1
|
Zou Q, Long T, Fang R, Zhao X, Wang F, Li Y. Atomic Cu-O-Zr Sites for Highly Selective Production of p-xylene from Tandem Upcycling of PET and CO 2. Angew Chem Int Ed Engl 2025:e202507309. [PMID: 40387352 DOI: 10.1002/anie.202507309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
Exploring an efficient catalytic system for tandem upcycling of CO2 and polyethylene terephthalate (PET) is highly desirable for achieving efficient resource utilization of wastes. However, the high activation energy for C═O bonds (in both PET and CO2) and the difficulty in regulating the reaction pathways restricted PET recovery efficiency. Here, we demonstrated the rational design of a single-atom Cu catalyst for precisely catalyzing the hydrogenation of CO2 to methanol and tandem PET upcycling to ethylene glycol (EG) and p-xylene (PX). In the Cu/UiO-66-NH2-A catalyst, Cu atoms are selectively anchored to the Zr-oxo nodes of UiO-66-NH2 to form Cu-O-Zr sites. The Cu-O-Zr sites can effectively activate both CO2 and H2 by reducing the activation energy and accelerate the transformation of PET to dimethyl terephthalate (DMT), which is further hydro-deoxygenated to yield PX. As a result, 20.4% CO2 conversion was obtained within 36 h, with 89.5% and 92.1% yields of PX and EG, respectively. Rapid and precise hydrogen spillover from Cu atoms to adsorbed reactants/intermediates at the Cu-O-Zr sites also drives the reaction process.
Collapse
Affiliation(s)
- Qizhuang Zou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Tairen Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, China
| | - Ruiqi Fang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fengliang Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
2
|
Soheili S, Pour AN. Consideration of the methanol-to-olefins (MTO) reaction over different zirconium species of the Zr-SAPO catalyst: a comprehensive periodic DFT investigation. RSC Adv 2025; 15:16312-16322. [PMID: 40385650 PMCID: PMC12080465 DOI: 10.1039/d5ra02292d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025] Open
Abstract
Methanol-to-olefins (MTO) conversion is a crucial industrial process for producing valuable light olefins, but developing highly efficient and selective catalysts remains a significant challenge. The incorporation of zirconium has been shown to enhance the catalytic performance of MTO catalysts. In this study, periodic density functional theory (DFT) calculations were employed to investigate the stability and reactivity of zirconium species within the SAPO-18 framework. Results revealed that loading Zr3+ ions into 6-membered rings (6MRs) of the SAPO-18 framework (Zr-ZH) was the most favorable configuration for producing propylene, with a lower activation energy (0.46 eV) than that required for loading Zr4+ ions into 8-membered rings (8MRs) (Zr-ZOH). Analysis of Mulliken charges and partial density of states (DOS) suggested that the incorporation of zirconium into the SAPO-18 framework enhanced the electronic properties of the catalyst, leading to a significant increase in propylene selectivity. In summary, the DFT calculations provided valuable insights into the preferred coordination environments and electronic structures of zirconium species in the SAPO-18 catalyst. These results suggest that optimizing zirconium incorporation can lead to significant improvements in the catalytic performance of MTO processes, particularly with respect to propylene selectivity.
Collapse
Affiliation(s)
- Saeedeh Soheili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 9177948974 Iran +98-5138805539
| | - Ali Nakhaei Pour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 9177948974 Iran +98-5138805539
| |
Collapse
|
3
|
Bao C, Li YT, Zhang Q, Hu TL. Copper nanoparticles supported on metal-organic framework with topological defects for CO 2 hydrogenation to methanol. J Colloid Interface Sci 2025; 686:1147-1156. [PMID: 39938282 DOI: 10.1016/j.jcis.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
The catalytic hydrogenation of CO2 to methanol represents a promising strategy to reduce CO2 emissions and mitigate the energy crisis. For this conversion, reoUiO-66 with topological defects was synthesized through acid etching, and a novel Cu-based catalyst (Cu@reoUiO-66) was prepared by incorporating active Cu onto reoUiO-66. The introduction of topological defects enhanced the specific surface area (892.2 m2 g-1) and CO2 capture capacity (35.1 cm3 g-1) of reoUiO-66, surpassing those of UiO-66 (718.3 m2 g-1, 30.9 cm3 g-1), thereby facilitating mass transfer during the reaction. Regarding CO2 hydrogenation, Cu@reoUiO-66 achieved a CO2 conversion rate of 6.1 % and a methanol selectivity of 53.1 %. Moreover, the methanol space-time yield of the Cu@reoUiO-66 reached 336.1 mgMeOH gCat-1h-1 and almost no decreased after continuous reaction for 70 h, which is nearly ten times that of traditional Cu/ZrO2 catalysts and better than many reported metal-organic framework (MOF)-based catalysts. The characterization results showed that the abundant exposed active sites induced by topological defects facilitated the fixation of active metals and reactants, thereby accelerating the activation of reactants. This study demonstrated that structural defects in the support significantly influence catalyst behavior and catalytic activity. Furthermore, it highlighted that MOFs with tunable structures serve as an ideal platform for catalyst design and structure-activity relationship studies.
Collapse
Affiliation(s)
- Chaosheng Bao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350 China
| | - Yan-Ting Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350 China
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350 China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350 China.
| |
Collapse
|
4
|
Yuan P, Wun CKT, Lo TWB. Harnessing Synergistic Cooperation of Neighboring Active Motifs in Heterogeneous Catalysts for Enhanced Catalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501960. [PMID: 40350980 DOI: 10.1002/adma.202501960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Indexed: 05/14/2025]
Abstract
Understanding the intricate interplay between catalytically active motifs in heterogeneous catalysts has long posed a significant challenge in the design of highly active and selective reactions. Drawing inspiration from biological enzymes and homogeneous catalysts, the synergistic cooperation between neighboring active motifs has emerged as a crucial factor in achieving effective catalysis. This synergistic control is often observed in natural enzymes and homogeneous systems through ligand coordination. The synergistic interaction is especially vital in reactions involving tandem or cascade steps, where distinct active motifs provide different functionalities to enable the co-activation of the reaction substrate(s). Situated within a 3D spatial domain, these catalytically active motifs can shape favorable catalytic landscapes by modulating electronic and geometric characteristics, thereby stabilizing specific intermediate or transition state species in a specific catalytic reaction. In this review, we aim to explore a diverse array of the latest heterogeneous catalytic systems that capitalize on the synergistic cooperativity between neighboring active motifs. We will delve into how such synergistic interactions can be utilized to engineer more favorable catalytic landscapes, ultimately resulting in the modulation of catalytic reactivities.
Collapse
Affiliation(s)
- Peng Yuan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China
- PolyU-Daya Bay Technology and Innovation Research Institute, The Hong Kong Polytechnic University, Huizhou, Guangdong, 516083, China
| | - Ching Kit Tommy Wun
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China
- PolyU-Daya Bay Technology and Innovation Research Institute, The Hong Kong Polytechnic University, Huizhou, Guangdong, 516083, China
| | - Tsz Woon Benedict Lo
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China
- PolyU-Daya Bay Technology and Innovation Research Institute, The Hong Kong Polytechnic University, Huizhou, Guangdong, 516083, China
| |
Collapse
|
5
|
Niu M, Xi Z, He C, Ding W, Cheng S, Zhang J, Gao H. Investigating the Physical Adsorption of DCPD/Furfural and H 2 Adsorption-Dissociation Behaviors in RE-MOFs. Molecules 2025; 30:1954. [PMID: 40363761 PMCID: PMC12073282 DOI: 10.3390/molecules30091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising catalysts in the hydrogenation of bicyclopentadiene (DCPD) and furfural. The physical adsorption behaviors of substrate molecules and H2 within the pore structures of MOFs significantly influence the efficacy of subsequent catalytic reactions. This study employs molecular dynamics (MD) simulations to identify the optimal temperature and pressure conditions for the adsorption of DCPD and H2, as well as furfural and H2, within rare-earth-element-based MOFs (RE-MOFs). By analyzing the physical adsorption characteristics of 1538 RE-MOFs, we investigate the correlation between pore structures and adsorption capabilities. This exploration has led to the identification of 10 RE-MOF structures that demonstrate superior physical adsorption performance for both DCPD and furfural. Following this initial evaluation, density functional theory (DFT) calculations were conducted to determine the chemisorption energies of H2 molecules on these 10 selected RE-MOF structures. Notably, the structure identified as "JALLEQ_clean" exhibited the most optimal overall adsorption performance. This study elucidates the quantitative relationship between the pore structure of RE-MOFs and their physical adsorption performance, clarifying the influence of porosity parameters on adsorption capacity and highlighting the advantages of cluster-type structures in mass transfer and adsorption. The findings provide theoretical guidance for developing high-performance RE-MOF catalysts and offer new insights for the rational design of MOF-based catalytic materials.
Collapse
Affiliation(s)
- Muye Niu
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.N.); (Z.X.); (W.D.); (S.C.); (J.Z.)
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Zuoshuai Xi
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.N.); (Z.X.); (W.D.); (S.C.); (J.Z.)
| | - Chenhui He
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.N.); (Z.X.); (W.D.); (S.C.); (J.Z.)
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Wenting Ding
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.N.); (Z.X.); (W.D.); (S.C.); (J.Z.)
| | - Shanshan Cheng
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.N.); (Z.X.); (W.D.); (S.C.); (J.Z.)
| | - Juntao Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.N.); (Z.X.); (W.D.); (S.C.); (J.Z.)
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Hongyi Gao
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.N.); (Z.X.); (W.D.); (S.C.); (J.Z.)
| |
Collapse
|
6
|
Yang G, Huang J, Gu W, Lin Z, Wang Q, Kang R, Liu JY, Sun Z, Zheng X, Jiao L, Jiang HL. In situ generated hydrogen-bonding microenvironment in functionalized MOF nanosheets for enhanced CO 2 electroreduction. Proc Natl Acad Sci U S A 2025; 122:e2419434122. [PMID: 40208948 PMCID: PMC12012543 DOI: 10.1073/pnas.2419434122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/12/2025] [Indexed: 04/12/2025] Open
Abstract
The microenvironment around catalytic sites plays crucial roles in enzymatic catalysis while its precise control in heterogeneous catalysts remains challenging. Herein, the coordinatively unsaturated metal nodes of Hf-based metal-organic framework nanosheets are simultaneously codecorated with catalytically active Co(salen) units and adjacent pyridyl-substituted alkyl carboxylic acids via a post modification route. By varying pyridyl-substituted alkyl carboxylic acids, the spatial positioning of the N atom in pyridine group relative to adjacent Co(salen) can be precisely controlled. Notably, the 3-(pyridin-4-yl)propionic acid, with para-position pyridine N atom, maximally improves the electrocatalytic CO2 reduction performance of Co(salen) unit, far superior to other counterparts. Mechanism investigations reveal that the pyridine unit of 3-(pyridin-4-yl)propionic acid is optimally positioned relative to Co(salen) and undergoes in situ reduction to pyridinyl radical under working potentials. This greatly facilitates the stabilization of *COOH intermediate via hydrogen-bonding interaction, lowering the formation energy barrier of *COOH and therefore boosting CO2 electroreduction.
Collapse
Affiliation(s)
- Ge Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Jiajia Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Weizhi Gu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Qingyu Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, People’s Republic of China
| | - Rong Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Jing-Yao Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin130023, People’s Republic of China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, People’s Republic of China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, People’s Republic of China
| | - Long Jiao
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| |
Collapse
|
7
|
Lu X, Zhang P, Pan H, Yin P, Zhang P, Yang L, Suo X, Cui X, Xing H. Ionic porous materials: from synthetic strategies to applications in gas separation and catalysis. Chem Soc Rev 2025; 54:3061-3139. [PMID: 39963797 DOI: 10.1039/d3cs01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Ionic porous materials possess a unique combination of tunable pore sizes and task-specific interactions between guest molecules and the charged frameworks, which endow them with versatility across diverse domains in chemistry and materials science. Significant advancements in their applications for gas separation and catalysis have been achieved in recent years due to the incorporation of ionic functionalities and ultra-microporous structures that enable molecular-scale recognition of guest molecules. This review summarizes recent advancements in the synthetic strategies of ionic porous materials, establishing design guidelines for the incorporation of ionic moieties into the backbone to fine-tune pore sizes and chemistry. It highlights the synergistic interplay of task-specific interactions with custom-designed pore structures in key applications, including adsorption separation, membrane separation, and gas conversion. Additionally, it examines structure-property relationships, offering deeper insights into enhancing performance. The report also addresses the current challenges in the practical application of these materials. Finally, the review provides future perspectives on ionic porous materials from both scientific and industrial viewpoints. Overall, this review aims to provide insights into pore structure and chemistry, supporting the precise placement of ionic functionalities.
Collapse
Affiliation(s)
- Xiaofei Lu
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Penghui Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Hanqian Pan
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Pengyuan Yin
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Peixin Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Lifeng Yang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xian Suo
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Xili Cui
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Huabin Xing
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
8
|
Liu N, Li Y, Zheng J, Liu B, Liu GN, Wang Y, Wang S. Enhancement of Two Types of CO 2 Conversion by Regulating Functional Thiophene Groups within Zn-MOF. Inorg Chem 2025; 64:4534-4543. [PMID: 40009742 DOI: 10.1021/acs.inorgchem.4c05485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Sustainable conversion of epoxides and propargylic amines using CO2 could produce valuable chemical products. Efficient conversion generally requires harsh conditions such as noble-metal catalysts, cocatalysts, and toxic solvents, thereby underscoring the crucial need for environmentally friendly non-noble-metal metal-organic framework (MOF) catalysts. In this study, we designed a novel zinc-based metal-organic framework (MOF) with a 5-fold interpenetrating diamond framework, specifically {[Zn(DMTDC)(bpy)]·H2O}n (Zn-MOF-2), where H2DMTDC represents 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid and bpy denotes 4,4'-bipyridine. Zn-MOF-2 serves as a bifunctional heterogeneous catalyst to promote the cyclization reaction of epoxides and propargylamine with CO2 under mild conditions. The isolated yields of the resulting cyclic carbonates and oxazolidinones were 92% and 93%, respectively. Notably, the catalyst maintained good catalytic activity after five catalytic cycles in both types of CO2 conversion. Control experiments confirmed the effective catalytic activity of the Zn2+ Lewis acid sites in Zn-MOF-2. The isostructural CPO-5 assembled from 4,4'-biphenyldicarboxylic acid has also been demonstrated to catalyze the cycloaddition of epoxides and CO2 but with an inferior performance in catalyzing the carboxyl cyclization of propargylic amines. This result shows that the thiophene ring in the ligand plays a pronounced role in the catalytic performance. The research will enhance the development of effective MOF catalysts for the conversion of CO2.
Collapse
Affiliation(s)
- Nana Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yongfei Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jun Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Baojie Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Guang-Ning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Suna Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
9
|
Ramos-Fernández E, Velisoju VK, Gascon J, Castaño P. Engineering Metal-MOF Interfaces for Selective CO₂ Hydrogenation to Methanol. Chemistry 2025; 31:e202403709. [PMID: 39607030 DOI: 10.1002/chem.202403709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
The hydrogenation of CO₂ to methanol is a promising pathway toward sustainable fuel production and carbon recycling. A key factor in the efficiency of this process lies in the interaction between the metal catalyst and its support. Metal-Organic Frameworks (MOFs) have emerged as highly effective platforms due to their tunable structures, large surface areas, and ability to form stable interfaces with single-atom metals or metal nanoparticles. These metal-MOF interfaces are crucial for stabilizing active sites, preventing sintering, and enhancing catalytic performance. In this concept paper, we explore the role of these interfaces in promoting CO₂ hydrogenation, focusing on Cu-Zn, Cu-Zr, and Zn-Zr interfaces. The formation of strong interactions between metal sites and MOF nodes enables precise control over the dispersion and electronic environment of the active species, significantly improving methanol selectivity and long-term stability. By analyzing recent advancements in MOF-supported catalysts, this work highlights the concept of engineered metal-MOF interfaces to drive the development of next-generation catalysts for efficient methanol synthesis from CO₂.
Collapse
Affiliation(s)
- Enrique Ramos-Fernández
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia Department
| | - Jorge Gascon
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia Department
- Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Zhang X, Yu X, Mendes RG, Matvija P, Melcherts AEM, Sun C, Ye X, Weckhuysen BM, Monai M. Highly Dispersed ZnO Sites in a ZnO/ZrO 2 Catalyst Promote Carbon Dioxide-to-Methanol Conversion. Angew Chem Int Ed Engl 2025; 64:e202416899. [PMID: 39377208 DOI: 10.1002/anie.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
ZnO/ZrO2 catalysts have shown better activity in the CO2 hydrogenation to methanol compared with single component counterparts, but the interaction between ZnO and ZrO2 is still poorly understood. In particular, the effect of the ZrO2 support phase (tetragonal vs. monoclinic) was not systematically explored. Here, we have synthesized ZnO/ZrO2 catalysts supported on tetragonal ZrO2 (ZnO/ZrO2-t) and monoclinic ZrO2 (ZnO/ZrO2-m), which resulted in the formation of different ZnOx species, consisting of sub-nanometer ZnO moieties and large-sized ZnO particles, respectively. ZnO/ZrO2-t exhibited a higher methanol selectivity (81 vs. 39 %) and methanol yield (1.25 vs. 0.67 mmol g-1 h-1) compared with ZnO/ZrO2-m. The difference in performance was attributed to the redox state and degree of dispersion of Zn, based on spectroscopy and microscopy results. ZnO/ZrO2-t had a high density of ZnOx-ZrOy sites, which favored the formation of active HCOO* species and enhanced the yield and selectivity of methanol along the formate pathway. Such ZnO clusters were further dispersed on ZrO2-t during catalysis, while larger ZnO particles on ZnO/ZrO2-m remained stable throughout the reaction. This study shows that the phase of ZrO2 supports can be used to control the dispersion of ZnO and the catalyst surface chemistry, and lead to enhanced catalytic performance.
Collapse
Affiliation(s)
- Xibo Zhang
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- State Key Laboratory of Physical Chemistry of Solid Surfaces & Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang Yu
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Rafael G Mendes
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
| | - Peter Matvija
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000 Praha 8, Czech Republic
| | - Angela E M Melcherts
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Chunning Sun
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Xinwei Ye
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Matteo Monai
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
11
|
Xu W, Wu Y, Yu X, Wang H, Qin Y, Yang W, Hu L, Zheng L, Gu W, Lin Y, Zhu C. Ru-OH-Zr Site over Metal-Organic Frameworks Boosts Coreactant Activation for Efficient Electrochemiluminescence. NANO LETTERS 2025; 25:276-283. [PMID: 39713969 DOI: 10.1021/acs.nanolett.4c04956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising electrochemiluminescent (ECL) nanoemitters. Great endeavors have been made to optimize the inherent luminescent properties, yet most MOFs suffer from poor coreactant activation ability, resulting in limited ECL. Therefore, it is urgent to integrate and design efficient catalytic centers within MOFs. Herein, we decorate atomically dispersed Ru onto the Zr-nodes of NU-1000, constructing Ru-OH-Zr centers to synergistically activate coreactants. The proposed NU-Ru enables 7.8 times enhancement in ECL efficiency. Theoretical investigations reveal that Ru atoms with strong electronegativity not only accelerate the charge transfer but also provide superior Lewis acid sites for promoting peroxysulfate binding and activation. Assisted by Bro̷nsted acid groups, the Ru-OH-Zr centers efficiently split the O-O bonds to enrich radicals through a proton-coupled electron transfer process. Furthermore, a direct mode sensor was established for sensitive organophosphorus pesticide analysis based on the interaction between the P═O bond and Lewis acid sites.
Collapse
Affiliation(s)
- Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xin Yu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hengjia Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing 100049, P.R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
12
|
Ma Q, Cheng J, Wu X, Xie J, Zhang R, Mao Z, Yang H, Fan W, Zeng J, Bitter JH, Li G, Li Z, Li C. C-C bond coupling with sp 3 C-H bond via active intermediates from CO 2 hydrogenation. Nat Commun 2025; 16:140. [PMID: 39747077 PMCID: PMC11697012 DOI: 10.1038/s41467-024-55640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Compared to the sluggish kinetics observed in methanol-mediated side-chain alkylation of methyl groups with sp3 C-H bonds, CO2 hydrogenation emerges as a sustainable alternative strategy, yet it remains a challenge. Here, as far as we know, it is first reported that using CO2 hydrogenation replacing methanol can conduct the side-chain alkylation of 4-methylpyridine (MEPY) over a binary metal oxide-zeolite Zn40Zr60O/CsX tandem catalyst (ZZO/CsX). This ZZO/CsX catalyst can achieve 19.6% MEPY single-pass conversion and 82% 4-ethylpyridine (ETPY) selectivity by using CO2 hydrogenation, which is 6.5 times more active than methanol as an alkylation agent. The excellent catalytic performance is realized on the basis of the dual functions of the tandem catalyst: hydrogenation of CO2 on the ZZO and activation of sp3 C-H bond and C-C bond coupling on the CsX zeolite. The thermodynamic and kinetic coupling between the tandem reactions enables the highly efficient CO2 hydrogenation and C-C bond coupling. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations suggest that the CHxO* (CH2O*) species, rather than methanol produced from CO2 hydrogenation, is the key intermediate to achieve the C-C bond coupling.
Collapse
Affiliation(s)
- Qianli Ma
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Jianian Cheng
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Xiaojing Wu
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Jin Xie
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Ruihui Zhang
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Zhihe Mao
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Hongfang Yang
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Johannes Hendrik Bitter
- Biobased chemistry and technology group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Guanna Li
- Biobased chemistry and technology group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Zelong Li
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Can Li
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| |
Collapse
|
13
|
Feng Y, Jiang ZW, Gong X, Wang Y. Bifunctional Metal–Organic Gel for Deep Detoxification of Organophosphorus Nerve Agents through a Cascade Degradation Process. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024. [DOI: 10.1021/acssuschemeng.4c07121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yi Feng
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Zhong Wei Jiang
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Xue Gong
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Yi Wang
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
14
|
Velisoju VK, Ramos-Fernández EV, Kancherla R, Ahmad R, Pal K, Mohamed H, Cerrillo JL, Meijerink MJ, Cavallo L, Rueping M, Castaño P. Highly Dispersed Pd@ZIF-8 for Photo-Assisted Cross-Couplings and CO 2 to Methanol: Activity and Selectivity Insights. Angew Chem Int Ed Engl 2024; 63:e202409490. [PMID: 39126183 DOI: 10.1002/anie.202409490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Our study unveils a pioneering methodology that effectively distributes Pd species within a zeolitic imidazolate framework-8 (ZIF-8). We demonstrate that Pd can be encapsulated within ZIF-8 as atomically dispersed Pd species that function as an excited-state transition metal catalyst for promoting carbon-carbon (C-C) cross-couplings at room temperature using visible light as the driving force. Furthermore, the same material can be reduced at 250 °C, forming Pd metal nanoparticles encapsulated in ZIF-8. This catalyst shows high rates and selectivity for carbon dioxide hydrogenation to methanol under industrially relevant conditions (250 °C, 50 bar): 7.46 molmethanol molmetal -1 h-1 and >99 %. Our results demonstrate the correlations of the catalyst structure with the performances at experimental and theoretical levels.
Collapse
Affiliation(s)
- Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuntal Pal
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose L Cerrillo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mark J Meijerink
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Wang W, Zhang X, Weng S, Peng C. Tuning Catalytic Activity of CO 2 Hydrogenation to C1 Product via Metal Support Interaction Over Metal/Metal Oxide Supported Catalysts. CHEMSUSCHEM 2024; 17:e202400104. [PMID: 38546355 DOI: 10.1002/cssc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Indexed: 04/28/2024]
Abstract
The metal supported catalysts are emerging catalysts that are receiving a lot of attention in CO2 hydrogenation to C1 products. Numerous experiments have demonstrated that the support (usually an oxide) is crucial for the catalytic performance. The support metal oxides are used to aid in the homogeneous dispersion of metal particles, prevent agglomeration, and control morphology owing to the metal support interaction (MSI). MSI can efficiently optimize the structural and electronic properties of catalysts and tune the conversion of key reaction intermediates involved in CO2 hydrogenation, thereby enhancing the catalytic performance. There is an increasing attention is being paid to the promotion effects in the catalytic CO2 hydrogenation process. However, a systematically understanding about the effects of MSI on CO2 hydrogenation to C1 products catalytic performance has not been fully studied yet due to the diversities in catalysts and reaction conditions. Hence, the characteristics and modes of MSI in CO2 hydrogenation to C1 products are elaborated in detail in our work.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Xiaoyu Zhang
- Sinochem Quanzhou Petrochemical Co., LTD., Quanzhou, 362100, China
| | - Shujia Weng
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
- Shanghai Research Center of Advanced Applied Technology, Shanghai, 201418, China
| |
Collapse
|
16
|
Xue H, Xu H, Song X, Chen M, Wang X, Ji M, Wang M. Porous Frustrated Lewis Pairs Catalyst Constructed on Defective Zirconium-Based Metal-Organic Frameworks for Hydrogenation Reactions with H 2. Inorg Chem 2024; 63:16011-16017. [PMID: 39145892 DOI: 10.1021/acs.inorgchem.4c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A porous metal-organic framework (MOF)-based frustrated Lewis pairs (FLPs) were prepared via a ligand replacement strategy to generate organic linker defects in zirconium-based MOF (MOF-808), thereby exposing Zr sites as Lewis acid. Due to the rigid features of the MOF skeleton, the unsaturated metal cluster and the adjacent lattice oxygen (Lewis bases) are in sterically hindered positions, which formed FLP sites with efficient H2 activation ability. This porous heterogeneous FLP catalyst [MOF-808-OH (15%)] exhibits high performance styrene hydrogenation to ethylbenzene with 99% yield. The high structural stability and reusability enabled the catalyst to maintain an over 98% activity after five cycles. This work provides a defect modulation strategy to prepare MOF-based solid FLP catalysts.
Collapse
Affiliation(s)
- Han Xue
- School of Chemistry, Dalian University of Technology Dalian 116024, P. R. China
| | - Hailong Xu
- BYD Auto Industry Co. Ltd., Shenzhen, Guangdong 518119, China
| | - Xuedan Song
- School of Chemistry, Dalian University of Technology Dalian 116024, P. R. China
| | - Miaomiao Chen
- School of Chemistry, Dalian University of Technology Dalian 116024, P. R. China
| | - Xinkui Wang
- School of Chemistry, Dalian University of Technology Dalian 116024, P. R. China
| | - Min Ji
- School of Chemistry, Dalian University of Technology Dalian 116024, P. R. China
| | - Min Wang
- School of Chemistry, Dalian University of Technology Dalian 116024, P. R. China
| |
Collapse
|
17
|
Xu SY, Shi W, Huang JR, Yao S, Wang C, Lu TB, Zhang ZM. Single-cluster Functionalized TiO 2 Nanotube Array for Boosting Water Oxidation and CO 2 Photoreduction to CH 3OH. Angew Chem Int Ed Engl 2024; 63:e202406223. [PMID: 38664197 DOI: 10.1002/anie.202406223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 06/05/2024]
Abstract
Solar-driven CO2 reduction and water oxidation to liquid fuels represents a promising solution to alleviate energy crisis and climate issue, but it remains a great challenge for generating CH3OH and CH3CH2OH dominated by multi-electron transfer. Single-cluster catalysts with super electron acceptance, accurate molecular structure, customizable electronic structure and multiple adsorption sites, have led to greater potential in catalyzing various challenging reactions. However, accurately controlling the number and arrangement of clusters on functional supports still faces great challenge. Herein, we develop a facile electrosynthesis method to uniformly disperse Wells-Dawson- and Keggin-type polyoxometalates on TiO2 nanotube arrays, resulting in a series of single-cluster functionalized catalysts P2M18O62@TiO2 and PM12O40@TiO2 (M=Mo or W). The single polyoxometalate cluster can be distinctly identified and serves as electronic sponge to accept electrons from excited TiO2 for enhancing surface-hole concentration and promote water oxidation. Among these samples, P2Mo18O62@TiO2-1 exhibits the highest electron consumption rate of 1260 μmol g-1 for CO2-to-CH3OH conversion with H2O as the electron source, which is 11 times higher than that of isolated TiO2 nanotube arrays. This work supplied a simple synthesis method to realize the single-dispersion of molecular cluster to enrich surface-reaching holes on TiO2, thereby facilitating water oxidation and CO2 reduction.
Collapse
Affiliation(s)
- Shen-Yue Xu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Juan-Ru Huang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuang Yao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Cheng Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
18
|
Su Y, Mu Q, Fan N, Wei Z, Pan W, Zheng Z, Song D, Sun H, Lian Y, Xu B, Yang W, Deng Z, Peng Y. Accelerating Charge Kinetics in Photocatalytic CO 2 Reduction by Modulating the Cobalt Coordination in Heterostructures of Cadmium Sulfide/Metal-Organic Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312020. [PMID: 38326093 DOI: 10.1002/smll.202312020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Artificial photocatalytic CO2 reduction (CO2R) holds great promise to directly store solar energy into chemical bonds. The slow charge and mass transfer kinetics at the triphasic solid-liquid-gas interface calls for the rational design of heterogeneous photocatalysts concertedly boosting interfacial charge transfer, local CO2 concentration, and exposure of active sites. To meet these requirements, in this study heterostructures of CdS/MOL (MOL = metal-organic layer) furnishing different redox Co sites are fabricated for CO2R photocatalysts. It is found that the coordination environment of Co is key to photocatalytic activity. The best catalyst ensemble comprising ligand-chelated Co2+ with the bipyridine electron mediator demonstrates a high CO yield rate of 1523 µmol h-1 gcat -1, selectivity of 95.8% and TON of 1462.4, which are ranked among the best seen in literature. Comprehensive photochemical and electroanalytical characterizations attribute the high CO2R performance to the improved photocarrier separation and charge kinetics originated from the proper energy band alignment and coordination chemistry. This work highlights the construction of 2D heterostructures and modulation of transition metal coordination to expedite the charge kinetics in photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yanhui Su
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Qiaoqiao Mu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Ningbo Fan
- Institute of Theoretical and Applied Physics, Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Zhihe Wei
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Weiyi Pan
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Zhangyi Zheng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Daqi Song
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Hao Sun
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Yuebin Lian
- School of Photoelectric Engineering, Changzhou institute of technology, Changzhou, 213032, P. R. China
| | - Bin Xu
- Institute of Theoretical and Applied Physics, Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Wenjun Yang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
19
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
20
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
21
|
Yu S, Kim N, Choe JH, Kim H, Kim DW, Youn J, Lee YH, Hong CS. Postsynthetically Modified Alkoxide-Exchanged Ni 2(OR) 2BTDD: Synergistic Interactions of CO 2 with Open Metal Sites and Functional Groups. Angew Chem Int Ed Engl 2024; 63:e202400855. [PMID: 38503692 DOI: 10.1002/anie.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Postsynthetic modifications (PSMs) of metal-organic frameworks (MOFs) play a crucial role in enhancing material performance through open metal site (OMS) functionalization or ligand exchange. However, a significant challenge persists in preserving open metal sites during ligand exchange, as these sites are inherently bound by incoming ligands. In this study, for the first time, we introduced alkoxides by exchanging bridging chloride in Ni2Cl2BTDD (BTDD=bis (1H-1,2,3,-triazolo [4,5-b],-[4',5'-i]) dibenzo[1,4]dioxin) through PSM. Rietveld refinement of synchrotron X-ray diffraction data indicated that the alkoxide oxygen atom bridges Ni(II) centers while the OMSs of the MOF are preserved. Due to the synergy of the existing OMS and introduced functional group, the alkoxide-exchanged MOFs showed CO2 uptakes superior to the pristine MOF. Remarkably, the tert-butoxide-substituted Ni_T exhibited a nearly threefold and twofold increase in CO2 uptake compared to Ni2Cl2BTDD at 0.15 and 1 bar, respectively, as well as high water stability relative to the other exchanged frameworks. Furthermore, the Grand Canonical Monte Carlo simulations for Ni_T suggested that CO2 interacts with the OMS and the surrounding methyl groups of tert-butoxide groups, which is responsible for the enhanced CO2 capacity. This work provides a facile and unique synthetic strategy for realizing a desirable OMS-incorporating MOF platform through bridging ligand exchange.
Collapse
Affiliation(s)
- Sumin Yu
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Namju Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Dae Won Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongwon Youn
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Yong Hoon Lee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
22
|
Zhou M, Qu Z, Zhang J, Jiang H, Tang Z, Chen R. Boosting CO 2 chemical fixation over MOF-808 by the introduction of functional groups and defective Zr sites. Chem Commun (Camb) 2024; 60:3170-3173. [PMID: 38411003 DOI: 10.1039/d3cc06154j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
CO2 cycloaddition has emerged as a promising approach for producing value-added cyclocarbonates and mitigating greenhouse gas emissions. Although MOF-808 serves as a stable catalyst for cycloaddition, its limited activity constrains broader applications. Through the modification with a fluoride group via a ligand exchange method, F-MOF-808-1.5 exhibits exceptional performance, achieving a 98.8% conversion with 97.8% selectivity to epichlorohydrin carbonate-marking a substantial 100% improvement compared to pristine MOF-808. The defective Zr sites and the electron-withdrawing groups synergistically promote the ring opening of epoxides. Furthermore, the catalyst demonstrates high stability over multiple reaction cycles. Notably, without adding solvents and co-catalysts, F-MOF-808-1.5 outperforms most reported MOF-based catalysts.
Collapse
Affiliation(s)
- Minghui Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Zhengyan Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Zhenchen Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- Suzhou Laboratory, Suzhou, 215000, People's Republic of China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- Suzhou Laboratory, Suzhou, 215000, People's Republic of China
| |
Collapse
|
23
|
Velisoju VK, Cerrillo JL, Ahmad R, Mohamed HO, Attada Y, Cheng Q, Yao X, Zheng L, Shekhah O, Telalovic S, Narciso J, Cavallo L, Han Y, Eddaoudi M, Ramos-Fernández EV, Castaño P. Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO 2 hydrogenation catalyst. Nat Commun 2024; 15:2045. [PMID: 38448464 PMCID: PMC10918174 DOI: 10.1038/s41467-024-46388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO2 to methanol. Herein, we use a controlled two-step method to synthesize finely dispersed Cu on a zeolitic imidazolate framework-8 (ZIF-8). This catalyst suffers a series of transformations during the CO2 hydrogenation to methanol, leading to ~14 nm Cu nanoparticles encapsulated on the Zn-based MOF that are highly active (2-fold higher methanol productivity than the commercial Cu-Zn-Al catalyst), very selective (>90%), and remarkably stable for over 150 h. In situ spectroscopy, density functional theory calculations, and kinetic results reveal the preferential adsorption sites, the preferential reaction pathways, and the reverse water gas shift reaction suppression over this catalyst. The developed material is robust, easy to synthesize, and active for CO2 utilization.
Collapse
Affiliation(s)
- Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose L Cerrillo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Omar Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yerrayya Attada
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qingpeng Cheng
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Xueli Yao
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Osama Shekhah
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Selvedin Telalovic
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yu Han
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), KAUST, Thuwal, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
24
|
Chen H, Brubach JB, Tran NH, Robinson AL, Romdhane FB, Frégnaux M, Penas-Hidalgo F, Solé-Daura A, Mialane P, Fontecave M, Dolbecq A, Mellot-Draznieks C. Zr-Based MOF-545 Metal-Organic Framework Loaded with Highly Dispersed Small Size Ni Nanoparticles for CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38415586 DOI: 10.1021/acsami.3c18154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We report the use of Zr-based metal-organic frameworks (MOFs) MOF-545 and MOF-545(Cu) as supports to prepare catalysts with uniformly and highly dispersed Ni nanoparticles (NPs) for CO2 hydrogenation into CH4. In the first step, we studied the MOF support under catalytic conditions using operando diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, ex situ characterizations (PXRD, XPS, TEM, and EDX-element mapping), and DFT calculations. We showed that the high-temperature conditions undoubtedly confer a potential for catalytic functionality to the solids toward CH4 production, while no role of the Cu could be evidenced. The MOF was shown to be transformed into a catalytically active material, amorphized but still structured with dehydroxylated Zr-oxoclusters, in line with DFT calculations. In the second step, Ni@MOF-545 catalysts were prepared using either impregnation (IM) or double solvent (DS) methods, followed by a dry reduction (R) route under H2 to immobilize Ni NPs. The highest catalytic activity was obtained with the Ni@MOF-545 DS R catalyst (595 mmolCH4 gNi-1 h-1) with 100% CH4 selectivity and 60% CO2 conversion after ∼3 h. The higher catalytic activity of Ni@MOF-545 DS R is a result of much smaller (∼5 nm) and better dispersed Ni NPs than in the IM sample (20-40 nm), the latter exhibiting sintering. The advantages of the encapsulation of Ni NPs by the DS method and of the use of a MOF-545-based support are discussed, highlighting the interest of designing yet-unexplored Zr-based MOFs loaded with Ni NPs for CO2 hydrogenation.
Collapse
Affiliation(s)
- Hongmei Chen
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
| | - Jean-Blaise Brubach
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Ngoc-Huan Tran
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
| | - Amanda L Robinson
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| | - Ferdaous Ben Romdhane
- Fédération de Chimie et Matériaux de Paris-Centre (FCMat), 4 Place Jussieu, Paris 75005, France
| | - Mathieu Frégnaux
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| | - Francesc Penas-Hidalgo
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
| | - Albert Solé-Daura
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Pierre Mialane
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
| | - Anne Dolbecq
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
25
|
Yang F, Wang J, Wang Y, Yu B, Cao Y, Li J, Wu L, Huang J, Liu YN. Perfluoroalkyl-Decorated Noble-Metal-Free MOFs for the Highly Efficient One-Pot Four-Component Coupling between Aldehydes, Amines, Alkynes, and Flue Gas CO 2. Angew Chem Int Ed Engl 2024; 63:e202318115. [PMID: 38116913 DOI: 10.1002/anie.202318115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
The non-noble-metal catalysed-multicomponent reactions between flue gas CO2 and cheap industrial raw stocks into high value-added fine chemicals is a promising manner for the ideal CO2 utilization route. To achieve this, the key fundamental challenge is the rational development of highly efficient and facile reaction pathway while establishing compatible catalytic system. Herein, through the stepwise solvent-assisted linker installation, post-synthetic fluorination and metalation, we report the construction of a series of perfluoroalkyl-decorated noble-metal-free metal-organic frameworks (MOFs) PCN-(BPY-CuI)-(TPDC-Fx ) [BPY=2,2'-bipyridine-5,5'-dicarboxylate, TPDC-NH2 =2'-amino-[1,1':4',1''-terphenyl]-4,4''-dicarboxylic acid] that can catalyze the one-pot four-component reaction between alkyne, aldehyde, amine and flue gas CO2 for the preparation of 2-oxazolidinones. Such assembly endows the MOFs with superhydrophobic microenvironment, superior water resistance and highly stable catalytic site, leading to 21 times higher turnover numbers than that of homogeneous counterparts. Mechanism investigation implied that the substrates can be efficiently enriched by the MOF wall and then the adsorbed amine species act as an extrinsic binding site towards dilute CO2 through their strong preferential formation to carbamate acid. Moreover, density functional theory calculations suggest the tetrahedral geometry of Cu in MOF offers special resistance towards amine poisoning, thus maintaining its high efficiency during the catalytic process.
Collapse
Affiliation(s)
- Fan Yang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Jiajia Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - You Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Benling Yu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yiwen Cao
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Jiawei Li
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Linlin Wu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha, 410083, Hunan, P. R. China
| |
Collapse
|
26
|
Shao P, Wan YM, Yi L, Chen S, Zhang HX, Zhang J. Enhancing Electroreduction CO 2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305199. [PMID: 37775943 DOI: 10.1002/smll.202305199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/15/2023] [Indexed: 10/01/2023]
Abstract
Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products.
Collapse
Affiliation(s)
- Ping Shao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yu-Mei Wan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Luocai Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shumei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
27
|
Dhakshinamoorthy A, Navalón S, Primo A, García H. Selective Gas-Phase Hydrogenation of CO 2 to Methanol Catalysed by Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202311241. [PMID: 37815860 DOI: 10.1002/anie.202311241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Large scale production of green CH3 OH obtained from CO2 and green H2 is a highly wanted process due to the role of CH3 OH as H2 /energy carrier and for producing chemicals. Starting with a short summary of the advantages of metal-organic frameworks (MOFs) as catalysts in liquid-phase reactions, the present article highlights the opportunities that MOFs may offer also for some gas-phase reactions, particularly for the selective CO2 hydrogenation to CH3 OH. It is commented that there is a temperature compatibility window that combines the thermal stability of some MOFs with the temperature required in the CO2 hydrogenation to CH3 OH that frequently ranges from 250 to 300 °C. The existing literature in this area is briefly organized according to the role of MOF as providing the active sites or as support of active metal nanoparticles (NPs). Emphasis is made to show how the flexibility in design and synthesis of MOFs can be used to enhance the catalytic activity by adjusting the composition of the nodes and the structure of the linkers. The influence of structural defects and material crystallinity, as well as the role that should play theoretical calculations in models have also been highlighted.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai, 625021 Tamil Nadu, India
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Ana Primo
- Instituto Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| |
Collapse
|
28
|
Zhang C, Su T, Zhang X, Zhang D, Xuan T, Wang L. Porous Core-membrane Microstructured Nanomaterial Composed of Deep Eutectic Solvents and MOF-808 for CO 2 Capture. CHEMSUSCHEM 2023; 16:e202300864. [PMID: 37612235 DOI: 10.1002/cssc.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
A series of porous core-membrane microstructured nanomaterials, constructed of a deep eutectic solvent (DES) membrane and porous MOF-808 core via liquid surface tensions and electrostatic interactions, are introduced for carbon dioxide capture with the sorption mechanism coupling diffusion, physisorption, and chemisorption. MOF-808 as the porous core considerably improves the diffusion interactions for DES membranes, hence significantly enhancing the sorption performance of DESs. Although the DES consisted by monoethanolamine and tetrapropylammonium chloride (MEA-TPAC-7) has the highest sorption capacity among all DESs, it is only 4.39 mmol g-1 at 2.4 bar and further attenuates by fastidious diffusion interactions when increasing viscosity or dose. The sorption capacities of DES@MOF-120 are 5.18 mmol g-1 at 3.0 bar and 4.78 mmol g-1 at 2.4 bar without apparent sorption hysteresis in pressure swing sorption, which are substantially improved contrasted to MEA-TPAC-7. The sorption isotherms are reconstructed via Sips models considering surface heterogeneity with regression correlation coefficients over 0.9454 to forecast maximum sorption capacity over 6.33 mmol g-1 .
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Refrigeration and Cryogenics, Key Laboratory of Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingyu Su
- Institute of Refrigeration and Cryogenics, Key Laboratory of Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai, 200240, China
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xinqi Zhang
- Institute of Refrigeration and Cryogenics, Key Laboratory of Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai, 200240, China
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Duoyong Zhang
- Institute of Refrigeration and Cryogenics, Key Laboratory of Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Xuan
- Institute of Refrigeration and Cryogenics, Key Laboratory of Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liwei Wang
- Institute of Refrigeration and Cryogenics, Key Laboratory of Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
29
|
Huang CJ, Xu HM, Shuai TY, Zhan QN, Zhang ZJ, Li GR. Modulation Strategies for the Preparation of High-Performance Catalysts for Urea Oxidation Reaction and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301130. [PMID: 37434036 DOI: 10.1002/smll.202301130] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/02/2023] [Indexed: 07/13/2023]
Abstract
Compared with the traditional electrolysis of water to produce hydrogen, urea-assisted electrolysis of water to produce hydrogen has significant advantages and has received extensive attention from researchers. Unfortunately, urea oxidation reaction (UOR) involves a complex six-electron transfer process leading to high overpotential, which forces researchers to develop high-performance UOR catalysts to drive the development of urea-assisted water splitting. Based on the UOR mechanism and extensive literature research, this review summarizes the strategies for preparing highly efficient UOR catalysts. First, the UOR mechanism is introduced and the characteristics of excellent UOR catalysts are pointed out. Aiming at this, the following modulation strategies are proposed to improve the catalytic performance based on summarizing various literature: 1) Accelerating the active phase formation to reduce initial potential; 2) Creating double active sites to trigger a new UOR mechanism; 3) Accelerating urea adsorption and promoting C─N bond cleavage to ensure the effective conduct of UOR; 4) Promoting the desorption of CO2 to improve stability and prevent catalyst poisoning; 5) Promoting electron transfer to overcome the inherent slow dynamics of UOR; 6) Increasing active sites or active surface area. Then, the application of UOR in electrochemical devices is summarized. Finally, the current deficiencies and future directions are discussed.
Collapse
Affiliation(s)
- Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
30
|
Xu X, Gao L, Yuan S. Stepwise construction of multi-component metal-organic frameworks. Dalton Trans 2023; 52:15233-15252. [PMID: 37555272 DOI: 10.1039/d3dt01668d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Multi-component metal-organic frameworks (MC-MOFs) are crystalline porous materials containing multiple organic ligands or mixed metals, which manifest new properties beyond the linear combination of the single component. However, the traditional one-pot synthesis method for MOFs is not always applicable for synthesizing MC-MOFs due to the competitive coordination of multiple ligands and metals. Therefore, the stepwise construction of MC-MOFs has been explored, which enables more precise control of the heterogeneity within the ordered MC-MOFs. This review provides a summary of the synthesis strategies, namely, ligand exchange, coordinative modification, covalent modification, ligand metalation, cluster metalation, and use of mixed-metal precursors, for the stepwise construction of MC-MOFs. Furthermore, we discuss the applications of MC-MOFs with ordered arrangements of multiple functionalities, focusing on gas adsorption and separation, water remediation, heterogeneous catalysis, luminescence, and chemical sensing.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, School of chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
31
|
Xu W, Cai X, Wu Y, Wen Y, Su R, Zhang Y, Huang Y, Zheng Q, Hu L, Cui X, Zheng L, Zhang S, Gu W, Song W, Guo S, Zhu C. Biomimetic single Al-OH site with high acetylcholinesterase-like activity and self-defense ability for neuroprotection. Nat Commun 2023; 14:6064. [PMID: 37770453 PMCID: PMC10539540 DOI: 10.1038/s41467-023-41765-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Neurotoxicity of organophosphate compounds (OPs) can catastrophically cause nervous system injury by inhibiting acetylcholinesterase (AChE) expression. Although artificial systems have been developed for indirect neuroprotection, they are limited to dissociating P-O bonds for eliminating OPs. However, these systems have failed to overcome the deactivation of AChE. Herein, we report our finding that Al3+ is engineered onto the nodes of metal-organic framework to synthesize MOF-808-Al with enhanced Lewis acidity. The resultant MOF-808-Al efficiently mimics the catalytic behavior of AChE and has a self-defense ability to break the activity inhibition by OPs. Mechanism investigations elucidate that Al3+ Lewis acid sites with a strong polarization effect unite the highly electronegative -OH groups to form the enzyme-like catalytic center, resulting in superior substrate activation and nucleophilic attack ability with a 2.7-fold activity improvement. The multifunctional MOF-808-Al, which has satisfactory biosafety, is efficient in reducing neurotoxic effects and preventing neuronal tissue damage.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Xiaoli Cai
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yating Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Rina Su
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yu Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yuteng Huang
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Qihui Zheng
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China
| | - Xiaowen Cui
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P.R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China.
| |
Collapse
|
32
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
33
|
Ahmad BIZ, Keasler KT, Stacy EE, Meng S, Hicks TJ, Milner PJ. MOFganic Chemistry: Challenges and Opportunities for Metal-Organic Frameworks in Synthetic Organic Chemistry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4883-4896. [PMID: 38222037 PMCID: PMC10785605 DOI: 10.1021/acs.chemmater.3c00741] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline solids constructed from organic linkers and inorganic nodes that have been widely studied for applications in gas storage, chemical separations, and drug delivery. Owing to their highly modular structures and tunable pore environments, we propose that MOFs have significant untapped potential as catalysts and reagents relevant to the synthesis of next-generation therapeutics. Herein, we outline the properties of MOFs that make them promising for applications in synthetic organic chemistry, including new reactivity and selectivity, enhanced robustness, and user-friendly preparation. In addition, we outline the challenges facing the field and propose new directions to maximize the utility of MOFs for drug synthesis. This perspective aims to bring together the organic and MOF communities to develop new heterogeneous platforms capable of achieving synthetic transformations that cannot be replicated by homogeneous systems.
Collapse
Affiliation(s)
- Bayu I. Z. Ahmad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Emily E. Stacy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Sijing Meng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Thomas J. Hicks
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
34
|
Castells-Gil J, Almora-Barrios N, Lerma-Berlanga B, Padial NM, Martí-Gastaldo C. Chemical complexity for targeted function in heterometallic titanium-organic frameworks. Chem Sci 2023; 14:6826-6840. [PMID: 37389254 PMCID: PMC10306077 DOI: 10.1039/d3sc01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Research on metal-organic frameworks is shifting from the principles that control the assembly, structure, and porosity of these reticular solids, already established, into more sophisticated concepts that embrace chemical complexity as a tool for encoding their function or accessing new properties by exploiting the combination of different components (organic and inorganic) into these networks. The possibility of combining multiple linkers into a given network for multivariate solids with tunable properties dictated by the nature and distribution of the organic connectors across the solid has been well demonstrated. However, the combination of different metals remains still comparatively underexplored due to the difficulties in controlling the nucleation of heterometallic metal-oxo clusters during the assembly of the framework or the post-synthetic incorporation of metals with distinct chemistry. This possibility is even more challenging for titanium-organic frameworks due to the additional difficulties intrinsic to controlling the chemistry of titanium in solution. In this perspective article we provide an overview of the synthesis and advanced characterization of mixed-metal frameworks and emphasize the particularities of those based in titanium with particular focus on the use of additional metals to modify their function by controlling their reactivity in the solid state, tailoring their electronic structure and photocatalytic activity, enabling synergistic catalysis, directing the grafting of small molecules or even unlocking the formation of mixed oxides with stoichiometries not accessible to conventional routes.
Collapse
Affiliation(s)
- Javier Castells-Gil
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Belén Lerma-Berlanga
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Natalia M Padial
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
35
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
36
|
Chen J, Wang Y, Wang F, Li Y. Photo-Induced Switching of CO 2 Hydrogenation Pathway towards CH 3 OH Production over Pt@UiO-66-NH 2 (Co). Angew Chem Int Ed Engl 2023; 62:e202218115. [PMID: 36627240 DOI: 10.1002/anie.202218115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
It is highly desired to achieve controllable product selectivity in CO2 hydrogenation. Herein, we report light-induced switching of reaction pathways of CO2 hydrogenation towards CH3 OH production over actomically dispersed Co decorated Pt@UiO-66-NH2 . CO, being the main product in the reverse water gas shift (RWGS) pathway under thermocatalysis condition, is switched to CH3 OH via the formate pathway with the assistance of light irradiation. Impressively, the space-time yield of CH3 OH in photo-assisted thermocatalysis (1916.3 μmol gcat -1 h-1 ) is about 7.8 times higher than that without light at 240 °C and 1.5 MPa. Mechanism investigation indicates that upon light irradiation, excited UiO-66-NH2 can transfer electrons to Pt nanoparticles and Co sites, which can efficiently catalyze the critical elementary steps (i.e., CO2 -to-*HCOO conversion), thus suppressing the RWGS pathway to achieve a high CH3 OH selectivity.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.,Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Fengliang Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
37
|
Lu X, Song C, Qi X, Li D, Lin L. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO 2 Hydrogenation: A Review. Int J Mol Sci 2023; 24:ijms24044228. [PMID: 36835639 PMCID: PMC9959283 DOI: 10.3390/ijms24044228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogenation coupled with H2 derived from water electrolysis is considered a promising route to mitigate the negative impact of carbon emission and also promote the application of hydrogen. It is of great significance to develop catalysts with excellent performance and large-scale implementation. In the past decades, metal-organic frameworks (MOFs) have been widely involved in the rational design of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts, such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with traditionally supported catalysts. Great emphasis will be placed on various confinement effects in CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications of MOF-confined catalysis for CO2 hydrogenation are also summarized.
Collapse
Affiliation(s)
- Xiaofei Lu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Chuqiao Song
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duanxing Li
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
38
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
39
|
Sha F, Tang S, Tang C, Feng Z, Wang J, Li C. The role of surface hydroxyls on ZnZrO solid solution catalyst in CO2 hydrogenation to methanol. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Tang S, Feng Z, Han Z, Sha F, Tang C, Zhang Y, Wang J, Li C. Mononuclear Re Sites on In2O3 Catalyst for Highly Efficient CO2 Hydrogenation to Methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Peralta RA, Lyu P, López‐Olvera A, Obeso JL, Leyva C, Jeong NC, Ibarra IA, Maurin G. Switchable Metal Sites in Metal-Organic Framework MFM-300(Sc): Lewis Acid Catalysis Driven by Metal-Hemilabile Linker Bond Dynamics. Angew Chem Int Ed Engl 2022; 61:e202210857. [PMID: 36165854 PMCID: PMC9828200 DOI: 10.1002/anie.202210857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 01/12/2023]
Abstract
Uncommon reversible guest-induced metal-hemilabile linker bond dynamics in MOF MFM-300(Sc) was unraveled to switch on/switch off catalytic open metal sites. The catalytic activity of this MOF with non-permanent open metal sites was demonstrated using a model Strecker hydrocyanation reaction as a proof-of-concept. Conclusively, the catalytic activity was evidenced to be fully reversible, preserving the conversion performance and structure integrity of MFM-300(Sc) over multiple cycles. These experimental findings were corroborated by quantum-calculations that revealed a reaction mechanism driven by the Sc-open metal sites. This discovery paves the way towards the design of new effective and easily regenerable heterogeneous MOF catalysts integrating switchable metal sites.
Collapse
Affiliation(s)
- Ricardo A. Peralta
- Department of Physics & ChemistryCenter for Basic Science, DGISTDaegu42988Korea,Departamento de Química, Divisiónde Ciencias Básicas e Ingeniería, UAM-I09340MéxicoMexico
| | - Pengbo Lyu
- ICGMUniv. Montpellier, CNRS ENSCMMontpellier34095France,Hunan Provincial Key Laboratory of Thin Film Materials and DevicesSchool of Material Sciences and EngineeringXiangtan UniversityXiangtan411105China
| | - Alfredo López‐Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS).Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CU, Coyoacán04510Ciudad de MéxicoMexico
| | - Juan L. Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS).Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CU, Coyoacán04510Ciudad de MéxicoMexico,Instituto Politécnico NacionalCICATA U. Legaria 694 Irrigación11500Miguel Hidalgo, CDMXMéxicoMexico
| | - Carolina Leyva
- Instituto Politécnico NacionalCICATA U. Legaria 694 Irrigación11500Miguel Hidalgo, CDMXMéxicoMexico
| | - Nak Cheon Jeong
- Department of Physics & ChemistryCenter for Basic Science, DGISTDaegu42988Korea
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS).Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CU, Coyoacán04510Ciudad de MéxicoMexico
| | | |
Collapse
|
42
|
Rana R, Vila FD, Kulkarni AR, Bare SR. Bridging the Gap between the X-ray Absorption Spectroscopy and the Computational Catalysis Communities in Heterogeneous Catalysis: A Perspective on the Current and Future Research Directions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Fernando D. Vila
- Department of Physics, University of Washington, Seattle, Washington98195, United States
| | - Ambarish R. Kulkarni
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| |
Collapse
|
43
|
Zhang HP, Zhang QY, Feng XF, Krishna R, Luo F. Creating High-Number Defect Sites through a Bimetal Approach in Metal-Organic Frameworks for Boosting Trace SO 2 Removal. Inorg Chem 2022; 61:16986-16991. [PMID: 36264301 DOI: 10.1021/acs.inorgchem.2c03177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we represent a bimetallic approach to enhance the defect number, leading to eight defect sites per node in a metal-organic framework, showing both a higher SO2 adsorption capacity and higher SO2/CO2 selectivity. The results can be further strongly supported by density functional theory calculations.
Collapse
Affiliation(s)
- Hui Ping Zhang
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Qing Yun Zhang
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Xue Feng Feng
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Feng Luo
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| |
Collapse
|
44
|
Zhao L, Bian J, Zhang X, Bai L, Xu L, Qu Y, Li Z, Li Y, Jing L. Construction of Ultrathin S-Scheme Heterojunctions of Single Ni Atom Immobilized Ti-MOF and BiVO 4 for CO 2 Photoconversion of nearly 100% to CO by Pure Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205303. [PMID: 35986557 DOI: 10.1002/adma.202205303] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/10/2022] [Indexed: 06/15/2023]
Abstract
To rationally design single-atom metal-organic framework (MOF)-involving photocatalysts remains an ongoing challenge for efficient CO2 conversion. Here, cuppy microstructures, consisting of a Ti(IV)-oxo node and three linked carboxylic moieties, in the single-coordination-layer Ti2 (H2 dobdc)3 MOF (NTU-9) are exploited to immobilize abundant single Ni(II) sites (Ni@MOF). The coupling of Ni@MOF with BiVO4 (BVO) nanosheets by H-bonding-induced assembly process obtains wide-spectrum 2D heterojunctions. The optimal heterojunction exhibits competitive performance and enables around 66-fold CO2 conversion of that for BVO nanoparticles by pure water, with nearly 100% CO selectivity. The exceptional photoactivity is attributed to favorable S-scheme charge transfer from BVO to MOF then to single Ni(II) sites. Noteworthily, single Ni(II) sites anchored by the Ti(IV)-oxo node and vicinal carboxylic moieties serving as a unique local microenvironment (LME) are found to synergistically catalyze CO2 conversion. Specifically, the hydroxyl groups of carboxylic moieties can form H-bonds with CO2 to promote its adsorption on single Ni(II) sites, and also can provide accessible protons to facilitate H-assisted CO2 reduction. Moreover, the CO desorption and subsequent CO2 adsorption on single Ni(II) sites with LME is proved to be thermodynamically favored, and hence dominates the high CO selectivity. This work highlights the significance of modulating the LME of single atoms to rationally design photocatalysts for realizing carbon neutralization.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ji Bian
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Linlu Bai
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Linyao Xu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yang Qu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
45
|
Issa Hamoud H, Damacet P, Fan D, Assaad N, Lebedev OI, Krystianiak A, Gouda A, Heintz O, Daturi M, Maurin G, Hmadeh M, El-Roz M. Selective Photocatalytic Dehydrogenation of Formic Acid by an In Situ-Restructured Copper-Postmetalated Metal-Organic Framework under Visible Light. J Am Chem Soc 2022; 144:16433-16446. [PMID: 36047929 PMCID: PMC9479070 DOI: 10.1021/jacs.2c04905] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Formic acid is considered as one of the most promising
liquid organic
hydrogen carriers. Its catalytic dehydrogenation process generally
suffers from low activity, low reaction selectivity, low stability
of the catalysts, and/or the use of noble-metal-based catalysts. Herein
we report a highly selective, efficient, and noble-metal-free photocatalyst
for the dehydrogenation of formic acid. This catalyst, UiO-66(COOH)2-Cu, is built by postmetalation of a carboxylic-functionalized
Zr-MOF with copper. The visible-light-driven photocatalytic dehydrogenation
process through the release of hydrogen and carbon dioxide has been
monitored in real-time viaoperando Fourier transform infrared spectroscopy, which revealed almost 100%
selectivity with high stability (over 3 days) and a conversion yield
exceeding 60% (around 5 mmol·gcat–1·h–1) under ambient conditions. These performance
indicators make UiO-66(COOH)2-Cu among the top photocatalysts
for formic acid dehydrogenation. Interestingly, the as-prepared UiO-66(COOH)2-Cu hetero-nanostructure was found to be moderately active
under solar irradiation during an induction phase, whereupon it undergoes
an in-situ restructuring process through intraframework
cross-linking with the formation of the anhydride analogue structure
UiO-66(COO)2-Cu and nanoclustering of highly active and
stable copper sites, as evidenced by the operando studies coupled with steady-state isotopic transient kinetic experiments,
transmission electron microscopy and X-ray photoelectron spectroscopy
analyses, and Density Functional Theory calculations. Beyond revealing
outstanding catalytic performance for UiO-66(COO)2-Cu,
this work delivers an in-depth understanding of the photocatalytic
reaction mechanism, which involves evolutive behavior of the postmetalated
copper as well as the MOF framework over the reaction. These key findings
pave the way toward the engineering of new and efficient catalysts
for photocatalytic dehydrogenation of formic acid.
Collapse
Affiliation(s)
- Houeida Issa Hamoud
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14050 Caen, France
| | - Patrick Damacet
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
| | - Dong Fan
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Nisrine Assaad
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
| | - Oleg I Lebedev
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire CRISMAT, UMR 6508, 14050 Caen, France
| | - Anna Krystianiak
- ICB, CNRS UMR 6303 - Université de Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon, France
| | - Abdelaziz Gouda
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olivier Heintz
- ICB, CNRS UMR 6303 - Université de Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon, France
| | - Marco Daturi
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14050 Caen, France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Mohamad Hmadeh
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
| | - Mohamad El-Roz
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14050 Caen, France
| |
Collapse
|
46
|
Xu X, Deng Q, Chen HC, Humayun M, Duan D, Zhang X, Sun H, Ao X, Xue X, Nikiforov A, Huo K, Wang C, Xiong Y. Metal-Organic Frameworks Offering Tunable Binary Active Sites toward Highly Efficient Urea Oxidation Electrolysis. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9837109. [PMID: 35935128 PMCID: PMC9275073 DOI: 10.34133/2022/9837109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Electrocatalytic urea oxidation reaction (UOR) is regarded as an effective yet challenging approach for the degradation of urea in wastewater into harmless N2 and CO2. To overcome the sluggish kinetics, catalytically active sites should be rationally designed to maneuver the multiple key steps of intermediate adsorption and desorption. Herein, we demonstrate that metal-organic frameworks (MOFs) can provide an ideal platform for tailoring binary active sites to facilitate the rate-determining steps, achieving remarkable electrocatalytic activity toward UOR. Specifically, the MOF (namely, NiMn0.14-BDC) based on Ni/Mn sites and terephthalic acid (BDC) ligands exhibits a low voltage of 1.317 V to deliver a current density of 10 mA cm-2. As a result, a high turnover frequency (TOF) of 0.15 s-1 is achieved at a voltage of 1.4 V, which enables a urea degradation rate of 81.87% in 0.33 M urea solution. The combination of experimental characterization with theoretical calculation reveals that the Ni and Mn sites play synergistic roles in maneuvering the evolution of urea molecules and key reaction intermediates during the UOR, while the binary Ni/Mn sites in MOF offer the tunability for electronic structure and d-band center impacting on the intermediate evolution. This work provides important insights into active site design by leveraging MOF platform and represents a solid step toward highly efficient UOR with MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Xuefei Xu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Deng
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Chang Gung University, Taoyuan, 33302 Taiwan, China
| | - Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Delong Duan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Xia Zhang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huachuan Sun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Ao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinying Xue
- Department of Physics, College of Science, Shihezi University, Xinjiang 832003, China
| | - Anton Nikiforov
- Department of Applied Physics, Ghent University, Gent 9000, Belgium
| | - Kaifu Huo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| |
Collapse
|
47
|
Zhao L, Cai W, Ji G, Wei J, Du Z, He C, Duan C. Anthraquinone-Based Metal-Organic Frameworks as a Bifunctional Photocatalyst for C-H Activation. Inorg Chem 2022; 61:9493-9503. [PMID: 35696346 DOI: 10.1021/acs.inorgchem.2c00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) have gained attention as multifunctional catalytic platforms, allowing us to gain important insights into synergistically activating both C-H bonds and oxygen for improving oxidation. Herein, by ingenious incorporation of anthraquinone, we report an anthraquinone-based MOF as a bifunctional heterogeneous photocatalytic platform to simultaneously activate inert C(sp3)-H bonds and oxygen for C-H bond oxidation. Making use of the rigid framework with the fixation and isolation effect, both a great chemical stability and bifunctional synergistic photocatalytic effects were obtained through the immobilization of anthraquinone into a MOF. Importantly, while decorating two carboxyl groups on anthraquinone, the carbonyl groups of anthraquinone photosensitizers were not involved in coordinating the self-assembly and orderly arranged on the wall of channels that were constructed through a π-π interaction between the anthraquinone moieties in the adjacent layers, which was beneficial to form and stabilize the excited-state radical intermediates in the molecule-fenced channels, and the close proximity between the catalytic sites and the substrates to abstract a hydrogen atom from the substrate through the hydrogen atom transfer process aimed at activating the inertness of C-H bonds. Moreover, high-density-distributed anthraquinone dyes in the confined channels would activate oxygen to form singlet oxygen (1O2) through an energy transfer pathway, further promoting inert C(sp3)-H bond oxidation efficiency. Under visible light irradiation, this anthraquinone-based MOF was successfully applied to explore activation and oxidation of a series of substrates containing benzylic C(sp3)-H bonds in the presence of air or oxygen to produce the corresponding carbonyl products. This bifunctional photocatalytic platform based on a heterogeneous MOF provides an available catalytic avenue to develop a scalable and sustainable synthetic strategy using green and sustainable oxygen as the potent oxidant.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
48
|
Tada S, Ochiai N, Kinoshita H, Yoshida M, Shimada N, Joutsuka T, Nishijima M, Honma T, Yamauchi N, Kobayashi Y, Iyoki K. Active Sites on Zn xZr 1–xO 2–x Solid Solution Catalysts for CO 2-to-Methanol Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shohei Tada
- Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan
| | - Nagomu Ochiai
- Institute of Quantum Beam Science, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan
| | - Hiroka Kinoshita
- Institute of Quantum Beam Science, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan
| | - Mitsuhiro Yoshida
- Institute of Quantum Beam Science, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan
| | - Natsumi Shimada
- Institute of Quantum Beam Science, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan
| | - Tatsuya Joutsuka
- Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Masahiko Nishijima
- Flexible 3D System Integration Laboratory, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198, Japan
| | - Noriko Yamauchi
- Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan
| | - Yoshio Kobayashi
- Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan
| | - Kenta Iyoki
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
49
|
Synthesis of newly crystalline-porous- Pd(II)- (E,E)-2, 4-hexadienoic acid complex-leads to 3D-MOFs for hydrogen storage. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Xu X, Li Z, Huang H, Jing X, Duan C. A Novel Copper Metal-Organic Framework Catalyst for the Highly Efficient Conversion of CO2 with Propargylic Amines. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid increase in atmospheric carbon dioxide has resulted in the greenhouse effect. Hence, carbon dioxide capture and further fixation into valuable chemical products are particularly important for reducing atmospheric...
Collapse
|