1
|
Wang Y, Zhang F, Yang Y, Wang X, Li L, Li J, Yang J. Optimizing the pore environment in biological metal-organic frameworks through the incorporation of hydrogen bond acceptors for inverse ethane/ethylene separation. J Colloid Interface Sci 2025; 687:439-448. [PMID: 39970584 DOI: 10.1016/j.jcis.2025.02.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
The development of efficient adsorbents for the selective separation of ethane (C2H6) and ethylene (C2H4) is essential for the cost-effective production of high-purity ethylene. Here, we employ a pore engineering strategy to optimize the pore environment of biological metal-organic frameworks (MOFs) by incorporating hydrogen bond receptors to enhance the inverse separation efficiency of C2H6 and C2H4. Compared to the isomorphic Cu-AD-SA, the methyl-functionalized Cu-AD-MSA and Cu-AD-DMSA not only provide suitable pore confinement but also offer additional binding sites, thus creating an optimal environment for strong interactions with C2H6 (AD = adenine, SA = succinic acid, MSA = 2-methylsuccinic acid, and DMSA = 2,2-dimethylsuccinic acid). Adsorption results show that Cu-AD-DMSA exhibits remarkable C2H6/C2H4 selectivity (up to 2.4) as well as outstanding C2H6 adsorption capacity (3.63 mmol g-1), surpassing most reported C2H6-selective MOFs. Theoretical calculations combined with in situ infrared spectroscopy reveal that the synergetic effect of suitable pore confinement, amino groups, and functional surfaces decorated with multiple methyl binding sites provides strong and multipoint interactions for C2H6. Breakthrough experiments demonstrate that Cu-AD-DMSA exhibits exceptional performance in separating binary C2H6/C2H4 gas mixtures. The high chemical and thermal stability, scalable synthesis, and economic viability of Cu-AD-DMSA illustrate its potential as a candidate for C2H6/C2H4 separation application.
Collapse
Affiliation(s)
- Yating Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Feifei Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China.
| | - Yanan Yang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Xiaoqing Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Libo Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Jinping Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Jiangfeng Yang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China.
| |
Collapse
|
2
|
Wang Y, Jiang ZJ, Lu W, Li D. Machine Learning-Assisted Exploration of Chemical Space of MOF-5 Analogs for Enhanced C 2H 6/C 2H 4 Separation. Angew Chem Int Ed Engl 2025; 64:e202500783. [PMID: 40066746 DOI: 10.1002/anie.202500783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Adsorptive separation using C2H6-selective adsorbents can produce high-purity C2H4 directly, making it an energy-efficient separation method with the potential to replace cryogenic distillation. Although many C2H6-selective MOFs have been reported, developing MOFs with both large C2H6 adsorption capacity and high C2H6/C2H4 selectivity remains challenging. Herein, we present a machine learning-assisted molecular simulation strategy to explore the C2H6/C2H4 separation capability of pcu-MOFs isoreticular to MOF-5. The eXtreme gradient boosting (XGBoost) algorithm showed high accuracy in predicting the C2H6/C2H4 selectivity and C2H6 uptake, where Henry coefficient ratio (S0) and Henry coefficient of C2H6 (K(C2H6)) were identified as key factors. We further synthesized the top-performing MOF termed A-66 and experimentally verified its large C2H6 adsorption capacity and excellent C2H6/C2H4 separation performance. This work provides a valuable strategy for exploring the chemical space of MOF-5 analogs and identifying promising candidates for the efficient purification of C2H4 from C2H6/C2H4 mixtures.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zhi-Jie Jiang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Yu C, Wang K, Zhao B, Lin Y, Zhou C, Huo X, Xie B, Wen HM, She Y, Hu J. Engineering Supramolecular Binding Sites in an Ultrastable and Hydrophobic Metal-Organic Framework for C 2H 6/C 2H 4 Separation. Inorg Chem 2025; 64:7746-7752. [PMID: 40193090 DOI: 10.1021/acs.inorgchem.5c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The separation of ethane (C2H6) from ethylene (C2H4) is critical for obtaining polymer-grade C2H4. Adsorptive separation with C2H6-selective MOFs offers a viable alternative to energy-intensive cryogenic distillation, enabling the direct production of high-purity C2H4. In this study, we developed an ultrastable ethane-selective metal-organic framework, UiO-67-(CH3)2, which demonstrates enhanced C2H6 adsorption (4.10 mmol g-1 at 1 bar and 298 K), higher C2H6/C2H4 selectivity of 1.70, and an increased C2H6/C2H4 adsorption ratio of 1.53 compared to unmodified UiO-67. GCMC simulations demonstrate that C2H6 forms more C-H···π interactions with the surrounding benzene rings and more C-H···C interactions with methyl groups compared to C2H4, highlighting the synergistic effects of supramolecular interactions. Furthermore, the hydrophobic pore environment also minimizes water interference, with exceptionally low water uptake (0.019 g g-1 at 60% RH), ensuring robust separation capacity under high humid conditions. The introduction of methyl groups not only significantly enhances C2H6 adsorption performance and C2H6/C2H4 separation selectivity but also improves material's hydrophobicity.
Collapse
Affiliation(s)
- Chenyi Yu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| | - Keke Wang
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| | - Beiyu Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| | - Yiming Lin
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| | - Xianliang Huo
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| | - Bo Xie
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, PR China
| |
Collapse
|
4
|
Chen F, Prasetyo N, Sakaki S, Otake KI, Kitagawa S. Benchmark Paraffin Adsorption in a Super-Hydrophobic Porous Coordination Polymer with Blade-Like Circular Phenyl Nanotraps. Angew Chem Int Ed Engl 2025:e202423371. [PMID: 40226866 DOI: 10.1002/anie.202423371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Selective capture of paraffin from olefin that permits one-step purification of olefin is significantly important, yet developing adsorbents with high selectivity and hydrophobicity remains a daunting challenge. Although aromatic environments can enhance paraffin affinity and hydrophobicity through nonpolar interactions, water adsorption still occurs in regions distant from the aromatic rings, as well as in secondary pores that are always overlooked. Herein, we reported an ultramicroporous porous coordination polymer (ZnFPCP) featuring blade-like circular phenyl paraffin nanotraps. As further validated by density functional tight binding (DFTB) calculations, grand canonical Monte Carlo (GCMC) simulations, and in situ Fourier-tansform infrared absorption (FT-IR) analysis, these ultramicroporous paraffin nanotraps created by surrounding benzene rings enhance the paraffin-selective adsorption, and the segmented spaces between adjacent nanotraps in the blade-like structure, combined with hydrophobic petal-like secondary pore channels enclosed by fluorinated functional groups, further mitigate the water co-adsorption. Remarkably, ZnFPCP exhibited outstanding ideal adsorption solution theory (IAST) selectivity (C3H8/C3H6: 2.08, C2H6/C2H4: 2.93) under ambient conditions and record-breaking C3H8/C2H6 uptake at low pressures. Breakthrough experiments demonstrated the excellent performance of ZnFPCP in olefin purification, affording the exceptional productivity of ultra-high purity (99.99%) for C3H6 and C2H4. Robust stability and super hydrophobicity highlight its potential in harsh industrial application scenarios.
Collapse
Affiliation(s)
- Fuqiang Chen
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Niko Prasetyo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Shigeyoshi Sakaki
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
5
|
Zhang L, Yu B, Wang M, Chen Y, Wang Y, Sun LB, Zhang YB, Zhang Z, Li J, Li L. Ethane Triggered Gate-Opening in a Flexible-Robust Metal-Organic Framework for Ultra-High Purity Ethylene Purification. Angew Chem Int Ed Engl 2025; 64:e202418853. [PMID: 39587938 DOI: 10.1002/anie.202418853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Priority recognition separation of inert and larger ethane molecules from high-concentration ethylene mixtures instead of the traditional thermodynamic or size sieving strategy is a fundamental challenge. Herein, we report ethane triggered gate-opening in the flexible-robust metal-organic framework Zn(ad)(min), the 3-methylisonicotinic acid ligand can spin as a flexible gate when adsorbing the cross-section well-matched ethane molecule, achieving an unprecedented ethane adsorption capacity (62.6 cm3 g-1) and ethane/ethylene uptake ratio (3.34) under low-pressure region (0.1 bar and 298 K). The ethane-induced structural transition behavior has been uncovered by a collaboration of single-crystal X-ray diffraction, in situ variable pressure X-ray diffraction and theoretical calculations, elucidating the synergetic mechanism of cross-section matching and multiple supramolecular interactions within the tailor-made pore channels. Dynamic breakthrough experiments have revealed the outstanding separation performance of Zn(ad)(min) during the production of ultra-high purity ethylene (>99.995 %) with a productivity of up to 39.2 L/kg under ambient conditions.
Collapse
Affiliation(s)
- Lu Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Bin Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Meng Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Yang Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Yong Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan, 030024, Shanxi, P. R. China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yue-Biao Zhang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan, 030024, Shanxi, P. R. China
| | - Libo Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| |
Collapse
|
6
|
Yang R, Zhang T, Wang J, Zhang X, Cao JW, Wang Y, Chen KJ. A Pillared-Layer Coordination Network for One-Step Ethylene Production from Ternary CO 2/C 2H 2/C 2H 4 Gas Mixture. CHEM & BIO ENGINEERING 2025; 2:35-40. [PMID: 39975808 PMCID: PMC11835269 DOI: 10.1021/cbe.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 02/21/2025]
Abstract
One-step separation of ethylene (C2H4) from multicomponent mixtures poses significant challenges in the petrochemical industry due to the high similarity of involved gas molecules. Herein, we report a pillared-layer coordination network named Zn-fa-mtrz (H2fa = fumaric acid; Hmtrz = 3-methyl-1,2,4-triazole) possessing pore surfaces decorated with methyl groups and electronegative N/O atoms. Molecular modeling reveals that the pore surface of Zn-fa-mtrz provides more and stronger multiple interaction sites to simultaneously enhance the adsorption affinity for CO2 and C2H2 other than C2H4. The experimental and simulated breakthrough experiments demonstrate the ability to produce high-purity C2H4 (>99.97%) in one-step from ternary CO2/C2H2/C2H4 gas mixtures.
Collapse
Affiliation(s)
| | | | - Jinbo Wang
- Xi’an Key Laboratory
of Functional Organic Porous Materials, School of Chemistry and Chemical
Engineering, Northwestern Polytechnical
University, 1 Dongxiang Road, Xi’an, Shaanxi 710072, P. R. China
| | - Xue Zhang
- Xi’an Key Laboratory
of Functional Organic Porous Materials, School of Chemistry and Chemical
Engineering, Northwestern Polytechnical
University, 1 Dongxiang Road, Xi’an, Shaanxi 710072, P. R. China
| | - Jian-Wei Cao
- Xi’an Key Laboratory
of Functional Organic Porous Materials, School of Chemistry and Chemical
Engineering, Northwestern Polytechnical
University, 1 Dongxiang Road, Xi’an, Shaanxi 710072, P. R. China
| | - Yu Wang
- Xi’an Key Laboratory
of Functional Organic Porous Materials, School of Chemistry and Chemical
Engineering, Northwestern Polytechnical
University, 1 Dongxiang Road, Xi’an, Shaanxi 710072, P. R. China
| | - Kai-Jie Chen
- Xi’an Key Laboratory
of Functional Organic Porous Materials, School of Chemistry and Chemical
Engineering, Northwestern Polytechnical
University, 1 Dongxiang Road, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
7
|
Jiang X, Wang Y, Wang H, Cheng L, Cao JW, Wang JB, Yang R, Zhang DH, Zhang RY, Yang XB, Wang SH, Zhang QY, Chen KJ. Integration of ordered porous materials for targeted three-component gas separation. Nat Commun 2025; 16:694. [PMID: 39814727 PMCID: PMC11735896 DOI: 10.1038/s41467-025-55991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Separation of multi-component mixtures in an energy-efficient manner has important practical impact in chemical industry but is highly challenging. Especially, targeted simultaneous removal of multiple impurities to purify the desired product in one-step separation process is an extremely difficult task. We introduced a pore integration strategy of modularizing ordered pore structures with specific functions for on-demand assembly to deal with complex multi-component separation systems, which are unattainable by each individual pore. As a proof of concept, two ultramicroporous nanocrystals (one for C2H2-selective and the other for CO2-selective) as the shell pores were respectively grown on a C2H6-selective ordered porous material as the core pore. Both of the respective pore-integrated materials show excellent one-step ethylene production performance in dynamic breakthrough separation experiments of C2H2/C2H4/C2H6 and CO2/C2H4/C2H6 gas mixture, and even better than that from traditional tandem-packing processes originated from the optimized mass/heat transfer. Thermodynamic and dynamic simulation results explained that the pre-designed pore modules can perform specific target functions independently in the pore-integrated materials.
Collapse
Affiliation(s)
- Xue Jiang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yu Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hui Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Lu Cheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jian-Wei Cao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jin-Bo Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Rong Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dong-Hui Zhang
- The Research Center of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Run-Ye Zhang
- The Research Center of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiu-Bo Yang
- Analytical & Testing Center of Northwestern Polytechnical University, Xian, Shaanxi, China
| | - Su-Hang Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Qiu-Yu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Lee SM, Yun H, Kang M, Kim H, Kang DW, Hong CS. Tailored Postsynthetic Nitration of a Hypercrosslinked Polymer for Single-Step Ethylene Purification from a Ternary C 2 Gas Mixture. CHEMSUSCHEM 2025; 18:e202400595. [PMID: 39017979 DOI: 10.1002/cssc.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
Purifying C2H4 from a ternary C2H2/C2H4/C2H6 mixture poses a substantial industrial challenge due to their close physical and chemical properties. In this study, we introduce an innovative design approach to regulate and optimize the nitration degree of a hypercrosslinked polymer to achieve targeted separation performance. We synthesized a porous organic polymer (HCP) using the solvent knitting method and carried out its postsynthetic nitration, resulting in HCP-NO2-1 and HCP-NO2-2 with different nitration degrees. Notably, the adsorption capacity shifted from C2H6 > C2H4 ≈ C2H2 for HCP to C2H2 > C2H6 > C2H4 for HCP-NO2-1 and to C2H2 > C2H4 ≈ C2H6 for HCP-NO2-2, demonstrating the controllable nature of the separation process via the polar nitro group insertion. Remarkably, HCP-NO2-1 exhibited a desirable, selective separation of C2H4 from the C2H6/C2H4/C2H2 mixture thanks to an exquisite combination of the acidic proton-polar nitro group and nonpolar C-H⋅⋅⋅π interactions. Separation capability was further corroborated by computational simulations and breakthrough tests. This work marks a significant advancement as the first successful postsynthetic functionalization strategy for C2H4 purification from a ternary gas mixture among porous organic polymers.
Collapse
Affiliation(s)
- Su Min Lee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Virender V, Pandey V, Singh G, Sharma PK, Bhatia P, Solovev AA, Mohan B. Hybrid Metal-Organic Frameworks (MOFs) for Various Catalysis Applications. Top Curr Chem (Cham) 2024; 383:3. [PMID: 39671137 DOI: 10.1007/s41061-024-00486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Porous materials have been gaining popularity in catalysis applications, solving the current ecological challenges. Metal-organic frameworks (MOFs) are especially noteworthy for their high surface areas and customizable chemistry, giving them a wide range of potential applications in catalysis remediation. The review study delves into the various applications of MOFs in catalysis and provides a comprehensive summary. This review thoroughly explores MOF materials, specifically focusing on their diverse catalytic applications, including Lewis catalysis, oxidation, reduction, photocatalysis, and electrocatalysis. Also, this study emphasizes the significance of high-performance MOF materials, which possess adjustable properties and exceptional features, as a novel approach to tackling technological challenges across multiple sectors. MOFs make it an ideal candidate for catalytic reactions, as it enables efficient conversion rates and selectivity. Furthermore, the tunable properties of MOF make it possible to tailor its structure to suit specific catalytic requirements. This feature improves performance and reduces costs associated with traditional catalysts. In conclusion, MOF materials have revolutionized the field of catalysis and offer immense potential in solving various technological challenges across different industries.
Collapse
Affiliation(s)
- Virender Virender
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Vandana Pandey
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Pawan Kumar Sharma
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendragarh, 123031, Haryana, India
| | - Pankaj Bhatia
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Alexander A Solovev
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
10
|
Zhang X, Chen Q, Bai X, Zhao YL, Li JR. Achieving Record C 2H 2 Packing Density for Highly Efficient C 2H 2/C 2H 4 Separation with a Metal-Organic Framework Prepared by a Scalable Synthesis in Water. Angew Chem Int Ed Engl 2024; 63:e202411744. [PMID: 39012658 DOI: 10.1002/anie.202411744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024]
Abstract
Adsorptive C2H2/C2H4 separation using metal-organic frameworks (MOFs) has emerged as a promising technology for the removal of C2H2 (acetylene) impurity (1 %) from C2H4 (ethylene). The practical application of these materials involves the optimization of separation performance as well as development of scalable and green production protocols. Herein, we report the efficient C2H2/C2H4 separation in a MOF, Cu(OH)INA (INA: isonicotinate) which achieves a record C2H2 packing density of 351 mg cm-3 at 0.01 bar through high affinity towards C2H2. DFT (density functional theory) calculations reveal the synergistic binding mechanism through pore confinement and the oxygen sites in pore wall. The weakly basic nature of binding sites leads to a relatively low heat of adsorption (Qst) of approximately 36 kJ/mol, which is beneficial for material regeneration and thermal management. Furthermore, a scalable and environmentally friendly synthesis protocol with a high space-time yield of 544 kg m-3 day-1 has been developed without using any modulating agents. This material also demonstrates enduring separation performance for multiple cycles, maintaining its efficacy after exposure to water or air for three months.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qiancheng Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Xuefeng Bai
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
11
|
Zhang LP, Guan GW, Li YT, Liu HR, Zheng ST, Jiang Y, Bai R, Yang QY. Amino-Functionalized Metal-Organic Frameworks Featuring Ultra-Strong Ethane Nano-Traps for Efficient C 2H 6/C 2H 4 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402382. [PMID: 39118549 DOI: 10.1002/smll.202402382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra-strong C2H6 nano-trap, CuIn(3-ain)4 is presented, which utilizes multiple guest-host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra-strong C2H6 nano-trap exhibits the high C2H6 (2.38 mmol g-1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L-1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3-ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single-crystal X-ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3-ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures.
Collapse
Affiliation(s)
- Li-Ping Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guo-Wei Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yi-Tao Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hao-Ran Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Su-Tao Zheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yu Jiang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rui Bai
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
12
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
13
|
Ke Q, Xiong F, Fang G, Chen J, Niu X, Pan P, Cui G, Xing H, Lu H. The Reinforced Separation of Intractable Gas Mixtures by Using Porous Adsorbents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408416. [PMID: 39161083 DOI: 10.1002/adma.202408416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 08/21/2024]
Abstract
This review focuses on the mechanism and driving force in the intractable gas separation using porous adsorbents. A variety of intractable mixtures have been discussed, including air separation, carbon capture, and hydrocarbon purification. Moreover, the separation systems are categorized according to distinctly biased modes depending on the minor differences in the kinetic diameter, dipole/quadruple moment, and polarizability of the adsorbates, or sorted by the varied separation occasions (e.g., CO2 capture from flue gas or air) and driving forces (thermodynamic and kinetic separation, molecular sieving). Each section highlights the functionalization strategies for porous materials, like synthesis condition optimization and organic group modifications for porous carbon materials, cation exchange and heteroatom doping for zeolites, and metal node-organic ligand adjustments for MOFs. These functionalization strategies are subsequently associated with enhanced adsorption performances (capacity, selectivity, structural/thermal stability, moisture resistance, etc.) toward the analog gas mixtures. Finally, this review also discusses future challenges and prospects for using porous materials in intractable gas separation. Therein, the combination of theoretical calculation with the synthesis condition and adsorption parameters optimization of porous adsorbents may have great potential, given its fast targeting of candidate adsorbents and deeper insights into the adsorption forces in the confined pores and cages.
Collapse
Affiliation(s)
- Quanli Ke
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Feng Xiong
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guonan Fang
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jing Chen
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaopo Niu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Pengyun Pan
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guokai Cui
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huabin Xing
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanfeng Lu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
14
|
Yin X, Zhang H, Qiao X, Zhou X, Xue Z, Chen X, Ye H, Li C, Tang Z, Zhang K, Wang T. Artificial olfactory memory system based on conductive metal-organic frameworks. Nat Commun 2024; 15:8409. [PMID: 39333101 PMCID: PMC11436733 DOI: 10.1038/s41467-024-52567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
The olfactory system can generate unique sensory memories of various odorous molecules, guiding emotional and cognitive decisions. However, most existing electronic noses remain constrained to momentary concentration, failing to trigger specific memories for different smells. Here, we report an artificial olfactory memory system utilizing conductive metal-organic frameworks (Ce-HHTP) that integrates sensing and memory and exhibits short- and long-term memory responses to alcohols and aldehydes. Experiments and theoretical calculations show that distinct memories are derived from the specific combinations of Ce-HHTP with O atoms in different guest. An unmanned aircraft equipped with this system realized the sensory memories in established areas. Moreover, the fusion of portable detection boxes and wearable flexible electrodes demonstrated the immense potential in off-site pollution monitoring and health management. This work represents an artificial olfactory memory system with two specific sensory memories under simultaneous conditions, laying the foundation for bionic design with qualities of human olfactory memory.
Collapse
Affiliation(s)
- Xiaomeng Yin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hao Zhang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinyuan Zhou
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China
| | - Zhenjie Xue
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
| | - Haochen Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Cancan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhe Tang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China.
| | - Kailin Zhang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China.
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China.
| |
Collapse
|
15
|
Gebremariam S, Varghese AM, Ehrling S, Al Wahedi Y, AlHajaj A, Dumée LF, Karanikolos GN. Hierarchically Porous Structured Adsorbents with Ultrahigh Metal-Organic Framework Loading for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50785-50799. [PMID: 39282713 PMCID: PMC11440468 DOI: 10.1021/acsami.4c10730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising candidates for CO2 adsorption due to their ultrahigh-specific surface area and highly tunable pore-surface properties. However, their large-scale application is hindered by processing issues associated with their microcrystalline powder nature, such as dustiness, pressure drop, and poor mass transfer within packed beds. To address these challenges, shaping/structuring micron-sized polycrystalline MOF powders into millimeter-sized structured forms while preserving porosity and functionality represents an effective yet challenging approach. In this study, a facile and versatile strategy was employed to integrate moisture-stable and scalable microcrystalline MOFs (UiO-66 and ZIF-8) into a poly(acrylonitrile) matrix to fabricate readily processable, millimeter-sized hierarchically porous structured adsorbents with ultrahigh MOF loadings (∼90 wt %) for direct industrial carbon capture applications. These structured composite beads retained the physicochemical properties and separation performance of the pristine MOF crystal particles. Structured UiO-66 and ZIF-8 exhibited high specific surface areas of 1130 m2 g-1 and 1431 m2 g-1, respectively. The structured UiO-66 achieved a CO2 adsorption capacity of 2.0 mmol g-1 at 1 bar and a dynamic CO2/N2 selectivity of 17 for a CO2/N2 gas mixture with a 15/85 volume ratio at 25 °C. Furthermore, the structured adsorbents exhibited excellent cyclability in static and dynamic CO2 adsorption studies, making them promising candidates for practical application.
Collapse
Affiliation(s)
- Solomon
K. Gebremariam
- Department
of Chemical and Petroleum Engineering, Khalifa
University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box
127788, Abu Dhabi 127788, United Arab Emirates
| | - Anish Mathai Varghese
- Department
of Chemical and Petroleum Engineering, Khalifa
University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box
127788, Abu Dhabi 127788, United Arab Emirates
| | - Sebastian Ehrling
- 3P
Instruments GmbH & Co. KG, Bitterfelder Str. 1-5, Leipzig 04129, Germany
| | - Yasser Al Wahedi
- Abu
Dhabi Maritime Academy, P.O. Box 54477, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed AlHajaj
- Department
of Chemical and Petroleum Engineering, Khalifa
University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
and Innovation Center on CO2 and H2 (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ludovic F. Dumée
- Department
of Chemical and Petroleum Engineering, Khalifa
University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
and Innovation Center on 2D nanomaterials (RIC-2D), Khalifa University, Arzanah precinct, Sas Al Nakhl, P.O. Box 127788, Abu Dhabi, 127788, United
Arab Emirates
| | - Georgios N. Karanikolos
- Department
of Chemical Engineering, University of Patras, Patras, 26504, Greece
- Institute
of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas
(FORTH/ICE-HT), Patras, 26504, Greece
| |
Collapse
|
16
|
Wang JB, Zhang T, Cao JW, Yang R, Wang SH, Zhang X, Chen KJ. A Scalable Ultramicroporous Coordination Network for Ethylene Separation from the Quaternary Mixture. Inorg Chem 2024; 63:17298-17304. [PMID: 39238210 DOI: 10.1021/acs.inorgchem.4c03193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Adsorptive ethylene separation from the C2H2/C2H4/C2H6/CO2 four-component gas mixture provides a low-energy input solution for industrial ethylene purification, yet it is still a great challenge. Herein, we report a facile scaled-up synthesis of a stable ultramicroporous coordination network of Zn-CO3-datz (Hdatz = 3,5-diamine-1,2,4-triazole), which enables selective adsorption of C2H2, C2H4 and CO2 over C2H4, thanks to its specific pore environment supported by GCMC simulation of gas adsorption sites. Dynamic breakthrough experiments exhibited efficient one-step production of polymer-grade (≥99.95%) C2H4 from the quaternary C2H4/C2H2/C2H6/CO2 (1/1/1/1) mixture, with excellent C2H4 productivity of 0.12 mol kg-1 at 298 K. Moreover, it can be easily synthesized in kilogram scale with an affordable and low-cost ligand, rendering its further potential industrial applications.
Collapse
Affiliation(s)
- Jin-Bo Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tao Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jian-Wei Cao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Rong Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Su-Hang Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xue Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
17
|
Pei J, Wang JX, Shao K, Yang Y, Cui Y, Wu H, Zhou W, Li B, Qian G. Engineering microporous ethane-trapping metal-organic frameworks for boosting ethane/ethylene separation. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 342:10.1016/j.seppur.2024.127011. [PMID: 39397880 PMCID: PMC11467816 DOI: 10.1016/j.seppur.2024.127011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Realization of ethane-trapping materials for separating ethane (C2H6) from ethylene (C2H4) by adsorption, to potentially replace the energy-intensive cryogenic distillation technology, is of prime importance in the petrochemical industry. It is still very challenging to target C2H6-selective adsorbents with both high C2H6 capture capacity and gas selectivity. Herein, we report that a crystal engineering or reticular chemistry strategy enables the control of pore size and functionality in a family of isomorphic metal-organic frameworks (MOFs) for boosting the C2H6 uptake and selectivity simultaneously. By altering the carboxylic acid linker in Ni(bdc)(ted)0.5, we developed two novel isoreticular MOFs, Ni(ndc)(ted)0.5 and Ni(adc)(ted)0.5 (termed ZJU-120 and ZJU-121, respectively), in which the pore sizes and nonpolar aromatic rings can be finely engineered. We discover that activated ZJU-120a with the optimized pore size (4.4 Å) and aromatic rings exhibits both a very high C2H6 uptake (96 cm3 g-1 at 0.5 bar and 296 K) and C2H6/C2H4 selectivity (2.74), outperforming most of the C2H6-selective MOFs reported. Computational studies indicate that the suitable pore size and more nonpolar aromatic rings on the pore surfaces of ZJU-120a mainly contribute to its exceptional C2H6 uptake and selectivity. The breakthrough experiments demonstrate that ZJU-120a can efficiently separate C2H6 from 50/50 and 10/90C2H6/C2H4 mixtures under ambient conditions.
Collapse
Affiliation(s)
- Jiyan Pei
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia-Xin Wang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Shao
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Yang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Bin Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Li X, Bezrukov AA, Graham W, Sensharma D, Kong XJ, Thonhauser T, Zaworotko MJ. Modulation of Water Vapor Sorption by Pore Engineering in Isostructural Square Lattice Topology Coordination Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34402-34408. [PMID: 38902851 PMCID: PMC11232023 DOI: 10.1021/acsami.4c06412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
We report a crystal-engineering study conducted upon a platform of three mixed-linker square lattice (sql) coordination networks of general formula [Zn(Ria)(bphy)] [bphy = 1,2-bis(pyridin-4-yl)hydrazine, H2Ria = 5-position-substituted isophthalic acid, and R = -Br, -NO2, and -OH; compounds 1-3]. Analysis of single-crystal X-ray diffraction data of 1-2 and the simulated crystal structure of 3 revealed that 1-3 are isomorphous and sustained by bilayers of sql networks linked by hydrogen bonds. Although similar pore shapes and sizes exist in 1-3, distinct isotherm shapes (linear and S shape) and uptakes (2.4, 11.6, and 13.3 wt %, respectively) were observed. Ab initio calculations indicated that the distinct water sorption properties can be attributed to the R groups, which offer a range of hydrophilicity. Calculations indicated that the significantly lower experimental uptake in compound 1 can be attributed to a constricted channel. The calculated water-binding sites provide insights into how adsorbed water molecules bond to the pore walls, with the strongest interactions, water-hydroxyl hydrogen bonding, observed for 3. Overall, this study reveals how pore engineering can result in large variations in water sorption properties in an isomorphous family of rigid porous coordination networks.
Collapse
Affiliation(s)
- Xia Li
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Andrey A. Bezrukov
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Wells Graham
- Department
of Physics and Center for Functional Materials, Wake Forest University, Winston–Salem, North Carolina 27109, United States
| | - Debobroto Sensharma
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Xiang-Jing Kong
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Timo Thonhauser
- Department
of Physics and Center for Functional Materials, Wake Forest University, Winston–Salem, North Carolina 27109, United States
| | - Michael J. Zaworotko
- Department
of Chemical Science, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
19
|
Fu XP, Liu QY, Wang YL. Metal-Organic Framework Featuring Cubic Caged Structures for One-Step Ethylene Purification from Ethylene/Ethane Mixtures. Inorg Chem 2024; 63:12309-12315. [PMID: 38889441 DOI: 10.1021/acs.inorgchem.4c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Separation of C2H6/C2H4 mixtures is of significant importance in the chemical industry but remains a challenge due to the physicochemical similarities of C2H6 and C2H4. Herein, a metal-organic framework (MOF), [Zn4(μ4-O)(PCTF)3]n (Zn-PCTF) (PCTF2-= 5-trifluoromethyl-1H-pyrazole-4-carboxylic), is provided for the removal of C2H6 from C2H6/C2H4 mixtures. Zn-PCTF displays a three-dimensional framework featuring one-dimensional pore channels with periodic bottleneck segments. The well-balanced C2H6 adsorption capacity (79.0 cm3 g-1 at 298 K) and C2H6/C2H4 selectivity (1.8) for Zn-PCTF under ambient conditions boost Zn-PCTF with highly promising potentials for efficient purification of C2H4 from C2H6/C2H4 mixtures, which is verified by the dynamic column breakthrough experiments. The well-matched caged pores and suitable pore chemistry (particularly the presence of abundant Lewis base sites (N, O, and F) on the pore surfaces) for C2H6 account for the high-performance C2H6/C2H4 separation of Zn-PCTF unveiled by computational simulations.
Collapse
Affiliation(s)
- Xing-Ping Fu
- Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan ,Fujian 354300, P. R. China
| | - Qing-Yan Liu
- Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan ,Fujian 354300, P. R. China
- College of Chemistry and Chemical Engineering, National Engineering Research Centre for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang ,Jiangxi 330022, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, National Engineering Research Centre for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang ,Jiangxi 330022, P. R. China
| |
Collapse
|
20
|
Li H, Chen C, Li Q, Kong XJ, Liu Y, Ji Z, Zou S, Hong M, Wu M. An Ultra-stable Supramolecular Framework Based on Consecutive Side-by-side Hydrogen Bonds for One-step C 2H 4/C 2H 6 Separation. Angew Chem Int Ed Engl 2024; 63:e202401754. [PMID: 38380833 DOI: 10.1002/anie.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
The one-step efficient separation of high-purity C2H4 from C2H4/C2H6 mixtures by hydrogen-bonded organic frameworks (HOFs) faces two problems: lack of strategies for constructing stable pores in HOFs and how to obtain high C2H6 selectivity. Herein, we have developed a microporous Mortise-Tenon-type HOF (MTHOF-1, MT is short for Mortise-Tenon structure) with a new self-assembly mode for C2H4/C2H6 separation. Unlike previous HOFs which usually possess discrete head-to-head hydrogen bonds, MTHOF-1 is assembled by unique consecutive side-by-side hydrogen bonds, which result in mortise-and-tenon pores decorated with orderly arranged amide groups and benzene rings. As expected, MTHOF-1 exhibits excellent stability under various conditions and shows clear separation trends for C2H6/C2H4. The IAST selectivity is as high as 2.15 at 298 K. More importantly, dynamic breakthrough experiments have demonstrated that MTHOF-1 can effectively separate the C2H6/C2H4 feed gas to obtain polymer-grade C2H4 in one step even under high-humidity conditions.
Collapse
Affiliation(s)
- Hengbo Li
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Cheng Chen
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qing Li
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiang Jian Kong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen, Fujian, 361005, China
| | - Yuanzheng Liu
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhenyu Ji
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shuixiang Zou
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Mingyan Wu
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Wang L, Wu S, Hu J, Jiang Y, Li J, Hu Y, Han Y, Ben T, Chen B, Zhang Y. A novel hydrophobic carborane-hybrid microporous material for reversed C 2H 6 adsorption and efficient C 2H 4/C 2H 6 separation under humid conditions. Chem Sci 2024; 15:5653-5659. [PMID: 38638230 PMCID: PMC11023043 DOI: 10.1039/d4sc00424h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/10/2024] [Indexed: 04/20/2024] Open
Abstract
Since ethylene (C2H4) is important feedstock in the chemical industry, developing economical and energy-efficient adsorption separation techniques based on ethane (C2H6)-selective adsorbents to replace the energy-intensive cryogenic distillation is highly demanded, which however remains a daunting challenge. While previous anionic boron cluster hybrid microporous materials display C2H4-selective features, we herein reported that the incorporation of a neutral para-carborane backbone and aliphatic 1,4-diazabicyclo[2.2.2]octane (DABCO) enables the reversed adsorption of C2H6 over C2H4. The generated carborane-hybrid microporous material ZNU-10 (ZNU = Zhejiang Normal University) is highly stable in humid air and maintains good C2H6/C2H4 separation performance under high humidity. Gas loaded single crystal structure and density-functional theory (DFT) calculations revealed that the weakly polarized carborane and DABCO within ZNU-10 induce more specific C-Hδ+⋯Hδ--B dihydrogen bonds and other van der Waals interactions with C2H6, while the suitable pore space allows the high C2H6 uptake. Approximately 14.5 L kg-1 of polymer grade C2H4 can be produced from simulated C2H6/C2H4 (v/v 10/90) mixtures under ambient conditions in a single step, comparable to those of many popular materials.
Collapse
Affiliation(s)
- Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| | - Shuangshuang Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| | - Jianbo Hu
- Zhejiang Lab Hangzhou 311100 P. R. China
| | - Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| | - Jiahao Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| | - Yongqi Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| | - Yan Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| | - Teng Ben
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University Jinhua 321004 China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University Fuzhou 350007 P. R. China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
22
|
Liang ZL, Zhang ZH, Jiao YE, Xu H, Hu HS, Zhao B. Highly Stable 72-Nuclearity Nanocages for Efficient Synthesis of Aryl Nitriles via Ni/Cu Synergistic Catalysis. J Am Chem Soc 2024; 146:10776-10784. [PMID: 38578219 DOI: 10.1021/jacs.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Seeking noble-metal-free catalysts for efficient synthesis of aryl nitriles under mild conditions poses a significant challenge due to the use of hypertoxic cyanides or high-pressure/temperature NH3/O2 in conventional synthesis processes. Herein, we developed a novel framework 1 assembled by [Ni72] nanocages with excellent solvents/pH stability. To investigate the structure-activity relationship of catalytic performance, several isostructural MOFs with different molar ratios of Ni/Cu by doping Cu2+ into framework 1 (Ni0.59Cu0.41 (2), Ni0.81Cu0.19 (3), Ni0.88Cu0.12 (4), and Ni0.92Cu0.08 (5)) were prepared. Catalytic studies revealed that catalyst 3 exhibited remarkable performance in the synthesis of aryl nitriles, utilizing a formamide alternative to hypertoxic NaCN/KCN. Notably, catalyst 3 achieved an excellent TOF value of 9.8 h-1. Furthermore, catalyst 3 demonstrated its applicability in a gram-scale experiment and maintained its catalytic performance even after six recycling cycles, owing to its high stability resulting from significant electrostatic and orbital interactions between the Ni center and ligands as well as a large SOMO-LUMO energy gap supported by DFT calculations. Control experiments and DFT calculations further revealed that the excellent catalytic performance of catalyst 3 originated from the synergistic effect of Ni/Cu. Importantly, this work not only provides a highly feasible method to construct highly stable MOFs containing multinuclear nanocages with exceptional catalytic performance but also represents the first example of a heterogeneous catalyst for the synthesis of aryl nitriles using formamide as the cyanide source.
Collapse
Affiliation(s)
- Ze-Long Liang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zi-He Zhang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yue-E Jiao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Wang GD, Li YZ, Krishna R, Zhang WY, Hou L, Wang YY, Zhu Z. Scalable Synthesis of Robust MOF for Challenging Ethylene Purification and Propylene Recovery with Record Productivity. Angew Chem Int Ed Engl 2024; 63:e202319978. [PMID: 38369652 DOI: 10.1002/anie.202319978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Ethylene (C2H4) purification and propylene (C3H6) recovery are highly relevant in polymer synthesis, yet developing physisorbents for these industrial separation faces the challenges of merging easy scalability, economic feasibility, high moisture stability with great separation efficiency. Herein, we reported a robust and scalable MOF (MAC-4) for simultaneous recovery of C3H6 and C2H4. Through creating nonpolar pores decorated by accessible N/O sites, MAC-4 displays top-tier uptakes and selectivities for C2H6 and C3H6 over C2H4 at ambient conditions. Molecular modelling combined with infrared spectroscopy revealed that C2H6 and C3H6 molecules were trapped in the framework with stronger contacts relative to C2H4. Breakthrough experiments demonstrated exceptional separation performance for binary C2H6/C2H4 and C3H6/C2H4 as well as ternary C3H6/C2H6/C2H4 mixtures, simultaneously affording record productivities of 27.4 and 36.2 L kg-1 for high-purity C2H4 (≥99.9 %) and C3H6 (≥99.5 %). MAC-4 was facilely prepared at deckgram-scale under reflux condition within 3 hours, making it as a smart MOF to address challenging gas separations.
Collapse
Affiliation(s)
- Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
24
|
Wang Y, Zhao X, Han S, Wang Y. Efficient Ethane and Propane Separation from Natural Gas Using Heterometallic Metal-Organic Frameworks with Interpenetrated Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10468-10474. [PMID: 38359417 DOI: 10.1021/acsami.3c15612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The development of efficient technology for natural gas separation in industrial processes has become imperative. In this regard, the exploration of novel and effective adsorbents has gained significant attention. One promising approach is the metal regulation of metal-organic frameworks (MOFs), particularly heterometallic MOFs, which offer greater potential for gas separation due to their diverse composition. This study presents the synthesis of a series of iron- and vanadium-based heterometallic MOFs (MIL-126), featuring interpenetrated structures, and investigates their adsorption performance for methane (CH4), ethane (C2H6), and propane (C3H8). Experimental results reveal that the choice of metal combinations within the MOF framework significantly influences the adsorption performance of MIL-126. Notably, heterometallic MIL-126(Fe/Ni) exhibits a stronger binding affinity for C3H8, with an impressive uptake of 177 cm3/g. The C3H8/CH4 ideal adsorbed solution theory selectivity of MIL-126(Fe/Ni) surpasses that of MIL-126(Fe) by a factor of 7, reaching a value of 853, second only to the highest reported value. Furthermore, MIL-126(Fe/Ni) exhibits remarkable potential for the recovery of pure CH4 from the equimolar C3H8/CH4 mixture, with the amount of pure CH4 approaching the maximum reported value for MOFs. Insights from isosteric heat at zero loading and Henry's coefficients indicate that the transformation of metal types leads to a change in the interaction energy between C3H8 and the framework. Furthermore, breakthrough experiments validate the effective separation capability of MIL-126(Fe/Ni) for CH4/C2H6/C3H8 mixtures. These findings underscore the remarkable potential of heterometallic MOFs in constructing a wide range of new MOFs with tailorable properties, thereby enhancing their gas separation performance.
Collapse
Affiliation(s)
- Yong Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Joint Laboratory of Coal Based Solid Waste Resource Utilization and Green Ecological Development, Taiyuan 030024, China
| | - Xuanyu Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Joint Laboratory of Coal Based Solid Waste Resource Utilization and Green Ecological Development, Taiyuan 030024, China
| | - Shaoxiong Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Joint Laboratory of Coal Based Solid Waste Resource Utilization and Green Ecological Development, Taiyuan 030024, China
| | - Yongzhen Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Joint Laboratory of Coal Based Solid Waste Resource Utilization and Green Ecological Development, Taiyuan 030024, China
| |
Collapse
|
25
|
Zheng X, Qiu W, Cui J, Liu H, Zhao Y, Zhang J, Zhang Z, Zhao Y. Donor-Acceptor Interactions Enhanced Colorimetric Sensors for Both Acid and Base Vapor Based on Two-Dimensional Covalent Organic Frameworks. Chemistry 2024; 30:e202303004. [PMID: 38189555 DOI: 10.1002/chem.202303004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 01/09/2024]
Abstract
Due to the high surface area and uniform porosity of covalent organic frameworks (COFs), they exhibit superior properties in capturing and detecting even trace amounts of gases in the air. However, the COFs materials that possess dual detected functionality are still less reported. Here, an imine-based COF containing thiophene as a donor and triazine as an acceptor to form spatial-distribution-defined D-A structures was prepared. D-A system between thiophene and triazine facilitates the charge transfer process during the protonation process of the imine and the triazine units. The obtained COF exhibits simultaneous sensing ability toward both acidic and alkaline vapors with obvious colorimetric sensing functionality.
Collapse
Affiliation(s)
- Xuhan Zheng
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Wenqi Qiu
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jialin Cui
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Hui Liu
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Yunzheng Zhao
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jianming Zhang
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Zhenxiu Zhang
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Yingjie Zhao
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| |
Collapse
|
26
|
Guo P, Ying Y, Liu D. One Scalable and Stable Metal-Organic Framework for Efficient Separation of CH 4/N 2 Mixture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7338-7344. [PMID: 38301114 DOI: 10.1021/acsami.3c18378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Separating CH4 from coal bed methane is of great importance but challenging. Adsorption-based separation often suffers from low selectivity, poor stability, and difficulty to scale up. Herein, a stable and scalable metal-organic framework [MOF, CoNi(pyz-NH2)] with multiple CH4 binding sites was reported to efficiently separate the CH4/N2 mixture. Due to its suitable pore size and multiple CH4 binding sites, it exhibits excellent CH4/N2 selectivity (16.5) and CH4 uptake (35.9 cm3/g) at 273 K and 1 bar, which is comparable to that of the state-of-the-art MOFs. Theoretical calculations reveal that the high density of open metal sites and polar functional groups in the pores provide strong affinity to CH4 than to N2. Moreover, CoNi(pyz-NH2) displays excellent structural stability and can be scale-up synthesized (22.7 g). This work not only provides an excellent adsorbent but also provides important inspiration for the future design and preparation of porous adsorbents for separations.
Collapse
Affiliation(s)
- Pengtao Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunpan Ying
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
27
|
Yang R, Wang Y, Cao JW, Ye ZM, Pham T, Forrest KA, Krishna R, Chen H, Li L, Ling BK, Zhang T, Gao T, Jiang X, Xu XO, Ye QH, Chen KJ. Hydrogen bond unlocking-driven pore structure control for shifting multi-component gas separation function. Nat Commun 2024; 15:804. [PMID: 38280865 PMCID: PMC10821866 DOI: 10.1038/s41467-024-45081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
Purification of ethylene (C2H4) as the most extensive and output chemical, from complex multi-components is of great significance but highly challenging. Herein we demonstrate that precise pore structure tuning by controlling the network hydrogen bonds in two highly-related porous coordination networks can shift the efficient C2H4 separation function from C2H2/C2H4/C2H6 ternary mixture to CO2/C2H2/C2H4/C2H6 quaternary mixture system. Single-crystal X-ray diffraction revealed that the different amino groups on the triazolate ligands resulted in the change of the hydrogen bonding in the host network, which led to changes in the pore shape and pore chemistry. Gas adsorption isotherms, adsorption kinetics and gas-loaded crystal structure analysis indicated that the coordination network Zn-fa-atz (2) weakened the affinity for three C2 hydrocarbons synchronously including C2H4 but enhanced the CO2 adsorption due to the optimized CO2-host interaction and the faster CO2 diffusion, leading to effective C2H4 production from the CO2/C2H2/C2H4/C2H6 mixture in one step based on the experimental and simulated breakthrough data. Moreover, it can be shaped into spherical pellets with maintained porosity and separation performance.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| | - Yu Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| | - Jian-Wei Cao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| | - Zi-Ming Ye
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, PR China
| | - Tony Pham
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | | | - Rajamani Krishna
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Hongwei Chen
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Bo-Kai Ling
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| | - Tao Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| | - Tong Gao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| | - Xue Jiang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| | - Xiang-Ou Xu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| | - Qian-Hao Ye
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China.
| |
Collapse
|
28
|
Peng Y, Xiong H, Zhang P, Zhao Z, Liu X, Tang S, Liu Y, Zhu Z, Zhou W, Deng Z, Liu J, Zhong Y, Wu Z, Chen J, Zhou Z, Chen S, Deng S, Wang J. Interaction-selective molecular sieving adsorbent for direct separation of ethylene from senary C 2-C 4 olefin/paraffin mixture. Nat Commun 2024; 15:625. [PMID: 38245536 PMCID: PMC10799885 DOI: 10.1038/s41467-024-45004-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Olefin/paraffin separations are among the most energy-intensive processes in the petrochemical industry, with ethylene being the most widely consumed chemical feedstock. Adsorptive separation utilizing molecular sieving adsorbents can optimize energy efficiency, whereas the size-exclusive mechanism alone cannot achieve multiple olefin/paraffin sieving in a single adsorbent. Herein, an unprecedented sieving adsorbent, BFFOUR-Cu-dpds (BFFOUR = BF4-, dpds = 4,4'-bipyridinedisulfide), is reported for simultaneous sieving of C2-C4 olefins from their corresponding paraffins. The interlayer spaces can be selectively opened through stronger guest-host interactions induced by unsaturated C = C bonds in olefins, as opposed to saturated paraffins. In equimolar six-component breakthrough experiments (C2H4/C2H6/C3H6/C3H8/n-C4H8/n-C4H10), BFFOUR-Cu-dpds can simultaneously divide olefins from paraffins in the first column, while high-purity ethylene ( > 99.99%) can be directly obtained through the subsequent column using granular porous carbons. Moreover, gas-loaded single-crystal analysis, in-situ infrared spectroscopy measurements, and computational simulations demonstrate the accommodation patterns, interaction bonds, and energy pathways for olefin/paraffin separations.
Collapse
Affiliation(s)
- Yong Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hanting Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Peixin Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhiwei Zhao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xing Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shihui Tang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenliang Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Weizhen Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenning Deng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Junhui Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yao Zhong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zeliang Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jingwen Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenyu Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shixia Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
29
|
Zhu H, Xue W, Huang H, Jiang Z, Zheng M, Zhong C. Twisted pore aperture of MOF induced three-dimensional restricted sieving separation for CO 2 and C 2H 2 mixtures. Sci Bull (Beijing) 2023; 68:2531-2535. [PMID: 37739844 DOI: 10.1016/j.scib.2023.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Hejin Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong Univerisy, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong Univerisy, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong Univerisy, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| | - Zefeng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong Univerisy, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Mingze Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong Univerisy, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong Univerisy, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
30
|
Huang Y, Wan J, Pan T, Ge K, Guo Y, Duan J, Bai J, Jin W, Kitagawa S. Delicate Softness in a Temperature-Responsive Porous Crystal for Accelerated Sieving of Propylene/Propane. J Am Chem Soc 2023; 145:24425-24432. [PMID: 37880205 DOI: 10.1021/jacs.3c10277] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Soft nanoporous crystals with structural dynamics are among the most exciting recently discovered materials. However, designing or controlling a porous system with delicate softness that can recognize similar gas pairs, particularly for the promoted ability at increased temperature, remains a challenge. Here, we report a soft crystal (NTU-68) with a one-dimensional (1D) channel that expands and contracts delicately around 4 Å at elevated temperature. The completely different adsorption processes of propane (C3H8: kinetic dominance) and propylene (C3H6: thermodynamic preference) allow the crystal to show a sieving separation of this mixtures (9.9 min·g-1) at 273 K, and the performance increases more than 2-fold (20.4 min·g-1) at 298 K. This phenomenon is contrary to the general observation for adsorption separation: the higher the temperature, the lower the efficiency. Gas-loaded in situ powder X-ray analysis and modeling calculations reveal that slight pore expansion caused by the increased temperature provides plausible nanochannel for adsorption of the relatively smaller C3H6 while maintaining constriction on the larger C3H8. In addition, the separation process remains unaffected by the general impurities, demonstrating its true potential as an alternative sorbent for practical applications. Moving forward, the delicate crystal dynamics and promoted capability for molecular recognition provide a new route for the design of next-generation sieve materials.
Collapse
Affiliation(s)
- Yuhang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingmeng Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ting Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Ge
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junfeng Bai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Xie XJ, Wang Y, Cao QY, Krishna R, Zeng H, Lu W, Li D. Surface engineering on a microporous metal-organic framework to boost ethane/ethylene separation under humid conditions. Chem Sci 2023; 14:11890-11895. [PMID: 37920341 PMCID: PMC10619615 DOI: 10.1039/d3sc04119k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023] Open
Abstract
Recently, examples of metal-organic frameworks (MOFs) have been identified displaying ethane (C2H6) over ethylene (C2H4) adsorption selectivity. However, it remains a challenge to construct MOFs with both large C2H6 adsorption capacity and high C2H6/C2H4 adsorption selectivity, especially under humid conditions. Herein, we reported two isoreticular MOF-5 analogues (JNU-6 and JNU-6-CH3) and their potential applications in one-step separation of C2H4 from C2H6/C2H4 mixtures. The introduction of CH3 groups not only reduces the pore size from 5.4 Å in JNU-6 to 4.1 Å in JNU-6-CH3 but also renders an increased electron density on the pyrazolate N atoms of the organic linker. JNU-6-CH3 retains its framework integrity even after being immersed in water for six months. More importantly, it exhibits large C2H6 adsorption capacity (4.63 mmol g-1) and high C2H6/C2H4 adsorption selectivity (1.67) due to the optimized pore size and surface function. Breakthrough experiments on JNU-6-CH3 demonstrate that C2H4 can be directly separated from C2H6/C2H4 (50/50, v/v) mixtures, affording benchmark productivity of 22.06 and 18.71 L kg-1 of high-purity C2H4 (≥99.95%) under dry and humid conditions, respectively.
Collapse
Affiliation(s)
- Xiao-Jing Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Ying Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Qi-Yun Cao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 Amsterdam 1098 XH Netherlands
| | - Heng Zeng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
32
|
Wen HM, Yu C, Liu M, Lin C, Zhao B, Wu H, Zhou W, Chen B, Hu J. Construction of Negative Electrostatic Pore Environments in a Scalable, Stable and Low-Cost Metal-organic Framework for One-Step Ethylene Purification from Ternary Mixtures. Angew Chem Int Ed Engl 2023; 62:e202309108. [PMID: 37699125 DOI: 10.1002/anie.202309108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
One-step separation of C2 H4 from ternary C2 mixtures by physisorbents remains a challenge to combine excellent separation performance with high stability, low cost, and easy scalability for industrial applications. Herein, we report a strategy of constructing negative electrostatic pore environments in a stable, low-cost, and easily scaled-up aluminum MOF (MOF-303) for efficient one-step C2 H2 /C2 H6 /C2 H4 separation. This material exhibits not only record high C2 H2 and C2 H6 uptakes, but also top-tier C2 H2 /C2 H4 and C2 H6 /C2 H4 selectivities at ambient conditions. Theoretical calculations combined with in situ infrared spectroscopy indicate that multiple N/O sites on pore channels can build a negative electro-environment to provide stronger interactions with C2 H2 and C2 H6 over C2 H4 . Breakthrough experiments confirm its exceptional separation performance for ternary mixtures, affording one of the highest C2 H4 productivity of 1.35 mmol g-1 . This material is highly stable and can be easily synthesized at kilogram-scale from cheap raw materials using a water-based green synthesis. The benchmark combination of excellent separation properties with high stability and low cost in scalable MOF-303 has unlocked its great potential in this challenging industrial separation.
Collapse
Affiliation(s)
- Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyi Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Miaoyu Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyan Lin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Beiyu Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
33
|
Wei H, Liu J, Wang X, Li Z, Ju L, Yao B, Zhou J, Zhao L, Zhou M, Zhang J, Yang S. Secondary metal doped cuprous-cyanoimidazole frameworks for triple-mode detection of dopamine. Anal Chim Acta 2023; 1279:341798. [PMID: 37827638 DOI: 10.1016/j.aca.2023.341798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUNDS Metal-organic framework-based nanozymes enable several opportunities for designing novel analysis methods for the detection of pesticides, heavy metal ions, and biomolecules; however, practical applications are still limited by a complicated synthesis route, lower catalytic activity, and single detection mode. Dopamine (DA) is a crucial catecholamine substance in the human body that acts as a neurotransmitter regulating a variety of physiological functions of the central nervous system. Therefore, it is highly significant to explore simple nanozymes synthesis methods for constructing a multiple analysis system to detection DA. RESULTS Herein, we elaborately selected cobalt ions as the secondary metal doping in cuprous-cyanoimidazole frameworks (CuCo-CIFs) with a mass-production strategy. CuCo-CIFs possess intrinsic peroxidase-like activity that can convert hydrogen peroxide into various reactive oxygen species (i.e., 1O2, OH·, O2·-) and thereby oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) and DA to blue oxTMB and orange polydopamine (PDA), respectively. The absorption of the detection system increases at 460 nm while decreases at 652 nm as the concentration of DA increases under near-neutral pH (6.1), resulting in a color transition from blue to orange. Consequently, an unprecedented triple-mode analysis system of DA monitored by naked eyes, ratiometric-absorption, and scanometric was constructed. The limit of detection for the ratiometric-absorption and scanometric mode can reach 20 nM and 28 nM, respectively. CuCo-CIFs were successfully used for the rapid and accurate detection of DA in practical samples. SIGNIFICANCE As a simple, low-cost, multi-mode colorimetric platform, this kind of nanozyme detection with peroxidase-like activity exhibits significant potential for the detection of DA. Our work not only expands the applications of MOFs in analytical fields but also addresses the general challenges faced by nanozyme-based colorimetric detection systems of DA. This work provides valuable insights for the rational application of nanozyme and the design of new analysis systems.
Collapse
Affiliation(s)
- Hua Wei
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jian Liu
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zihan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Lijuan Ju
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Boxuan Yao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiarui Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Shenghong Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
34
|
Wang GD, Li YZ, Shi WJ, Hou L, Wang YY, Zhu Z. Active Sites Decorated Nonpolar Pore-Based MOF for One-step Acquisition of C 2 H 4 and Recovery of C 3 H 6. Angew Chem Int Ed Engl 2023; 62:e202311654. [PMID: 37679304 DOI: 10.1002/anie.202311654] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2 H4 purification from C2 H6 or C3 H6 mixtures as well as recovery of C3 H6 from C2 H6 /C3 H6 /C2 H4 mixtures. The MOF exhibits the favorable C2 H6 and C3 H6 uptakes (>100 cm3 g-1 at 298 K under 100 kPa) as well as selective adsorption of C2 H6 and C3 H6 over C2 H4 . The C3 H6 - and C2 H6 -selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3 H6 or C2 H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg-1 and 15.4 L kg-1 of high-purity (≥99.9 %) C2 H4 from C3 H6 /C2 H4 and C2 H6 /C2 H4 mixtures, but also provide a large high-purity (≥99.5 %) C3 H6 recovery capacity of 60.1 L kg-1 from C3 H6 /C2 H4 mixtures. More importantly, the high-purity C3 H6 (≥99.5 %) and C2 H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg-1 can be simultaneously obtained from C2 H6 /C3 H6 /C2 H4 mixtures through a single adsorption/desorption cycle.
Collapse
Affiliation(s)
- Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
35
|
Wu E, Gu XW, Liu D, Zhang X, Wu H, Zhou W, Qian G, Li B. Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification. Nat Commun 2023; 14:6146. [PMID: 37783674 PMCID: PMC10545795 DOI: 10.1038/s41467-023-41692-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
One-step adsorption separation of C2H4 from ternary C2 hydrocarbon mixtures remains an important and challenging goal for petrochemical industry. Current physisorbents either suffer from unsatisfied separation performance, poor stability, or are difficult to scale up. Herein, we report a strategy of constructing multiple supramolecular binding sites in a robust and scalable MOF (Al-PyDC) for highly efficient one-step C2H4 purification from ternary mixtures. Owing to suitable pore confinement with multiple supramolecular binding sites, Al-PyDC exhibits one of the highest C2H2 and C2H6 uptakes and selectivities over C2H4 at ambient conditions. The gas binding sites have been visualized by single-crystal X-ray diffraction studies, unveiling that the low-polarity pore surfaces with abundant electronegative N/O sites provide stronger multiple supramolecular interactions with C2H2 and C2H6 over C2H4. Breakthrough experiments showed that polymer-grade C2H4 can be separated from ternary mixtures with a maximum productivity of 1.61 mmol g-1. This material can be prepared from two simple reagents using a green synthesis method with water as the sole solvent, and its synthesis can be easily scaled to multikilogram batches. Al-PyDC achieves an effective combination of benchmark separation performance, high stability/recyclability, green synthesis and easy scalability to address major challenges for industrial one-step C2H4 purification.
Collapse
Affiliation(s)
- Enyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
36
|
Du Y, Jie G, Jia H, Liu J, Wu J, Fu Y, Zhang F, Zhu W, Fan M. Visible-light-induced photocatalytic CO 2 reduction over zirconium metal organic frameworks modified with different functional groups. J Environ Sci (China) 2023; 132:22-30. [PMID: 37336607 DOI: 10.1016/j.jes.2022.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/21/2023]
Abstract
The reduction of CO2 into high value-added chemicals and fuels by a photocatalytic technology can relieve energy shortages and the environmental problems caused by greenhouse effects. In the current work, an amino-functionalized zirconium metal organic framework (Zr-MOF) was covalently modified with different functional groups via the condensation of Zr-MOF with 2-pyridinecarboxaldehyde (PA), salicylaldehyde (SA), benzaldehyde (BA), and trifluoroacetic acid (TA), named Zr-MOF-X (X = PA, SA, BA, and TA), respectively, through the post-synthesis modification. Compared with Zr-MOF and Zr-MOF-TA, the introduction of PA, SA, or BA into the framework of Zr-MOF can not only enhance the visible-light harvesting and CO2 capture, but also accelerate the photogenerated charge separation and transfer, thereby improving the photocatalytic ability of Zr-MOF for CO2 reduction. These results indicate that the modification of Zr-MOF with electron-donating groups can promote the photocatalytic CO2 reduction. Therefore, the current work provides an instructive approach to improve the photocatalytic efficiency of CO2 reduction through the covalent modification of MOFs.
Collapse
Affiliation(s)
- Yuexian Du
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Guang'an Jie
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Huilin Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahui Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jieyu Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yanghe Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
37
|
Wang J, Lian X, Zhang Z, Liu X, Zhao Q, Xu J, Cao X, Li B, Bu XH. Thiazole functionalized covalent triazine frameworks for C 2H 6/C 2H 4 separation with remarkable ethane uptake. Chem Commun (Camb) 2023; 59:11240-11243. [PMID: 37656125 DOI: 10.1039/d3cc02880a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A highly stable thiazole functionalized covalent triazine framework, namely CTF-BT-500, was developed for C2H6/C2H4 separation, which exhibits a record-high ethane uptake (99.7 cm3 g-1) among all reported COFs at 298 K and 1 bar. This work not only presents an excellent C2H6-selective adsorbent, but also provides guidance for the construction of robust adsorbents for value-added gas purification.
Collapse
Affiliation(s)
- Junhua Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, P. R. China.
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China.
| | - Xin Lian
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China.
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China.
| | - Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China.
| | - Qiao Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China.
| | - Jian Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China.
| | - Xichuan Cao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, P. R. China.
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China.
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China.
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
38
|
Fu XP, Le XY, Xiao YH, Zeng DM, Zhou KA, Huang L, Wang YL, Liu QY. Cucurbituril-Shaped Cd 18(triazolate) 12 Unit-Based Metal-Organic Framework Exhibiting an C 2H 2/CO 2 Separation Ability. Inorg Chem 2023; 62:15031-15038. [PMID: 37661926 DOI: 10.1021/acs.inorgchem.3c01875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Herein, a metal-organic framework (MOF), {[(Me2NH2)4][Cd(H2O)6][Cd18(TrZ)12(TPD)15(DMF)6]}n (denoted as JXNU-18, TrZ = triazolate), constructed from the unique cucurbituril-shaped Cd18(TrZ)12 secondary building units bridged by 2,5-thiophenedicarboxylic (TPD2-) ligands, is presented. The formation of the cucurbituril-shaped Cd18(TrZ)12 unit is unprecedented, demonstrating the geometric compatibility of the organic linkers and the coordination configurations of the cadmium atoms. Each Cd18(TrZ)12 unit is connected to eight neighboring Cd18(TrZ)12 units through 30 TPD2- linkers, affording the three-dimensional structure of JXNU-18. More interesting is that JXNU-18 displays an efficient C2H2/CO2 separation ability, as revealed by the gas adsorption experiments and dynamic gas breakthrough experiments, which afford insights into the potential applications of JXNU-18 in gas separation. The tubular pores composed of two Cd18(TrZ)12 units bridged by six 2,5-thiophenedicarboxylic linkers provide the suitable pore space for C2H2 trapping, as unveiled by computational simulations.
Collapse
Affiliation(s)
- Xing-Ping Fu
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, P. R. China
| | - Xi-Ying Le
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yan-Hong Xiao
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Dong-Mei Zeng
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Ke-Ai Zhou
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Lian Huang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, P. R. China
| |
Collapse
|
39
|
Zhou Z, Wang J, Hou S, Mukherjee S, Fischer RA. Room Temperature Synthesis Mediated Porphyrinic NanoMOF Enables Benchmark Electrochemical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301933. [PMID: 37140098 DOI: 10.1002/smll.202301933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Indexed: 05/05/2023]
Abstract
Leveraging size effects, nanoparticles of metal-organic frameworks, nanoMOFs, have recently gained traction, amplifying their scopes in electrochemical sensing. However, their synthesis, especially under eco-friendly ambient conditions remains an unmet challenge. Herein, an ambient and fast secondary building unit (SBU)-assisted synthesis (SAS) route to afford a prototypal porphyrinic MOF, Fe-MOF-525 is introduced. Albeit the benign room temperature conditions, Fe-MOF-525(SAS) nanocrystallites obtained are of ≈30 nm size, relatively smaller than the ones conventional solvothermal methods elicit. Integrating Fe-MOF-525(SAS) as a thin film on a conductive indium tin oxide (ITO) surface affords Fe-MOF-525(SAS)/ITO, an electrochemical biosensor. Synergistic confluence of modular MOF composition, analyte-specific redox metalloporphyrin sites, and crystal downsizing contribute to its benchmark voltammetric uric acid (UA) sensing. Showcasing a wide linear range of UA detection with high sensitivity and low detection limit, this SAS strategy coalesces ambient condition synthesis and nanoparticle size control, paving a green way to advanced sensors.
Collapse
Affiliation(s)
- Zhenyu Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Shujin Hou
- Physics of Energy Conversion and Storage, Physic-Department, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Soumya Mukherjee
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching b. München, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching b. München, Germany
| |
Collapse
|
40
|
Gatou MA, Vagena IA, Lagopati N, Pippa N, Gazouli M, Pavlatou EA. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2224. [PMID: 37570542 PMCID: PMC10421186 DOI: 10.3390/nano13152224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Over the last ten years, there has been a growing interest in metal-organic frameworks (MOFs), which are a unique category of porous materials that combine organic and inorganic components. MOFs have garnered significant attention due to their highly favorable characteristics, such as environmentally friendly nature, enhanced surface area and pore volume, hierarchical arrangements, and adjustable properties, as well as their versatile applications in fields such as chemical engineering, materials science, and the environmental and biomedical sectors. This article centers on examining the advancements in using MOFs for environmental remediation purposes. Additionally, it discusses the latest developments in employing MOFs as potential tools for disease diagnosis and drug delivery across various ailments, including cancer, diabetes, neurological disorders, and ocular diseases. Firstly, a concise overview of MOF evolution and the synthetic techniques employed for creating MOFs are provided, presenting their advantages and limitations. Subsequently, the challenges, potential avenues, and perspectives for future advancements in the utilization of MOFs in the respective application domains are addressed. Lastly, a comprehensive comparison of the materials presently employed in these applications is conducted.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
41
|
Cho KH, Yoon JW, Lee JH, Kim JC, Jo D, Park J, Lee SK, Kwak SK, Lee UH. Design of Pore Properties of an Al-Based Metal-Organic Framework for the Separation of an Ethane/Ethylene Gas Mixture via Ethane-Selective Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37310803 DOI: 10.1021/acsami.3c03971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of Al-based isomorphs (CAU-10H, MIL-160, KMF-1, and CAU-10pydc) were synthesized using isophthalic acid (ipa), 2,5-furandicarboxylic acid (fdc), 2,5-pyrrole dicarboxylic acid (pyrdc), and 3,5-pyridinedicarboxylic acid (pydc), respectively. These isomorphs were systematically investigated to identify the best adsorbent for effectively separating C2H6/C2H4. All CAU-10 isomorphs exhibited preferential adsorption of C2H6 over that of C2H4 in mixture. CAU-10pydc exhibited the best C2H6/C2H4 selectivity (1.68) and the highest C2H6 uptake (3.97 mmol g-1) at 298 K and 1 bar. In the breakthrough experiment using CAU-10pydc, 1/1 (v/v) and 1/15 (v/v) C2H6/C2H4 gas mixtures were successfully separated into high-purity C2H4 (>99.95%), with remarkable productivities of 14.0 LSTP kg-1 and 32.0 LSTP kg-1, respectively, at 298 K. Molecular simulations revealed that the exceptional separation performance of CAU-10pydc originated from the increased porosity and reduced electron density of the pyridine ring of pydc, leading to a relatively larger decrease in π-π interactions with C2H4 than in the C-H···π interactions with C2H6. This study demonstrates that the pore size and geometry of the CAU-10 platform are modulated by the inclusion of heteroatom-containing benzene dicarboxylate or heterocyclic rings of dicarboxylate-based organic linkers, thereby fine-tuning the C2H6/C2H4 separation ability. CAU-10pydc was determined to be an optimum adsorbent for this challenging separation.
Collapse
Affiliation(s)
- Kyung Ho Cho
- Research Group for Nanocatalyst (RGN) and Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ji Woong Yoon
- Research Group for Nanocatalyst (RGN) and Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jeong Hyeon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jin Chul Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Donghui Jo
- Research Group for Nanocatalyst (RGN) and Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jaedeuk Park
- Research Group for Nanocatalyst (RGN) and Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Su-Kyung Lee
- Research Group for Nanocatalyst (RGN) and Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - U-Hwang Lee
- Research Group for Nanocatalyst (RGN) and Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
42
|
Shen JW, Chen L, Dong W, Zeng DM, Wang YL, Liu QY. Boosting the C 2H 2/CO 2 Separation Performance of Metal-Organic Frameworks through Fluorine Substitution. Inorg Chem 2023; 62:8027-8032. [PMID: 37161258 DOI: 10.1021/acs.inorgchem.3c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A pair of metal-organic frameworks (MOFs) of JXNU-15 (formulated as [Co6(μ3-OH)6(BTB)2(BPY)3]n, BTB3- = benzene-1,3,5-tribenzoate and BPY = 4,4'-bipyridine) and its fluorinated JXNU-15(F) ([Co6(μ3-OH)6(SFBTB)2(BPY)3]n) based on the fluorous 1,3,5-tri(3,5-bifluoro-4-carboxyphenyl)benzene (SFBTB3-) ligands were presented. The detailed comparisons of the acetylene/carbon dioxide (C2H2/CO2) separation abilities between the isostructural JXNU-15(F) and JXNU-15 were presented. In comparison with the parent JXNU-15, the higher C2H2 uptake, larger adsorption selectivity of the C2H2/CO2 (50/50) mixture, and enhanced C2H2/CO2 separation performance endow JXNU-15(F) with highly efficient C2H2/CO2 separation performance, which is demonstrated by singe-component gas adsorptions and dynamic gas mixture breakthrough experiments. The fluorine substituents exert the crucial effects on the enhanced C2H2/CO2 separation ability of JXNU-15(F) and play the dominant role in the C2H2-framework interactions, as uncovered by computational simulations. This work illustrates a powerful fluorine substitution strategy for boosting C2H2/CO2 separation ability for MOFs.
Collapse
Affiliation(s)
- Ji-Wei Shen
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Ling Chen
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Wang Dong
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Dong-Mei Zeng
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| |
Collapse
|
43
|
Sun H, Chen F, Chen R, Li J, Guo L, Liu Y, Shen F, Yang Q, Zhang Z, Ren Q, Bao Z. Customizing Metal-Organic Frameworks by Lego-Brick Strategy for One-Step Purification of Ethylene from a Quaternary Gas Mixture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208182. [PMID: 36843316 DOI: 10.1002/smll.202208182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Indexed: 05/25/2023]
Abstract
One-step purification of ethylene (C2 H4 ) from a quaternary gas mixture of C2 H6 /C2 H4 /C2 H2 /CO2 by adsorption is a promising separation process, yet developing adsorbents that synergistically capture various gas impurities remains challenging. Herein, a Lego-brick strategy is proposed to customize pore chemistry in a unified framework material. The ethane-selective MOF platform is further modified with customized binding sites to specifically adsorb acetylene and carbon dioxide, thus one-step purification of C2 H4 with high productivity of polymer-grade product (134 mol kg-1 ) is achieved on the assembly of porous coordination polymer-2,5-furandicarboxylic acid (PCP-FDCA) and PCP-5-aminoisophthalic acid (IPA-NH2 ). Computational studies verify that the low-polarity surface of this MOFs-based platform provides a delicate environment for C2 H6 recognition, and the specific binding sites (FDCA and IPA-NH2 ) exhibit favorable trapping of C2 H2 and CO2 via CHδ+ ···Oδ- and Cδ+ ···Nδ- electrostatic interactions, respectively. The proposed Lego-brick strategy to customize binding sites within the MOFs structure provides new ideas for the design of adsorbents for compounded separation tasks.
Collapse
Affiliation(s)
- Haoran Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Fuqiang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Jiaqi Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Fuxing Shen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000, P. R. China
| |
Collapse
|
44
|
Yang L, Tian M, Qin J, Lu Y, Yu Q, Han J. A Luminescent Metal‐Organic Framework with Boosted Picric Acid Fluorescence Detection Performance via a Complementary Capture‐Quench Mechanism. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Li Yang
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Momang Tian
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Jian Qin
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Yuewen Lu
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Qian Yu
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Ji‐Min Han
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| |
Collapse
|
45
|
Wang Y, Li T, Li L, Lin RB, Jia X, Chang Z, Wen HM, Chen XM, Li J. Construction of Fluorinated Propane-Trap in Metal-Organic Frameworks for Record Polymer-Grade Propylene Production under High Humidity Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207955. [PMID: 36659826 DOI: 10.1002/adma.202207955] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Propane/propene (C3 H8 /C3 H6 ) separation is essential in the petrochemical industry but challenging because of their similar physical and chemical properties. Adsorptive separation with C3 H8 -selective porous materials can energy-efficiently produce high-purity C3 H6 , which is highly promising for replacing conventional cryogenic distillation but suffers from unsatisfactory performance. Herein, through the precise incorporation of fluorinated functional groups into the confined pore space, a new fluorinated metal-organic framework (FDMOF-2) featuring the unique and strong C3 H8 -trap is successfully constructed. FDMOF-2 exhibits an unprecedented C3 H8 capture capacity of 140 cm3 cm-3 and excellent C3 H8 /C3 H6 (1:1, v/v) selectivity up to 2.18 (298 K and 1 bar), thus setting new benchmarks for all reported porous materials. Single-crystal X-ray diffraction studies reveal that the tailored pore confinement in FDMOF-2 provides stronger and multiple attractive interactions with C3 H8 , enabling excellent binding affinities. Breakthrough experiments demonstrate that C3 H8 can be directly extracted from various C3 H8 /C3 H6 mixtures with FDMOF-2, affording an outstanding C3 H6 production (501 mmol L-1 ) with over 99.99% purity. Benefiting from the robust framework and hydrophobic ligands, the separation performance of FDMOF-2 can be well maintained even under 70% relative humidity conditions.
Collapse
Affiliation(s)
- Yong Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Tong Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Rui-Biao Lin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaoxia Jia
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zeyu Chang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Ming Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
46
|
Liu D, Pei J, Zhang X, Gu XW, Wen HM, Chen B, Qian G, Li B. Scalable Green Synthesis of Robust Ultra-Microporous Hofmann Clathrate Material with Record C 3 H 6 Storage Density for Efficient C 3 H 6 /C 3 H 8 Separation. Angew Chem Int Ed Engl 2023; 62:e202218590. [PMID: 36691771 DOI: 10.1002/anie.202218590] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Developing porous materials for C3 H6 /C3 H8 separation faces the challenge of merging excellent separation performance with high stability and easy scalability of synthesis. Herein, we report a robust Hofmann clathrate material (ZJU-75a), featuring high-density strong binding sites to achieve all the above requirements. ZJU-75a adsorbs large amount of C3 H6 with a record high storage density of 0.818 g mL-1 , and concurrently shows high C3 H6 /C3 H8 selectivity (54.2) at 296 K and 1 bar. Single-crystal structure analysis unveil that the high-density binding sites in ZJU-75a not only provide much stronger interactions with C3 H6 but also enable the dense packing of C3 H6 . Breakthrough experiments on gas mixtures afford both high separation factor of 14.7 and large C3 H6 uptake (2.79 mmol g-1 ). This material is highly stable and can be easily produced at kilogram-scale using a green synthesis method, making it as a benchmark material to address major challenges for industrial C3 H6 /C3 H8 separation.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiyan Pei
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
47
|
Zhang YZ, Kong XJ, Zhou WF, Li CH, Hu H, Hou H, Liu Z, Geng L, Huang H, Zhang X, Zhang DS, Li JR. Pore Environment Optimization of Microporous Metal-Organic Frameworks with Huddled Pyrazine Pillars for C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4208-4215. [PMID: 36625524 DOI: 10.1021/acsami.2c19779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) have been proven promising in addressing many critical issues related to gas separation and purification. However, it remains a great challenge to optimize the pore environment of MOFs for purification of specific gas mixtures. Herein, we report the rational construction of three isostructural microporous MOFs with the 4,4',4"-tricarboxyltriphenylamine (H3TCA) ligand, unusual hexaprismane Ni6O6 cluster, and functionalized pyrazine pillars [PYZ-x, x = -H (DZU-10), -NH2 (DZU-11), and -OH (DZU-12)], where the building blocks of Ni6O6 clusters and huddled pyrazine pillars are reported in porous MOFs for the first time. These building blocks have enabled the resulting materials to exhibit good chemical stability and variable pore chemistry, which thus contribute to distinct performances toward C2H2/CO2 separation. Both single-component isotherms and dynamic column breakthrough experiments demonstrate that DZU-11 with the PYZ-NH2 pillar outperforms its hydrogen and hydroxy analogues. Density functional theory calculations reveal that the higher C2H2 affinity of DZU-11 over CO2 is attributed to multiple electrostatic interactions between C2H2 and the framework, including strong C≡C···H-N (2.80 Å) interactions. This work highlights the potential of pore environment optimization to construct smart MOF adsorbents for some challenging gas separations.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Xiang-Jing Kong
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wen-Feng Zhou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Chun-Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hui Hu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hengnuo Hou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Zhongmin Liu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Xiuling Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Da-Shuai Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
48
|
Molecular insights into the role of O2 in reversed C2H6/C2H4 separation on metal–organic frameworks. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Control of pore structure by the solvent effect for efficient ethane/ethylene separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|