox properties of the Mn3+/Mn4+ couple as electronic modulators to develop a low-iridium, durable electrocatalyst for acidic OER. Specifically, IrO2 nanoparticles are anchored onto MnO2 nanowires (denoted as IrO2/MnO2), through a molten salt-assisted synthesis method. This optimized IrO2/MnO2 electrocatalyst features a substantially reduced iridium content and enhanced electronic structure due to strong metal-support interactions. Remarkably, the IrO2/MnO2 catalyst demonstrates 7-fold increase in intrinsic activity and superior durability compared to commercial IrO2. Both theoretical and experimental results indicate that dynamic electron transfer between Ir and Mn facilitates the rapid formation of highly oxidized iridium sites while simultaneously preventing excessive oxidation, thereby enhancing both the kinetics and stability for OER. A PEMWE utilizing IrO2/MnO2 as the anode catalyst achieves 2000 mA cm-2 @ 1.89 V without requiring supporting acidic electrolyte. Importantly, the PEMWE exhibits negligible degradation under harsh industrial operating conditions (1000 mA cm-2) with an Ir loading as low as 0.5 mg cm-2, while maintaining a low energy consumption of 45.58 kWh kg-1 H2, corresponding to the green hydrogen production cost of $0.9 kg-1 H2, significantly lower than the 2026 US-DOE target, underscoring its potential for practical application.
Collapse
Affiliation(s)
- Fengge Wang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, China; Department of Energy and Environmental Materials, Suzhou Laboratory, 388 Ruoshui Road, Suzhou, China
| | - Jiaxi Sui
- Department of Energy and Environmental Materials, Suzhou Laboratory, 388 Ruoshui Road, Suzhou, China
| | - Zhen Wang
- Department of Energy and Environmental Materials, Suzhou Laboratory, 388 Ruoshui Road, Suzhou, China
| | - Shilin Ling
- Department of Energy and Environmental Materials, Suzhou Laboratory, 388 Ruoshui Road, Suzhou, China
| | - Wei Zhang
- Department of Energy and Environmental Materials, Suzhou Laboratory, 388 Ruoshui Road, Suzhou, China
| | - Yaotian Yan
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, China
| | - Junlei Qi
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, China.
| | - Xiaoyan Luo
- Department of Energy and Environmental Materials, Suzhou Laboratory, 388 Ruoshui Road, Suzhou, China.
| |
Collapse
|
2
|
Zhou D, Chang Y, Tang J, Ou P. Mn 0.75Ru 0.25O 2 with Low Ru Concentration for Active and Durable Acidic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412265. [PMID: 39955718 DOI: 10.1002/smll.202412265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Ruthenium has emerged as a promising alternative to iridium in water-splitting anodes. However, it becomes overoxidized and dissolves at industry-relevant working conditions. To enhance the activity and stability of electrocatalysts for oxygen evolution reaction, an isostructural rutile MnRu oxide with low Ru concentration (Mn0.75Ru0.25O2) is synthesized and an asymmetric Mn-O-Ru dual-site active center is developed. It exhibits 154 mV overpotential at 10 mA cm-2 and can operate stably at 200 mA cm-2 for 670 h with a degradation rate of 29 uV/h-1. A proton exchange membrane water electrolyzer achieves stable operation at 1 A cm-2 for 700 h with a degradation rate of 53 uV h-1. Structural analysis and isotopic labeling correlate the asymmetric nature of the Mn-O-Ru dual-site active center, which facilitates the oxygen evolution reaction along the radical coupling pathway, with the stabilization of the cations and the lattice oxygen in isostructural rutile Mn0.75Ru0.25O2.
Collapse
Affiliation(s)
- Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuxin Chang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Jialun Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pengfei Ou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
3
|
Wen Z, Sun Y, Li W, Wang JP, Li J, Jiang X, Fan L, Fan J, Li H. Regulation of Electron and Mass Transport Pathways in Efficient and Stable Low-Loading PEM Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411256. [PMID: 40012307 DOI: 10.1002/smll.202411256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/07/2025] [Indexed: 02/28/2025]
Abstract
Improving the utilization of iridium in proton exchange membrane (PEM) water electrolyzer is critical in reducing their cost for future development. Titanium dioxide (TiO2) has notable electrochemical stability at high operating potential and has been developed as a promising support of iridium-based OER nano-catalysts. However, limited by insufficient conductivity, the iridium content on TiO2 support catalysts is normally above 50 wt.%. Herein, support is provided for iridium on conductivity-enhanced TiO2 for low-iridium-loading PEMWE, successfully reducing the iridium content to 28 wt.% by the regulation of electron transport pathway. A new ionomer distribution strategy is then applied to the Ir@Pt@TiO2 catalyst layer to release the iridium sites and regulate the local mass transport pathways in the anode. This work reveals that the catalyst-ionomer interface played an important role in activity and stability in the anode of PEMWE. Building a thin and uniform ionomer distribution on supports with iridium exposure can result in continuous proton and electron transport pathways, promoting bubble escape, and exposing more effective active sites during reaction situations. This work provides a novel perspective for future research on the catalyst-ionomer interface and mass transport in PEMWEs.
Collapse
Affiliation(s)
- Zengyin Wen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujiao Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenzheng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | | | - Jiawei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoqiang Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiantao Fan
- Academy for Advanced Interdisciplinary Studies, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hui Li
- Department of Materials Science and Engineering, SUSTech Energy Institute for Carbon Neutrality, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Zhang D, Tang B, Wang K, Wang L, Tang K, Chen S, Zhan X, Yang H, Yang W. Air-condition process for Constructing MeAl-LDHs/rGO (Me = Co, Ni, Fe) hybrids toward efficient oxygene evolution reaction. J Colloid Interface Sci 2025; 679:680-690. [PMID: 39476622 DOI: 10.1016/j.jcis.2024.10.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
Transition-metal-based layered double hydroxides (LDHs) are emerging as one of the most promising candidates with superior oxygen evolution reaction (OER) activity. However, their fabrication under mild conditions remains a significant challenge. Here, we propose a low-cost, high-production-rate strategy for controlled preparation of AlOOH/reduced graphene oxide (rGO) with strong adsorption capacity for transition metal cations, and then in-situ conversion to CoAl-LDH/rGO, NiAl-LDH/rGO and FeAl-LDH/rGO under ambient conditions. Based on Density Functional Theory calculations, it is witnessed that the rational electronic coordination between Co and Al enables the charge absorption by surrounding oxygen atoms, thereby playing a critical role in reducing the adsorption free energy and overpotential of OER intermediates toward efficient OER. Consequently, the resultant CoAl-LDH/rGO hybrids exhibit an overpotential of just 368 mV at the current density of 100 mA/cm2, with a low Tafel slope of 43.2 mV/dec. Moreover, under Air Mass 1.5 Global (AM 1.5G) illumination, their solar-to-hydrogen (STH) conversion efficiency of photoelectrochemical system achieves ∼ 11.61 %, with robust operation stability up to 24 h, demonstrating great potential for practical applications as advanced OER catalysts.
Collapse
Affiliation(s)
- Dongdong Zhang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P.R. China
| | - Binyuan Tang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P.R. China
| | - Kai Wang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P.R. China
| | - Lin Wang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P.R. China
| | - Kai Tang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P.R. China
| | - Shanliang Chen
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P.R. China
| | - Xiaoqiang Zhan
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P.R. China
| | - Hongli Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P.R. China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P.R. China.
| |
Collapse
|
5
|
Hartnett AC, Evenson RJ, Thorarinsdottir AE, Veroneau SS, Nocera DG. Lanthanum-Promoted Electrocatalyst for the Oxygen Evolution Reaction: Unique Catalyst or Oxide Deconstruction? J Am Chem Soc 2025; 147:1123-1133. [PMID: 39702923 DOI: 10.1021/jacs.4c14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A conventional performance metric for electrocatalysts that promote the oxygen evolution reaction (OER) is the current density at a given overpotential. However, the assumption that increased current density at lower overpotentials indicates superior catalyst design is precarious for OER catalysts in the working environment, as the crystalline lattice is prone to deconstruction and amorphization, thus greatly increasing the concentration of catalytic active sites. We show this to be the case for La3+ incorporation into Co3O4. Powder X-ray diffraction (PXRD), Raman spectroscopy and extended X-ray absorption fine structure (EXAFS) reveal smaller domain sizes with decreased long-range order and increased amorphization for La-modified Co3O4. This lattice deconstruction is exacerbated under the conditions of OER as indicated by operando spectroscopies. The overpotential for OER decreases with increasing La3+ concentration, with maximum activity achieved at 17% La incorporation. HRTEM images and electron diffraction patterns clearly show the formation of an amorphous overlayer during OER catalysis that is accelerated with La3+ addition. O 1s XPS spectra after OER show the loss of lattice-oxide and an increase in peak intensities associated with hydroxylated or defective O-atom environments, consistent with Co(O)x(OH)y species in an amorphous overlayer. Our results suggest that improved catalytic activity of oxides incorporated with La3+ ions (and likely other metal ions) is due to an increase in the number of terminal octahedral Co(O)x(OH)y edge sites upon Co3O4 lattice deconstruction, rather than enhanced intrinsic catalysis.
Collapse
Affiliation(s)
- Alaina C Hartnett
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Ryan J Evenson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Agnes E Thorarinsdottir
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Samuel S Veroneau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Yin L, Ding Y, Li Y, Liu C, Zhao Z, Ning H, Zhang P, Li F, Sun L, Li F. A Mechanistic Insight into the Acidic-stable MnSb 2O 6 for Electrocatalytic Water Oxidation. CHEMSUSCHEM 2025; 18:e202400623. [PMID: 38997233 DOI: 10.1002/cssc.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
The abundant, active, and acidic-stable catalysts for the oxygen evolution reaction (OER) are rare to proton exchange membrane-based water electrolysis. Mn-based materials show promise as electrocatalysts for OER in acid electrolytes. However, the relationship between the stability, activity and structure of Mn-based catalysts in acidic environments remains unclear. In this study, phase-pure MnSb2O6 was successfully prepared and investigated as a catalyst for OER in a sulfuric acid solution (pH of 2.0). A comprehensive mechanistic comparison between MnSb2O6 and Mn3O4 revealed that the rate-determining step for OER on MnSb2O6 is the direct formation of MnIV=O from MnII-H2O by the 2H+/2e- process. This process avoids the rearrangement of adjacent MnIII intermediates, leading to outstanding stability and activity.
Collapse
Affiliation(s)
- Li Yin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
| | - Yingzheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Ning
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Yang H, Ning X, Yan W, Yang HG, Yuan H. The effect of a distorted MO 6 octahedral unit on the activity and stability for the oxygen evolution reaction. Chem Commun (Camb) 2024; 61:113-116. [PMID: 39618412 DOI: 10.1039/d4cc04992f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Metal oxides have garnered significant attention in the oxygen evolution reaction (OER), where a distorted MO6 octahedral unit has a marked impact on their performance. This study introduces the distortion coefficient to quantify the MO6 distortion composed of its volume and shape, and reports the effect of MO6 distortion on the activity and stability in rutile metal oxides for the OER. This provides a fundamental understanding for designing effective MO6 active units for the OER.
Collapse
Affiliation(s)
- Haixiang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinran Ning
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wenjun Yan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haiyang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Liu T, Chen C, Pu Z, Huang Q, Zhang X, Al-Enizi AM, Nafady A, Huang S, Chen D, Mu S. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405399. [PMID: 39183523 DOI: 10.1002/smll.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
9
|
Wang Z, Xiao H. Fleeting-Active-Site-Thrust Oxygen Evolution Reaction by Iron Cations from the Electrolyte. J Am Chem Soc 2024; 146:29540-29550. [PMID: 39411826 DOI: 10.1021/jacs.4c09585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Oxygen evolution reaction (OER) is key to sustainable energy and environmental engineering, thus necessitating rational design of high-performing electrocatalysts that requires understanding the structure-performance relationship with a possible dynamic nature under working conditions. Herein, we uncover a novel type of OER mechanisms thrust by the fleeting active sites (FASs) dynamically formed on Ni-based layered double hydroxides (Ni-LDHs) by Fe cations from the electrolyte under OER potentials. We employ grand-canonical ensemble methods and microkinetic modeling to elucidate the potential-dependent structures of FASs on Ni-LDHs and demonstrate that the fleeting-active-site-thrust (FAST) mechanism delivers superior OER activity via the FAST intramolecular oxygen coupling pathway, which also suppresses the lattice oxygen mechanism, leading to improved operando stability of Ni-LDHs. We further reveal that introducing only trace-level loadings (10-100 ppm) of FASs on Ni-LDHs can significantly boost and govern the catalytic performance for OER. This underscores the crucial importance of considering the novel FAST mechanism in OER and also suggests the electrolyte as a key part of the structure-performance relationship as well as an effective design strategy via engineering the electrolyte.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Shi C, Yang F, Chen C, Chen Y, Tang B, Yang J, Tan C, Li J, Fu H. Unraveling the Fluoride-Induced Interface Reconstruction Across Lead-Based Hierarchical MnO 2 Anode in Zinc Electrowinning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16421-16431. [PMID: 39230340 DOI: 10.1021/acs.est.4c06311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Although the hierarchical manganese dioxide film electrode shows promise as a durable and catalytically active anode for zinc electrowinning, it often fails and deactivates when it is exposed to fluoride-rich environments. The lack of understanding regarding the mechanism behind fluoride-induced irreversible interface reconstruction hinders their practical application in large-scale energy-saving and pollution-reduction efforts. Here, we conducted multidimensional operando investigations to gain insights into the dynamic evolution across the film electrode interface with temporal and spatial resolution. Our findings reveal that electroosmosis of F- initially triggers structural collapse and subsequent reconstruction of [MnO6] units, followed by interaction with the spontaneous oxide film at the surface of lead substrate. Experimental studies and theoretical calculations indicate that F- facilitates the irreversible transformation of γ-MnO2 into more stable yet protective catalytic dual-defective α-MnO2. Additionally, lower levels of F- at the interface promote a change in microenvironmental pH within porous PbSO4, triggering the development of microporous corrosion-resistant β-PbO2 as the dominant phase. The combined effects of MnO2 and interphase evolution effectively explain the abnormally elevated oxygen evolution overpotential. Then, the proposed appropriate application scenarios based on the corrosion behavior will serve as a practical guide for the implementation of the hierarchical manganese dioxide film electrode.
Collapse
Affiliation(s)
- Changping Shi
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Fan Yang
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chaoyi Chen
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuanyu Chen
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Binyuan Tang
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jiangyuan Yang
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Cai Tan
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Junqi Li
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hui Fu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, China
| |
Collapse
|
11
|
Hao Y, Hung SF, Wang L, Deng L, Zeng WJ, Zhang C, Lin ZY, Kuo CH, Wang Y, Zhang Y, Chen HY, Hu F, Li L, Peng S. Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution. Nat Commun 2024; 15:8015. [PMID: 39271695 PMCID: PMC11399115 DOI: 10.1038/s41467-024-52410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Realizing an efficient turnover frequency in the acidic oxygen evolution reaction by modifying the reaction configuration is crucial in designing high-performance single-atom catalysts. Here, we report a "single atom-double site" concept, which involves an activatable inert manganese atom redox chemistry in a single-atom Ru-Mn dual-site platform with tunnel Ni ions as the trigger. In contrast to conventional single-atom catalysts, the proposed configuration allows direct intramolecular oxygen coupling driven by the Ni ions intercalation effect, bypassing the secondary deprotonation step instead of the kinetically sluggish adsorbate evolution mechanism. The strong bonding of Ni ions activates the inert manganese terminal groups and inhibits the cross-site disproportionation process inherent in the Mn scaffolding, which is crucial to ensure the dual-site platform. As a result, the single-atom Ru-Ni-Mn octahedral molecular sieves catalyst delivers a low overpotential, adequate mass activity and good stability.
Collapse
Affiliation(s)
- Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ye Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China.
| |
Collapse
|
12
|
Liang Z, Zhou G, Tan H, Mou Y, Zhang J, Guo H, Yang S, Lei H, Zheng H, Zhang W, Lin H, Cao R. Constructing Co 4(SO 4) 4 Clusters within Metal-Organic Frameworks for Efficient Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408094. [PMID: 39096074 DOI: 10.1002/adma.202408094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Multinuclear metal clusters are ideal candidates to catalyze small molecule activation reactions involving the transfer of multiple electrons. However, synthesizing active metal clusters is a big challenge. Herein, on constructing an unparalleled Co4(SO4)4 cluster within porphyrin-based metal-organic frameworks (MOFs) and the electrocatalytic features of such Co4(SO4)4 clusters for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is reported. The reaction of CoII sulfate and metal complexes of tetrakis(4-pyridyl)porphyrin under solvothermal conditions afforded Co4-M-MOFs (M═Co, Cu, and Zn). Crystallographic studies revealed that these Co4-M-MOFs have the same framework structure, having the Co4(SO4)4 clusters connected by metalloporphyrin units through Co─Npyridyl bonds. In the Co4(SO4)4 cluster, the four CoII ions are chemically and symmetrically equivalent and are each coordinated with four sulfate O atoms to give a distorted cube-like structure. Electrocatalytic studies showed that these Co4-M-MOFs are all active for electrocatalytic OER and ORR. Importantly, by regulating the activity of the metalloporphyrin units, it is confirmed that the Co4(SO4)4 cluster is active for oxygen electrocatalysis. With the use of Co porphyrins as connecting units, Co4-Co-MOF displays the highest electrocatalytic activity in this series of MOFs by showing a 10 mA cm-2 OER current density at 357 mV overpotential and an ORR half-wave potential at 0.83 V versus reversible hydrogen electrode (RHE). Theoretical studies revealed the synergistic effect of two proximal Co atoms in the Co4(SO4)4 cluster in OER by facilitating the formation of O─O bonds. This work is of fundamental significance to present the construction of Co4(SO4)4 clusters in framework structures for oxygen electrocatalysis and to demonstrate the cooperation between two proximal Co atoms in such clusters during the O─O bond formation process.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guojun Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Huang Tan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yonghong Mou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jieling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
13
|
Han C, Wang T. Understanding the catalytic performances of metal-doped Ta 2O 5 catalysts for acidic oxygen evolution reaction with computations. Chem Sci 2024:d4sc03554b. [PMID: 39165725 PMCID: PMC11331345 DOI: 10.1039/d4sc03554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
The design of stable and active alternative catalysts to iridium oxide for the anodic oxygen evolution reaction (OER) has been a long pursuit in acidic water splitting. Tantalum pentoxide (Ta2O5) has the merit of great acidic stability but poor OER performance, yet strategies to improve its intrinsic OER activity are highly desirable. Herein, by using density functional theory (DFT) calculations combined with aqueous stability assessment from surface Pourbaix diagrams, we systematically evaluated the OER activity and acidic stability of 14 different metal-doped Ta2O5 catalysts. Apart from the experimentally reported Ir-doped Ta2O5, we computationally identified Ru- and Nb-doped Ta2O5 catalysts as another two candidates with reasonably high stability and activity in acidic OER. Our study also underscores the essence of considering stable surface states of catalysts under working conditions before a reasonable activity trend can be computationally achieved.
Collapse
Affiliation(s)
- Congcong Han
- Department of Chemistry, Zhejiang University Hangzhou 310058 Zhejiang Province China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road Hangzhou 310030 Zhejiang Province China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road Hangzhou 310030 Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd Hangzhou 310000 Zhejiang China
| |
Collapse
|
14
|
Zhao W, Yang J, Xu F, Weng B. Recent Advancements on Spin Engineering Strategies for Highly Efficient Electrocatalytic Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401057. [PMID: 38587966 DOI: 10.1002/smll.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Oxygen evolution reaction (OER) is a widely employed half-electrode reaction in oxygen electrochemistry, in applications such as hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. Unfortunately, its slow kinetics limits the commercialization of such applications. It is therefore highly imperative to develop highly robust electrocatalysts with high activity, long-term durability, and low noble-metal contents. Previously intensive efforts have been made to introduce the advancements on developing non-precious transition metal electrocatalysts and their OER mechanisms. Electronic structure tuning is one of the most effective and interesting ways to boost OER activity and spin angular momentum is an intrinsic property of the electron. Therefore, modulation on the spin states and the magnetic properties of the electrocatalyst enables the changes on energy associated with interacting electron clouds with radical absorbance, affecting the OER activity and stability. Given that few review efforts have been made on this topic, in this review, the-state-of-the-art research progress on spin-dependent effects in OER will be briefed. Spin engineering strategies, such as strain, crystal surface engineering, crystal doping, etc., will be introduced. The related mechanism for spin manipulation to boost OER activity will also be discussed. Finally, the challenges and prospects for the development of spin catalysis are presented. This review aims to highlight the significance of spin engineering in breaking the bottleneck of electrocatalysis and promoting the practical application of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jieyu Yang
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
15
|
Gupta N, Segre C, Nickel C, Streb C, Gao D, Glusac KD. Catalytic Water Electrolysis by Co-Cu-W Mixed Metal Oxides: Insights from X-ray Absorption Spectroelectrochemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35793-35804. [PMID: 38949083 DOI: 10.1021/acsami.4c06365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mixed metal oxides (MMOs) are a promising class of electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Despite their importance for sustainable energy schemes, our understanding of relevant reaction pathways, catalytically active sites, and synergistic effects is rather limited. Here, we applied synchrotron-based X-ray absorption spectroscopy (XAS) to explore the evolution of the amorphous Co-Cu-W MMO electrocatalyst, shown previously to be an efficient bifunctional OER and HER catalyst for water splitting. Ex situ XAS measurements provided structural environments and the oxidation state of the metals involved, revealing Co2+ (octahedral), Cu+/2+ (tetrahedral/square-planar), and W6+ (octahedral) centers. Operando XAS investigations, including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), elucidated the dynamic structural transformations of Co, Cu, and W metal centers during the OER and HER. The experimental results indicate that Co3+ and Cu0 are the active catalytic sites involved in the OER and HER, respectively, while Cu2+ and W6+ play crucial roles as structure stabilizers, suggesting strong synergistic interactions within the Co-Cu-W MMO system. These results, combined with the Tafel slope analysis, revealed that the bottleneck intermediate during the OER is Co3+ hydroperoxide, whose formation is accompanied by changes in the Cu-O bond lengths, pointing to a possible synergistic effect between Co and Cu ions. Our study reveals important structural effects taking place during MMO-driven OER/HER electrocatalysis and provides essential experimental insights into the complex catalytic mechanism of emerging noble-metal-free MMO electrocatalysts for full water splitting.
Collapse
Affiliation(s)
- Nikita Gupta
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Carlo Segre
- Department of Physics & Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Christean Nickel
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Dandan Gao
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Zhao F, Cheng T, Lu X, Ghorai N, Yang Y, Geletii YV, Musaev DG, Hill CL, Lian T. Charge Transfer Mechanism on a Cobalt-Polyoxometalate-TiO 2 Photoanode for Water Oxidation in Acid. J Am Chem Soc 2024; 146:14600-14609. [PMID: 38748814 PMCID: PMC11140742 DOI: 10.1021/jacs.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
We constructed a photoanode comprising the homogeneous water oxidation catalyst (WOC) Na8K8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] (Co9POM) and nanoporous n-type TiO2 photoelectrodes (henceforth "TiO2-Co9POM") by first anchoring the cationic 3-aminopropyltrimethoxysilane (APS) ligand on a metal oxide light absorber, followed by treatment of the metal oxide-APS with a solution of the polyoxometalate WOC. The resulting TiO2-Co9POM photoelectrode exhibits a 3-fold oxygen evolution photocurrent enhancement compared to bare TiO2 in aqueous acidic conditions. Three-element (Co 2p, W 4f, and O 1s) X-ray photoelectron spectroscopy and Raman spectroscopy studies before and after use indicate that surface-bound Co9POM retains its structural integrity throughout all photoelectrochemical water oxidation studies reported here. Extensive charge-transfer mechanistic studies by photoelectrochemical techniques and transient absorption spectroscopy elucidate that Co9POM serves as an efficient WOC, extracting photogenerated holes from TiO2 on the picosecond time scale. This is the first comprehensive mechanistic investigation elucidating the roles of polyoxometalates in POM-photoelectrode hybrid oxygen evolution reaction systems.
Collapse
Affiliation(s)
- Fengyi Zhao
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ting Cheng
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Xinlin Lu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nandan Ghorai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yiwei Yang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yurii V. Geletii
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Djamaladdin G. Musaev
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Cherry
L. Emerson Centre for Scientific Computation, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Craig L. Hill
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Zhao JW, Yue K, Zhang H, Wei SY, Zhu J, Wang D, Chen J, Fominski VY, Li GR. The formation of unsaturated IrO x in SrIrO 3 by cobalt-doping for acidic oxygen evolution reaction. Nat Commun 2024; 15:2928. [PMID: 38575606 PMCID: PMC10995174 DOI: 10.1038/s41467-024-46801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Electrocatalytic water splitting is a promising route for sustainable hydrogen production. However, the high overpotential of the anodic oxygen evolution reaction poses significant challenge. SrIrO3-based perovskite-type catalysts have shown great potential for acidic oxygen evolution reaction, but the origins of their high activity are still unclear. Herein, we develop a Co-doped SrIrO3 system to enhance oxygen evolution reaction activity and elucidate the origin of catalytic activity. In situ experiments reveal Co activates surface lattice oxygen, rapidly exposing IrOx active sites, while bulk Co doping optimizes the adsorbate binding energy of IrOx. The Co-doped SrIrO3 demonstrates high oxygen evolution reaction electrocatalytic activity, markedly surpassing the commercial IrO2 catalysts in both conventional electrolyzer and proton exchange membrane water electrolyzer.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Kaihang Yue
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Hong Zhang
- Electron Microscopy Centre, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730099, China
| | - Shu-Yin Wei
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiawei Zhu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Dongdong Wang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Junze Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Vyacheslav Yu Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russia
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
18
|
Liu Q, Liu K, Huang J, Hui C, Li X, Feng L. A review of modulation strategies for improving the catalytic performance of transition metal sulfide self-supported electrodes for the hydrogen evolution reaction. Dalton Trans 2024; 53:3959-3969. [PMID: 38294259 DOI: 10.1039/d3dt04244h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Electrocatalytic water splitting is considered to be one of the most promising technologies for large-scale sustained production of H2. Developing non-noble metal-based electrocatalytic materials with low cost, high activity and long life is the key to electrolysis of water. Transition metal sulfides (TMSs) with good electrical conductivity and a tunable electronic structure are potential candidates that are expected to replace noble metal electrocatalysts. In addition, self-supported electrodes have fast electron transfer and mass transport, resulting in enhanced kinetics and stability. In this paper, TMS self-supported electrocatalysts are taken as examples and their recent progress as hydrogen evolution reaction (HER) electrocatalysts is reviewed. The HER mechanism is first introduced. Then, based on optimizing the active sites, electrical conductivity, electronic structure and adsorption/dissociation energies of water and intermediates of the electrocatalysts, the article focuses on summarizing five modulation strategies to improve the activity and stability of TMS self-supported electrode electrocatalysts in recent years. Finally, the challenges and opportunities for the future development of TMS self-supported electrodes in the field of electrocatalytic water splitting are presented.
Collapse
Affiliation(s)
- Qianqian Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Kehan Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jianfeng Huang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P.R. China.
| | - Chiyuan Hui
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaoyi Li
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P.R. China.
| | - Liangliang Feng
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P.R. China.
| |
Collapse
|
19
|
Yang S, Yue K, Liu X, Li S, Zheng H, Yan Y, Cao R, Zhang W. Electrocatalytic water oxidation with manganese phosphates. Nat Commun 2024; 15:1410. [PMID: 38360868 PMCID: PMC10869713 DOI: 10.1038/s41467-024-45705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
As inspired by the Mn4CaO5 oxygen evolution center in nature, Mn-based electrocatalysts have received overwhelming attention for water oxidation. However, the understanding of the detailed reaction mechanism has been a long-standing problem. Herein, homologous KMnPO4 and KMnPO4•H2O with 4-coordinated and 6-coordinated Mn centers, respectively, are prepared. The two catalysts constitute an ideal platform to study the structure-performance correlation. The presence of Mn(III), Mn(IV), and Mn(V) intermediate species are identified during water oxidation. The Mn(V)=O species is demonstrated to be the substance for O-O bond formation. In KMnPO4•H2O, the Mn coordination structure did not change significantly during water oxidation. In KMnPO4, the Mn coordination structure changed from 4-coordinated [MnO4] to 5-coordinated [MnO5] motif, which displays a triangular biconical configuration. The structure flexibility of [MnO5] is thermodynamically favored in retaining Mn(III)-OH and generating Mn(V)=O. The Mn(V)=O species is at equilibrium with Mn(IV)=O, the concentration of which determines the intrinsic activity of water oxidation. This study provides a clear picture of water oxidation mechanism on Mn-based systems.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kaihang Yue
- Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, China
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ya Yan
- Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
20
|
Sun H, Chen S, Zhang B, Wang J, Yao J, Li D, Yuan G. Cation-doped sea-urchin-like MnO 2 for electrocatalytic overall water splitting. Dalton Trans 2023; 52:17407-17415. [PMID: 37946582 DOI: 10.1039/d3dt03059h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
It is necessary to take full account of the activity, selectivity, dynamic performance, economic benefits, and environmental impact of the catalysts in the overall water splitting of electrocatalysis for the reasonable design of electrocatalysts. Designing nanostructures of catalysts and optimizing defect engineering are considered environmentally friendly and cost-effective electrocatalyst synthesis strategies. Herein, we report that metal cations regulate the microstructure of sea-urchin-like MnO2 and act as dopants to cause the lattice expansion of MnO2, resulting in crystal surface defects. The valence unsaturated Mn4+/Mn3+ greatly promotes the electrocatalytic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The optimal Al-MnO2 showed that the overpotential is 390 and 170 mV in the process of catalyzing OER and HER, respectively, at a current density of 10 mA cm-2. It is exciting to note that after 5000 cycles of Al-MnO2 within the kinetic potential range of OER and HER, its performance remained almost unchanged. This work provides a simple, efficient, and environmentally friendly route for the design of efficient integrated water-splitting electrocatalysts.
Collapse
Affiliation(s)
- Haolu Sun
- Anhui Vocational And Technical College, Hefei, 230011, China.
- School of Basic Medicine, Anhui Medical University, Hefei, 230011, China
| | - Songlin Chen
- Anhui Vocational And Technical College, Hefei, 230011, China.
| | - Bo Zhang
- Anhui Vocational And Technical College, Hefei, 230011, China.
| | - Jing Wang
- Wuhai Industrial Energy Conservation Supervision and Guarantee Center, 016000, China
| | - Jun Yao
- Anhui Vocational And Technical College, Hefei, 230011, China.
| | - Deming Li
- Anhui Vocational And Technical College, Hefei, 230011, China.
| | - Guojun Yuan
- Anhui Vocational And Technical College, Hefei, 230011, China.
- Xinjiang University, Urumqi, 830000, China
| |
Collapse
|
21
|
Erbe A, Tesch MF, Rüdiger O, Kaiser B, DeBeer S, Rabe M. Operando studies of Mn oxide based electrocatalysts for the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:26958-26971. [PMID: 37585177 DOI: 10.1039/d3cp02384b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inspired by photosystem II (PS II), Mn oxide based electrocatalysts have been repeatedly investigated as catalysts for the electrochemical oxygen evolution reaction (OER), the anodic reaction in water electrolysis. However, a comparison of the conditions in biological OER catalysed by the water splitting complex CaMn4Ox with the requirements for an electrocatalyst for industrially relevant applications reveals fundamental differences. Thus, a systematic development of artificial Mn-based OER catalysts requires both a fundamental understanding of the catalytic mechanisms as well as an evaluation of the practicality of the system for industrial scale applications. Experimentally, both aspects can be approached using in situ and operando methods including spectroscopy. This paper highlights some of the major challenges common to different operando investigation methods and recent insights gained with them. To this end, vibrational spectroscopy, especially Raman spectroscopy, absorption techniques in the bandgap region and operando X-ray spectroelectrochemistry (SEC), both in the hard and soft X-ray regime are particularly focused on here. Technical challenges specific to each method are discussed first, followed by challenges that are specific to Mn oxide based systems. Finally, recent in situ and operando studies are reviewed. This analysis shows that despite the technical and Mn specific challenges, three specific key features are common to most of the studied systems with significant OER activity: structural disorder, Mn oxidation states between III and IV, and the appearance of layered birnessite phases in the active regime.
Collapse
Affiliation(s)
- Andreas Erbe
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marc Frederic Tesch
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Bernhard Kaiser
- Surface Science Laboratory, Department of Materials- and Earth Sciences, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Martin Rabe
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
| |
Collapse
|
22
|
Choi S, Choi WI, Lee JS, Lee CH, Balamurugan M, Schwarz AD, Choi ZS, Randriamahazaka H, Nam KT. A Reflection on Sustainable Anode Materials for Electrochemical Chloride Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300429. [PMID: 36897816 DOI: 10.1002/adma.202300429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Chloride oxidation is a key industrial electrochemical process in chlorine-based chemical production and water treatment. Over the past few decades, dimensionally stable anodes (DSAs) consisting of RuO2 - and IrO2 -based mixed-metal oxides have been successfully commercialized in the electrochemical chloride oxidation industry. For a sustainable supply of anode materials, considerable efforts both from the scientific and industrial aspects for developing earth-abundant-metal-based electrocatalysts have been made. This review first describes the history of commercial DSA fabrication and strategies to improve their efficiency and stability. Important features related to the electrocatalytic performance for chloride oxidation and reaction mechanism are then summarized. From the perspective of sustainability, recent progress in the design and fabrication of noble-metal-free anode materials, as well as methods for evaluating the industrialization of novel electrocatalysts, are highlighted. Finally, future directions for developing highly efficient and stable electrocatalysts for industrial chloride oxidation are proposed.
Collapse
Affiliation(s)
- Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| | - Won Il Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Seo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Chang Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Andrew D Schwarz
- Milton Hill Business and Technology Centre, Infineum, Abingdon, OX13 6BB, UK
| | - Zung Sun Choi
- Infineum Singapore LLP, Singapore, 098632, Singapore
| | | | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
23
|
Qin C, Luo J, Zhang D, Brennan L, Tian S, Berry A, Campbell BM, Sadtler B. Light-Mediated Electrochemical Synthesis of Manganese Oxide Enhances Its Stability for Water Oxidation. ACS NANOSCIENCE AU 2023; 3:310-322. [PMID: 37601919 PMCID: PMC10436374 DOI: 10.1021/acsnanoscienceau.3c00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 08/22/2023]
Abstract
New methods are needed to increase the activity and stability of earth-abundant catalysts for electrochemical water splitting to produce hydrogen fuel. Electrodeposition has been previously used to synthesize manganese oxide films with a high degree of disorder and a mixture of oxidation states for Mn, which has led to electrocatalysts with high activity but low stability for the oxygen evolution reaction (OER) at high current densities. In this study, we show that multipotential electrodeposition of manganese oxide under illumination produces nanostructured films with significantly higher stability for the OER compared to films grown under otherwise identical conditions in the dark. Manganese oxide films grown by multipotential deposition under illumination sustain a current density of 10 mA/cm2 at 2.2 V versus reversible hydrogen electrode for 18 h (pH 13). Illumination does not enhance the activity or stability of manganese oxide films grown using a constant potential, and films grown by multipotential deposition in the dark undergo a complete loss of activity within 1 h of electrolysis. Electrochemical and structural characterization indicate that photoexcitation of the films during growth reduces Mn ions and changes the content and structure of intercalated potassium ions and water molecules in between the disordered layers of birnessite-like sheets of MnOx, which stabilizes the nanostructured film during electrocatalysis. These results demonstrate that combining multiple external stimuli (i.e., light and an external potential) can induce structural changes not attainable by either stimulus alone to make earth-abundant catalysts more active and stable for important chemical transformations such as water oxidation.
Collapse
Affiliation(s)
- Chu Qin
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jiang Luo
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Dongyan Zhang
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Logan Brennan
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Shijun Tian
- Department
of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ashlynn Berry
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Brandon M. Campbell
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
24
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
25
|
Ju M, Chen Z, Zhu H, Cai R, Lin Z, Chen Y, Wang Y, Gao J, Long X, Yang S. Fe(III) Docking-Activated Sites in Layered Birnessite for Efficient Water Oxidation. J Am Chem Soc 2023; 145:11215-11226. [PMID: 37173623 DOI: 10.1021/jacs.3c01181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Non-noble metal catalysts for promoting the sluggish kinetics of oxygen evolution reaction (OER) are essential to efficient water splitting for sustainable hydrogen production. Birnessite has a local atomic structure similar to that of an oxygen-evolving complex in photosystem II, while the catalytic activity of birnessite is far from satisfactory. Herein, we report a novel Fe-Birnessite (Fe-Bir) catalyst obtained by controlled Fe(III) intercalation- and docking-induced layer reconstruction. The reconstruction dramatically lowers the OER overpotential to 240 mV at 10 mA/cm2 and the Tafel slope to 33 mV/dec, making Fe-Bir the best of all the reported Bir-based catalysts, even on par with the best transition-metal-based OER catalysts. Experimental characterizations and molecular dynamics simulations elucidate that the catalyst features active Fe(III)-O-Mn(III) centers interfaced with ordered water molecules between neighboring layers, which lower reorganization energy and accelerate electron transfer. DFT calculations and kinetic measurements show non-concerted PCET steps conforming to a new OER mechanism, wherein the neighboring Fe(III) and Mn(III) synergistically co-adsorb OH* and O* intermediates with a substantially reduced O-O coupling activation energy. This work highlights the importance of elaborately engineering the confined interlayer environment of birnessite and more generally, layered materials, for efficient energy conversion catalysis.
Collapse
Affiliation(s)
- Min Ju
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zhuwen Chen
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hong Zhu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Rongming Cai
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Zedong Lin
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yanpeng Chen
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xia Long
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Shihe Yang
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
26
|
Zhang S, Wang L, Kang Y, Wu J, Zhang Z. Nanomaterial-based Reactive Oxygen Species Scavengers for Osteoarthritis Therapy. Acta Biomater 2023; 162:1-19. [PMID: 36967052 DOI: 10.1016/j.actbio.2023.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Reactive oxygen species (ROS) play distinct but important roles in physiological and pathophysiological processes. Recent studies on osteoarthritis (OA) have suggested that ROS plays a crucial role in its development and progression, serving as key mediators in the degradation of the extracellular matrix, mitochondrial dysfunction, chondrocyte apoptosis, and OA progression. With the continuous development of nanomaterial technology, the ROS-scavenging ability and antioxidant effects of nanomaterials are being explored, with promising results already achieved in OA treatment. However, current research on nanomaterials as ROS scavengers for OA is relatively non-uniform and includes both inorganic and functionalized organic nanomaterials. Although the therapeutic efficacy of nanomaterials has been reported to be conclusive, there is still no uniformity in the timing and potential of their use in clinical practice. This paper reviews the nanomaterials currently used as ROS scavengers for OA treatment, along with their mechanisms of action, with the aim of providing a reference and direction for similar studies, and ultimately promoting the early clinical use of nanomaterials for OA treatment. STATEMENT OF SIGNIFICANCE: Reactive oxygen species (ROS) play an important role in the pathogenesis of osteoarthritis (OA). Nanomaterials serving as promising ROS scavengers have gained increasing attention in recent years. This review provides a comprehensive overview of ROS production and regulation, as well as their role in OA pathogenesis. Furthermore, this review highlights the applications of various types of nanomaterials as ROS scavengers in OA treatment and their mechanisms of action. Finally, the challenges and future prospects of nanomaterial-based ROS scavengers in OA therapy are discussed.
Collapse
|
27
|
Weng Y, Wang K, Li S, Wang Y, Lei L, Zhuang L, Xu Z. High-Valence-Manganese Driven Strong Anchoring of Iridium Species for Robust Acidic Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205920. [PMID: 36683162 PMCID: PMC10015899 DOI: 10.1002/advs.202205920] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Designing an efficient and durable electrocatalyst for the sluggish anodic oxygen evolution reaction (OER) has been the primary goal of using proton exchange membrane electrolyzer owing to the highly acidic and oxidative environment at the anode. In this work, it is reported that high-valence manganese drives the strong anchoring of the Ir species on the manganese dioxide (MnO2 ) matrix via the formation of an Mn-O-Ir coordination structure through a hydrothermal-redox reaction. The iridium (Ir)-atom-array array is firmly anchored on the Mn-O-Ir coordination structure, endowing the catalyst with excellent OER activity and stability in an acidic environment. Ir-MnO2 (160)-CC shows an ultralow overpotential of 181 mV at j = 10 mA cm-2 and maintains long-term stability of 180 h in acidic media with negligible decay, superior to most reported electrocatalysts. In contrast, when reacting with low-valence MnO2 , Ir species tend to aggregate into IrOx nanoparticles, leading to poor OER stability. Density functional theory (DFT) calculations further reveal that the formation of the Mn-O-Ir coordination structure can optimize the adsorption strength of *OOH intermediates, thus boosting the acidic OER activity and stability.
Collapse
Affiliation(s)
- Yuxiao Weng
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Keyu Wang
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shiyi Li
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yixing Wang
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Linfeng Lei
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Linzhou Zhuang
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zhi Xu
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
28
|
Madhu R, Karmakar A, Kundu S. Morphology-Dependent Electrocatalytic Behavior of Cobalt Chromite toward the Oxygen Evolution Reaction in Acidic and Alkaline Medium. Inorg Chem 2023; 62:2726-2737. [PMID: 36715550 DOI: 10.1021/acs.inorgchem.2c03840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exploiting an affordable, durable, and high-performance electrocatalyst for the oxygen evolution reaction (OER) under lower pH condition (acidic) is highly challengeable and much attractive toward the hydrogen-based energy technologies. A spinel CoCr2O4 is observed as a potential noble-metal-free candidate for OER in alkaline medium. The presence of Cr further leads to electronic structure modulation of Co3O4 and thereby greatly increases the corrosive resistance toward OER in acidic environment. Herein, a typical CoCr2O4 with three different morphologies was synthesized for the very first time and employed as an electrocatalyst for OER in alkaline (1 M KOH) and acidic (0.5 M H2SO4) medium. Moreover, different morphologies display a different intrinsic exposed active site and thereby display different electrocatalytic activities. Likewise, the CoCr2O4 Mic (synthesized by the microwave heating method) displays a higher catalytic activity toward OER and delivers a low overpotential of 293 and 290 mV to attain 10 mA/cm2 current density and smaller Tafel slope values of 40 and 151 mV/dec, respectively, in alkaline and acidic environment than the synthesized CoCr2O4 Wet (wet-chemically synthesized) and CoCr2O4 Hyd (hydrothermally synthesized). Moreover, CoCr2O4 Mic exhibits a long-term durability of 24 h (1 M KOH) and 10.5 h (0.5 M H2SO4). The optimized Co-O bond energy in OER condition makes the CoCr2O4 Mic superior than the CoCr2O4 Hyd and CoCr2O4 Wet. Moreover, the substitution of Cr induces the electron delocalization around the Co active species and thereby, positive shifting of the redox potential leads to providing an optimal binding energy for OER intermediates. Also, interestingly, this work represents a catalytic activity trend by a simple experimental result without any complex theoretical calculation. The morphology-dependent electrocatalytic activity obtained in this work will provide a new strategy in the field of electrochemical conversion and energy storage application.
Collapse
Affiliation(s)
- Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| |
Collapse
|
29
|
Mengele A, Rau S. Learning from Nature's Example: Repair Strategies in Light-Driven Catalysis. JACS AU 2023; 3:36-46. [PMID: 36711104 PMCID: PMC9875256 DOI: 10.1021/jacsau.2c00507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
The continuous repair of subunits of the photosynthetic apparatus is a key factor determining the overall efficiency of biological photosynthesis. Recent concepts for repairing artificial photocatalysts and catalytically active materials within the realm of solar fuel formation show great potential in reshaping the research directions within this field. This perspective describes the latest advances, concepts, and mechanisms in the field of catalyst repair and catalyst self-healing and provides an outlook on which additional steps need to be taken to bring artificial photosynthetic systems closer to real-life applications.
Collapse
Affiliation(s)
- Alexander
K. Mengele
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sven Rau
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
30
|
Yang S, Li X, Li Y, Wang Y, Jin X, Qin L, Zhang W, Cao R. Effect of Proton Transfer on Electrocatalytic Water Oxidation by Manganese Phosphates. Angew Chem Int Ed Engl 2023; 62:e202215594. [PMID: 36342503 DOI: 10.1002/anie.202215594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 11/09/2022]
Abstract
The effect of proton transfer on water oxidation has hardly been measurably established in heterogeneous electrocatalysts. Herein, two isomorphous manganese phosphates (NH4 MnPO4 ⋅ H2 O and KMnPO4 ⋅ H2 O) were designed to form an ideal platform to study the effect of proton transfer on water oxidation. The hydrogen-bonding network in NH4 MnPO4 ⋅ H2 O has been proven to be solely responsible for its better activity. The differences of the proton transfer kinetics in the two materials indicate a fast proton hopping transfer process with a low activation energy in NH4 MnPO4 ⋅ H2 O. In addition, the hydrogen-bonding network can effectively promote the proton transfer between adjacent Mn sites and further stabilize the MnIII -OH intermediates. The faster proton transfer results in a higher proportion of zeroth-order in [H+ ] for OER. Thus, proton transfer-affected electrocatalytic water oxidation has been measurably observed to bring detailed insights into the mechanism of water oxidation.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yifan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Lingshuang Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| |
Collapse
|
31
|
Su H, Jiang J, Song S, An B, Li N, Gao Y, Ge L. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
32
|
Erdil T, Lokcu E, Yildiz I, Okuyucu C, Kalay YE, Toparli C. Facile Synthesis and Origin of Enhanced Electrochemical Oxygen Evolution Reaction Performance of 2H-Hexagonal Ba 2CoMnO 6-δ as a New Member in Double Perovskite Oxides. ACS OMEGA 2022; 7:44147-44155. [PMID: 36506127 PMCID: PMC9730773 DOI: 10.1021/acsomega.2c05627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Perovskite oxides have been considered promising oxygen evolution reaction (OER) electrocatalysts due to their high intrinsic activity. Yet, their poor long-term electrochemical and structural stability is still controversial. In this work, we apply an A-site management strategy to tune the activity and stability of a new hexagonal double perovskite oxide. We synthesized the previously inaccessible 2H-Ba2CoMnO6-δ (BCM) perovskite oxide via the universal sol-gel method followed by a novel air-quench method. The new 2H-BCM perovskite oxide exhibits outstanding OER activity with an overpotential of 288 mV at 10 mA cm-2 and excellent long-term stability without segregation or structural change. To understand the origin of outstanding OER performance of BCM, we substitute divalent Ba with trivalent La at the A-site and investigate crystal and electronic structure change. Fermi level and valence band analysis presents a decline in the work function with the Ba amount, suggesting a structure-oxygen vacancy-work function-activity relationship for Ba x La2-x CoMnO6-δ (x = 0, 0.5, 1, 1.5, 2) electrocatalysts. Our work suggests a novel production strategy to explore the single-phase new structures and develop enhanced OER catalysts.
Collapse
Affiliation(s)
- Tuncay Erdil
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ersu Lokcu
- Department
of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Ilker Yildiz
- Central
Laboratory, Middle East Technical University, 06800 Ankara, Turkey
| | - Can Okuyucu
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Yunus Eren Kalay
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Cigdem Toparli
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
33
|
Kutlusoy T, Divanis S, Pittkowski R, Marina R, Frandsen AM, Minhova-Macounova K, Nebel R, Zhao D, Mertens SFL, Hoster H, Krtil P, Rossmeisl J. Synergistic effect of p-type and n-type dopants in semiconductors for efficient electrocatalytic water splitting. Chem Sci 2022; 13:13879-13892. [PMID: 36544721 PMCID: PMC9710220 DOI: 10.1039/d2sc04585k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The main challenge for acidic water electrolysis is the lack of active and stable oxygen evolution catalysts based on abundant materials, which are globally scalable. Iridium oxide is the only material which is active and stable. However, Ir is extremely rare. While both active materials and stable materials exist, those that are active are usually not stable and vice versa. In this work, we present a new design strategy for activating stable materials originally deemed unsuitable due to a semiconducting nature and wide band gap energy. These stable semiconductors cannot change oxidation state under the relevant reaction conditions. Based on DFT calculations, we find that adding an n-type dopant facilitates oxygen binding on semiconductor surfaces. The binding is, however, strong and prevents further binding or desorption of oxygen. By combining both n-type and p-type dopants, the reactivity can be tuned so that oxygen can be adsorbed and desorbed under reaction conditions. The tuning results from the electrostatic interactions between the dopants as well as between the dopants and the binding site. This concept is experimentally verified on TiO2 by co-substituting with different pairs of n- and p-type dopants. Our findings suggest that the co-substitution approach can be used to activate stable materials, with no intrinsic oxygen evolution activity, to design new catalysts for acid water electrolysis.
Collapse
Affiliation(s)
- Tugce Kutlusoy
- Center of High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen Universitetsparken 5, København Ø 2100 Copenhagen Denmark
| | - Spyridon Divanis
- Center of High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen Universitetsparken 5, København Ø 2100 Copenhagen Denmark
| | - Rebecca Pittkowski
- Center of High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen Universitetsparken 5, København Ø 2100 Copenhagen Denmark
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic Dolejskova 3 Prague 18223 Czech Republic
| | - Riccardo Marina
- New Application Research, Research and Development Division, Industrie De Nora S.p.A. 20134 Milan Italy
| | - Adrian M Frandsen
- Center of High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen Universitetsparken 5, København Ø 2100 Copenhagen Denmark
| | - Katerina Minhova-Macounova
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic Dolejskova 3 Prague 18223 Czech Republic
| | - Roman Nebel
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic Dolejskova 3 Prague 18223 Czech Republic
| | - Dongni Zhao
- Department of Chemistry, Energy Lancaster and Materials Science Institute, Lancaster University Lancaster LA1 4YB UK
| | - Stijn F L Mertens
- Department of Chemistry, Energy Lancaster and Materials Science Institute, Lancaster University Lancaster LA1 4YB UK
| | - Harry Hoster
- Department of Chemistry, Energy Lancaster and Materials Science Institute, Lancaster University Lancaster LA1 4YB UK
- Fakultät für Ingenieurwissenschaften, Lehrstuhl Energietechnik, Universität Duisburg-Essen Lotharstra. 1 47048 Duisburg Germany
| | - Petr Krtil
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic Dolejskova 3 Prague 18223 Czech Republic
| | - Jan Rossmeisl
- Center of High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen Universitetsparken 5, København Ø 2100 Copenhagen Denmark
| |
Collapse
|
34
|
Modifying acidic oxygen production properties of PbO2 by porous Mn2O3 microspheres for boosting stability. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
An overview of solid-state electron paramagnetic resonance spectroscopy for artificial fuel reactions. iScience 2022; 25:105360. [DOI: 10.1016/j.isci.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Enhanced OER Performance by Cu Substituted Spinel Cobalt Oxide. Catal Letters 2022. [DOI: 10.1007/s10562-022-04209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Shin H, Yoo JM, Sung YE, Chung DY. Dynamic Electrochemical Interfaces for Energy Conversion and Storage. JACS AU 2022; 2:2222-2234. [PMID: 36311833 PMCID: PMC9597595 DOI: 10.1021/jacsau.2c00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical energy conversion and storage are central to developing future renewable energy systems. For efficient energy utilization, both the performance and stability of electrochemical systems should be optimized in terms of the electrochemical interface. To achieve this goal, it is imperative to understand how a tailored electrode structure and electrolyte speciation can modify the electrochemical interface structure to improve its properties. However, most approaches describe the electrochemical interface in a static or frozen state. Although a simple static model has long been adopted to describe the electrochemical interface, atomic and molecular level pictures of the interface structure should be represented more dynamically to understand the key interactions. From this perspective, we highlight the importance of understanding the dynamics within an electrochemical interface in the process of designing highly functional and robust energy conversion and storage systems. For this purpose, we explore three unique classes of dynamic electrochemical interfaces: self-healing, active-site-hosted, and redox-mediated interfaces. These three cases of dynamic electrochemical interfaces focusing on active site regeneration collectively suggest that our understanding of electrochemical systems should not be limited to static models but instead expanded toward dynamic ones with close interactions between the electrode surface, dissolved active sites, soluble species, and reactants in the electrolyte. Only when we begin to comprehend the fundamentals of these dynamics through operando analyses can electrochemical conversion and storage systems be advanced to their full potential.
Collapse
Affiliation(s)
- Heejong Shin
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic
of Korea
| | - Ji Mun Yoo
- Department
of Mechanical and Process Engineering, ETH
Zurich, 8092 Zurich, Switzerland
| | - Yung-Eun Sung
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic
of Korea
| | - Dong Young Chung
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
38
|
Feng M, Huang J, Peng Y, Huang C, Yue X, Huang S. Tuning Electronic Structures of Transition Metal Carbides to Boost Oxygen Evolution Reactions in Acidic Medium. ACS NANO 2022; 16:13834-13844. [PMID: 35997614 DOI: 10.1021/acsnano.2c02099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing low-cost, efficient, and robust nonprecious metal electrocatalysts for oxygen evolution reactions (OER) in acidic medium is the major challenge to realize the application of the proton exchange membrane water electrolyzer (PEM-WE). It is well-known that transition metal carbides (TMCs) have Pt-like electronic structures and catalytic behaviors. However, monometallic carbides in acidic medium show ignored OER activities. Herein, we reported that the catalytic activity of the TMCs can be enhanced by constructing bimetallic carbides (TiTaC2) fabricated through hydrothermal treatment followed by an annealing process, and further by doping fluorine (F) into the bimetallic carbides (TiTaFxC2). The as-prepared reduced graphene oxide (rGO) supported TiTaFxC2 nanoparticles (TiTaFxC2 NP/rGO) show state-of-the-art OER catalytic activity, which is even superior to Ir/C catalyst (an onset potential of only 1.42 V vs RHE and the overpotential of 490 mV to reach 100 mA cm-2), fast kinetics (Tafel slope of only 36 mV dec-1), and high durability (maintaining the current density at 1.60 V vs RHE for 40 h). Detailed structural characterizations together with density functional theory (DFT) calculations reveal that the electronic structures of the bimetallic carbides have been tuned, and their possible mechanism is also discussed.
Collapse
Affiliation(s)
- Min Feng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jingle Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yang Peng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Churong Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
39
|
Park J, Lee S, Kim S. Recent advances in amorphous electrocatalysts for oxygen evolution reaction. Front Chem 2022; 10:1030803. [PMID: 36238105 PMCID: PMC9550868 DOI: 10.3389/fchem.2022.1030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen evolution reaction (OER) has attracted great attention as an important half-reaction in the electrochemical splitting of water for green hydrogen production. However, the inadequacy of highly efficient and stable electrocatalysts has impeded the development of this technology. Amorphous materials with long-range disordered structures have exhibited superior electrocatalytic performance compared to their crystalline counterparts due to more active sites and higher structural flexibility. This review summarizes the preparation methods of amorphous materials involving oxides, hydroxide, phosphides, sulfides, and their composites, and introduces the recent progress of amorphous OER electrocatalysts in acidic and alkaline media. Finally, the existing challenges and future perspectives for amorphous electrocatalysts for OER are discussed. Therefore, we believe that this review will guide designing amorphous OER electrocatalysts with high performance for future energy applications.
Collapse
Affiliation(s)
- Jinkyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, South Korea
- *Correspondence: Seonggyu Lee, ; Seongseop Kim,
| | - Seongseop Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Seonggyu Lee, ; Seongseop Kim,
| |
Collapse
|
40
|
Multiple carbon interface engineering to boost oxygen evolution of NiFe nanocomposite electrocatalyst. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Cheng Y, Kwofie F, Chen Z, Zhang R, Wang Z, Jiang SP, Zheng J, Tang H. Oxygen Evolution Reaction Kinetics and Mechanisms on Pristine Carbon Nanotubes: Effect of pH. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Araki Y, Tsunekawa S, Sakai A, Harada K, Nagatsuka R, Suzuki‐Sakamaki M, Amemiya K, Wang K, Kawai T, Yoshida M. Development of a Hemispherical Cavity Cobalt Electrocatalyst for Water Oxidation Based on a Polystyrene Colloidal Template Electrodeposition Method. ChemistrySelect 2022. [DOI: 10.1002/slct.202200600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yusaku Araki
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Shun Tsunekawa
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Arisu Sakai
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Kazuki Harada
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Ryosuke Nagatsuka
- Department of Industrial Chemistry Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | | | - Kenta Amemiya
- Institute of Materials Structure Science High Energy Accelerator Research Organization Oho Tsukuba Ibaraki 305-0801 Japan
| | - Ke‐Hsuan Wang
- Department of Industrial Chemistry Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Masaaki Yoshida
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Tokiwadai Ube Yamaguchi 755-8611 Japan
- Blue Energy Center for SGE Technology (BEST) Yamaguchi University
| |
Collapse
|
43
|
Dynamic equilibrium of external Fe3+ to effectively construct catalytic surface of perovskite LaNi1-xFexO3 for water oxidation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Villalobos J, Morales DM, Antipin D, Schuck G, Golnak R, Xiao J, Risch M. Stabilization of a Mn-Co Oxide During Oxygen Evolution in Alkaline Media. ChemElectroChem 2022; 9:e202200482. [PMID: 35915742 PMCID: PMC9328349 DOI: 10.1002/celc.202200482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Indexed: 11/08/2022]
Abstract
Improving the stability of electrocatalysts for the oxygen evolution reaction (OER) through materials design has received less attention than improving their catalytic activity. We explored the effects of Mn addition to a cobalt oxide for stabilizing the catalyst by comparing single phase CoOx and (Co0.7Mn0.3)Ox films electrodeposited in alkaline solution. The obtained disordered films were classified as layered oxides using X-ray absorption spectroscopy (XAS). The CoOx films showed a constant decrease in the catalytic activity during cycling, confirmed by oxygen detection, while that of (Co0.7Mn0.3)Ox remained constant within error as measured by electrochemical metrics. These trends were rationalized based on XAS analysis of the metal oxidation states, which were Co2.7+ and Mn3.7+ in the bulk and similar near the surface of (Co0.7Mn0.3)Ox, before and after cycling. Thus, Mn in (Co0.7Mn0.3)Ox successfully stabilized the bulk catalyst material and its surface activity during OER cycling. The development of stabilization approaches is essential to extend the durability of OER catalysts.
Collapse
Affiliation(s)
- Javier Villalobos
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Dulce M. Morales
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Denis Antipin
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Götz Schuck
- Abteilung Struktur und Dynamik von EnergiematerialienHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Ronny Golnak
- Department of Highly Sensitive X-ray SpectroscopyHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 15Berlin12489Germany
| | - Jie Xiao
- Department of Highly Sensitive X-ray SpectroscopyHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 15Berlin12489Germany
| | - Marcel Risch
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| |
Collapse
|
45
|
Liu T, Chen Y, Hao Y, Wu J, Wang R, Gu L, Yang X, Yang Q, Lian C, Liu H, Gong M. Hierarchical anions at the electrode-electrolyte interface for synergized neutral water oxidation. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
47
|
Bian Z, Kato K, Ogoshi T, Cui Z, Sa B, Tsutsui Y, Seki S, Suda M. Hybrid Chiral MoS 2 Layers for Spin-Polarized Charge Transport and Spin-Dependent Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201063. [PMID: 35481673 PMCID: PMC9189682 DOI: 10.1002/advs.202201063] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/01/2022] [Indexed: 06/07/2023]
Abstract
The chiral-induced spin selectivity effect enables the application of chiral organic materials for spintronics and spin-dependent electrochemical applications. It is demonstrated on various chiral monolayers, in which their conversion efficiency is limited. On the other hand, relatively high spin polarization (SP) is observed on bulk chiral materials; however, their poor electronic conductivities limit their application. Here, the design of chiral MoS2 with a high SP and high conductivity is reported. Chirality is introduced to the MoS2 layers through the intercalation of methylbenzylamine molecules. This design approach activates multiple tunneling channels in the chiral layers, which results in an SP as high as 75%. Furthermore, the spin selectivity suppresses the production of H2 O2 by-product and promotes the formation of ground state O2 molecules during the oxygen evolution reaction. These potentially improve the catalytic activity of chiral MoS2 . The synergistic effect is demonstrated as an interplay of the high SP and the high catalytic activity of the MoS2 layer on the performance of the chiral MoS2 for spin-dependent electrocatalysis. This novel approach employed here paves way for the development of other novel chiral systems for spintronics and spin-dependent electrochemical applications.
Collapse
Affiliation(s)
- Zhiyun Bian
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Zhou Cui
- Key Laboratory of Ecomaterials Advanced TechnologyCollege of Materials Science and EngineeringFuzhou UniversityFuzhou350108P. R. China
| | - Baisheng Sa
- Key Laboratory of Ecomaterials Advanced TechnologyCollege of Materials Science and EngineeringFuzhou UniversityFuzhou350108P. R. China
| | - Yusuke Tsutsui
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
- JST‐PRESTOHoncho 4‐1‐8KawaguchiSaitama332‐0012Japan
| | - Shu Seki
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Masayuki Suda
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
- JST‐PRESTOHoncho 4‐1‐8KawaguchiSaitama332‐0012Japan
| |
Collapse
|
48
|
Hussain I, Sahoo S, Sayed MS, Ahmad M, Sufyan Javed M, Lamiel C, Li Y, Shim JJ, Ma X, Zhang K. Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
|
50
|
Abstract
AbstractThe development of efficient electrocatalysts based on non-noble metals for oxygen evolution reaction (OER) remains an important and challenging task. Multinuclear transition-metal clusters with high structural stability are promising OER catalysts but their catalytic role is poorly understood. Here we report the crystallographic observation of OER activity over robust {Ni12}-clusters immobilised in a porous metal-organic framework, NKU-100, by single-crystal X-ray diffraction as a function of external applied potential. We observed the aggregation of confined oxygen species around the {Ni12}-cluster as a function of applied potential during the electrocatalytic process. The refined occupancy of these oxygen species shows a strong correlation with the variation of current density. This study demonstrates that the enrichment of oxygen species in the secondary co-ordination sphere of multinuclear transition-metal clusters can promote the OER activity.
Collapse
|