1
|
Shen J, Tang M, Shi Z, Guan S, Shi Y, Zhuang Z, Li R, Yang J, He D, Liu B, Dou Y, Wang D. Efficient Generation of Negative Hydrogen with Bimetallic-Ternary-Structured Catalysts for Nitrobenzene Hydrogenation. Angew Chem Int Ed Engl 2025; 64:e202423626. [PMID: 39996286 DOI: 10.1002/anie.202423626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
Transition metal-catalyzed transfer hydrogenation (TH) with in situ negative hydrogen (H-) has received extensive attention as an alternative to conventional high-pressure hydrogenation processes. However, the insufficient activity of hydrogen production and unclear the conversion process of hydrogenation remain a great challenge. In this work, brand new bimetallic ternary-structured catalysts (Ru1+nM1-TiO2, M=Co, Cu, Fe, Ni) were synthesized to efficiently generate H- donors from ammonia borane (AB, NH3BH3) for nitrobenzene hydrogenation under moderate conditions. The Ru1+nCo1-TiO2 catalysts exhibited highest activity for hydrogen production form AB hydrolysis with a TOF value of 2716 min-1. The Ru1+nCo1-TiO2 achieved >90 % yields within 3-4 hours in converting nitrobenzene to anilines using AB. Mechanistic studies revealed that the high hydrolysis activity was due to that the Ru SA and Co SA sites of the bimetallic-ternary-structured catalyst required the lowest energy for the activation of AB and H2O, respectively. Remarkably, the Co SA and Ru clusters exhibited an obvious synergistic effect in the TH process, which promoted the tandem hydrogenation of nitroaromatics. This work demonstrated an efficient approach to generate H- donor with bimetallic-ternary-structured catalysts in TH process and further provided new inspiration on the development of multifunctional catalysts.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Minhao Tang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zuhao Shi
- School of Physics and Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Shuyan Guan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yijie Shi
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zechao Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Runze Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiarui Yang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Daping He
- School of Physics and Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Sun Y, Wang F, He L, Cai T, Wang X, Zhang T, Wang N, Sun Q. Integration of Ultrasmall Pt Clusters With Silanol Groups in Pure Silica Zeolites for Robust Formaldehyde Oxidation. Chemistry 2025; 31:e202500405. [PMID: 40150824 DOI: 10.1002/chem.202500405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
Formaldehyde (HCHO) is a major indoor air pollutant that poses serious health risks. Catalytic oxidation of HCHO to CO2 and H2O at room temperature offers an efficient solution. Supported Pt nanoparticles are the most efficient catalysts, but challenges such as high cost and water resistant, limit their widespread application. Herein, we employ a ligand-protected direct hydrogen reduction strategy to encapsulate ultrafine Pt clusters within hydrophobic silicalite-1 zeolite. Cs-corrected scanning transmission electron microscopy, x-ray absorption, and solid nuclear magnetic resonance measurements confirmed that the Pt clusters are stabilized within zeolite channels by adjacent silanol groups. The optimized Pt@S-1-400H catalyst achieved complete HCHO removal at room temperature, with even low Pt loading of 0.1 wt%, affording a high specific activity of 171.9 molHCHO·molPt -1·h-1, representing the top level among all state-of-the-art Pt-based catalysts. Significantly, the hydrophobic nature of silicalite-1 ensures excellent water resistance and long-term stability for the Pt@S-1-400H catalyst. In situ infrared spectroscopy reveals that silanol sites facilitate HCHO adsorption and the formation of formate intermediates. The synergistic effect between Pt clusters and adjacent silanol sites enhances the HCHO oxidation performance. The simple and cost-effective approach, combined with its excellent activity and stability, holds significant potential for effectively eliminating indoor pollutants in practical applications.
Collapse
Affiliation(s)
- Yue Sun
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, China
| | - Feng Wang
- Qingdao Xinding Wanxing New Materials Co., Ltd, No. 3600 Haixi Road, Huangdao District, Qingdao, Shandong, 266000, China
| | - Lulu He
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, China
| | - Tao Cai
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, China
| | - Xiaoyu Wang
- Qingdao Xinding Wanxing New Materials Co., Ltd, No. 3600 Haixi Road, Huangdao District, Qingdao, Shandong, 266000, China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Heibei, China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, China
| | - Qiming Sun
- Innovation Canter for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Zhao QC, Chen L, Ma S, Liu ZP. Data-driven discovery of Pt single atom embedded germanosilicate MFI zeolite catalysts for propane dehydrogenation. Nat Commun 2025; 16:3720. [PMID: 40253443 PMCID: PMC12009424 DOI: 10.1038/s41467-025-58960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Zeolite-confined metal is an important class of heterogeneous catalysts, demonstrating exceptional catalytic performance in many reactions, but the identification of a stable metal-zeolite combination with a simple synthetic method remains a top challenge. Here artificial intelligence methods, particularly global neural network potential based large-scale atomic simulation, are utilized to design Pt-containing zeolite frameworks for propane-to-propene conversion. We show that out of the zeolite database (>220 structure framework) and more than 100,000 Pt/Ge differently distributed configurations, there are only three Ge-containing zeolites, germanosilicate (MFI, IWW and SAO) that are predicted to be capable of stabilizing Pt single atom embedded in zeolite skeleton and at the meantime allowing propane fast diffusion. Among, the Pt1@Ge-MFI catalyst is successfully synthesized via a simple one-pot synthesis without a lengthy post-treatment procedure, and characterized by high-resolution experimental techniques. We demonstrate that the catalyst features an in-situ formed [GePtO3H2] active site under the reductive reaction condition that can achieve long-term (>750 h) high activity and selectivity (98%) for propane dehydrogenation. Our simple catalyst synthesis holds promise for scale-up industrial applications that can now be rooted in first principles via data-driven catalyst design.
Collapse
Affiliation(s)
- Qian-Cheng Zhao
- State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Lin Chen
- State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Sicong Ma
- State Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhi-Pan Liu
- State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
4
|
Tian M, Hui B, Jia T, Chen X, Li L, Yu X, Zhang X, Lu Z, Yang X. Anion modulation enhances the internal electric field of CuCo 2O 4 to improve the catalysis in ammonia borane hydrolysis. J Colloid Interface Sci 2025; 683:236-246. [PMID: 39733539 DOI: 10.1016/j.jcis.2024.12.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Ammonia borane (NH3BH3, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCo2O4, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping. Due to the differences in electronegativity among the anions P/S/Cl-O, electron-rich and electron-deficient regions are generated at the interface, inducing the formation of local p-p heterojunctions with built-in electric fields (BIEF). The difference in work function (ΔWf) at the interface enhances the strength of the BIEF. Because of the positive influence of the BIEF on the adsorption of intermediates and interfacial behavior, the catalytic performance of P-CuCo2O4, characterized by a hydrogen evolution rate (HER) of 1125 mLH2(gcat·min)-1, is significantly higher than that of intrinsic CuCo2O4, which has an HER of 705 mLH2(gcat·min)-1. Its apparent activation energy of only 32.25 kJ/mol is superior to that of previous non-precious metal catalysts. Density functional theory (DFT) further confirms that the construction and enhancement of the BIEF can reduce the band gap, accelerate electron transfer, regulate the metal d-band center, and enhance the adsorption of AB and H2O molecules. This process facilitates the elongation and breakage of the O-H bond length in H2O and the B-H bond length in AB, thereby promoting the release of H2.
Collapse
Affiliation(s)
- Mengmeng Tian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Baiyang Hui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tengyu Jia
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinying Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
5
|
Chen T, Xu Z. Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis. Adv Colloid Interface Sci 2025; 337:103387. [PMID: 39729822 DOI: 10.1016/j.cis.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts. Six types of materials, including oxide nano/microparticle, mesoporous silica nanoparticle (MSN), polymer nanomaterial, reticular material, zeolite, and carbon-based nanomaterial, are widely used as supports for the immobilization of catalytic species. We summarize and discuss the synthesis and modification of supports and the positive effects of microenvironments on catalytic properties such as metal-support interaction, molecular recognition, pseudo-solvent effect, regulating mass transfer, steric effect, etc. These design principles and engineering strategies allow access to a better understanding of structure-property relationships and advance the development of more efficient catalytic processes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Liu H, Liu L, Qin Q, Li J, Li B, He X, Ji H. Comparative Study of PtM (M=Cu, Zn, Ga, Mn, Fe, In, Ce) Bimetals on Zincosilicate for Propane Dehydrogenation Reaction. Chemistry 2024; 30:e202402764. [PMID: 39327774 DOI: 10.1002/chem.202402764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Silicoaluminate zeolites have relatively strong Brönsted (B) acid properties that can easily lead to deep cracking reactions, making them less favourable as carriers for propane dehydrogenation. Here, we utilise zincosilicate zeolite with less B-acid produced by the introduction of the heteroatom Zn into the framework as a carrier, followed by simultaneous ion exchange (IE) of M monometallic or PtM bimetallic (M=Cu, Zn and Ga, etc.). The optimized PtZn/Zn-4 exhibits a superior propane dehydrogenation performance over PtCu/Zn-4 and PtGa/Zn-4, which can achieve a propane conversion of about 30 % in a pure propane atmosphere at 550 °C and can be operated for at least 168 h without significant deactivation. Characterization techniques such as spherical aberration corrected transmission electron microscopy, in situ X-ray photoelectron spectroscopy, and in situ diffuse reflectance infrared fourier transform spectroscopy with different gas adsorptions are used to investigate these PtM@zeolite catalysts in order to deepen the understanding of acid site identification, promoter effect and catalysis.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liyang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiuju Qin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jinfeng Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Bin Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaohui He
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Technology Research Center for Synthesis and Separation of Thermosensitive Chemicals, Guangzhou, 510275, China
| | - Hongbing Ji
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
7
|
Xing S, Cui Y, Zhang F, Su J, Xu K, Liu X, Chen Z, Zhao Y, Han M. Study of the zeolite-catalyzed isomerization of 1-methylnaphthalene. RSC Adv 2024; 14:38335-38344. [PMID: 39635358 PMCID: PMC11614096 DOI: 10.1039/d4ra05881j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Isomerization of 1-methylnaphthalene (1-MN) to 2-methylnaphthalene (2-MN) is a crucial step in the production of 2,6-dimethylnaphthalene (2,6-DMN), which is an important raw material for polyethylene naphthalate (PEN). Herein, the isomerization of 1-MN was systemically investigated over beta zeolite. Firstly, reaction conditions were systemically optimized, by which enhanced catalytic performance was obtained. Thereafter, the effect of nitride on the catalytic performance was investigated using a series of characterization techniques and DFT calculations, revealing that firm adsorption of nitride on acid sites was the main reason for catalyst deactivation. Activity of the deactivated catalyst was difficult to recover via extraction with hot benzene. Fortunately, catalytic performance could be effectively recovered through coke-burning, wherein the framework and acid sites were well-preserved during calcination.
Collapse
Affiliation(s)
- Shiyong Xing
- Beijing Special Engineering Design and Research Institute Beijing 100028 China
| | - Yan Cui
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
- Petrochemical Research Institute, PetroChina Company Limited Beijing 100195 China
| | - Fenglin Zhang
- Beijing Special Engineering Design and Research Institute Beijing 100028 China
| | - Jianbin Su
- Beijing Special Engineering Design and Research Institute Beijing 100028 China
| | - Kan Xu
- Beijing Special Engineering Design and Research Institute Beijing 100028 China
| | - Xiaofei Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| | - Ziheng Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| | - Yuehua Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| | - Minghan Han
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
8
|
Wang S, Li S, Yu Y, Zhang T, Qu J, Sun Q. Cobalt Phosphide-Supported Single-Atom Pt Catalysts for Efficient and Stable Hydrogen Generation from Ammonia Borane Hydrolysis. SMALL METHODS 2024; 8:e2400376. [PMID: 38801007 DOI: 10.1002/smtd.202400376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/05/2024] [Indexed: 05/29/2024]
Abstract
Ammonia borane (AB) has emerged as a promising chemical hydrogen storage material. The development of efficient, stable, and cost-effective catalysts for AB hydrolysis is the key to achieving hydrogen energy economy. Here, cobalt phosphide (CoP) is used to anchor single-atom Pt species, acting as robust catalysts for hydrogen generation from AB hydrolysis. Thanks to the high Pt utilization and the synergy between CoP and Pt species, the optimized Pt/CoP-100 catalyst exhibits an unprecedented hydrogen generation rate, giving a record turnover frequency (TOF) value of 39911mo l H 2 mo l Pt - 1 mi n - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}{\mathrm{\ mi}}{{{\mathrm{n}}}^{{\mathrm{ - 1}}}}$ and turnover number of 2926829mo l H 2 mo l Pt - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}$ at room temperature. These metrics surpass those of all existing state-of-the-art supported metal catalysts by an order of magnitude. Density functional theory calculations reveal that the integration of single-atom Pt onto the CoP substrate significantly enhances adsorption and dissociation processes for both water and AB molecules, thereby facilitating hydrogen production from AB hydrolysis. Interestingly, the TOF value is further elevated to 54878mo l H 2 mo l Pt - 1 mi n - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}{\mathrm{\ mi}}{{{\mathrm{n}}}^{{\mathrm{ - 1}}}}$ under UV-vis light irradiation, which can be attributed to the efficient separation and mobility of photogenerated carriers at the Pt-CoP interface. The findings underscore the effectiveness of CoP as a support for single-atom metals in hydrogen production, offering insights for designing high-performance catalysts for chemical hydrogen storage.
Collapse
Affiliation(s)
- Shiqi Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Songqi Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yicheng Yu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Tianjun Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
9
|
Guo Y, Tai W, Zhao M, Chen X, Chai Y, Wu G, Li L. Synthesis of self-pillared pentasil zeolites without organic templates and seeds. NANOSCALE 2024; 16:21594-21603. [PMID: 39494461 DOI: 10.1039/d4nr03824j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Self-pillared pentasil (SPP) zeolites have received considerable interest due to their distinctive intergrowth structure, while the precise process and mechanism for the formation of SPP zeolites remain obscure. Herein, SPP zeolites (ZSM-5) have been successfully synthesized by pre-aging an Al-rich gel without employing any organic templates or seeds for the first time. The as-synthesized SPP zeolites possess a notably high external surface area while the micropores for Ar adsorption are partially blocked by excess Na+, which can be fully recovered by Mg2+ or H+ exchange. The crystallization process is monitored and the impacts of synthesis parameters are investigated. The results show that self-pillaring originates from the partial lattice distortion at the intersections of nanosheets, offering a new insight into the self-pillaring process. Typically, with decreasing SiO2/Al2O3 ratio, more crossovers could be observed in the crystals, hinting that self-pillaring predominately occurs at the (101) plane of twins in the ZSM-5 precursor due to Al-rich lattice distortion. Finally, in the catalytic cracking of n-heptane, H-SPP zeolites exhibit superior performance to commercial H-ZSM-5 zeolites due to their abundant Brønsted acid sites arising from a low framework SiO2/Al2O3 ratio of ∼21 and the short diffusion path originating from the house-of-cards structure.
Collapse
Affiliation(s)
- Yuliang Guo
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenshu Tai
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingyu Zhao
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuchao Chai
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Guangjun Wu
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Landong Li
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Pornsetmetakul P, Maineawklang N, Wattanakit C. Preparation of Metal-Supported Nanostructured Zeolite Catalysts and their Applications in the Upgrading of Biomass-Derived Furans: Advances and Prospects. Chempluschem 2024; 89:e202400343. [PMID: 39231200 DOI: 10.1002/cplu.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Indexed: 09/06/2024]
Abstract
The development of platform chemicals derived from biomass, in particular, 5-hydroxymethylfurfural (5-HMF) and furfural (FUR), is of crucial importance in biorefinery. Over the past decades, metal-supported nanostructured zeolites, in particular, metal-supported hierarchically porous zeolites or metal-encapsulated zeolites, have been extensively elaborated because of their multiple functionalities and superior properties, for example, shape-selectivity, (hydro)thermal stability, tunable acidity and basicity, redox properties, improved diffusion, and intimacy of multiple active sites. In this review, the effects of such properties of metal-supported nanostructured zeolites on the enhanced catalytic performances in furanic compound upgrading are discussed. In addition, the recent rational design of metal-supported nanostructured zeolites is exemplified. Consequently, the ongoing challenges for further developing metal-supported nanostructured zeolites-based catalysts and their applications in HMF and FUR upgrading are identified.
Collapse
Affiliation(s)
- Peerapol Pornsetmetakul
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Narasiri Maineawklang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
11
|
Li C, He G, Qu Z, Zhang K, Guo L, Zhang T, Zhang J, Sun Q, Mei D, Yu J. Highly Dispersed Pd-CeO x Nanoparticles in Zeolite Nanosheets for Efficient CO 2-Mediated Hydrogen Storage and Release. Angew Chem Int Ed Engl 2024; 63:e202409001. [PMID: 38990826 DOI: 10.1002/anie.202409001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Formic acid (FA) dehydrogenation and CO2 hydrogenation to FA/formate represent promising methodologies for the efficient and clean storage and release of hydrogen, forming a CO2-neutral energy cycle. Here, we report the synthesis of highly dispersed and stable bimetallic Pd-based nanoparticles, immobilized on self-pillared silicalite-1 (SP-S-1) zeolite nanosheets using an incipient wetness co-impregnation technique. Owing to the highly accessible active sites, effective mass transfer, exceptional hydrophilicity, and the synergistic effect of the bimetallic species, the optimized PdCe0.2/SP-S-1 catalyst demonstrated unparalleled catalytic performance in both FA dehydrogenation and CO2 hydrogenation to formate. Remarkably, it achieved a hydrogen generation rate of 5974 molH2 molPd -1 h-1 and a formate production rate of 536 molformate molPd -1 h-1 at 50 °C, surpassing most previously reported heterogeneous catalysts under similar conditions. Density functional theory calculations reveal that the interfacial effect between Pd and cerium oxide clusters substantially reduces the activation barriers for both reactions, thereby increasing the catalytic performance. Our research not only showcases a compelling application of zeolite nanosheet-supported bimetallic nanocatalysts in CO2-mediated hydrogen storage and release but also contributes valuable insights towards the development of safe, efficient, and sustainable hydrogen technologies.
Collapse
Affiliation(s)
- Chengxu Li
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Guangyuan He
- School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ziqiang Qu
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Kai Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Liwen Guo
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Tianjun Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Donghai Mei
- School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Vidal M, Pandey J, Navarro-Ruiz J, Langlois J, Tison Y, Yoshii T, Wakabayashi K, Nishihara H, Frenkel AI, Stavitski E, Urrutigoïty M, Campos CH, Godard C, Placke T, Del Rosal I, Gerber IC, Petkov V, Serp P. Probing Basal and Prismatic Planes of Graphitic Materials for Metal Single Atom and Subnanometer Cluster Stabilization. Chemistry 2024; 30:e202400669. [PMID: 38924194 DOI: 10.1002/chem.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.
Collapse
Affiliation(s)
- Mathieu Vidal
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Jyoti Pandey
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Javier Navarro-Ruiz
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Joris Langlois
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Yann Tison
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000, Pau, France
| | - Takeharu Yoshii
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Keigo Wakabayashi
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook, University Stony Brook, 11794, New York, USA
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Eli Stavitski
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Cristian H Campos
- Departamento de Físico-Química Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile
| | - Cyril Godard
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Tobias Placke
- MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149, Münster, Germany
| | - Iker Del Rosal
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Iann C Gerber
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Philippe Serp
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| |
Collapse
|
13
|
Li J, Zhang Q, He G, Zhang T, Li L, Li J, Hao D, Zhang W, Terasaki O, Mei D, Yu J. Silanol-Stabilized Atomically Dispersed Pt δ+-O x-Sn Active Sites in Protozeolite for Propane Dehydrogenation. J Am Chem Soc 2024; 146:24358-24367. [PMID: 39167721 DOI: 10.1021/jacs.4c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Crystalline zeolites have been proven to be excellent supports for confining subnanometric metal catalysts to boost the propane dehydrogenation (PDH) reaction. However, the introduced metallic species may suffer from severe sintering and limited stability during the catalytic process, especially when utilizing an industrial impregnation method for metal incorporation. In this study, we developed a new type of support based on amorphous protozeolite (PZ), taking advantage of its adjustable silanol chemistry and zeolitic microporous characteristic for stabilizing atomically dispersed PtSn catalyst via a simple, cost-effective coimpregnation process. The combination of X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, in situ diffuse reflectance infrared Fourier transform spectroscopy under CO atmosphere, and density functional theory calculations confirmed the formation of highly dispersed active Ptδ+-Ox-Sn species in PtSn/PZ. The PtSn/PZ catalyst exhibited a high propane conversion of 45.4% and a high propylene selectivity of 99% (WHSV= 3.6 h-1, 550 °C), with a high apparent rate coefficient of 565 molC3H6·gPt-1·h-1·bar-1 at a high WHSV of 108 h-1, presenting a top-level performance among the state-of-the-art Pt-based catalysts prepared by in situ synthesis and impregnation methods. The silanol density determined the chemical state of PtSn species, showing a change from atomically dispersed Ptδ+-Ox-Sn sites to PtSn alloy with decreasing silanol density of supports. This work provides a general strategy using silanol-rich amorphous protozeolite as support for stabilizing various metal catalysts by the simple impregnation method and also offers an effective way for fine tailoring the chemical state of metallic species via a silanol-engineered approach.
Collapse
Affiliation(s)
- Jialiang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Guangyuan He
- School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Tianjun Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, 180 Wusidong Road, Baoding 071000, P. R. China
| | - Lin Li
- Electron Microscopy Center, Jilin University, Changchun 130012, P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Centre for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Dapeng Hao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun 130012, P. R. China
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, P. R. China
| | - Osamu Terasaki
- Centre for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Donghai Mei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Zhang C, Zuo W, Ai L, Tu S, Jiang J. Two-dimensional molybdenum boride coordinating with ruthenium nanoparticles to boost hydrogen generation from hydrolytic dehydrogenation of ammonia borane. J Colloid Interface Sci 2024; 669:794-803. [PMID: 38744157 DOI: 10.1016/j.jcis.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
The coordination between carrier and active metal is critical to the catalytic efficiency of ammonia borane (AB) hydrolysis reaction. In the present study, we report a new type of catalytic support based on molybdenum boride (MBene) MoAl1-xB and demonstrate that the effective combination of MoAl1-xB with Ru nanoparticles can realize the significantly enhanced performance for hydrogen generation. Owing to the efficient activation and dissociation of reactants, the optimal Ru/MoAl1-xB catalyst achieves the large turnover frequency of 494 molH2 molRu-1 min-1, high hydrogen generation rate of 119817 mL min-1 gRu-1 and favorable apparent activation energy of 39.2 kJ mol-1 for the catalytic hydrolysis of AB under alkaline-free condition. The isotopic test suggests the cleavage of OH bond in H2O is the rate-determining step for hydrolysis reaction, while the fracture of B-H bond in AB is also well revealed by attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. Significantly, the flexible on-demand hydrogen generation is achieved by using chemical switches for on-off AB hydrolysis. This study provides a new support platform based on two-dimensional MBene to exploit efficient catalysts to boost AB dehydrogenation.
Collapse
Affiliation(s)
- Chenghui Zhang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Wei Zuo
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lunhong Ai
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Sheng Tu
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jing Jiang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
15
|
Duan Y, Xia Y, Ling Y, Zhou S, Liu X, Lan Y, Yin X, Yang Y, Yan X, Liang M, Hong S, Zhang L, Wang L. Regulating Second-Shell Coordination in Cobalt Single-Atom Catalysts toward Highly Selective Hydrogenation. ACS NANO 2024. [PMID: 39083439 DOI: 10.1021/acsnano.4c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Manipulating the local coordination environment of central metal atoms in single-atom catalysts (SACs) is a powerful strategy to exploit efficient SACs with optimal electronic structures for various applications. Herein, Co-SACs featured by Co single atoms with coordinating S atoms in the second shell dispersed in a nitrogen-doped carbon matrix have been developed toward the selective hydrogenation of halo-nitrobenzene. The location of the S atom in the model Co-SAC is verified through synchrotron-based X-ray absorption spectroscopy and theoretical calculations. The resultant Co-SACs containing second-coordination shell S atoms demonstrate excellent activity and outstanding durability for selective hydrogenation, superior to most precious metal-based catalysts. In situ characterizations and theoretical results verify that high activity and selectivity are attributed to the advantageous formation of the Co-O bond between p-chloronitrobenzene and Co atom at Co1N4-S moieties and the lower free energy and energy barriers of the reaction. Our findings unveil the correlation between the performance and second-shell coordination atom of SACs.
Collapse
|
16
|
Cao Y, Yu X, Wang T, Li J, Li N, Ge A, Ying J, Yu T. Zeolite-Templated Carbons Supported Rh and Ru Electrocatalysts for Highly Active Hydrogen Evolution Reaction. Chem Asian J 2024; 19:e202400342. [PMID: 38740556 DOI: 10.1002/asia.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Here, we report the systematical synthesis of zeolite-templated carbon (ZTC) supported Ru and Rh mono- or bi-metallic electrocatalysts towards hydrogen evolution reaction (HER). The zeolite A or ZSM-5 derived ZTC supports and metal sites were adjusted, and all electrocatalysts outperformed the commercial Pt/C electrocatalyst for HER performance. In particular, the RhRu/(ZTC/ZSM5) sample exhibited superior catalytic performance with the overpotential of 24.8 mV@10 mA ⋅ cm-2, and outstanding stability with 1 mV drop after 20000 cyclic voltammetry circles. This work offers a simple impregnation method for the synthesis of highly performed HER electrocatalysts supported on porous zeolite-templated carbon.
Collapse
Affiliation(s)
- Yuanxin Cao
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Xiaoming Yu
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Tianfu Wang
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Jiahao Li
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Nan Li
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Anbang Ge
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Jie Ying
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
17
|
Wang J, Ren X, Xiang Q, Jiang J, Wang F, Guan Y, Xu H, Wu P. Double Unit-Cell Silicogermanate Nanosheets Developed by Salting-Out Mechanism for Biomass Conversion. J Am Chem Soc 2024; 146:18418-18426. [PMID: 38812275 DOI: 10.1021/jacs.4c03732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Zeolite nanosheets with an extremely thin thickness featuring both unique pore systems and low diffusion resistance have the potential to achieve enhanced catalytic performance in the conversion of bulky molecular biomass. The preparation of unit-cell level nanosheets generally requires complex and costly multifunctional surfactants or an organic structure-directing agent (OSDA). Commercially available and environmentally friendly ionic liquids can also direct the structure of zeolite nanosheets by π-π stacking when these kinds of OSDA are used in large amount. Herein, we first report unit-cell-sized silicogermanate nanosheets of NS-IM-20 (UWY topology), 5 nm in thickness, which were synthesized at a relatively low ionic liquid concentration with the assistance of halide ion (Cl-). The Pd-loaded NS-IM-20 nanosheets with a hierarchical porosity and moderate acidity act as promising bifunctional catalysts for selective biomass conversion.
Collapse
Affiliation(s)
- Jilong Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, China
| | - Xueyun Ren
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, China
| | - Qiaoyue Xiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, China
| | - Jingang Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, China
| | - Fei Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yejun Guan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Hao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
18
|
Liu H, Wang Y, Xu W, Yang Y, Yang J, Li C, Zhu T. Unraveling the Synergistic Mechanism of Ir Species with Various Electron Densities over an Ir/ZSM-5 Catalyst Enables High-Efficiency NO Reduction by CO. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12082-12090. [PMID: 38888120 DOI: 10.1021/acs.est.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Selective catalytic reduction using CO as a reducing agent (CO-SCR) has exhibited its application potential in coal-fired, steel, and other industrial sectors. In comparison to NH3-SCR, CO-SCR can achieve synergistic control of CO and NO pollutants, making it a powerful denitrification technology that treats waste with waste. Unfortunately, the competitive adsorption of O2 and NO on CO-SCR catalysts inhibits efficient conversion of NOx under O2-containing conditions. In this work, we obtained two Ir sites with different electron densities, Ir1 single atoms in the oxidized Irδ+ state and Ir0 nanoparticles in the metallic state, by controlled pretreatment of the Ir/ZSM-5 catalyst with H2 at 200 °C. The coexistence of Ir1 single atoms and Ir0 nanoparticles on ZSM-5 creates a synergistic effect, which facilitates the reduction of NO through CO in the presence of O2, following the Langmuir-Hinshelwood mechanism. The ONNO dimer is formed on the Ir1 single atom sites and then spills over to the neighboring Ir0 nanoparticles for subsequent reduction to N2 by CO. Specifically, this tandem reaction enables 83% NO conversion and 100% CO conversion on an Ir-based catalyst at 250 °C under 3% O2.
Collapse
Affiliation(s)
- Huixian Liu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yixi Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenqing Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Yang Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jun Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chaoqun Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tingyu Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
19
|
Majumder D, Koley S, Barik A, Ruz P, Banerjee S, Viswanadh B, Barooah N, Tripathi VS, Sudarsan V, Kumar A, Tyagi AK, Bhasikuttan AC, Mohanty J. Dual catalytic activity of a cucurbit[7]uril-functionalized metal alloy nanocomposite for sustained hydrogen generation: hydrolysis of ammonia borane and electrocatalysts for the hydrogen evolution reaction. NANOSCALE 2024; 16:10801-10811. [PMID: 38766776 DOI: 10.1039/d4nr00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
H2 is one of the most attractive fuel alternatives to the existing fossil fuels that cause detrimental environmental issues. Thus, there has been an upsurge in the research on the production of green hydrogen. In this view, cucurbit[7]uril (CB7)-functionalized Co:Ni alloy nanocomposites with different compositions, reported here for the first time, were synthesized to synergise the catalytic activities of a nanoalloy and CB7 and screened for hydrogen generation via hydrolysis of ammonia borane (AB). The (Co85:Ni15)50:(CB7)50 nanocomposite exhibited enhanced catalytic performance for AB hydrolysis even at room temperature as compared to the nanoalloy without CB7. Efficient release of ammonia-free green H2 is ensured by the retention of NH3 by the surface functionalized CB7 macrocycles. For sustained release, a novel and cost-effective procedure was used to regenerate AB from the by-product, and the H2 release activity was verified to be on par with commercial AB. The used nanocomposite magnetically separated from the by-product solution was shown to be an efficient electrochemical catalyst for the hydrogen evolution reaction (HER). The cucurbit[7]uril-functionalized Co:Ni nanocomposite demonstrates remarkable dual catalytic performance to generate clean hydrogen from both the hydrolysis of AB at room temperature and the electrochemical HER, thus opening new avenues in supramolecular chemistry for developing noble metal-free catalysts with high activity and long-term stability.
Collapse
Affiliation(s)
- Dwaipayan Majumder
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Suprotim Koley
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Priyanka Ruz
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Seemita Banerjee
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bathula Viswanadh
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vaidehi S Tripathi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Vasanthakumaran Sudarsan
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Awadhesh Kumar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Avesh Kumar Tyagi
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
20
|
Zhang H, Liu S, Liu Y, Li T, Shen R, Guo X, Wu X, Liu Y, Wang Y, Liu B, Liang E, Li B. Insights into the hydrogen generation and catalytic mechanism on Co-based nanocomposites derived from pyrolysis of organic metal precursor. iScience 2024; 27:109715. [PMID: 38706847 PMCID: PMC11066434 DOI: 10.1016/j.isci.2024.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Hydrogen generation from boron hydride is important for the development of hydrogen economy. Cobalt (Co) element has been widely used in the hydrolysis of boron hydride. Pyrolysis is a common method for materials synthesis in catalytic fields. Herein, Co-based nanocomposites derived from the pyrolysis of organic metal precursors and used for hydrolysis of boron hydride are summarized and discussed. The different precursors consisting of MOF, supported, metal, and metal phosphide precursors are summarized. The catalytic mechanism consisting of dissociation mechanism based on oxidative addition-reduction elimination, pre-activation mechanism, SN2 mechanism, four-membered ring mechanism, and acid-base mechanism is intensively discussed. Finally, conclusions and outlooks are conveyed from the design of high-efficiency catalysts, the characterization of catalyst structure, the enhancement of catalytic activities, the investigation of the catalytic mechanism, and the catalytic stability of active structure. This review can provide guidance for designing high-efficiency catalysts and boosting development of hydrogen economy.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, P.R.China
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
- College of Science, Henan Agriculture University, 63 Nongye Road, Zhengzhou 450002, P.R.China
| | - Tongjun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
| | - Xianji Guo
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
| | - Yushan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, P.R.China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, P.R.China
| | - Erjun Liang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R.China
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R.China
| |
Collapse
|
21
|
Wei H, Cui Y, Hou H, Zheng X, Jin P, Wen Y, Wang X, Liu Y, Li B. Co-Cu nanoparticles uniformly embedded in the intra-crystalline mesoporous Silicalite-1 for catalytic ammonia borane hydrolysis. iScience 2024; 27:109745. [PMID: 38706839 PMCID: PMC11067381 DOI: 10.1016/j.isci.2024.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Zeolite-encaged metal nanoparticles (NPs) catalysts are emerging as a new frontier owing to their superior ability to stabilize the structure and catalytic performance in the thermal and environmental catalytic reaction. However, the pore size below 2 nm of the conventional zeolites usually limits the accessibility of metal active sites. Herein, Co-Cu NPs of about 2.5-3.5 nm were uniformly encapsulated in the intracrystalline mesoporous Silicalite-1 (S-1) through alkali-treatment ligand-assisted strategy. The obtained sample (termed CoxCu1-x@HS-1) exhibited efficient activity and stability in the ammonia borane hydrolysis with the highest TOF value of 21.46 molH2·molMe-1·min-1. UV-vis DRS spectra indicated that intracrystalline mesopores have greatly improved the openness and accessibility of the active sites, thus improving their catalytic performance. The introduction of Cu regulates the electronic properties of Co, further increasing hydrogen production activity. This research creates new prospects to design other high-performance hierarchical porous zeolite-confined metal/metal oxide catalysts.
Collapse
Affiliation(s)
- Huijuan Wei
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Yanan Cui
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Huinan Hou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Xiaoguang Zheng
- Henan Shenma Catalytic Technology Co., Ltd., Pingdingshan 467200, P.R. China
| | - Peng Jin
- Henan Shenma Catalytic Technology Co., Ltd., Pingdingshan 467200, P.R. China
| | - Yiqiang Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Xiangyu Wang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, P.R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| |
Collapse
|
22
|
Zhao M, Wang X, Xu J, Li Y, Wang X, Chu X, Wang K, Wang Z, Zhang LL, Feng J, Song S, Zhang H. Strengthening the Metal-Acid Interactions by Using CeO 2 as Regulators of Precisely Placing Pt Species in ZSM-5 for Furfural Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313596. [PMID: 38408470 DOI: 10.1002/adma.202313596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Indexed: 02/28/2024]
Abstract
Understanding the synergism between the metal site and acid site is of great significance in boosting the efficiency of bi-functional catalysts in many heterogeneous reactions, particularly in biomass upgrading. Herein, a "confined auto-redox" strategy is reported to fix CeO2-anchored Pt atoms on the inner wall of a ZSM-5 cage, achieving the target of finely controlling the placements of the two active sites. Compared with the conventional surface-supported counterpart, the encapsulated Pt/CeO2@ZSM-5 catalyst possesses remarkably-improved activity and selectivity, which can convert >99% furfural into cyclopentanone with 97.2% selectivity in 6 h at 160 °C. Besides the excellent catalytic performance, the ordered metal-acid distribution also makes such kind of catalyst an ideal research subject for metal-acid interactions. The following mechanization investigation reveals that the enhancement is strongly related to the unique encapsulation structure, which promotes the migration of the reactants over different active sites, thereby contributing to the tandem reaction.
Collapse
Affiliation(s)
- Meng Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuou Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Chu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zijian Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ling-Ling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
Yu Y, Tan Y, Niu W, Zhao S, Hao J, Shi Y, Dong Y, Liu H, Huang C, Gao C, Zhang P, Wu Y, Zeng L, Du B, He Y. Advances in Synthesis and Applications of Single-Atom Catalysts for Metal Oxide-Based Gas Sensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1970. [PMID: 38730776 PMCID: PMC11084526 DOI: 10.3390/ma17091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
As a stable, low-cost, environment-friendly, and gas-sensitive material, semiconductor metal oxides have been widely used for gas sensing. In the past few years, single-atom catalysts (SACs) have gained increasing attention in the field of gas sensing with the advantages of maximized atomic utilization and unique electronic and chemical properties and have successfully been applied to enhance the detection sensitivity and selectivity of metal oxide gas sensors. However, the application of SACs in gas sensors is still in its infancy. Herein, we critically review the recent advances and current status of single-atom catalysts in metal oxide gas sensors, providing some suggestions for the development of this field. The synthesis methods and characterization techniques of SAC-modified metal oxides are summarized. The interactions between SACs and metal oxides are crucial for the stable loading of single-atom catalysts and for improving gas-sensitive performance. Then, the current application progress of various SACs (Au, Pt, Cu, Ni, etc.) in metal oxide gas sensors is introduced. Finally, the challenges and perspectives of SACs in metal oxide gas sensors are presented.
Collapse
Affiliation(s)
- Yuanting Yu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yiling Tan
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Wen Niu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Shili Zhao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Jiongyue Hao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yijie Shi
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yingchun Dong
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Hangyu Liu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Chun Huang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Chao Gao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Peng Zhang
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China; (P.Z.); (Y.W.)
| | - Yuhong Wu
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China; (P.Z.); (Y.W.)
| | - Linggao Zeng
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China;
| | - Bingsheng Du
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
| | - Yong He
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| |
Collapse
|
24
|
Yang J, Yang Z, Li J, Gang H, Mei D, Yin D, Deng R, Zhu Y, Li X, Wang N, Osman SM, Yamauchi Y. Engineering a hollow bowl-like porous carbon-confined Ru-MgO hetero-structured nanopair as a high-performance catalyst for ammonia borane hydrolysis. MATERIALS HORIZONS 2024; 11:2032-2040. [PMID: 38372566 DOI: 10.1039/d3mh01909h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Exploration of high-performance catalysts holds great importance for on-demand H2 production from ammonia borane (AB) hydrolysis. In this work, a hollow bowl-like porous carbon-anchored Ru-MgO hetero-structured nano-pair with high-intensity interfaces is made, using a tailored design approach. Consequently, the optimized catalyst shows AB hydrolysis activity with a turnover frequency value of 784 min-1 in aqueous media and 1971 min-1 in alkaline solvent. Robust durability is also achieved, with slight deactivation after a ten-cycle test. Combined experimental and theoretical calculations validate the positive function of the interface between Ru and MgO for facilitating H transfer and boosting water activation, thus leading to improved AB hydrolysis performance. This study could be valuable in guiding the upgradation of Ru catalytic systems, to advance their practical applications.
Collapse
Affiliation(s)
- Jialei Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhenyu Yang
- College of Electronics and Information, Qingdao University, Qingdao 266071, China
| | - Jiafu Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Hao Gang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Donghai Mei
- Tianjin Key Laboratory of Green Chemical Engineering Process Engineering, Tiangong University, Tianjin 300387, China
| | - Dongming Yin
- State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yifeng Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xingyun Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Ning Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, 464-8603 Nagoya, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
25
|
Hu P, Zhang C, Chu M, Wang X, Wang L, Li Y, Yan T, Zhang L, Ding Z, Cao M, Xu P, Li Y, Cui Y, Zhang Q, Chen J, Chi L. Stable Interfacial Ruthenium Species for Highly Efficient Polyolefin Upcycling. J Am Chem Soc 2024; 146:7076-7087. [PMID: 38428949 DOI: 10.1021/jacs.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru0-Ruδ+ complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ruδ+ state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·gRu-1·h-1 for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Congyang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Department of Chemistry, University of Western Ontario, London N6A 5B7, Canada
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xianpeng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Zhifeng Ding
- Department of Chemistry, University of Western Ontario, London N6A 5B7, Canada
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China
| | - Panpan Xu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yifan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yi Cui
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
| |
Collapse
|
26
|
Bai R, He G, Li L, Zhang T, Li J, Wang X, Wang X, Zou Y, Mei D, Corma A, Yu J. Encapsulation of Palladium Carbide Subnanometric Species in Zeolite Boosts Highly Selective Semihydrogenation of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202313101. [PMID: 37792288 DOI: 10.1002/anie.202313101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
The selective hydrogenation of alkynes to alkenes is a crucial step in the synthesis of fine chemicals. However, the widely utilized palladium (Pd)-based catalysts often suffer from poor selectivity. In this work, we demonstrate a carbonization-reduction method to create palladium carbide subnanometric species within pure silicate MFI zeolite. The carbon species can modify the electronic and steric characteristics of Pd species by forming the predominant Pd-C4 structure and, meanwhile, facilitate the desorption of alkenes by forming the Si-O-C structure with zeolite framework, as validated by the state-of-the-art characterizations and theoretical calculations. The developed catalyst shows superior performance in the selective hydrogenation of alkynes over mild conditions (298 K, 2 bar H2 ), with 99 % selectivity to styrene at a complete conversion of phenylacetylene. In contrast, the zeolite-encapsulated carbon-free Pd catalyst and the commercial Lindlar catalyst show only 15 % and 14 % selectivity to styrene, respectively, under identical reaction conditions. The zeolite-confined Pd-carbide subnanoclusters promise their superior properties in semihydrogenation of alkynes.
Collapse
Affiliation(s)
- Risheng Bai
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, España
| | - Guangyuan He
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, China
| | - Lin Li
- Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Hebei University, 071002, Baoding, China
| | - Junyan Li
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xingxing Wang
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Xiumei Wang
- Bruker (Beijing) Scientific Technology Co., Ltd., 100000, Beijing, China
| | - Yongcun Zou
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Donghai Mei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, China
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, Valencia, España
| | - Jihong Yu
- Department State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| |
Collapse
|
27
|
Pornsetmetakul P, Maineawklang N, Prasertsab A, Salakhum S, Hensen EJM, Wattanakit C. Mild Hydrogenation of 2-Furoic Acid by Pt Nanoparticles Dispersed in a Hierarchical ZSM-5 Zeolite. Chem Asian J 2023; 18:e202300733. [PMID: 37792279 DOI: 10.1002/asia.202300733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
Hydrogenation of biobased compounds can add value to platform molecules obtained from biomass refining. Herein, we explore the hydrogenation of 2-furoic acid (2-furancarboxylic acid, FCA), a derivative of furfural, with H2 generated in situ by NaBH4 hydrolysis at ambient conditions. Nearly complete conversion of FCA was obtained with tetrahydrofuroic acid (THFA) and 5-hydroxyvaleric acid (5-HVA) as the only two reaction products over Pt nanoparticles supported on hierarchical ZSM-5. Small Pt nanoparticles (2 to 3 nm) were stabilized by ZSM-5 nanosheets. At an optimized Pt loading, the Pt nanoparticles can catalyze the hydrolysis of NaBH4 and the subsequent hydrogenation of FCA with the assistance of Brønsted acid sites. Nanostructuring ZSM-5 into nanosheets and its acidity contributes to the stability of the dispersed Pt nanoparticles. Deactivation due to NaBO2 deposition on the Pt particles can be countered by a simple washing treatment. Overall, this approach shows the promise of mild hydrogenation of biobased feedstock coupled with NaBH4 hydrolysis.
Collapse
Affiliation(s)
- Peerapol Pornsetmetakul
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Narasiri Maineawklang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Anittha Prasertsab
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Saros Salakhum
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
28
|
Wang YT, Wu SM, Luo GQ, Xiao ST, Pu FF, Wang LY, Chang GG, Tian G, Yang XY. Dual Pd-Acid Sites Confined in a Hierarchical Core-Shell Structure for Hydrogenation of Nitrobenzene. Chem Asian J 2023; 18:e202300689. [PMID: 37704571 DOI: 10.1002/asia.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
A core-shell structured Pd@TS-1@meso-SiO2 catalyst with confined Pd nanometals has been fabricated by one-pot synthesis, impregnation method and sol-gel method. With the promotion of acid sites and protection of mesoporous silica shell, Pd@TS-1@meso-SiO2 shows higher activity than commercial comparison and higher stability than sample without mesoporous silica shell in the hydrogenation of nitrobenzene. The schematic illustration of the synergy effect is also proposed.
Collapse
Affiliation(s)
- Yi-Tian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Si-Ming Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Guo-Qiang Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Shi-Tian Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Fu-Fei Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Li-Ying Wang
- Department State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Gang-Gang Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| |
Collapse
|
29
|
Zhang Z, Wang J, Ge X, Wang S, Li A, Li R, Shen J, Liang X, Gan T, Han X, Zheng X, Duan X, Wang D, Jiang J, Li Y. Mixed Plastics Wastes Upcycling with High-Stability Single-Atom Ru Catalyst. J Am Chem Soc 2023; 145:22836-22844. [PMID: 37794780 DOI: 10.1021/jacs.3c09338] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Mixed plastic waste treatment has long been a significant challenge due to complex composition and sorting costs. In this study, we have achieved a breakthrough in converting mixed plastic wastes into a single chemical product using our innovative single-atom catalysts for the first time. The single-atom Ru catalyst can convert ∼90% of real mixed plastic wastes into methane products (selectivity >99%). The unique electronic structure of Ru sites regulates the adsorption energy of mixed plastic intermediates, leading to rapid decomposition of mixed plastics and superior cycle stability compared to traditional nanocatalysts. The global warming potential of the entire process was evaluated. Our proposed carbon-reducing process utilizing single-atom catalysts launches a new era of mixed plastic waste valorization.
Collapse
Affiliation(s)
- Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jia Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shule Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Ang Li
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100084, China
| | - Runze Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tao Gan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaodong Han
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
AKBAYRAK S, TONBUL Y, ÖZKAR S. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane. Turk J Chem 2023; 47:1224-1238. [PMID: 38173757 PMCID: PMC10762867 DOI: 10.55730/1300-0527.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/31/2023] [Accepted: 09/28/2023] [Indexed: 01/05/2024] Open
Abstract
Reducible WO3 powder with a mean diameter of 100 nm is used as support to stabilize ruthenium(0) nanoparticles. Ruthenium(0) nanoparticles are obtained by NaBH4 reduction of ruthenium(III) precursor on the surface of WO3 support at room temperature. Ruthenium(0) nanoparticles are uniformly dispersed on the surface of tungsten(VI) oxide. The obtained Ru0/WO3 nanoparticles are found to be active catalysts in hydrolytic dehydrogenation of ammonia borane. The turnover frequency (TOF) values of the Ru0/WO3 nanocatalysts with the metal loading of 1.0%, 2.0%, and 3.0% wt. Ru are 122, 106, and 83 min-1, respectively, in releasing hydrogen gas from the hydrolysis of ammonia borane at 25.0 °C. As the Ru0/WO3 (1.0% wt. Ru) nanocatalyst with an average particle size of 2.6 nm provides the highest activity among them, it is extensively investigated. Although the Ru0/WO3 (1.0% wt. Ru) nanocatalyst is not magnetically separable, it has extremely high reusability in the hydrolysis reaction as it preserves 100% of initial catalytic activity even after the 5th run of hydrolysis. The high activity and reusability of Ru0/WO3 (1.0% wt. Ru) nanocatalyst are attributed to the favorable metal-support interaction between the ruthenium(0) nanoparticles and the reducible tungsten(VI) oxide. The high catalytic activity and high stability of Ru0/WO3 nanoparticles increase the catalytic efficiency of precious ruthenium in hydrolytic dehydrogenation of ammonia borane.
Collapse
Affiliation(s)
- Serdar AKBAYRAK
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya,
Turkiye
| | - Yalçın TONBUL
- Ziya Gökalp Faculty of Education, Dicle University, Diyarbakır,
Turkiye
| | - Saim ÖZKAR
- Department of Chemistry, Middle East Technical University, Ankara,
Turkiye
| |
Collapse
|
31
|
Liu Y, Li L, Tan H, Ye N, Gu Y, Zhao S, Zhang S, Luo M, Guo S. Fluorination of Covalent Organic Framework Reinforcing the Confinement of Pd Nanoclusters Enhances Hydrogen Peroxide Photosynthesis. J Am Chem Soc 2023; 145:19877-19884. [PMID: 37584527 DOI: 10.1021/jacs.3c05914] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Metal-isolated clusters (MICs) physically confined on photoactive materials are of great interest in the field of photosynthesis of hydrogen peroxide (H2O2). Despite recent important endeavors, weak confinement of MICs in the reported photocatalytic systems leads to their low catalytic activity and stability. Herein, we report a new strategy of fluorinated covalent organic frameworks (COFs) to strongly confine Pd ICs for greatly boosting the photocatalytic activity and stability of H2O2 photosynthesis. Both experimental and theoretical results reveal that strong electronegative fluorine can increase the metal-support interaction and optimize the d-band center of Pd ICs, thus significantly enhancing the stability and activity of photocatalytic H2O2. An optimal TAPT-TFPA COFs@Pd ICs photocatalyst delivers a stable H2O2 yield rate of 2143 μmol h-1 g-1. Most importantly, the as-made TAPT-TFPA COFs@Pd ICs exhibit high catalytic stability over 100 h, which is the best among the reported materials.
Collapse
Affiliation(s)
- Youxing Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Na Ye
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Gu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuoqing Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Han ZP, Wang S, Sun Q, Xu XP, Ji SJ. Synthesis of Azoxy Compounds: from Copper Compounds to Mesoporous Silica-Encaged Ultrasmall Copper Catalysts. CHEMSUSCHEM 2023; 16:e202300477. [PMID: 37148179 DOI: 10.1002/cssc.202300477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/08/2023]
Abstract
Azoxy compounds have aroused extensive attention due to their unique biological activities, but the chemical synthesis of these compounds often suffers from limitations due to their requirement for stoichiometric oxidants, high costs, and restricted substrate range. Herein, a series of azoxy compounds were constructed via facile coupling reactions by using cost-effective N-methoxyformamide and nitroso compounds over Cu-based catalysts, affording high product yields with excellent tolerance of functional groups. Significantly, the mesoporous silica nanosphere-encapsulated ultrasmall Cu (Cu@MSN) catalyst was developed via a one-pot synthetic method and first used for the synthesis of azoxy compounds. As compared with copper salt catalysts, the Cu@MSN catalyst exhibited remarkably enhanced catalytic activity and superior recycling stability. Such a Cu@MSN catalyst overcame the inherent drawbacks of low activity, fast deactivation, and difficult recycling of traditional metal salt catalysts in organic reactions. This work provides a green and efficient method for the construction of azoxy compounds and also creates new prospects for the application of nanoporous materials confined metal catalysts in organic synthesis.
Collapse
Affiliation(s)
- Zhi-Peng Han
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Shiqi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Qiming Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Innovation Center of Chemical Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Xiao-Ping Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Innovation Center of Chemical Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Shun-Jun Ji
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
33
|
Chen C, Wang X, Pan B, Xie W, Zhu Q, Meng Y, Hu Z, Sun Q. Construction of a Novel Cascade Electrolysis-Heterocatalysis System by Using Zeolite-Encaged Ultrasmall Palladium Catalysts for H 2 O 2 Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300114. [PMID: 36919559 DOI: 10.1002/smll.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/19/2023] [Indexed: 06/15/2023]
Abstract
In situ generation of hydrogen peroxide (H2 O2 ) has attracted extensive attention, especially in water treatment. However, traditional anthraquinones can only produce high-concentration H2 O2 and its transportation and storage are not convenient and dangerous. Herein, an in situ and on-demand strategy to produce H2 O2 by using a cascade water electrolysis together with a heterocatalysis system is provided. Beginning with water, H2, and O2 can be generated via electrolysis and then react with each other to produce H2 O2 immediately on efficient zeolite-encaged ultrasmall Pd catalysts. Significantly, the H2 O2 generation rate in the optimized cascade system reaches up to 0.85 mol L-1 h-1 gPd -1 , overcoming most of the state-of-the-art catalysts in previous literature. The confinement effect of zeolites is not only beneficial to the formation of highly dispersed metal species, promoting the H2 O2 generation, but also inhibits the H2 O2 decomposition, enhancing the production yield of H2 O2 . In addition, the effect of electrolytes, sizes of Pd species, as well as zeolite acidity are also systematically studied. This work provides a new avenue for H2 O2 generation via a highly efficient cascade electrolysis-heterocatalysis system by using zeolite-supported metal catalysts. The high catalytic efficiency and green process for H2 O2 generation make it very promising for further practical applications.
Collapse
Affiliation(s)
- Caiyi Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiaoli Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Boju Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Weiqiao Xie
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Qing Zhu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yali Meng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
34
|
Jiang J, Wei W, Ren Z, Luo Y, Wang X, Xu Y, Chang M, Ai L. Facile construction of robust Ru-Co 3O 4 Mott-Schottky catalyst enabling efficient dehydrogenation of ammonia borane for hydrogen generation. J Colloid Interface Sci 2023; 646:25-33. [PMID: 37182256 DOI: 10.1016/j.jcis.2023.04.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Developing efficient catalysts for the dehydrogenation of ammonia borane (AB) is important for the safe storage and controlled release of hydrogen, but it is a challenging task. In this study, we designed a robust Ru-Co3O4 catalyst using the Mott-Schottky effect to induce favorable charge rearrangement. The self-created electron-rich Co3O4 and electron-deficient Ru sites at heterointerfaces are indispensable for the activation of the B-H bond in NH3BH3 and the OH bond in H2O, respectively. The synergistic electronic interaction between the electron-rich Co3O4 and electron-deficient Ru sites at the heterointerfaces resulted in an optimal Ru-Co3O4 heterostructure that exhibited outstanding catalytic activity for the hydrolysis of AB in the presence of NaOH. The heterostructure had an extremely high hydrogen generation rate (HGR) of 12238 mL min-1 gcat-1 and an expected high turnover frequency (TOF) of 755 molH2 molRu-1 min-1 at 298 K. The activation energy needed for the hydrolysis was low (36.65 kJ mol-1). This study opens up a new avenue for the rational design of high-performance catalysts for AB dehydrogenation based on the Mott-Schottky effect.
Collapse
Affiliation(s)
- Jing Jiang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Wei Wei
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhen Ren
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yang Luo
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xinzhi Wang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Ying Xu
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Mingming Chang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lunhong Ai
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
35
|
Guan S, Liu Y, Zhang H, Shen R, Wen H, Kang N, Zhou J, Liu B, Fan Y, Jiang J, Li B. Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300726. [PMID: 37118857 PMCID: PMC10375177 DOI: 10.1002/advs.202300726] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Ammonia borane (AB), a liquid hydrogen storage material, has attracted increasing attention for hydrogen utilization because of its high hydrogen content. However, the slow kinetics of AB hydrolysis and the indefinite catalytic mechanism remain significant problems for its large-scale practical application. Thus, the development of efficient AB hydrolysis catalysts and the determination of their catalytic mechanisms are significant and urgent. A summary of the preparation process and structural characteristics of various supported catalysts is presented in this paper, including graphite, metal-organic frameworks (MOFs), metal oxides, carbon nitride (CN), molybdenum carbide (MoC), carbon nanotubes (CNTs), boron nitride (h-BN), zeolites, carbon dots (CDs), and metal carbide and nitride (MXene). In addition, the relationship between the electronic structure and catalytic performance is discussed to ascertain the actual active sites in the catalytic process. The mechanism of AB hydrolysis catalysis is systematically discussed, and possible catalytic paths are summarized to provide theoretical considerations for the designing of efficient AB hydrolysis catalysts. Furthermore, three methods for stimulating AB from dehydrogenation by-products and the design of possible hydrogen product-regeneration systems are summarized. Finally, the remaining challenges and future research directions for the effective development of AB catalysts are discussed.
Collapse
Affiliation(s)
- Shuyan Guan
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Naixin Kang
- ISM, UMR CNRS N° 5255, Univ. Bordeaux, Talence Cedex, 33405, France
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| |
Collapse
|
36
|
Qu H, Ma Y, Li X, Duan Y, Li Y, Liu F, Yu B, Tian M, Li Z, Yu Y, Li B, Lv Z, Wang L. Ternary alloy (FeCoNi) nanoparticles supported on hollow porous carbon with defects for enhanced oxygen evolution reaction. J Colloid Interface Sci 2023; 645:107-114. [PMID: 37146374 DOI: 10.1016/j.jcis.2023.04.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Low-cost non-noble metal nanoparticles are promising electrocatalysts that can catalyze oxygen evolution reaction (OER). Various factors such as poor activity and stability hinder the practical applications of these materials. The electroactivity and durability of the electrocatalysts can be improved by optimizing the morphology and composition of the materials. Herein, we report the successful synthesis of hollow porous carbon (HPC) catalysts loaded with ternary alloy (FeCoNi) nanoparticles (HPC-FeCoNi) for efficient OER. HPC is firstly synthesized by a facile carbon deposition method using the hierarchical porous zeolite ZSM-5 as the hard template. Numerous defects are generated on the carbon shell during the removal of zeolite template. Subsequently, FeCoNi alloy nanoparticles are supported on HPC by a sequence of impregnation and H2 reduction processes. The synergistic effect between carbon defects and FeCoNi alloy nanoparticles endows the catalyst with an excellent OER performance (low overpotential of 219 mV; Tafel slope of 60.1 mV dec-1) in a solution of KOH (1 M). A stable potential is maintained during the continuous operation over 72 h. The designed HPC-FeCoNi presents a platform for the development of electrocatalysts that can be potentially applied for industrial OER.
Collapse
Affiliation(s)
- Huiqi Qu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yiru Ma
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao, Shandong 266042, PR China
| | - Xiaolong Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuhao Duan
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao, Shandong 266042, PR China
| | - Yuan Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Feng Liu
- Biomedical Sensing Engineering Technology Research Center, Shandong University, Jinan 250100, PR China
| | - Bin Yu
- Biomedical Sensing Engineering Technology Research Center, Shandong University, Jinan 250100, PR China
| | - Minge Tian
- Scientific Green (Shandong) Environmental Technology Co. Ltd, Jining Economic Development Zone, Shandong Province 272499, PR China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yueqin Yu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao, Shandong 266042, PR China
| | - Bin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Zhiguo Lv
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
37
|
Qu H, Li B, Ma Y, Xiao Z, Lv Z, Li Z, Li W, Wang L. Defect-Enriched Hollow Porous Carbon Nanocages Enable Highly Efficient Chlorine Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301359. [PMID: 37029536 DOI: 10.1002/adma.202301359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Indexed: 05/30/2023]
Abstract
Metal-free carbon-based catalysts are crucial for the electrocatalytic chlorine evolution reaction (CER) to reduce the usage of noble metals and industrial cost. However, the corresponding catalytic activity of high overpotential and low durability hinders their wide application. Here, a hollow porous carbon (HPC) nanocage with a controlled oxygen electronic state around designed carbon defects for CER activity is reported. Alkali etching can bring defects in zeolite with a hollow structure. In a hard template strategy, the type of carbon defects is directly related to etching degree of the zeolite template. More importantly, the oxygen atoms can be "borrowed" from the zeolite framework by the defective carbon. The electron density around unsaturated O atoms can be decreased on the minor defects in carbon compared with that on large defects which is favorable for the adsorption of Cl- . Consequently, the as-synthesized HPC nanocages with minor defects show excellent electrocatalytic performance for CER with a low overpotential of 94 mV at current density of 10 mA cm-2 with good stability, which is superior to the commercial precious metal catalyst of dimensionally stable anode (DSA), and the best in the reported carbon materials. The designed carbon materials provide an option for metal-free industrial catalysts with significant CER activities.
Collapse
Affiliation(s)
- Huiqi Qu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yiru Ma
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenyu Xiao
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhiguo Lv
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai, Shanghai, 200433, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
38
|
Lv X, Yang M, Song S, Xia M, Li J, Wei Y, Xu C, Song W, Liu J. Boosting Propane Dehydrogenation by the Regioselective Distribution of Subnanometric CoO Clusters in MFI Zeolite Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898088 DOI: 10.1021/acsami.2c21076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct dehydrogenation of propane (PDH) has already been implemented worldwide in industrial processes to produce value-added propylene. The discovery of earth-abundant and environmentally friendly metal with high activity in C-H cleavage is of great importance. Co species encapsulated within zeolite are highly efficient for catalyzing direct dehydrogenation. However, exploring a promising Co catalyst remains a nontrivial target. Direct control of the regioselective distribution of Co species in the zeolite framework through altering their crystal morphology gives opportunities to modify the metallic Lewis acidic features, thus providing an active and appealing catalyst. Herein, we achieved the regioselective localization of highly active subnanometric CoO clusters in straight channels of siliceous MFI zeolite nanosheets with controllable thickness and aspect ratio. The subnanometric CoO species were identified by different types of spectroscopies, probe measurements, and density functional theory calculations, as the coordination site for the electron-donating propane molecules. The catalyst showed promising catalytic activity for the industrially important PDH with propane conversion of 41.8% and propylene selectivity higher than 95% and was durable during 10 successive regeneration cycles. These findings highlight a green and facile method to synthesize metal-containing zeolitic materials with regioselective metal distribution and also to open up a future perspectives for designing advanced catalysts with integrated advantages of the zeolitic matrix and metal structures.
Collapse
Affiliation(s)
- Xintong Lv
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Min Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Mingji Xia
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
39
|
Meng Y, Sun Q, Zhang T, Zhang J, Dong Z, Ma Y, Wu Z, Wang H, Bao X, Sun Q, Yu J. Cobalt-Promoted Noble-Metal Catalysts for Efficient Hydrogen Generation from Ammonia Borane Hydrolysis. J Am Chem Soc 2023; 145:5486-5495. [PMID: 36820815 DOI: 10.1021/jacs.3c00047] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ammonia borane (AB) has been regarded as a promising material for chemical hydrogen storage. However, the development of efficient, cost-effective, and stable catalysts for H2 generation from AB hydrolysis remains a bottleneck for realizing its practical application. Herein, a step-by-step reduction strategy has been developed to synthesize a series of bimetallic species with small sizes and high dispersions onto various metal oxide supports. Superior to other non-noble metal species, the introduction of Co species can remarkably and universally promote the catalytic activity of various noble metals (e.g., Pt, Rh, Ru, and Pd) in AB hydrolysis reactions. The optimized Pt0.1%Co3%/TiO2 catalyst exhibits a superhigh H2 generation rate from AB hydrolysis, showing a turnover frequency (TOF) value of 2250 molH2 molPt-1 min-1 at 298 K. Such a TOF value is about 10 and 15 times higher than that of the monometal Pt/TiO2 and commercial Pt/C catalysts, respectively. The density functional theory (DFT) calculation reveals that the synergy between Pt and CoO species can remarkably promote the chemisorption and dissociation of water molecules, accelerating the H2 evolution from AB hydrolysis. Significantly, the representative Pt0.25%Co3%/TiO2 catalyst exhibits excellent stability, achieving a record-high turnover number of up to 215,236 at room temperature. The excellent catalytic performance, superior stability, and low cost of the designed catalysts create new prospects for their practical application in chemical hydrogen storage.
Collapse
Affiliation(s)
- Yali Meng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qinghao Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Tianjun Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Zhuoya Dong
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Zhangxiong Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Huifang Wang
- Department of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou 215123, People's Republic of China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People's Republic of China
| | - Jihong Yu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
40
|
Wei YW, Yang G, Xu XX, Liu YY, Li BJ, Wang YZ, Zhao YX. Ultrafine Pt nanoparticles anchored on core-shell structured zeolite-carbon for efficient catalysis of hydrogen generation. RSC Adv 2023; 13:7673-7681. [PMID: 36908540 PMCID: PMC9993129 DOI: 10.1039/d3ra00358b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 03/10/2023] Open
Abstract
Ammonia borane (AB) is a potential hydrogen storage material with high-efficiency hydrolytic dehydrogenation under a suitable catalyst. Noble metal catalysts have drawn a lot of attention. In this study, a carbon-coated zeolite was obtained by calcination at high temperatures using glucose as a carbon source. Pt nanoparticles were fixed on a core-shell composite support by a simple chemical reduction method. A series of catalysts were prepared with different synthesis parameters. The results show that PSC-2 has excellent catalytic performance for hydrolytic dehydrogenation of AB in alkaline solution at room temperature, and the turnover frequency (TOF) is 593 min-1. The excellent catalytic performance is attributed to the carbon layer on the zeolite surface which inhibits the aggregation or deformation of metals in the catalytic reaction. The metal-support interaction activates the water and accelerates the rate-limiting step of hydrolysis. The activation energy (E a = 44 kJ mol-1) was calculated based on the reaction temperature. In addition, the kinetics of AB hydrolysis was studied, and the effects of catalyst concentration, AB concentration and NaOH concentration on AB hydrolysis rate were further investigated. The high-efficiency catalyst prepared in this work provides a new strategy for the development of chemical hydrogen production in the field of catalysis.
Collapse
Affiliation(s)
- Yue-Wei Wei
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Guang Yang
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Xi-Xi Xu
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Yan-Yan Liu
- College of Science, Henan Agricultural University Zhengzhou 450002 China
| | - Bao-Jun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Yong-Zhao Wang
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
| | - Yong-Xiang Zhao
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
| |
Collapse
|
41
|
Zhang SS, Yi J, Cao T, Guan JP, Sun JQ, Zhao QY, Qiu YJ, Ye CL, Xiong Y, Meng G, Chen W, Lin Z, Zhang J. Inserting Single-Atom Zn by Tannic Acid Confinement To Regulate the Selectivity of Pd Nanocatalysts for Hydrogenation Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206052. [PMID: 36549675 DOI: 10.1002/smll.202206052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Precisely controlling the selectivity of nanocatalysts has always been a hot topic in heterogeneous catalysis but remains difficult owing to their complex and inhomogeneous catalytic sites. Herein, an effective strategy to regulate the chemoselectivity of Pd nanocatalysts for selective hydrogenation reactions by inserting single-atom Zn into Pd nanoparticles is reported. Taking advantage of the tannic acid coating-confinement strategy, small-sized Pd nanoparticles with inserted single-atom Zn are obtained on the O-doped carbon-coated alumina. Compared with the pure Pd nanocatalyst, the Pd nanocatalyst with single-atom Zn insertion exhibits prominent selectivity for the hydrogenation of p-iodonitrobenzene to afford the hydrodeiodination product instead of nitro hydrogenation ones. Further computational studies reveal that the single-atom Zn on Pd nanoparticles strengthens the adsorption of the nitro group to avoid its reduction and increases the d-band center of Pd atoms to facilitate the reduction of the iodo group, which leads to enhanced selectivity. This work provides new guidelines to tune the selectivity of nanocatalysts with guest single-atom sites.
Collapse
Affiliation(s)
- Sha-Sha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jun Yi
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01002, USA
| | - Tai Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian-Ping Guan
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jia-Qiang Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
| | - Qin-Ying Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ya-Jun Qiu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Chen-Liang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01002, USA
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
42
|
Song M, Zhang B, Zhai Z, Liu S, Wang L, Liu G. Highly Dispersed Pt Stabilized by ZnO x-Si on Self-Pillared Zeolite Nanosheets for Propane Dehydrogenation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Mingxia Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ziwei Zhai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sibao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
43
|
Liu H, Zhou J, Chen T, Hu P, Xiong C, Sun Q, Chen S, Lo TWB, Ji H. Isolated Pt Species Anchored by Hierarchical-like Heteroatomic Fe-Silicalite-1 Catalyze Propane Dehydrogenation near the Thermodynamic Limit. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Hao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianxiang Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, China
| | - Peng Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingdi Sun
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shenwei Chen
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tsz Woon Benedict Lo
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Huizhou Research Institute, Sun Yat-sen University, Huizhou 516081, China
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
44
|
Zhao R, Wang Y, Ji G, Zhong J, Zhang F, Chen M, Tong S, Wang P, Wu Z, Han B, Liu Z. Partially Nitrided Ni Nanoclusters Achieve Energy-Efficient Electrocatalytic CO 2 Reduction to CO at Ultralow Overpotential. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205262. [PMID: 36413020 DOI: 10.1002/adma.202205262] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR) offers a promising strategy to lower CO2 emission while producing value-added chemicals. A great challenge facing CO2 RR is how to improve energy efficiency by reducing overpotentials. Herein, partially nitrided Ni nanoclusters (NiNx ) immobilized on N-doped carbon nanotubes (NCNT) for CO2 RR are reported, which achieves the lowest onset overpotential of 16 mV for CO2 -to-CO and the highest cathode energy efficiency of 86.9% with CO Faraday efficiency >99.0% to date. Interestingly, NiNx /NCNT affords a CO generation rate of 43.0 mol g-1 h-1 at a low potential of -0.572 V (vs RHE). DFT calculations reveal that the NiNx nanoclusters favor *COOH formation with lower Gibbs free energy than isolated Ni single-atom, hence lowering CO2 RR overpotential. As NiNx /NCNT is applied to a membrane electrode assembly system coupled with oxygen evolution reaction, a cell voltage of only 2.13 V is required to reach 100 mA cm-2 , with total energy efficiency of 62.2%.
Collapse
Affiliation(s)
- Runyao Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiding Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guipeng Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiajun Zhong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meifang Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengrui Tong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
45
|
Li A, Zhang Y, Heard CJ, Gołąbek K, Ju X, Čejka J, Mazur M. Encapsulating Metal Nanoparticles into a Layered Zeolite Precursor with Surface Silanol Nests Enhances Sintering Resistance. Angew Chem Int Ed Engl 2023; 62:e202213361. [PMID: 36342499 DOI: 10.1002/anie.202213361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Supported metal nanoparticles are used as heterogeneous catalysts but often deactivated due to sintering at high temperatures. Confining metal species into a porous matrix reduces sintering, yet supports rarely provide additional stabilization. Here, we used the silanol-rich layered zeolite IPC-1P to stabilize ultra-small Rh nanoparticles. By adjusting the IPC-1P interlayer space through swelling, we prepared various architectures, including microporous and disordered mesoporous. In situ scanning transmission electron microscopy confirmed that Rh nanoparticles are resistant to sintering at high temperature (750 °C, 6 hrs). Rh clusters strongly bind to surface silanol quadruplets at IPC-1P layers by hydrogen transfer to clusters, while high silanol density hinders their migration based on density functional theory calculations. Ultimately, combining swelling with long-chain surfactant and utilizing metal-silanol interactions resulted in a novel, catalytically active material-Rh@IPC_C22.
Collapse
Affiliation(s)
- Ang Li
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Yuyan Zhang
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Kinga Gołąbek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Xiaohui Ju
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| |
Collapse
|
46
|
Chu T, Rong C, Zhou L, Mao X, Zhang B, Xuan F. Progress and Perspectives of Single-Atom Catalysts for Gas Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206783. [PMID: 36106690 DOI: 10.1002/adma.202206783] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) attract extensive attention in the field of heterogeneous catalysis in recent years due to the maximum atom utilization and unique physical and chemical properties. The gas sensing is actually a heterogeneous catalysis process but the SACs are new to this area. Although SACs show huge potential in gas sensing, the SACs gas sensing area currently is still at the infancy stage. This work critically reviews the recent advances and current status of single-atom gas sensing materials. General synthesis routes, characterization methods, and sensing performance indexes are introduced. At the end, the challenges and future prospects on SACs gas sensing are presented from the authors' perspectives. This work is anticipated to provide insights and guideline for the chemical sensing community.
Collapse
Affiliation(s)
- Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lei Zhou
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xinyuan Mao
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fuzhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
47
|
Wang L, Ren Y, Yu X, Peng C, Yu D, Zhong C, Hou J, Yin C, Fan X, Zhao Z, Liu J, Wei Y. Novel preparation method, catalytic performance and reaction mechanisms of PrxMn1-xOδ/3DOM ZSM-5 catalysts for the simultaneous removal of soot and NO. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Size effect of encapsulated metal within zeolite: Biomass, CO2 and Methane utilization. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
He P, Yi Q, Geng H, Shao Y, Liu M, Wu Z, Luo W, Liu Y, Valtchev V. Boosting the Catalytic Activity and Stability of Ru Metal Clusters in Hydrodeoxygenation of Guaiacol through MWW Zeolite Pore Constraints. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ping He
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Qisong Yi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Huawei Geng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Yuanchao Shao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Meng Liu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18, Changping, Beijing 102249, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18, Changping, Beijing 102249, China
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yuanshuai Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
- Laboratoire Catalyse et Spectrochimie, Normandie Univ, ENSICAEN, UNICAEN, CNRS, 6 Boulevard Maréchal Juin, 14050 Caen, France
| |
Collapse
|
50
|
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|