1
|
Tang N, Shi C, Hou X, Xin H, Wu L. Facile and elaborate construction of MoS 2 QDs@ZIF-8 as asynchronous response fluorescence sensor for naked-eye detection of tetracycline. Talanta 2025; 292:127932. [PMID: 40101686 DOI: 10.1016/j.talanta.2025.127932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Excessive use of tetracycline poses risks to human health and the ecological balance, which poses challenges to develop a method for facile and reliable detection of tetracycline. Herein, the MoS2 QDs@ZIF-8 was prepared through a simple method, serving as an asynchronous response sensor for the naked-eye detection of tetracycline. The photoinduced electron transfer between the composite sensor and target tetracycline led to quench the blue fluorescence emitted by MoS2 QDs. Hydrogen bond, chelation, π-π stacking and pore effect between the composite sensor and tetracycline made the aggregation of tetracycline, significantly enhancing the intrinsic yellow fluorescence of tetracycline. Moreover, it also exhibited good detection performance for the real samples such as river water, farm wastewater, honey and milk, demonstrating that it was suitable for naked-eye visualization detection in the field. This work provided a novel approach for constructing ratiometric fluorescence sensors with asynchronous response.
Collapse
Affiliation(s)
- Ninghan Tang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Chaoting Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China; College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hui Xin
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Lan Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
2
|
Song P, Lei D, Li L, Long N, Xu Q, Li Y, Zhou L, Pan R, Kong W. AuNCs@ZIF-8 with enhanced AIE effect to develop a lateral flow immunosensor for POC dual-modal detection of acetochlor. Talanta 2025; 287:127649. [PMID: 39889677 DOI: 10.1016/j.talanta.2025.127649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/05/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Regarding the high incidence of residue and serious toxicity of acetochlor (ATC) pesticide, it is urgent to explore simple and low-cost methods for their sensitive detection in food. In this study, with zeolite-like imidazole frameworks (ZIFs) as the carriers for embedding glutathione-modified luminescent gold nanoclusters (GSH-AuNCs) exhibiting aggregation-induced emission (AIE) effect, a GSH-AuNCs@ZIF-8 probe driven strip-based lateral flow immunosensor (LFIS) was developed for visual qualitative and fluorescent quantitative dual-modal detection of ATC. The encapsulation of GSH-AuNCs into ZIF-8 with restriction effect not only significantly improved the stability and anti-interference ability of AuNCs, but also remarkably enhanced the fluorescence efficiency for signal amplification due to the enhanced AIE effect of GSH-AuNCs, endowing the LFIS platform with unique performance. Under optimal conditions, the LFIS platform could realize the point-of-care visualization and quantitation of ATC within 20 min with a detection limit of 8.3 pg/mL and a broad linear range of 0.01-10.0 ng/mL. High recoveries of 96.44%-106.8 % in the spiked ginger samples confirmed the outstanding accuracy and dependability of the new platform for ATC analysis of real samples. Compared with other immunoassays, the AuNCs@ZIF-8-based dual-modal LFIS exhibited the advantages of simple preparation, simple operation, short analytical time, and low cost, which could be expanded to monitor more pesticides and more trace contaminants in diverse food and agricultural products, and medicinal material matrices.
Collapse
Affiliation(s)
- Pengyue Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China
| | - Doudou Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lingling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nan Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China
| | - Qingbin Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China.
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China.
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Qin J, Liu H, Fang Z, Pei J, Yin K, Fu K, Luo J. Selective gold extraction from e-waste leachate via sulfur-redox mechanisms using sulfhydryl-functionalized MOFs. WATER RESEARCH 2025; 275:123170. [PMID: 39855020 DOI: 10.1016/j.watres.2025.123170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Urban mining of precious metals from electronic waste (e-waste) offers a dual advantage by addressing solid waste management challenges and supplying high-value metals for diverse applications. However, traditional extraction methods generally suffer from poor selectivity and limited capacity in complex acidic leachate. Herein, we present a sulfhydryl-functionalized zirconium-based metal-organic framework (Zr-MSA-AA) as a recyclable and highly selective adsorbent for efficient gold recovery. Specifically, the Zr-MSA-AA exhibits high recovery capacity (1021 mg g-1), remarkable pH-universal, and superb selectivity (Kd of 2.2 × 107 mL g-1) for gold ions across wide pH range and competitive conditions. Comprehensive mechanistic investigations highlight the pivotal role of sulfhydryl groups in selectively capturing gold ions. The redox-transformation of sulfhydryl and sulfonic acid groups mediated the reduction of Au(III) to Au(0) through the nucleation of chlorine-stabilized gold clusters. This unique mechanism, driven by the redox activity of designed sulfhydryl sites, not only mitigates interference from competing cations but also facilitates rapid adsorption kinetics (kf of 1.17 × 10-7 m s-1) for gold ions, surpassing the performance of previous adsorbents. Consequently, Zr-MSA-AA demonstrates exceptional practical applicability, achieving high-purity gold recovery (23.8 Karat) from real e-waste leachate through straightforward physical separation methods. This study introduces an alternative practical strategy for utilizing sulfur's redox activity in adsorbent design, advancing the sustainable recycling of non-renewable metal resources while contributing to environmental conservation.
Collapse
Affiliation(s)
- Jialong Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province 410082, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hengzhi Liu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Junjun Pei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province 410082, PR China
| | - Kai Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province 410082, PR China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
4
|
Zhu P, Chen Y, Tang Q. Vacancy-induced modulation of the interfacial properties of Au 25(SCH 3) 18 nanoclusters supported on defective graphene. NANOSCALE 2025; 17:9490-9501. [PMID: 40116735 DOI: 10.1039/d5nr00054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Atomically precise metal nanoclusters (NCs) are frequently loaded onto various substrates for numerous catalytic applications, yet the interfacial interaction remains poorly understood. In this study, we performed ab initio molecular dynamics (AIMD) simulations to systematically investigate the interfacial dynamics of thiolated-protected Au25(SR)18 NCs on graphene substrates with varying vacancy defect sizes. The results revealed that when the vacancy defects feature a convex-shaped armchair edge, the vacancy edges would undergo severe reconstruction and reduce the substrate reactivity, which cannot effectively anchor the Au25 NCs and induce high mobility on graphene. In contrast, when the vacancy defects feature a concave-shaped armchair edge, the present unsaturated sp2 dangling bond imparts high reactivity to the vacancy edge, which enables strong chemical interaction with Au25 and leads to facile and spontaneous removal of the staple Au-SCH3 moiety from the protecting -S-Au-S-Au-S- motif. The etched Au25 NCs with exposed active Au sites can efficiently facilitate the electrocatalytic CO2 reduction to CO with moderate energy barriers. This work reveals the significant role of the defect edges of graphene in modulating the interfacial behavior of metal NCs, providing a promising strategy for regulating the interfacial and catalytic properties of atomically precise metal NCs.
Collapse
Affiliation(s)
- Pan Zhu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
5
|
Li YT, Cui WG, Huo YF, Zhou L, Wang X, Gao F, Zhang Q, Li W, Hu TL. Acetylene semi-hydrogenation catalyzed by Pd single atoms sandwiched in zeolitic imidazolate frameworks via hydrogen activation and spillover. MATERIALS HORIZONS 2025; 12:2351-2359. [PMID: 39801314 DOI: 10.1039/d4mh01787k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The semi-hydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry, and palladium-based metallic catalysts are currently employed. Unfortunately, a fairly high cost and uncontrollable over-hydrogenation impeded the application of Pd-based catalysts on a large scale. Herein, a sandwich structure single atom Pd catalyst, Z@Pd@Z, was prepared via impregnation exchange and epitaxial growth methods (Z stands for ZIF-8), in which Pd single atoms were stabilized by pyrrolic N in a zeolitic imidazolate framework (ZIF-8). Semi-hydrogenation of acetylene was performed and Z@Pd@Z achieved 100% acetylene conversion at 120 °C with an ethylene selectivity of more than 98.3% at an extra low Pd concentration. Z@Pd@Z exhibited a specific activity of 1872.69 mLC2H4 mgPd-1 h-1, surpassing most of the reported Pd-based catalysts. The existence of Pd single atoms coordinated by nitrogen (Pd-N4) was verified by XAS (synchrotron X-ray absorption spectroscopy), which provided active sites for H2 dissociation and the dissociated hydrogen quickly spilled over the surface of the outer ZIF layer to hydrogenate alkyne to ethene; besides, the catalytic activity could be controlled by adjusting the thickness of the outer ZIF layer. The confinement of the ZIF on Pd single-atom sites and the high energy barrier of ethylene hydrogenation were found to be responsible for the superior C2H2 semi-hydrogenation activity. This work opens up valuable insights into the design of ZIF-derived single-atom catalysts for efficient acetylene selective hydrogenation.
Collapse
Affiliation(s)
- Yan-Ting Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Wen-Gang Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Ying-Fei Huo
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Lei Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Wei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Du Y, Wang P, Fang Y, Zhu M. Asymmetric Charge Distribution in Atomically Precise Metal Nanoclusters for Boosted CO 2 Reduction Catalysis. CHEMSUSCHEM 2025; 18:e202402085. [PMID: 39472281 DOI: 10.1002/cssc.202402085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Recently, atomically precise metal nanoclusters (NCs) have been widely applied in CO2 reduction reaction (CO2RR), achieving exciting activity and selectivity and revealing structure-performance correlation. However, at present, the efficiency of CO2RR is still unsatisfactory and cannot meet the requirements of practical applications. One of the main reasons is the difficulty in CO2 activation due to the chemical inertness of CO2. Constructing symmetry-breaking active sites is regarded as an effective strategy to promote CO2 activation by modulating electronic and geometric structure of CO2 molecule. In addition, in the subsequent CO2RR process, asymmetric charge distributed sites can break the charge balance in adjacent adsorbed C1 intermediates and suppress electrostatic repulsion between dipoles, benefiting for C-C coupling to generate C2+ products. Although compared to single atoms, metal nanoparticles, and inorganic materials the research on the construction of asymmetric catalytic sites in metal NCs is in a newly-developing stage, the precision, adjustability and diversity of metal NCs structure provide many possibilities to build asymmetric sites. This review summarizes several strategies of construction asymmetric charge distribution in metal NCs for boosting CO2RR, concludes the mechanism investigation paradigm of NCs-based catalysts, and proposes the challenges and opportunities of NCs catalysis.
Collapse
Affiliation(s)
- Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Pei Wang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yi Fang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
7
|
Kumar A, James G, Aparna RK, Mandal S. Rational design and synthesis of atomically precise nanocluster-based nanocomposites: a step towards environmental catalysis. Chem Commun (Camb) 2025; 61:2723-2741. [PMID: 39813088 DOI: 10.1039/d4cc05255b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Atomically precise metal nanoclusters (NCs) and metal-organic frameworks (MOFs) possess distinct properties that can present challenges in certain applications. However, integrating these materials to create new composite functional materials has gained significant interest due to their unique characteristics through a range of applications, particularly in catalysis. Considering MOFs as hosts and NCs as guests, several synergistic effects have been observed in composites, particularly in environmental catalytic reactions. However, the precise role of encapsulated NCs within the MOF pore structure is still in its infancy. Besides, stabilizing NCs, whether through intact ligands or without ligands via the MOF host, presents challenges that are currently being investigated. This feature article reviews recent advancements in the synthesis of NC@MOF composites, focusing on cutting-edge strategies for selecting MOFs and the roles of NC ligands, as well as characterization and catalytic applications.
Collapse
Affiliation(s)
- Alok Kumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
| | - Glory James
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
| | - Ravari Kandy Aparna
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
8
|
Peng P, Li M, Wang X, Dong MJ, Xiao Y, Ahmad F, Hou T, Shu T, Zhang X. Stepwise Lighting Up Gold(I)-Thiolate Complexes from AIE Nanoaggregates to AIEE Nanoprobes with a ZIF-8 Shell for Glucose Biosensing. Anal Chem 2025; 97:2153-2163. [PMID: 39841624 DOI: 10.1021/acs.analchem.4c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn2+ induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects. The nonemissive monovalent gold-glutathione complexes (AuI-SGs) were obtained to synthesize the core-shell Zn2+/AuI-SG@ZIF-8 composites with strong luminescence via the coordination-assisted self-assembly strategy. By immobilizing GOx on the surface of Zn2+/AuI-SG@ZIF-8, Zn2+/AuI-SG@ZIF-8/GOx biosensors exhibited effective responsiveness to glucose, showing a "turn-off" detection model. The mechanism study revealed that the robust luminescence of Zn2+/AuI-SG@ZIF-8 to glucose sensing was attributed to the acid-stimulated degradation of the probe facilitated by H+ generated from the glucose oxidase (GOx)-catalyzed oxidation process. To achieve noninvasive and intelligent blood glucose detection, the Zn2+/AuI-SG@ZIF-8/GOx-loaded microneedle (MN)-patch fluorescent platform was further developed. The MN-patch-based sensing platform had promising performance for on-needle capture and in situ glucose detection. This study demonstrated a universal and feasible protocol to construct luminescent biosensors for glucose detection and their potential for the development of MN-based analytical devices.
Collapse
Affiliation(s)
- Peiwen Peng
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Mingyu Li
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xuan Wang
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Ming-Jie Dong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Yelan Xiao
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Faisal Ahmad
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Teng Hou
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, P. R. China
| | - Tong Shu
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Li YM, Shi D, Yuan J, Zuo RM, Yang H, Hu J, Hu SX, Sheng H, Zhu M. In Situ Encapsulation of Atomically Precise Nanoclusters in Reticular Frameworks via Mechanochemical Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412768. [PMID: 39473311 DOI: 10.1002/adma.202412768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Indexed: 01/11/2025]
Abstract
The combination of atomically precise nanoclusters (APNCs) and reticular frameworks is promising for generating component-specific nanocomposites with emergent properties. However, traditional liquid-phase synthesis often hampers this potential by damaging APNCs and limiting combination diversity. Here, mechanochemical synthesis to explore the encapsulation of diverse oil- and water-soluble APNCs within various reticular frameworks is employed, establishing a database of 21 unique APNC-framework combinations, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and multivariate MOFs. These framework coatings not only spatially immobilize APNCs but also secure their structures, preventing aggregation and degradation while enhancing stability and activity. Encapsulating Au25 in HOFs resulted in a remarkable 315-fold increase in catalytic activity compared to Au25 homogeneous catalyst, highlighting the framework's crucial role in catalytic enhancement. The mechanochemical synthesis strategy facilitates tailored support screening, catering to specific needs, and shows promise for developing multifunctional systems, including enzyme-APNC@frameworks material for cascade reactions.
Collapse
Affiliation(s)
- Yi-Ming Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
- School of Chemistry and Materials Engineering and Anhui Provincial Key Laboratory of Green Carbon Chemistry, Fuyang Normal University, Fuyang, Anhui, 236041, P. R. China
| | - Dongxia Shi
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jian Yuan
- Avogadral Solutions, 3130 Grants Lake Boulevard #18641, Sugar Land, TX, 77496, USA
| | - Rui-Min Zuo
- Department of Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hui Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jinhui Hu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hongting Sheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
- School of Chemistry and Materials Engineering and Anhui Provincial Key Laboratory of Green Carbon Chemistry, Fuyang Normal University, Fuyang, Anhui, 236041, P. R. China
| |
Collapse
|
10
|
Zadehnazari A, Auras F, Altaf AA, Zarei A, Khosropour A, Amirjalayer S, Abbaspourrad A. Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation. Nat Commun 2024; 15:10846. [PMID: 39737983 DOI: 10.1038/s41467-024-55156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses. TTF-COF has an adsorption capacity toward aqueous Au(III) of 2440 mg g-1, and TPE-COF's Au(III) adsorption capacity is 1639 mg g-1. The gold source is metal flakes isolated from waste computer processing units. Of the gold present, > 99% is selectively captured by TTF-COF whereas only 5% of the Ni and 2% of the Cu in the solution is adsorbed. The Au-loaded covalent organic frameworks catalyze the carboxylation of terminal alkynes and are stable and reusable for six reuse cycles. Our covalent organic frameworks convert e-waste into a valuable catalyst for a useful green organic transformation.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Ataf Ali Altaf
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Amin Zarei
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Saeed Amirjalayer
- University of Münster, Institute for Solid State Theory, Center for Nanotechnology and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, Münster, Germany
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.
| |
Collapse
|
11
|
Zhou T, Zang L, Zhang X, Liu X, Qu Z, Zhang G, Wang X, Wang F, Zhang Z. Integrating L-Cys-AuNCs in ZIF-8 with Enhanced Fluorescence and Strengthened Stability for Sensitive Detection of Copper Ions. Molecules 2024; 29:6011. [PMID: 39770099 PMCID: PMC11677756 DOI: 10.3390/molecules29246011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Gold nanoclusters (AuNCs) have been widely investigated because of their unique photoluminescence properties. However, the applications of AuNCs are limited by their poor stability and relatively low fluorescence. In the present work, we developed nanocomposites (L-Cys-AuNCs@ZIF-8) with high fluorescence and stability, which were constructed by encapsulating the water-dispersible L-Cys-AuNCs into a ZIF-8 via Zn2+-triggered growth strategy without high temperature and pressure. The maximum emission wavelength of the L-Cys-AuNCs@ZIF-8 composite was at 868 nm, and the fluorescence intensity of L-Cys-AuNCs@ZIF-8 was nearly nine-fold compared with L-Cys-AuNCs without the ZIF-8 package. The mechanism investigation by fluorescence spectroscopy and X-ray photoelectron spectroscopy showed that L-Cys-AuNCs@ZIF-8 impeded ligand rotation, induced energy dissipation, and diminished the self-quenching effect, attributing to the spatial distribution of L-Cys-AuNCs. Based on the high fluorescence efficiency of L-Cys-AuNCs@ZIF-8, a "signal off" detective platform was proposed with copper ions as a model analyte, achieving a sensitive detection limit of Cu2+ at 16.7 nM. The quenching mechanism was confirmed, showing that the structure of the L-Cys-AuNCs@ZIF-8 nanocomposites was collapsed by the addition of Cu2+. Attributing to the strong adsorption ability between copper ions and pyridyl nitrogen, the as-prepared L-Cys-AuNCs@ZIF-8 was shown to accumulate Cu2+, and the Zn2+ in ZIF-8 was replaced by Cu2+.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | | | | | | | | | | | | | | | - Zhiqing Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
12
|
Deng Q, Huang Z, Zhu M, Zong X, Yue Z, Wang X. Improving the particulate matter filtration, antibacterial, and degradation properties of electrospinning poly(lactic acid) membranes with ZIF-8@chitosan. Carbohydr Polym 2024; 342:122427. [PMID: 39048246 DOI: 10.1016/j.carbpol.2024.122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the filtration efficiency of electrospinning poly(lactic acid) (PLA) membrane on particulate matter (PM), endow the membrane with good antibacterial properties, and accelerate the degradation effect of PLA materials in natural water and soil environments, ZIF-8@chitosan (ZIF-8@CS) was prepared by in situ growth method and was combined with PLA to manufacture the PLA/ZIF-8@CS electrospinning membranes. The PLA/ZIF-8@CS (3 wt%) membrane exhibited filtration efficiencies of 96.79 % for PM2.5 and 91.21 % for PM10, which were significantly higher than that of PP melt-blown cloth. Due to the inherently positive charge and the synergistic interaction between CS and ZIF-8, the antibacterial rates of PLA/ZIF-8@CS membranes were up to 100 % for E. coli and S. aureus after contact for 8 h. The addition of ZIF-8@CS in the membranes also influenced the degradation behavior of PLA/ZIF-8@CS membranes evidently.
Collapse
Affiliation(s)
- Qingchen Deng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhen Huang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Mengyu Zhu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinyue Zong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhenqing Yue
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Yao Q, Liu L, Cai Z, Meng M, Luo S, Gong J. Visual and photoelectrochemical analysis of antibiotic resistance genes enabled by surface-engineered ZIF-8@Au cascade nanozymes. Biosens Bioelectron 2024; 261:116470. [PMID: 38852322 DOI: 10.1016/j.bios.2024.116470] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The aggravation of antibiotic resistance genes (ARGs) in the environment has posed a significant global health crisis. Accurate evaluation of ARGs levels in a facile manner is a pressing issue for environmental surveillance. Here, we demonstrate a unique dumbbell-shaped cascade nanozyme for visual/photoelectrochemical (PEC) dual-mode detection of ARGs. Gold nanoparticles (AuNPs) with tunable exposed facets are controllably anchored onto ZIF-8 dodecahedrons, exhibiting glucose oxidase (GOx)-like (ZIF-8@Au/G) and peroxidase (POD)-like (ZIF-8@Au/P) activities. Upon the occurrence of ARGs, an asymmetric cascade-amplified "dumbbell" configuration is spontaneously generated via target-induced DNA hybridization, comprising GOx-like ZIF-8@Au/G with capture DNA on one side and POD-like ZIF-8@Au/P with signal DNA on the opposite side. Such a cascade nano-system can efficiently oxidize colorless 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) into its green oxidation state and synergistically decompose H2O2, realizing colorimetric/PEC dual-mode ARGs detection with a detection limit of 0.112 nM. The applicability of the present bioassay is validated through measuring ARGs in real sludge samples. This work suggests the possibility to rationally design task-specific nanozymes and develop target-responsive nano-cascade assays for environmental monitoring.
Collapse
Affiliation(s)
- Qingfeng Yao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Lijuan Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Zheng Cai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Mingxia Meng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Shuyue Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
14
|
Wang H, Liu X, Zhao Y, Sun Z, Lin Y, Yao T, Jiang HL. Regulating interaction with surface ligands on Au 25 nanoclusters by multivariate metal-organic framework hosts for boosting catalysis. Natl Sci Rev 2024; 11:nwae252. [PMID: 39301064 PMCID: PMC11409874 DOI: 10.1093/nsr/nwae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 09/22/2024] Open
Abstract
While atomically precise metal nanoclusters (NCs) with unique structures and reactivity are very promising in catalysis, the spatial resistance caused by the surface ligands and structural instability poses significant challenges. In this work, Au25(Cys)18 NCs are encapsulated in multivariate metal-organic frameworks (MOFs) to afford Au25@M-MOF-74 (M = Zn, Ni, Co, Mg). By the MOF confinement, the Au25 NCs showcase highly enhanced activity and stability in the intramolecular cascade reaction of 2-nitrobenzonitrile. Notably, the interaction between the metal nodes in M-MOF-74 and Au25(Cys)18 is able to suppress the free vibration of the surface ligands on the Au25 NCs and thereby improve the accessibility of Au sites; meanwhile, the stronger interactions lead to higher electron density and core expansion within Au25(Cys)18. As a result, the activity exhibits the trend of Au25@Ni-MOF-74 > Au25@Co-MOF-74 > Au25@Zn-MOF-74 > Au25@Mg-MOF-74, highlighting the crucial roles of microenvironment modulation around the Au25 NCs by interaction between the surface ligands and MOF hosts.
Collapse
Affiliation(s)
- He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yulong Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Biswas S, Pal A, Jena MK, Hossain S, Sakai J, Das S, Sahoo B, Pathak B, Negishi Y. Luminescent Hydride-Free [Cu 7(SC 5H 9) 7(PPh 3) 3] Nanocluster: Facilitating Highly Selective C-C Bond Formation. J Am Chem Soc 2024. [PMID: 38979882 DOI: 10.1021/jacs.4c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Amidst burgeoning interest, atomically precise copper nanoclusters (Cu NCs) have emerged as a remarkable class of nanomaterials distinguished by their unparalleled reactivity. Nonetheless, the synthesis of hydride-free Cu NCs and their role as stable catalysts remain infrequently explored. Here, we introduce a facile synthetic approach to fabricate a hydride-free [Cu7(SC5H9)7(PPh3)3] (Cu7) NC and delineate its photophysical properties intertwined with their structural configuration. Moreover, the utilization of its photophysical properties in a photoinduced C-C coupling reaction demonstrates remarkable specificity toward cross-coupling products with high yields. The combined experimental and theoretical investigation reveals a nonradical mechanistic pathway distinct from its counterparts, offering promising prospects for designing hydride-free Cu NC catalysts in the future and unveiling the selectivity of the hydride-free [Cu7(SC5H9)7(PPh3)3] NC in photoinduced Sonogashira C-C coupling through a polar reaction pathway.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Amit Pal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Yuichi Negishi
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
16
|
Liu X, Ki T, Deng G, Yoo S, Lee K, Lee BH, Hyeon T, Bootharaju MS. Recent advances in synthesis and properties of silver nanoclusters. NANOSCALE 2024; 16:12329-12344. [PMID: 38860477 DOI: 10.1039/d4nr01788a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Achieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities. Among coinage metals, silver distinguishes itself for the fabrication of stable nanoclusters, primarily due to its cost-effectiveness compared to gold. This minireview provides an overview of recent advancements since 2020 in synthetic methodologies and ligand selections toward attaining NCs boasting a minimum of two free valence electrons. Additionally, it explores strategies for fine-tuning optical properties. The discussion extends to surface reactivity, elucidating how exposure to ligands, heat, and light induces transformations in size and structure. Of paramount significance are the applications of silver NCs in catalytic reactions for energy and chemical conversion, supplemented by in-depth mechanistic insights. Furthermore, the review delineates challenges and outlines future directions in the NC field, with an eye toward the design of new functional materials and prospective applications in diverse technologies, including optoelectronics, energy conversion, and fine chemical synthesis.
Collapse
Affiliation(s)
- Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Chen D, Wang L, Wei J, Jiao T, Chen Q, Oyama M, Chen Q, Chen X, Chen X. Metal-organic framework-based multienzyme cascade bioreactor for sensitive detection of methyl parathion. Food Chem 2024; 442:138389. [PMID: 38219569 DOI: 10.1016/j.foodchem.2024.138389] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
In this study, a cascade nanobioreactor was developed for the highly sensitive detection of methyl parathion (MP) in food samples. The simultaneous encapsulation of acetylcholinesterase (AChE) and choline oxidase (CHO) in a zeolitic imidazole ester backbone (ZIF-8) effectively improved the stability and cascade catalytic efficiency of the enzymes. In addition, glutathione-stabilized gold nanoclusters (GSH-AuNCs) were encapsulated in ZIF-8 by ligand self-assembly, conferring excellent fluorescence properties. Acetylcholine (ATCh) is catalyzed by a cascade of AChE/CHO@ZIF-8 as well as Fe(II) to generate hydroxyl radicals (·OH) with strong oxidizing properties. The ·OH radicals then oxidize Au(0) in GSH-AuNCs@ZIF-8 to Au(I), resulting in fluorescence quenching. MP, as an inhibitor of AChE, hinders the cascade reaction and thus restores the fluorescence emission, enabling its quantitative detection. The limit of detection of the constructed nanobioreactor for MP was 0.23 µg/L. This MOF-based cascade nanobioreactor has great potential for the detection of trace hazards.
Collapse
Affiliation(s)
- Dongyan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Li Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
18
|
Pan X, Yao Y, Zhang M, Yuan X, Yao Q, Hu W. Enzyme-mimic catalytic activities and biomedical applications of noble metal nanoclusters. NANOSCALE 2024; 16:8196-8215. [PMID: 38572762 DOI: 10.1039/d4nr00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble metal (e.g., Au and Ag) nanoclusters (NCs), which exhibit structural complexity and hierarchy comparable to those of natural proteins, have been increasingly pursued in artificial enzyme research. The protein-like structure of metal NCs not only ensures enzyme-mimic catalytic activity, including peroxidase-, catalase-, and superoxide dismutase-mimic activities, but also affords an unprecedented opportunity to correlate the catalytic performance with the cluster structure at the molecular or atomic levels. In this review, we aim to summarize the recent progress in programming and demystify the enzyme-mimic catalytic activity of metal NCs, presenting the state-of-the-art understandings of the structure-property relationship of metal NC-based artificial enzymes. By leveraging on a concise anatomy of the hierarchical structure of noble metal NCs, we manage to unravel the structural origin of the catalytic performance of metal NCs. Noteworthily, it has been proven that the surface ligands and metal-ligand interface of metal NCs are instrumental in influencing enzyme-mimic catalytic activities. In addition to the structure-property correlation, we also discuss the synthetic methodologies feasible to tailoring the cluster structure at the atomic level. Prior to the closure of this review with our perspectives in noble metal NC-based artificial enzymes, we also exemplify the biomedical applications based on the enzyme-mimic catalysis of metal NCs with the theranostics of kidney injury, brain inflammation, and tumors. The fundamental and methodological advancements delineated in this review would be conducive to further development of metal NCs as an alternative family of artificial enzymes.
Collapse
Affiliation(s)
- Xinxin Pan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yidan Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Manxi Zhang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
19
|
Liu Z, Chen J, Li B, Jiang DE, Wang L, Yao Q, Xie J. Enzyme-Inspired Ligand Engineering of Gold Nanoclusters for Electrocatalytic Microenvironment Manipulation. J Am Chem Soc 2024; 146:11773-11781. [PMID: 38648616 DOI: 10.1021/jacs.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Natural enzymes intricately regulate substrate accessibility through specific amino acid sequences and folded structures at their active sites. Achieving such precise control over the microenvironment has proven to be challenging in nanocatalysis, especially in the realm of ligand-stabilized metal nanoparticles. Here, we use atomically precise metal nanoclusters (NCs) as model catalysts to demonstrate an effective ligand engineering strategy to control the local concentration of CO2 on the surface of gold (Au) NCs during electrocatalytic CO2 reduction reactions (CO2RR). The precise incorporation of two 2-thiouracil-5-carboxylic acid (TCA) ligands within the pocket-like cavity of [Au25(pMBA)18]- NCs (pMBA = para-mercaptobenzoic acid) leads to a substantial acceleration in the reaction kinetics of CO2RR. This enhancement is attributed to a more favorable microenvironment in proximity to the active site for CO2, facilitated by supramolecular interactions between the nucleophilic Nδ- of the pyrimidine ring of the TCA ligand and the electrophilic Cδ+ of CO2. A comprehensive investigation employing absorption spectroscopy, mass spectrometry, isotopic labeling measurements, electrochemical analyses, and quantum chemical computation highlights the pivotal role of local CO2 enrichment in enhancing the activity and selectivity of TCA-modified Au25 NCs for CO2RR. Notably, a high Faradaic efficiency of 98.6% toward CO has been achieved. The surface engineering approach and catalytic fundamentals elucidated in this study provide a systematic foundation for the molecular-level design of metal-based electrocatalysts.
Collapse
Affiliation(s)
- Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| | - Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
20
|
Wang H, Zhang X, Zhang W, Zhou M, Jiang HL. Heteroatom-Doped Ag 25 Nanoclusters Encapsulated in Metal-Organic Frameworks for Photocatalytic Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202401443. [PMID: 38407530 DOI: 10.1002/anie.202401443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Atomically precise metal nanoclusters (NCs) with unique optical properties and abundant catalytic sites are promising in photocatalysis. However, their light-induced instability and the difficulty of utilizing the photogenerated carriers for photocatalysis pose significant challenges. Here, MAg24 (M=Ag, Pd, Pt, and Au) NCs doped with diverse single heteroatoms have been encapsulated in a metal-organic framework (MOF), UiO-66-NH2, affording MAg24@UiO-66-NH2. Strikingly, compared with Ag25@UiO-66-NH2, the MAg24@UiO-66-NH2 doped with heteroatom exhibits much enhanced activity in photocatalytic hydrogen production, among which AuAg24@UiO-66-NH2 presents the best activity up to 3.6 mmol g-1 h-1, far superior to all other counterparts. Moreover, they display excellent photocatalytic recyclability and stability. X-ray photoelectron spectroscopy and ultrafast transient absorption spectroscopy demonstrate that MAg24 NCs encapsulated into the MOF create a favorable charge transfer pathway, similar to a Z-scheme heterojunction, when exposed to visible light. This promotes charge separation, along with optimized Ag electronic state, which are responsible for the superior activity in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiyuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
21
|
Zhang W, Pinna N. Metal Organic Frameworks Synthesis: The Versatility of Triethylamine. Chemistry 2024; 30:e202304256. [PMID: 38300687 DOI: 10.1002/chem.202304256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Metal Organic Frameworks (MOFs) are organic-inorganic hybrid materials with exceptionally customizable composition and properties. MOFs intrinsically possess open metal sites, tunable pore size/shape and an ultra-large specific surface area, and have obtained significant attention over the past 30 years. Furthermore, through the integration of functional moieties such as, molecules, functional groups, noble metal clusters and nanocrystals or nanoparticles into MOFs, the resulting composites have greatly enriched the physical and chemical properties of pure MOFs, enabling their application in a wider range of fields. Triethylamine (TEA) as an organic base has consistently played a fundamental role in the development of MOFs. In this Concept, the versatility of triethylamine when involved in the synthesis of MOFs is discussed. Four sections are used to elaborate on the role of TEA including: (1) Single crystal synthesis; (2) Size and morphology control; (3) Counterion of MOFs; (4) MOFs composites synthesis. In the last part, we highlight the potential of TEA for further developments.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry and The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nicola Pinna
- Department of Chemistry and The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
22
|
Wang J, Ma A, Ren Y, Shen X, Wang Y, Song C, Wang S. An Au 5Ag 12(SR) 9(dppf) 4 alloy nanocluster: structural determination and optical property and photothermal conversion investigation. NANOSCALE 2024. [PMID: 38634772 DOI: 10.1039/d4nr00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Photothermal conversion has garnered significant attention due to its potential for efficient energy conversion and application in targeted therapies. However, controlling photothermal properties at the atomic level remains a challenge in current materials synthesis. In this study, we report the synthesis and structural determination of a phosphine and mercaptan co-protected Au5Ag12(SR)9(dppf)4 (Au5Ag12) nanocluster with an extremely low quantum yield (∼0%). For comparative purposes, we synthesized three alloy nanoclusters of similar size. Notably, Au5Ag12 demonstrates a remarkably superior photothermal conversion performance, significantly outperforming the other clusters. We investigated this variance from both absorption and emission perspectives. This research not only opens new avenues for the application of clusters with extremely low quantum yields, but also provides experimental evidence for understanding the photothermal conversion properties of cluster materials at the atomic level.
Collapse
Affiliation(s)
- Jiawei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Along Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yonggang Ren
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xuekairui Shen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yifei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Caixia Song
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
23
|
You Q, Wang H, Zhao Y, Fan W, Gu W, Jiang HL, Wu Z. Bottom-Up Construction of Metal-Organic Framework Loricae on Metal Nanoclusters with Consecutive Single Nonmetal Atom Tuning for Tailored Catalysis. J Am Chem Soc 2024; 146:9026-9035. [PMID: 38441064 DOI: 10.1021/jacs.3c13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The introduction of single or multiple heterometal atoms into metal nanoparticles is a well-known strategy for altering their structures (compositions) and properties. However, surface single nonmetal atom doping is challenging and rarely reported. For the first time, we have developed synthetic methods, realizing "surgery"-like, successive surface single nonmetal atom doping, replacement, and addition for ultrasmall metal nanoparticles (metal nanoclusters, NCs), and successfully synthesized and characterized three novel bcc metal NCs Au38I(S-Adm)19, Au38S(S-Adm)20, and Au38IS(S-Adm)19 (S-Adm: 1-adamantanethiolate). The influences of single nonmetal atom replacement and addition on the NC structure and optical properties (including absorption and photoluminescence) were carefully investigated, providing insights into the structure (composition)-property correlation. Furthermore, a bottom-up method was employed to construct a metal-organic framework (MOF) on the NC surface, which did not essentially alter the metal NC structure but led to the partial release of surface ligands and stimulated metal NC activity for catalyzing p-nitrophenol reduction. Furthermore, surface MOF construction enhanced NC stability and water solubility, providing another dimension for tunning NC catalytic activity by modifying MOF functional groups.
Collapse
Affiliation(s)
- Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
24
|
Zhou Q, Min M, Song M, Cui S, Ding N, Wang M, Lei S, Xiong C, Peng X. In Situ Construction of Zinc-Mediated Fe, N-Codoped Hollow Carbon Nanocages with Boosted Oxygen Reduction for Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307943. [PMID: 38037480 DOI: 10.1002/smll.202307943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/05/2023] [Indexed: 12/02/2023]
Abstract
The rational design of bifunctional oxygen electrocatalysts with unique morphology and luxuriant porous structure is significant but challenging for accelerating the reaction kinetics of rechargeable Zn-air batteries (ZABs). Herein, zinc-mediated Fe, N-codoped carbon nanocages (Zn-FeNCNs) are synthesized by pyrolyzing the polymerized iron-doped polydopamine on the surface of the ZIF-8 crystal polyhedron. The formation of the chelate between polydopamine and Fe serves as the covering layer to prevent the porous carbon nanocages from collapsing and boosts enough exposure and utilization of metal-based active species during carbonization. Furthermore, both the theoretical calculation and experimental results show that the strong interaction between polyhedron and polydopamine facilitates the evolution of high-activity zinc-modulated FeNx sites and electron transportation and then stimulates the excellent bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). As expected, the Zn-air battery with Zn-FeNCNs as an air cathode displays a superior power density (256 mW cm-2) and a high specific capacity (813.3 mA h gZn-1), as well as long-term stability over 1000 h. Besides, when this catalyst is applied to the solid-state battery, the device exhibited outstanding mechanical stability and a high round-trip efficiency under different bending angles.
Collapse
Affiliation(s)
- Qiusheng Zhou
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Min Min
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Minmin Song
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Shiqiang Cui
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Nan Ding
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Mingyuan Wang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Shuangying Lei
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Chuanyin Xiong
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
25
|
Jiang K, Ma A, Li Y, Wang J, Yin Z, Wang S. Understanding the decomposition process of the Pt 1Ag 24(SPhCl 2) 18 nanocluster at the atomic level. RSC Adv 2024; 14:10574-10579. [PMID: 38567326 PMCID: PMC10985538 DOI: 10.1039/d4ra01274g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
We report the decomposition of the Pt1Ag24(SPhCl2)18 nanocluster into a crown-like Pt1Ag4(SR)8 (SR = 2,4-SPhCl2 and 4-SPhBr) complex. UV-vis spectra and single crystal X-ray diffraction were used to track the structure-conversion process. Based on the total structure, the differences in ligand exchange rates at different sites and the effects on the stability were mapped out. This work can not only help us understand the ligand exchange behavior of the clusters, but also provide experimental support for the design of stable metal clusters.
Collapse
Affiliation(s)
- Kefan Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Along Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yuansheng Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Jiawei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Zhengmao Yin
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
26
|
Ma A, Ren Y, Zuo Y, Wang J, Huang S, Ma X, Wang S. Ligand-controlled exposure of active sites on the Pd 1Ag 14 nanocluster surface to boost electrocatalytic CO 2 reduction. Chem Commun (Camb) 2024; 60:3162-3165. [PMID: 38407303 DOI: 10.1039/d4cc00152d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Advancing catalyst design requires meticulous control of nanocatalyst selectivity at the atomic level. Here, we synthesized two Pd1Ag14 nanoclusters: Pd1Ag14(PPh3)8(SPh(CF3)2)6 and Pd1Ag14(P(Ph-p-OMe)3)7(SPh)6, each with well-defined structures. Notably, in Pd1Ag14(P(Ph-p-OMe)3)7(SPh)6, the detachment of a phosphine ligand from the top silver atom facilitates the exposure of singular active sites. This exposure significantly enhances its selectivity for the electrocatalytic reduction of CO2 to CO, achieving a Faraday efficiency of 83.3% at -1.3 V, markedly surpassing the 28.1% performance at -1.2 V of Pd1Ag14(PPh3)8(SPh(CF3)2)6. This work underscores the impact of atomic-level structural manipulation on enhancing nanocatalyst performance.
Collapse
Affiliation(s)
- Along Ma
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yonggang Ren
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yang Zuo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiawei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shutong Huang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaoshuang Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuxin Wang
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
27
|
Wang Z, Wang H, Shi P, Qiu J, Guo R, You J, Zhang H. Hybrid organic frameworks: Synthesis strategies and applications in photocatalytic wastewater treatment - A review. CHEMOSPHERE 2024; 350:141143. [PMID: 38195015 DOI: 10.1016/j.chemosphere.2024.141143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
Hybrid organic framework materials are a class of hierarchical porous crystalline materials that have emerged in recent years, composed of three types of porous crystal materials, namely metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs). The combination of various organic framework properties in hybrid organic frameworks generates synergistic effects, which has attracted widespread attention from researchers. The synthesis methods of hybrid organic frameworks are also an intriguing topic, enabling the formation of core-shell heterostructures through epitaxial growth, template conversion, medium growth, or direct combination. These hybrid organic framework materials have demonstrated remarkable performance in the application of photocatalytic wastewater purification and have developed various forms of applications. This article reviews the preparation principles and methods of various hybrid organic frameworks and provides a detailed overview of the research progress of photocatalytic water purification hybrid organic frameworks. Finally, the challenges and development prospects of hybrid organic framework synthesis and their application in water purification are briefly discussed.
Collapse
Affiliation(s)
- Zhaobo Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Hongxin Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Peng Shi
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jiangyuan Qiu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Hangzhou Zhang
- Department of Orthopedics, Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
28
|
Zhang B, Xia C, Hu J, Sheng H, Zhu M. Structure control and evolution of atomically precise gold clusters as heterogeneous precatalysts. NANOSCALE 2024; 16:1526-1538. [PMID: 38168796 DOI: 10.1039/d3nr05460h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Metal clusters have distinct features from single atom and nanoparticle (>1 nm) catalysts, making them effective catalysts for various heterogeneous reactions. Nevertheless, the ambiguity and complexity of the catalyst structure preclude in-depth mechanistic studies. The evolution of metal species during synthesis and reaction processes represents another challenge. One effective solution is to precisely control the structure of the metal cluster, thus offering a well-defined pre-catalyst. The well-defined chemical formula and configurations make atomically precise metal nanoclusters optimal choices. To fabricate an atomically precise metal nanocluster-based heterogeneous catalyst with enhanced performance, careful structural design of both the nanocluster and support material, an effective assembling technique, and a pre-treatment method for these hybrids need to be developed. In this review, we summarize recent advances in in the development of heterogeneous catalysts using atomically precise gold and alloy gold nanoclusters as precursors. We will begin with a brief introduction to the structural properties of atomically precise nanoclusters and structure determination of cluster/support hybrids. We will then introduce heterogeneous catalysts prepared from medium size (tens to hundreds of metal atoms) and low nuclearity nanoclusters. We will illustrate how ligand modification, support-cluster interaction, hybrid fabrication, and heteroatom (Pt, Pd Ag, Cu, Cd, Fe) introduction affect the structural properties and pretreatment/reaction-induced structural evolution of gold nanocluster pre-catalysts. Lastly, we will highlight the synthetic method of NCs@MOF hybrids and their effectiveness in circumventing the adverse cluster structural evolution. These findings are expected to shed light on the structure-activity relationship studies and future catalyst design strategies using atomically precise metal nanocluster pre-catalysts.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Chengcheng Xia
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Jinhui Hu
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Hongting Sheng
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
29
|
Li L, Lv Y, Sheng H, Du Y, Li H, Yun Y, Zhang Z, Yu H, Zhu M. A low-nuclear Ag 4 nanocluster as a customized catalyst for the cyclization of propargylamine with CO 2. Nat Commun 2023; 14:6989. [PMID: 37914680 PMCID: PMC10620197 DOI: 10.1038/s41467-023-42723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
The preparation of 2-Oxazolidinones using CO2 offers opportunities for green chemistry, but multi-site activation is difficult for most catalysts. Here, A low-nuclear Ag4 catalytic system is successfully customized, which solves the simultaneous activation of acetylene (-C≡C) and amino (-NH-) and realizes the cyclization of propargylamine with CO2 under mild conditions. As expected, the Turnover Number (TON) and Turnover Frequency (TOF) values of the Ag4 nanocluster (NC) are higher than most of reported catalysts. The Ag4* NC intermediates are isolated and confirmed their structures by Electrospray ionization (ESI) and 1H Nuclear Magnetic Resonance (1H NMR). Additionally, the key role of multiple Ag atoms revealed the feasibility and importance of low-nuclear catalysts at the atomic level, confirming the reaction pathways that are inaccessible to the Ag single-atom catalyst and Ag2 NC. Importantly, the nanocomposite achieves multiple recoveries and gram scale product acquisition. These results provide guidance for the design of more efficient and targeted catalytic materials.
Collapse
Affiliation(s)
- Lin Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hongting Sheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China.
| | - Yonglei Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Haifeng Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yapei Yun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Ziyi Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China.
- Anhui Tongyuan Environment Energy Saving Co., Ltd., Hefei, 230041, China.
| |
Collapse
|
30
|
Wei RJ, Xie M, Xia RQ, Chen J, Hu HJ, Ning GH, Li D. Gold(I)-Organic Frameworks as Catalysts for Carboxylation of Alkynes with CO 2. J Am Chem Soc 2023; 145:22720-22727. [PMID: 37791919 DOI: 10.1021/jacs.3c08262] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Construction of gold-based metal-organic frameworks (Au-MOFs) would bring the merits of gold chemistry into MOFs. However, it still remains challenging because gold cations are easily reduced to metallic gold under solvothermal conditions. Herein, we present the first example of Au-MOFs prepared from the networking of cyclic trinuclear gold(I) complexes by formal transimination reaction in a rapid (<15 min) and scalable (up to 1 g) fashion under ambient condition. The Au-MOFs feature uniform porosity, high crystallinity, and superior chemical stability toward base (i.e., 20 M NaOH). With open Au(I) sites in the skeleton, the Au-MOFs as heterogeneous catalysts delivered good performance and substrate tolerance for the carboxylation reactions of alkynes with CO2. This work demonstrates a facile approach to reticularly synthesize Au-MOFs by combining the coordination and dynamic covalent chemistry.
Collapse
Affiliation(s)
- Rong-Jia Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Mo Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Ri-Qin Xia
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jun Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hua-Juan Hu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
31
|
Yu X, Andreo J, Walden M, Del Campo JF, Basabe-Desmonts L, Benito-Lopez F, Burg TP, Wuttke S. The Importance of Dean Flow in Microfluidic Nanoparticle Synthesis: A ZIF-8 Case Study. SMALL METHODS 2023:e2300603. [PMID: 37772633 DOI: 10.1002/smtd.202300603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The Dean Flow, a physics phenomenon that accounts for the impact of channel curvature on fluid dynamics, has great potential to be used in microfluidic synthesis of nanoparticles. This study explores the impact of the Dean Flow on the synthesis of ZIF-8 particles. Several variables that influence the Dean Equation (the mathematical expression of Dean Flow) are tested to validate the applicability of this expression in microfluidic synthesis, including the flow rate, radius of curvature, channel cross sectional area, and reagent concentration. It is demonstrated that the current standard of reporting, providing only the flow rate and crucially not the radius of curvature, is an incomplete description that will invariably lead to irreproducible syntheses across different laboratories. An alternative standard of reporting is presented and it is demonstrated how the sleek and simple math of the Dean Equation can be used to precisely tune the final dimensions of high quality, monodisperse ZIF-8 nanoparticles between 40 and 700 nm.
Collapse
Affiliation(s)
- Xiangjiang Yu
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
| | - Jacopo Andreo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
| | - Madeline Walden
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
| | - Javier F Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Lourdes Basabe-Desmonts
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, 01006, Spain
| | - Fernando Benito-Lopez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Thomas P Burg
- Department of Electrical Engineering and Information Technology, The Darmstadt University of Technology, 64283, Darmstadt, Germany
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
32
|
Wang S, Ai Z, Niu X, Yang W, Kang R, Lin Z, Waseem A, Jiao L, Jiang HL. Linker Engineering of Sandwich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302512. [PMID: 37421606 DOI: 10.1002/adma.202302512] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 @Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > ─Br > ─NA (naphthalene) > ─OCH3 > ─Cl > ─NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1 h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point.
Collapse
Affiliation(s)
- Siyuan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiwen Ai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinwei Niu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Rong Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
33
|
Hu Y, Liu J, Lee C, Li M, Han B, Wu T, Pan H, Geng D, Yan Q. Integration of Metal-Organic Frameworks and Metals: Synergy for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300916. [PMID: 37066724 DOI: 10.1002/smll.202300916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Electrocatalysis is a highly promising technology widely used in clean energy conversion. There is a continuing need to develop advanced electrocatalysts to catalyze the critical electrochemical reactions. Integrating metal active species, including various metal nanostructures (NSs) and atomically dispersed metal sites (ADMSs), into metal-organic frameworks (MOFs) leads to the formation of promising heterogeneous electrocatalysts that take advantage of both components. Among them, MOFs can provide support and protection for the active sites on guest metals, and the resulting host-guest interactions can synergistically enhance the electrocatalytic performance. In this review, three key concerns on MOF-metal heterogeneous electrocatalysts regarding the catalytic sites, conductivity, and catalytic stability are first presented. Then, rational integration strategies of MOFs and metals, including the integration of metal NSs via surface anchoring, space confining, and MOF coating, as well as the integration of ADMSs either with the metal nodes/linkers or within the pores of MOFs, along with their recent progress on synergistic cooperation for specific electrochemical reactions are summarized. Finally, current challenges and possible solutions in applying these increasingly concerned electrocatalysts are also provided.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Meng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianci Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
34
|
Sahoo K, Gazi TR, Roy S, Chakraborty I. Nanohybrids of atomically precise metal nanoclusters. Commun Chem 2023; 6:157. [PMID: 37495665 PMCID: PMC10372104 DOI: 10.1038/s42004-023-00958-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Atomically precise metal nanoclusters (NCs) with molecule-like structures are emerging nanomaterials with fascinating chemical and physical properties. Photoluminescence (PL), catalysis, sensing, etc., are some of the most intriguing and promising properties of NCs, making the metal NCs potentially beneficial in different applications. However, long-term instability under ambient conditions is often considered the primary barrier to translational research in the relevant application fields. Creating nanohybrids between such atomically precise NCs and other stable nanomaterials (0, 1, 2, or 3D) can help expand their applicability. Many such recently reported nanohybrids have gained promising attention as a new class of materials in the application field, exhibiting better stability and exciting properties of interest. This perspective highlights such nanohybrids and briefly explains their exciting properties. These hybrids are categorized based on the interactions between the NCs and other materials, such as metal-ligand covalent interactions, hydrogen-bonding, host-guest, hydrophobic, and electrostatic interactions during the formation of nanohybrids. This perspective will also capture some of the new possibilities with such nanohybrids.
Collapse
Affiliation(s)
- Koustav Sahoo
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapu Raihan Gazi
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumyadip Roy
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Indranath Chakraborty
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
35
|
Zhang L, Gao EQ. Catalytic C(sp)-H carboxylation with CO2. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
36
|
Ghasemzadeh MA, Mirhosseini-Eshkevari B, Dadashi J. An efficient protocol for the synthesis of pyridines and hydroquinolones using IRMOF-3/GO/CuFe 2O 4 composite as a magnetically separable heterogeneous catalyst. Sci Rep 2023; 13:9089. [PMID: 37277460 DOI: 10.1038/s41598-023-36115-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
This study reports a facile and cost-effective technique for preparing magnetic copper ferrite nanoparticles supported on IRMOF-3/GO [IRMOF-3/GO/CuFe2O4]. The synthesized IRMOF-3/GO/CuFe2O4 was characterized with IR, SEM, TGA, XRD, BET, EDX, VSM, and elemental mapping. The prepared catalyst revealed higher catalytic behavior in synthesizing heterocyclic compounds through a one-pot reaction between various aromatic aldehydes, diverse primary amines, malononitrile, and dimedone under ultrasound irradiations. Among the notable features of this technique are higher efficiency, easy recovery from the reaction mixture, removal of a heterogeneous catalyst, and uncomplicated route. In this catalytic system, the activity level was almost constant after various stages of reuse and recovery.
Collapse
Affiliation(s)
| | | | - Jaber Dadashi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
37
|
Niu X, Yan S, Zhao R, Li H, Liu X, Wang K. Design and Electrochemical Chiral Sensing of the Robust Sandwich Chiral Composite d-His-ZIF-8@Au@ZIF-8. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22435-22444. [PMID: 37126450 DOI: 10.1021/acsami.3c03947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the pursuit of chiral materials with significant chiral recognition effects and stability, various strategies have been explored, among which the integration of metal nanoparticles and chiral metal-organic frameworks (CMOFs) is highly promising. However, metal nanoparticles (MNPs)/CMOFs show high chiral properties but inferior stabilities due to the MNPs being easily detached from the outside layer under certain conditions. Sandwich MOFs@MNPs@CMOF chiral materials can overcome this dilemma because the sandwich structure can maximize the regulation of the chiral interface activity, while the controlled outer layer can stop the MNPs from falling off in the procedure of chiral recognition. Here, a novel sandwich chiral material (d-His-ZIF-8@Au@ZIF-8) was synthesized by a ligand-assisted strategy with a well-defined sandwich morphology and chiral recognition capabilities. The electrochemical chiral recognition showed that d-His-ZIF-8@Au@ZIF-8 was the most efficient for the enantiomer of phenylalanine (Phe). This experiment presents a novel perspective for the fabrication of a chiral electrochemical sensing platform based on a solid sandwich chiral nanocomposite.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xiaoyu Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| |
Collapse
|
38
|
Chowdhury S, Sharma P, Kundu K, Das PP, Rathi P, Siril PF. Systematic Thiol Decoration in a Redox-Active UiO-66-(SH) 2 Metal-Organic Framework: A Case Study under Oxidative and Reductive Conditions. Inorg Chem 2023; 62:3875-3885. [PMID: 36802595 DOI: 10.1021/acs.inorgchem.2c04233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The practical applicability of thiolated metal-organic frameworks (MOFs) remains challenging due to their low crystallinity and transient stability. Herein, we present a one-pot solvothermal synthesis process using varying ratios of 2,5-dimercaptoterephthalic acid (DMBD) and 1,4-benzene dicarboxylic acid (100/0, 75/25, 50/50, 25/75, and 0/100) to prepare stable mixed-linker UiO-66-(SH)2 MOFs (ML-U66SX). For each variant, the effects of different linker ratios on the crystallinity, defectiveness, porosity, and particle size have been discussed in detail. In addition, the impact of modulator concentration on these features has also been described. The stability of ML-U66SX MOFs was investigated under reductive and oxidative chemical conditions. The mixed-linker MOFs were used as sacrificial catalyst supports to highlight the interplay of template stability on the rate of the gold-catalyzed 4-nitrophenol hydrogenation reaction. The release of catalytically active gold nanoclusters originating from the framework collapse decreased with the controlled DMBD proportion, resulting in a 59% drop in the normalized rate constants (9.11-3.73 s-1 mg-1). In addition, post-synthetic oxidation (PSO) was used to further probe the stability of the mixed-linker thiol MOFs under harsh oxidative conditions. Following oxidation, the UiO-66-(SH)2 MOF underwent immediate structural breakdown, unlike other mixed-linker variants. Along with crystallinity, the microporous surface area of the post-synthetically oxidized UiO-66-(SH)2 MOF could be increased from 0 to 739 m2 g-1. Thus, the present study delineates a mixed-linker strategy to stabilize the UiO-66-(SH)2 MOF under harsh chemical conditions through meticulous thiol decoration.
Collapse
Affiliation(s)
- Sumanta Chowdhury
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Parul Sharma
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Koustav Kundu
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Partha Pratim Das
- Centre for Novel States of Complex Materials Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Preeti Rathi
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Prem Felix Siril
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
39
|
Bi X, Li L, Niu Q, Liu X, Luo L, Jiang H, You T. Highly Fluorescent Magnetic ATT-AuNCs@ZIF-8 for All-in-One Detection and Removal of Hg 2+: An Ultrasensitive Probe to Evaluate Its Removal Efficiency. Inorg Chem 2023; 62:3123-3133. [PMID: 36749708 DOI: 10.1021/acs.inorgchem.2c03994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of multifunctional materials for the synchronous detection and removal of mercury ions (Hg2+) is in high demand. Although a few multifunctional materials as a fluorescent indicator and adsorbent have achieved this aim, the feedback of their removal efficiency still depends on other methods. Herein, magnetic Fe3O4 nanoparticles (MNPs) and 6-aza-2-thiothymine-protected gold nanoclusters (ATT-AuNCs) were rationally assembled into a zeolitic imidazolate framework 8 (ZIF-8) structure via a one-pot method. The coordination assembly of ATT-AuNCs and ZIF-8 not only strengthened the aurophilic interactions of adjacent ATT-AuNCs but also induced the restriction of intramolecular motion of ATT with a six-membered heterocyclic structure. As a consequence, the fluorescence (FL) quantum yield of MNPs/ATT-AuNCs@ZIF-8 was 12.5-fold higher than that of pristine ATT-AuNCs. Benefiting from the enhanced FL emission, MNPs/ATT-AuNCs@ZIF-8 showed improved sensitivity for Hg2+ detection and therefore could evaluate the removal efficiency via FL detection, without relying on another detection method. Additionally, the nanocomposite also displayed a satisfactory removal capability for Hg2+, including a short capture time (20 min), a high removal efficiency (>96.9%), and excellent reusability (10 cycles). This work provides an approach for customizing functional nanocomposites to concurrently detect and remove Hg2+ with superior performance, especially for high detection sensitivity.
Collapse
Affiliation(s)
- Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huihui Jiang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
40
|
Liang J, Wu L, Li Z, Liu Y, Ding N, Dong Z. Preparation of core-shell catalyst for the tandem reaction of amino compounds with aldehydes. RSC Adv 2023; 13:5186-5196. [PMID: 36777936 PMCID: PMC9909682 DOI: 10.1039/d2ra08016h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Heterogeneous noble metal-based catalysts with stable, precise structures and high catalytic performance are of great research interest for sustainable catalysis. In this article, we designed a novel core-shell catalyst, Pd@UiO-66-NH2@mSiO2, with Pd@UiO-66-NH2 as the core and mesoporous SiO2 (mSiO2) as the shell. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) measurement results demonstrated that the obtained catalyst has an excellent core-shell structure. It can significantly prevent the aggregation of Pd nanoparticles (NPs), as well as the leaching of Pd NPs during the reaction process, owing to the protective effect of mSiO2. During the tandem reaction of aniline and benzaldehyde to generate secondary amines, the prepared Pd@UiO-66-NH2@mSiO2 is highly efficient, due to the strong acid sites provided by UiO-66-NH2 and the hydrogenation reduction sites provided by Pd NPs. Meanwhile, the Pd@UiO-66-NH2@mSiO2 with porous structure can also enhance the mass transfer of reactants to improve the reaction efficiency. Additionally, the prepared catalyst was used to catalyze the series reaction of amino compounds and aldehydes, and the results showed that just 5 mg of the catalyst can convert more than 99% of the reactants within 60 minutes in the presence of 1 atm H2 at room temperature. Finally, the selectivity and stability of the as-prepared catalyst were also confirmed.
Collapse
Affiliation(s)
- Jinhua Liang
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Lan Wu
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Zhenhua Li
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Yang Liu
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Nana Ding
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 PR China
| |
Collapse
|
41
|
Wang S, Ding T, Liu T, Zhu Y, Tao Z, Pang B, Liu X, Luo Q, Sun M, Sheng H, Zhu M, Yao T. Ligand Assisted Thermal Atomization of Palladium Clusters: An Inspiring Approach for the Rational Design of Atomically Dispersed Metal Catalysts. Angew Chem Int Ed Engl 2023; 62:e202218630. [PMID: 36732313 DOI: 10.1002/anie.202218630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
The transformation from metal nanocluster catalysts to metal single-atom catalysts is an important procedure in the rational design of atomically dispersed metal catalysts (ADCs). However, the conversion methods often involve high annealing temperature as well as reducing atmosphere. Herein, we reported a continuous and convenient approach to transfer Pd nanocluster into Pd single-atom in a ligand assisted annealing procedure, by which means we reduced its activating temperature low to 400 °C. Using ex-situ microscopy and spectroscopy, we comprehensively monitored the structural evolution of Pd species though the whole atomization process. Theoretical calculation revealed that the structural instability caused by remaining Cl ligands was the main reason for this low-temperature transformation. The present atomization strategy and mechanistic knowledge for the conversion from cluster to atomic dispersion provides guidelines for the rational design of ADCs.
Collapse
Affiliation(s)
- Sicong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yanan Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, 230601 (P .R., China
| | - Zhinan Tao
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, 230601 (P .R., China
| | - Beibei Pang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Mei Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, 230601 (P .R., China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, 230601 (P .R., China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
42
|
Zhang Y, Wei B, Liang H. Rhodium-Based MOF-on-MOF Difunctional Core-Shell Nanoreactor for NAD(P)H Regeneration and Enzyme Directed Immobilization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3442-3454. [PMID: 36609187 DOI: 10.1021/acsami.2c18440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An organometallic complex-catalyzed artificial coenzyme regeneration system has attracted widespread attention. However, the combined use of organometallic complex catalysts and natural enzymes easily results in mutual inactivation. Herein, we establish a rhodium-based metal-organic framework (MOF)-on-MOF difunctional core-shell nanoreactor as an artificial enzymatic NAD(P)H regeneration system. UiO67 as the core is used to capture rhodium molecules for catalyzing NAD(P)H regeneration. UiO66 as the shell is used to specifically immobilize His-tagged lactate dehydrogenase (LDH) and serve as a protection shield for LDH and [Cp*Rh(bpy)Cl]+ to prevent mutual inactivation. A variety of results indicate that UiO67@Rh@UiO66 has good activity in realizing NAD(P)H regeneration. Noteworthily, UiO67@Rh@UiO66@LDH maintains a high activity level even after 10 cycles. This work reports a novel NAD(P)H regeneration platform to open up a new avenue for constructing chemoenzyme coupling systems.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| |
Collapse
|
43
|
Wang W, Ruiz J, Ornelas C, Hamon JR. A Career in Catalysis: Didier Astruc. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wenjuan Wang
- Univ. Bordeaux, ISM UMR N°5255, 351 Cours de la Libération, 33405 Cedex Talence, France
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)−UMR 6226, F-35000 Rennes, France
| | - Jaime Ruiz
- Univ. Bordeaux, ISM UMR N°5255, 351 Cours de la Libération, 33405 Cedex Talence, France
| | - Catia Ornelas
- Institute of Chemistry, Rua Josué de Castro, Cidade Universitaria Zeferino Vaz, University of Campinas, Campinas, 13083-970 São Paulo, Brazil
| | - Jean-René Hamon
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)−UMR 6226, F-35000 Rennes, France
| |
Collapse
|
44
|
Xu H, Zhu J, Wu X, Cheng Y, Wang D, Cai D. Recognition and quantitative analysis for six phthalate esters (PAEs) through functionalized ZIF-67@Ag nanowires as surface-enhanced Raman scattering substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121735. [PMID: 36049297 DOI: 10.1016/j.saa.2022.121735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
A novel surface enhanced Raman scattering (SERS) method was developed based on Ag nanowires embedded into functionalized metal-organic framework ZIF-67 (ZIF-67@Ag NWs) composite as substrate, which was applied for rapid recognition and sensitive detection of six PAEs. The Raman signals for PAEs detection were gained at ZIF-67@Ag NWs substrate mainly due to the "sharp tip effect" of rough Ag nanowires and excellent absorptive capacity of ZIF-67 to capture targeted molecules into the electromagnetic field. Different structural PAEs, including carbon chain lengths, isomers, and substituents, were evaluated for SERS performance and characteristic peaks under the optimal conditions. The SERS spectra proved that different PAEs exhibited some typically characteristic peaks in favor of recognizing and distinguishing them. The ZIF-67@Ag NWs as SERS substrate was successfully applied to detect six PAEs and exhibited wide linear ranges, low detection limit (LOD), excellent repeatability and stability (such as dibutyl phthalate DBP: linear range of 10-2 ∼ 10-12 mol/L, LOD 3 × 10-13 mol/L). The ZIF-67@Ag NWs substrate by SERS was implemented to determine trace DBP in plastics with satisfactory recoveries of 82.5 % ∼ 108.3 %. The proposed ZIF-67@Ag NWs substrate may provide an effective and promising SERS platform for recognition and quantitative determination of different structural PAEs in environment.
Collapse
Affiliation(s)
- He Xu
- College of Environmental Science and Engineering, Dong Hua University, Shanghai 201620, China
| | - Jianhao Zhu
- College of Environmental Science and Engineering, Dong Hua University, Shanghai 201620, China
| | - Xiaohong Wu
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs, Shanghai 200135, China
| | - Yuxiao Cheng
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs, Shanghai 200135, China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Dong Hua University, Shanghai 201620, China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Dong Hua University, Shanghai 201620, China.
| |
Collapse
|
45
|
Wei D, Li M, Wang Y, Zhu N, Hu X, Zhao B, Zhang Z, Yin D. Encapsulating gold nanoclusters into metal-organic frameworks to boost luminescence for sensitive detection of copper ions and organophosphorus pesticides. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129890. [PMID: 36084467 DOI: 10.1016/j.jhazmat.2022.129890] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Gold nanoclusters (Au NCs) with luminescence property are emerging as promising candidates in fluorescent methods for monitoring contaminants, but low luminescence efficiency hampers their extensive applications. Herein, GSH-Au NCs@ZIF-8 was designed by encapsulating GSH-Au NCs with AIE effect into metal-organic frameworks, achieving high luminescence efficiency and good stability through the confinement effect of ZIF-8. Accordingly, a fluorescent sensing platform was constructed for the sensitive detection of copper ions (Cu2+) and organophosphorus pesticides (OPs). Firstly, the as-prepared GSH-Au NCs@ZIF-8 could strongly accumulate Cu2+ due to the adsorption property of MOFs, accompanied by a significant fluorescence quenching effect with a low detection limit of 0.016 μM for Cu2+. Besides, thiocholine (Tch), the hydrolysis product of acetylthiocholine (ATch) by acetylcholinesterase (AchE), could coordinate with Cu2+ by sulfhydryl groups (-SH), leading to a significant fluorescence recovery, which was further used for the quantification of OPs owing to its inhibition to AChE activity. Furthermore, a hydrogel sensor was explored to accomplish equipment-free, visual, and quantitative monitoring of Cu2+ and OPs by a smartphone sensing platform. Overall, this work provides an effective and universal strategy for enhancing the luminescence efficiency and stability of Au NCs, which would greatly promote their applications in contaminants monitoring.
Collapse
Affiliation(s)
- Dali Wei
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingwei Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xialin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
46
|
Kollmannsberger KL, Kronthaler L, Jinschek JR, Fischer RA. Defined metal atom aggregates precisely incorporated into metal-organic frameworks. Chem Soc Rev 2022; 51:9933-9959. [PMID: 36250400 DOI: 10.1039/d1cs00992c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanosized metal aggregates (MAs), including metal nanoparticles (NPs) and nanoclusters (NCs), are often the active species in numerous applications. In order to maintain the active form of MAs in "use", they need to be anchored and stabilised, preventing agglomeration. In this context, metal-organic frameworks (MOFs), which exhibit a unique combination of properties, are of particular interest as a tunable and porous matrix to host MAs. A high degree of control in the synthesis towards atom-efficient and application-oriented MA@MOF composites is required to derive specific structure-property relationships and in turn to enable design of functions on the molecular level. Due to the versatility of MA@MOF (derived) materials, their applications are not limited to the obvious field of catalysis, but increasingly include 'out of the box' applications, for example medical diagnostics and theranostics, as well as specialised (bio-)sensoring techniques. This review focuses on recent advances in the controlled synthesis of MA@MOF materials en route to atom-precise MAs. The main synthetic strategies, namely 'ship-in-bottle', 'bottle-around-ship', and approaches to achieve novel hierarchical MA@MOF structures are highlighted and discussed while identifying their potential as well as their limitations. Hereby, an overview of standard characterisation methods that enable a systematic analysis procedure and state-of-art techniques that localise MA within MOF cavities are provided. While the perspectives of MA@MOF materials in general have been reviewed various times in the recent past, few atom-precise MAs inside MOFs have been reported so far, opening opportunities for future investigation.
Collapse
Affiliation(s)
- Kathrin L Kollmannsberger
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Centre and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany.
| | - Laura Kronthaler
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Centre and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany.
| | - Joerg R Jinschek
- National Centre for Nano Fabrication and Characterisation (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark.
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Centre and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany.
| |
Collapse
|
47
|
Bhatt CS, Parimi DS, Bollu TK, H U M, Jacob N, Korivi R, Ponugoti SS, Mannathan S, Ojha S, Klingner N, Motapothula M, Suresh AK. Sustainable Bioengineering of Gold Structured Wide-Area Supported Catalysts for Hand-Recyclable Ultra-Efficient Heterogeneous Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51855-51866. [PMID: 36354751 DOI: 10.1021/acsami.2c13564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal nanoparticles grafted within inert and porous wide-area supports are emerging as recyclable, sustainable catalysts for modern industry applications. Here, we bioengineered gold nanoparticle-based supported catalysts by utilizing the innate metal binding and reductive potential of eggshell as a sustainable strategy. Variable hand-recyclable wide-area three-dimensional catalysts between ∼80 ± 7 and 0.5 ± 0.1 cm2 are generated simply by controlling the size of the support. The catalyst possessed high-temperature stability (300 °C) and compatibility toward polar and nonpolar solvents, electrolytes, acids, and bases facilitating ultra-efficient catalysis of accordingly suspended substrates. Validation was done by large-volume (2.8 liters) dye detoxification, gram-scale hydrogenation of nitroarene, and the synthesis of propargylamine. Moreover, persistent recyclability, monitoring of reaction kinetics, and product intermediates are possible due to physical retrievability and interchangeability of the catalyst. Finally, the bionature of the support permits ∼76.9 ± 8% recovery of noble gold simply by immersing in a royal solution. Our naturally created, low-cost, scalable, hand-recyclable, and resilient supported mega-catalyst dwarfs most challenges for large-scale metal-based heterogeneous catalysis.
Collapse
Affiliation(s)
- Chandra S Bhatt
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
- Department of Biotechnology, Faculty of Science and Humanities, SRMIST, Kattankulathur, Chennai422503, India
| | - Divya S Parimi
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
| | - Tharun K Bollu
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
| | - Madhura H U
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
| | - Noah Jacob
- Department of Physics, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
| | - Ramaraju Korivi
- Department of Chemsitry, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
| | - Sai S Ponugoti
- Department of Chemsitry, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
| | - Subramaniyan Mannathan
- Department of Chemsitry, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
| | - Sunil Ojha
- Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi110065, India
| | - Nico Klingner
- Ion Beam Center, Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden01328, Germany
| | - M Motapothula
- Department of Physics, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
| | - Anil K Suresh
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati522503, India
| |
Collapse
|
48
|
Wang H, Liu X, Yang W, Mao G, Meng Z, Wu Z, Jiang HL. Surface-Clean Au 25 Nanoclusters in Modulated Microenvironment Enabled by Metal–Organic Frameworks for Enhanced Catalysis. J Am Chem Soc 2022; 144:22008-22017. [DOI: 10.1021/jacs.2c09136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- He Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Xiyuan Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei071003, P. R. China
| | - Guangyang Mao
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei071003, P. R. China
| | - Zheng Meng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei, Anhui230031, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| |
Collapse
|
49
|
Chen P, Wang M, Li G, Jiang H, Rezaeifard A, Jafarpour M, Wu G, Rao B. Construction of ZIF-67-On-UiO-66 Catalysts as a Platform for Efficient Overall Water Splitting. Inorg Chem 2022; 61:18424-18433. [DOI: 10.1021/acs.inorgchem.2c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pinghua Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, P. R. China
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Mengxue Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, P. R. China
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Guifang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, P. R. China
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Hualin Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, P. R. China
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Abdolreza Rezaeifard
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Maasoumeh Jafarpour
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Guanghui Wu
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Bingying Rao
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| |
Collapse
|
50
|
Chen B, Yang X, Xu Y, Hu S, Zeng X, Liu Y, Tan KB, Huang J, Zhan G. Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al 2O 3 to Al-TCPP. NANOSCALE 2022; 14:15749-15759. [PMID: 36226736 DOI: 10.1039/d2nr04474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The semi-hydrogenation of α,β-unsaturated aldehydes to the desired unsaturated alcohols with both high conversion and high selectivity remains a big challenge. Herein, we designed a sandwich-structured nanocatalyst for the highly selective hydrogenation of various α,β-unsaturated aldehydes (e.g., cinnamaldehyde, furfural, crotonaldehyde, and 3-methyl-2-butenal) to the targeted unsaturated alcohols. Highly accessible platinum nanoparticles were sandwiched between a metal-organic framework (MOF) core (i.e., MIL-88B(Fe)) and a MOF shell (i.e., Al-TCPP). In particular, the growth of the Al-TCPP shell was achieved by atomic layer deposition (ALD) of thin-film Al2O3 followed by phase transformation with a tetrakis(4-carboxyphenyl)porphyrin (H4TCPP) linker. The thickness of the Al-TCPP shell can be finely controlled by adjusting the cycle number of alumina ALD and the concentration of the H4TCPP linker during the phase transformation of Al2O3 to Al-TCPP. It was proven that the permeable MOF shells could serve as selectivity regulators for the activation of the CO bonds in α,β-unsaturated aldehydes (in preference to the CC bonds), leading to higher selectivity towards unsaturated alcohols as compared to the conventional surface supported Pt catalysts. Mechanistic insights showed that the enhanced catalytic performance was attributed to (i) the modified electronic state of sandwiched Pt nanoparticles by the two MOF layers and (ii) the steric hindrance effect on substrate diffusion through the sandwich-structured catalysts.
Collapse
Affiliation(s)
- Bin Chen
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China.
| | - Xin Yang
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Yinan Xu
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Siyuan Hu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Xiaoli Zeng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Yiping Liu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Kok Bing Tan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China.
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China.
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| |
Collapse
|