1
|
Iwamoto T, Amano S, Maeda K, Shibama N, Sekiguchi W, Kazama Y, Nakamura Y, Sugamata K, Imoto H, Naka K, Ishii Y. Exclusive macrocyclization through multiple Si-O bond formations from diol and dichlorosilane. Chem Commun (Camb) 2025. [PMID: 40302459 DOI: 10.1039/d5cc01499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This paper describes an exceptionally efficient macrocyclization method through multiple Si-O bond formations between diol and dichlorosilane. The square-shaped cyclic tetramer was exclusively obtained due to a hemilabile conformational lock of Ar-O-Si-O-Ar linkage. The synthetic method is significantly efficient, rapid, and feasible even under high concentration.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Sota Amano
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kousuke Maeda
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Natsuki Shibama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Wakana Sekiguchi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuki Kazama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yasuyuki Nakamura
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Koh Sugamata
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
- Tsukuba Research Center for Energy Materials Sciences (TREMS), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Debsharma T, Nguyen LT, Maliszewski BP, Fischer SM, Scholiers V, Winne JM, Nolan SP, Du Prez FE. Eliminating creep in vitrimers using temperature-resilient siloxane exchange chemistry and N-heterocyclic carbenes. Chem Sci 2025:d4sc06278g. [PMID: 40303456 PMCID: PMC12035752 DOI: 10.1039/d4sc06278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
This study explores a novel N-heterocyclic carbene-mediated siloxane exchange mechanism, laying the foundation for designing covalent adaptable networks (CANs) with high temperature stability (>200 °C) for dynamic covalent chemistry. Small molecule siloxane compounds, obtained by hydrosilylation reactions, are used to demonstrate siloxane-exchange via a mechanism supported by density functional theory. The proposed mechanism presents an equilibrium, at elevated temperatures, between an imidazolium salt and its free carbene form, which is the catalytically active species. Following this mechanistic insight, a tetra-substituted ester-terminated siloxane cross-linker was synthesized and cured with a commercial amine hardener. The ensuing ester-amine reaction yields thermally stable, non-dynamic amide bonds, thereby enhancing material stability. The resulting CANs exhibit rapid stress relaxation at elevated temperatures and demonstrate successful recycling through compression molding without any significant loss of material properties. Remarkably, the synthesized material showcases high creep resistance, even up to 150 °C, indicating the benefits of having a thermally reversible catalyst system for siloxane activation. This ground-up design of dynamic chemistry and material synthesis not only presents innovative material design but also suggests avenues for exploring thermally stable, fast-exchanging and yet creep-resistant CANs.
Collapse
Affiliation(s)
- Tapas Debsharma
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302 Kharagpur India
| | - Loc Tan Nguyen
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Benon P Maliszewski
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 9000 Ghent Belgium
| | - Susanne M Fischer
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Vincent Scholiers
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 9000 Ghent Belgium
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| |
Collapse
|
3
|
Maes S, Badi N, Winne JM, Du Prez FE. Taking dynamic covalent chemistry out of the lab and into reprocessable industrial thermosets. Nat Rev Chem 2025; 9:144-158. [PMID: 39891024 DOI: 10.1038/s41570-025-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Dynamic covalent chemistry (DCC) allows the development of thermally (re)processable and recyclable polymer networks, which is a highly attractive feature for new generations of thermoset materials. However, despite a surge in academic interest wherein soon almost any imaginable DCC platform may have been applied in a thermoset formulation, dynamic or reversible covalent polymer networks have so far found only few industrial applications. This Review provides a perspective on the main strategies for the application of DCC in the design and development of bulk thermoset materials, and it presents some of the key hurdles for their industrial implementation. The polymer design strategies and associated chemistries are viewed from the perspective of how 'close to market' their development pathway is, thus providing a roadmap to achieve high-volume breakthrough applications.
Collapse
Affiliation(s)
- Stephan Maes
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Johan M Winne
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Caglayan C, Kim G, Yun GJ. Recovering mechanoluminescence in SAOED/epoxy stress sensors with self-healing epoxy vitrimers. RSC Adv 2025; 15:7160-7171. [PMID: 40052106 PMCID: PMC11883463 DOI: 10.1039/d4ra08911a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/09/2025] [Indexed: 03/09/2025] Open
Abstract
In mechanoluminescence stress sensors, understanding the relationship between light emission performance and sensor structural stability is crucial to ensure the accuracy, sensitivity, and reliability of stress sensing during operation. Any minor structural damage or debonding at the particle-epoxy interface will reduce stress transfer capacity and hamper the light emission from SAOED particles. Instead of replacing the sensors with reduced light emission performance, self-healing epoxy vitrimers can open up new opportunities for recovering mechanoluminescence, offering durable and environmentally friendly high-performance stress sensors. This study investigates two epoxy vitrimer systems for ML stress sensors compared to commercial epoxy. Siloxane bond exchange-based ML stress sensors are found to be promising in terms of light intensity, stress sensitivity, and ML recovery. Exposing sensors to a thermal treatment revealed an increase in light intensity, which is associated with a temperature effect on SAOED particles and self-healing bond exchange in dynamic epoxy networks.
Collapse
Affiliation(s)
- Cigdem Caglayan
- Department of Aerospace Engineering, Seoul National University Seoul 08826 South Korea
| | - Geonwoo Kim
- Department of Aerospace Engineering, Seoul National University Seoul 08826 South Korea
| | - Gun Jin Yun
- Department of Aerospace Engineering, Seoul National University Seoul 08826 South Korea
- Institute of Advanced Aerospace Engineering Technology, Seoul National University Seoul 08826 South Korea
| |
Collapse
|
5
|
Scholiers V, Fischer SM, Daelman B, Lehner S, Gaan S, Winne JM, Du Prez FE. Tailoring the Reprocessability of Thiol-Ene Networks through Ring Size Effects. Angew Chem Int Ed Engl 2025; 64:e202420657. [PMID: 39724466 DOI: 10.1002/anie.202420657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 12/28/2024]
Abstract
Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers. While it is known that thioether bonds can be triggered to exchange through transalkylation reactions, this process is usually slow, as thioether moieties not only have to be activated by an alkylating agent, but the activated thioether also has to associate with a second thioether moiety in a classical SN2-type process. Here, we present the rational design of dynamic polymer networks based on simple dithiol-based monomers and a fatty acid derived triene. Two neighboring thioethers can undergo a much faster bond exchange reaction, and we found that the exchange dynamics can be further tuned over almost three orders of magnitude by tailoring the distance between two thioether functionalities. This resulted in thioether-cross-linked materials that could be processed by extrusion, a continuous reprocessing technique that was previously not accessible for this class of cross-linked materials, while still exhibiting appealing creep-resistance below 70 °C.
Collapse
Affiliation(s)
- Vincent Scholiers
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Susanne M Fischer
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Bram Daelman
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Sandro Lehner
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse, 5, St. Gallen, 9014, Switzerland
| | - Sabyasachi Gaan
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse, 5, St. Gallen, 9014, Switzerland
| | - Johan M Winne
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
6
|
Engelen S, Daelman B, Winne JM, Du Prez FE. Activated Phenyl Ester Vitrimers. Macromol Rapid Commun 2025; 46:e2400790. [PMID: 39536338 DOI: 10.1002/marc.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Aromatic esters are amongst the oldest known chemical motifs that allow for thermal (re)processing of thermosetting polymers. Moreover, phenyl esters are generally known as activated esters that do not require a catalyst to undergo acyl transfer reactions. Even though dynamic aromatic esters find applications in commercialized thermoset formulations, all-aromatic esters have found limited use so far in the design of covalent adaptable networks (CAN) as a result of their high glass transition temperature (Tg) and specific curing process. Here, a strategy to include partly aromatic esters as dynamic cross-links inside low Tg (-40 °C) thermosetting formulations, using aliphatic esters derived from para-hydroxybenzoic acid, which serves as a highly activated phenol or as a reactive "phenylogous anhydride" is reported. A small molecule study shows that the activated phenyl ester bonds can readily exchange with free phenol moieties at 200 °C under catalyst-free conditions, while the addition of a catalyst allows for a faster exchange. Robust and hydrophobic polymer networks are conveniently prepared via rapid thiol-ene UV-curing of unsaturated phenol esters. The obtained networks show high thermal stability (350 °C), fast processability, good water resistance, and low creep up to 120 °C, thus showing good promise as a platform for CAN.
Collapse
Affiliation(s)
- Stéphanie Engelen
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Bram Daelman
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
7
|
Liu X, Fang M, Feng Y, Huang M, Liu C, Shen C. Investigation on Polyether Sulfone Toughening Epoxy Vitrimer: Curing and Dynamic Properties. Macromol Rapid Commun 2024; 45:e2400540. [PMID: 39374340 DOI: 10.1002/marc.202400540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Indexed: 10/09/2024]
Abstract
Diglycidyl ether of bisphenol A crosslinking with glutaric anhydride is used to form the conventional "covalent adaptive network", polyether sulfone (PES) by coiling and aggregating on the adaptive network is used to significantly increase the uncured resin viscosity for improving the processability of epoxy resin, but inevitably affecting the curing reaction and dynamic transesterification reaction. This study investigates the crucial roles of PES in curing dynamics and stress relaxation behavior. The results indicate that although PES does not directly participate in the crosslinking reaction of polyester-based epoxy vitrimers. Moreover, the isothermal curing studies reveal that the addition of PES can greatly bring forward the reaction rate peak from conversion α = 0.6 to α = 0.2, meaning that the curing mechanism transfers from chemical control to diffusion control. Dynamic property analysis shows that the addition of PES significantly accelerates stress relaxation, especially at lower temperatures, leading to low viscous flow activation energy Eτ and relatively insensitive stress relaxation behavior to temperature. Introducing PES into vitrimer resin greatly improves crosslinking density (2.31 × 10⁴ mol m- 3), enhancing glass transition temperature (82.68 °C), tensile strength (68.66 MPa), and fracture toughness (6.25%). Additionally, the modified vitrimer resin exhibits satisfying shape memory performance and reprocessing capability.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Mei Fang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Yuezhan Feng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Ming Huang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Chuntai Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Changyu Shen
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
8
|
Laurent E, Maric M. Organic-Inorganic Hybrid Materials from Vegetable Oils. Macromol Rapid Commun 2024; 45:e2400408. [PMID: 39412784 PMCID: PMC11628362 DOI: 10.1002/marc.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Indexed: 12/11/2024]
Abstract
The production of materials based on fossil resources is yielding more sustainable and ecologically beneficial methods. Vegetable oils (VO) are one example of base materials whose derivatives rival the properties of their petro-based counterparts. Gaps exist however and one way to fill them is by employing sol-gel processes to synthesize organic-inorganic hybrid materials, often derived from silane/siloxane compounds. Creating Si─O─Si inorganic networks in the organic VO matrix permits the attainment of necessary strength, among other property enhancements. Consequently, many efforts have been directed to optimally achieve organic-inorganic hybrid materials with VOs. However, compatibilization is challenging, and desirable conditions for matching the inorganic filler in the organic matrix remain a key stumbling block toward wider application. Therefore, this review aims to detail recent progress on these new hybrids, focusing on the main strategies to polymerize and functionalize the raw VO, followed by routes highlighting the addition of the inorganic fillers to obtain desirable composites.
Collapse
Affiliation(s)
- Eline Laurent
- Department of Chemical EngineeringMcGill UniversityMontrealQuebecH3A 0C5Canada
| | - Milan Maric
- Department of Chemical EngineeringMcGill UniversityMontrealQuebecH3A 0C5Canada
| |
Collapse
|
9
|
van der Tol JJB, Hafeez S, Bänziger APG, Su H, Heuts JPA, Meijer EW, Vantomme G. Supramolecular Polymer Additives as Repairable Reinforcements for Dynamic Covalent Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410723. [PMID: 39417726 PMCID: PMC11619224 DOI: 10.1002/adma.202410723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Employing rigid (in)organic materials as reinforcement for dynamic covalent networks (DCNs) is an effective approach to develop high-performance materials. Yet, recycling of these materials after failure often necessitates inefficient chemical reprocessing or inevitably alters their performance due to unrepairable inert components. Here, a non-covalent reinforcement strategy is presented by introducing a supramolecular additive to a DCN that can reversibly depolymerize and reform on demand, therefore acting as an adaptive and repairable reinforcement. The strong hydrogen-bonding interactions in the supramolecular polymer of triazine-1,3,5-tribenzenecarboxamide (S-T) strengthen the DCN at room temperature, while its non-covalent nature allows for easy one-pot reprocessing at high temperatures. Depending on wether S-T is covalently bond to the DCN or not, it can play either the role of compatibilizer or filler, providing a synthetic tool to control the relaxation dynamics, reprocessability and mechanical properties. Moreover, the S-T reinforcement can be chemically recovered with high yield and purity, showcasing the recyclability of the composite. This conceptually novel supramolecular reinforcement strategy with temperature-controlled dynamics highlights the potential of supramolecular polymer additives to replace conventional unrepairable reinforcements.
Collapse
Affiliation(s)
- Joost J. B. van der Tol
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Shahzad Hafeez
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Andy P. G. Bänziger
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Hao Su
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Johan P. A. Heuts
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| |
Collapse
|
10
|
Ye G, Huo S, Wang C, Zhang Q, Wang H, Song P, Liu Z. Strong yet Tough Catalyst-Free Transesterification Vitrimer with Excellent Fire-Retardancy, Durability, and Closed-Loop Recyclability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404634. [PMID: 39082404 DOI: 10.1002/smll.202404634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Indexed: 11/08/2024]
Abstract
Despite great advances in vitrimer, it remains highly challenging to achieve a property portfolio of excellent mechanical properties, desired durability, and high fire safety. Thus, a catalyst-free, closed-loop recyclable transesterification vitrimer (TPN1.50) with superior mechanical properties, durability, and fire retardancy is developed by introducing a rationally designed tertiary amine/phosphorus-containing reactive oligomer (TPN) into epoxy resin (EP). Because of strong covalent interactions between TPN and EP and its linear oligomer structure, as-prepared TPN1.50 achieves a tensile strength of 86.2 MPa and a toughness of 6.8 MJ m-3, superior to previous vitrimer counterparts. TPN1.50 containing 1.50 wt% phosphorus shows desirable fire retardancy, including a limiting oxygen index of 35.2% and a vertical burning (UL-94) V-0 classification. TPN1.50 features great durability and can maintain its structure integrity in 1 M HCl or NaOH solution for 100 days. This is because the tertiary amines are anchored within the cross-linked network and blocked by rigid P-containing groups, thus effectively suppressing the transesterification. Owing to its good chemical recovery, TPN1.50 can be used as a promising resin for creating recyclable carbon fiber-reinforced polymer composites. This work offers a promising integrated method for creating robust durable fire-safe vitrimers which facilitate the sustainable development of high-performance polymer composites.
Collapse
Affiliation(s)
- Guofeng Ye
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Cheng Wang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qi Zhang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, 4300, Australia
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| |
Collapse
|
11
|
Reisinger D, Sietmann A, Das A, Plutzar S, Korotkov R, Rossegger E, Walluch M, Holler-Stangl S, Hofer TS, Dielmann F, Glorius F, Schlögl S. Light-Driven, Reversible Spatiotemporal Control of Dynamic Covalent Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411307. [PMID: 39370771 DOI: 10.1002/adma.202411307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Dynamic covalent polymer networks exhibit a cross-linked structure like conventional thermosets and elastomers, although their topology can be reorganized through externally triggered bond exchange reactions. This characteristic enables a unique combination of repairability, recyclability and dimensional stability, crucial for a sustainable industrial economy. Herein the application of a photoswitchable nitrogen superbase is reported for the spatially resolved and reversible control over dynamic bond exchange within a thiol-ene photopolymer. By the exposure to UV or visible light, the associative exchange between thioester links and thiol groups is successfully gained control over, and thereby the macroscopic mechanical material properties, in a locally controlled manner. Consequently, the resulting reorganization of the global network topology enables to utilize this material for previously unrealizable advanced applications such as spatially resolved, reversible reshaping as well as micro-imprinting over multiple steps. Finally, the presented concept contributes fundamentally to the evolution of dynamic polymers and provides universal applicability in covalent adaptable networks relying on a base-catalyzed exchange mechanism.
Collapse
Affiliation(s)
- David Reisinger
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, Leoben, 8700, Austria
| | - Alexander Sietmann
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | - Ankita Das
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Sarah Plutzar
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, Leoben, 8700, Austria
| | - Roman Korotkov
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, Leoben, 8700, Austria
| | | | | | | | - Thomas S Hofer
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | - Fabian Dielmann
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, Leoben, 8700, Austria
| |
Collapse
|
12
|
Wang YH, Hung DY, Liu YL. Is a Vitrimer with a High Glass Transition Temperature Available? A Case Study on Rigid Polyimides Cross-Linked with Dynamic Ester Bonds. Macromol Rapid Commun 2024; 45:e2400312. [PMID: 38860731 DOI: 10.1002/marc.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Vitrimers, possessing associative covalent adaptable networks, are cross-linked polymers exhibiting malleable (glass-like) feature and recyclable and reprocessable (thermoplastics-like) properties. The dynamic behaviors of vitrimer are dependent on both chain/molecular mobility (glass transition temperature, Tg) and dynamic bond-exchanging reaction rate (topology freezing transition temperature, Tv). This work aims on probing the effect of high Tg on the stress relaxation and physical recyclability of vitrimers, employing a polyimide cross-linked with dynamic ester bonds (Tg: 310 °C) as the example. Due to its high Tg and chain rigidity, the cross-linked polyimide does not exhibit a high extent of stress relaxation behavior at 320 °C (10 °C above its Tg), even though the temperature is much higher than the hypothetical Tv. While raising the processing temperature to 345 °C, the cross-linked polyimide exhibits a stress relaxation time of about 3300 s and physical malleability. Nevertheless, side reactions may occur in the recycling and reprocessing process under the harsh condition (high temperature and high pressure) to alter the thermal properties of the recycled sample. The diffusion control plays a critical role on the topography transition of a vitrimer having a high Tg. The Tg ceiling is noticeable for developments of vitrimers.
Collapse
Affiliation(s)
- Yueh-Hsin Wang
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Du-Yuan Hung
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Ying-Ling Liu
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| |
Collapse
|
13
|
Wang T, Chen Y, Chen B, Suazo MJ, Purwanto NS, Torkelson JM. Reprocessable, Self-Healing, and Creep-Resistant Covalent Adaptable Network Made from Chain-Growth Monomers with Dynamic Covalent Thionourethane and Disulfide Cross-Links. ACS Macro Lett 2024; 13:1147-1155. [PMID: 39150319 DOI: 10.1021/acsmacrolett.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We synthesized covalent adaptable networks (CANs) made from chain-growth comonomers using nonisocyanate thiourethane chemistry. We derivatized glycidyl methacrylate with cyclic dithiocarbonate (GMA-DTC), did a free-radical polymerization of n-hexyl methacrylate with GMA-DTC to obtain a statistical copolymer with 8 mol % GMA-DTC, and cross-linked it with difunctional amine. The dynamic covalent thionourethane and disulfide bonds lead to CAN reprocessability with full recovery of the cross-link density; the temperature dependence of the rubbery plateau modulus indicates that associative character dominates the dynamic response. The CAN exhibits complete self-healing at 110 °C with tensile property recovery and excellent creep resistance at 90-100 °C. Stress relaxation at 140-170 °C reveals an activation energy of 105 ± 6 kJ/mol, equal to the activation energy (Ea) of the CAN poly(n-hexyl methacrylate) backbone α-relaxation. We hypothesize that CANs with exclusively or predominantly associative dynamics have their stress-relaxation Ea defined by the α-relaxation Ea. This hypothesis is supported by stress relaxation studies on a similar poly(n-lauryl methacrylate)-based CAN.
Collapse
Affiliation(s)
- Tong Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Yixuan Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Boran Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Mathew J Suazo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Nathan S Purwanto
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - John M Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 United States
| |
Collapse
|
14
|
Du Y, Wang D. One-Pot Preparation of Double-Network Epoxy Vitrimers with High Performance, Recyclability, and Two-Stage Stress Relaxation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042785 DOI: 10.1021/acsami.4c09123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although considerable progress has been made in developing different types of vitrimers, ongoing challenges remain in tuning their mechanical and rheological properties, self-healing, and adhesion. Here, we demonstrate a one-pot method to produce a novel double-network epoxy vitrimer using an aliphatic amine cross-linker with a siloxane covalent bond and an aromatic amine cross-linker with a disulfide covalent bond. When a controlled two-stage curing process is employed, the markedly different reactivities of aliphatic amine and aromatic amine with epoxy allow for sequential cross-linked network formation, leading to the development of a double network that incorporates two types of dynamic covalent bonds. As a result, the produced vitrimers exhibit controllable mechanical, thermal, and rheological properties, as well as recyclability. This is evidenced by a tensile strength as high as 72 MPa, while maintaining ∼10% elongation at break, a wide glass-transition temperature range from 91 to 171 °C, and an adjustable two-stage stress relaxation. These characteristics suggest opportunities to develop high-performance cross-linked polymers with specific responses to time and temperatures.
Collapse
Affiliation(s)
- Yuetian Du
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Islam MS, Kedziora G, Lee J, Stafford A, Varshney V, Nepal D, Baldwin LA, Roy AK. Efficiency and Mechanism of Catalytic Siloxane Exchange in Vitrimer Polymers: Modeling and Density Functional Theory Investigations. J Phys Chem A 2024; 128:5627-5636. [PMID: 38957945 DOI: 10.1021/acs.jpca.4c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Of late, siloxane-containing vitrimers have gained significant interest due to their fast dynamic characteristics over a reasonable temperature range (180-220 °C), making them well-suited for diverse applications. The exchange reaction pathway in the siloxane vitrimers is accountable for the covalent adaptive network, with the reaction's effectiveness being regulated by either organic or organometallic catalysts. However, directly studying the exchange reaction pathway in the bulk phase using experimental approaches is challenging because of the intricate and interconnected structure of these vitrimers. Here, we perform comprehensive density functional theory (DFT) and experimental investigations to discover the detailed catalytic efficacy of siloxane exchange and provide direction for the reaction process using a 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) catalyst. The calculated transition barrier energy and catalytic efficiency of hexamethyldisiloxane and dihydroxy-dimethylsilane exchange derived from the nudged elastic band with transition-state calculations strongly agree with the experimental findings. In addition, Fukui indices, along with partial charges, are employed to evaluate the nucleophilic and electrophilic behaviors of silanol and siloxane molecules. Our analysis revealed that by utilizing the Fukui indices of both the acid and the base, we can make an approximate estimation of the respective kinetics of the SN2 process in the siloxane exchange reaction mechanism. These findings establish a foundation for comprehending a crucial aspect of the exchange mechanism in siloxane vitrimer systems and could aid in the development of novel catalysts.
Collapse
Affiliation(s)
- Md Sherajul Islam
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
- Spectral Energies, LLC, Dayton, Ohio 45430, United States
| | - Gary Kedziora
- Inu Teq, LLC, NASA Ames Supercomputing Division, Moffet Field, Mountain View, California 94035, United States
- GDIT, AFRL/RC, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Jonghoon Lee
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
- ARCTOS Technology Solutions, Dayton, Ohio 45432, United States
| | - Alex Stafford
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Vikas Varshney
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Luke A Baldwin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Ajit K Roy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| |
Collapse
|
16
|
Deng Y, Zhang Q, Feringa BL. Dynamic Chemistry Toolbox for Advanced Sustainable Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308666. [PMID: 38321810 PMCID: PMC11005721 DOI: 10.1002/advs.202308666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Developing dynamic chemistry for polymeric materials offers chemical solutions to solve key problems associated with current plastics. Mechanical performance and dynamic function are equally important in material design because the former determines the application scope and the latter enables chemical recycling and hence sustainability. However, it is a long-term challenge to balance the subtle trade-off between mechanical robustness and dynamic properties in a single material. The rise of dynamic chemistry, including supramolecular and dynamic covalent chemistry, provides many opportunities and versatile molecular tools for designing constitutionally dynamic materials that can adapt, repair, and recycle. Facing the growing social need for developing advanced sustainable materials without compromising properties, recent progress showing how the toolbox of dynamic chemistry can be explored to enable high-performance sustainable materials by molecular engineering strategies is discussed here. The state of the art and recent milestones are summarized and discussed, followed by an outlook toward future opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
17
|
Yang H, Wang D. Comparing Surface and Bulk Curing Processes of an Epoxy Vitrimer. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470965 DOI: 10.1021/acsami.3c17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
We used atomic force microscopy-based infrared spectroscopy (AFM-IR) and nanomechanical mapping (AFM-NM) to image the surface of a vitrimer, specifically dicarboxylic acid-cured diglycidyl ether of bisphenol A (DGEBA), to assess the curing process of a surface layer and compared this to the process in the bulk. We identified the β-hydroxy esters with various functionalities that are the key to form the cross-links for a system, including difunctional DGEBA and carboxylic acids. The IR peaks of the carbonyl group in generated ester groups are distinguished clearly from those in acids, allowing us to quantitatively assess the curing process at the surface and in the bulk. The initial curing at the surface exhibits a gradual cross-linking and is found to be lower than a rapid cross-linking in the bulk due to a relatively lower concentration of the β-hydroxy esters with high functionalities. This curing process leads to a smaller chemically and mechanically heterogeneous nanostructure at the surface relative to the bulk. After multiple reprocessings, a substantial number of esters lacking dynamic exchange capability form in the bulk, which decrease the flowability and reprocessability of the vitrimers and therefore the mechanical properties.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Hong Y, Goh M. Vitrimer Nanocomposites for Highly Thermal Conducting Materials with Sustainability. Polymers (Basel) 2024; 16:365. [PMID: 38337255 DOI: 10.3390/polym16030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Vitrimers, as dynamic covalent network polymers, represent a groundbreaking advancement in materials science. They excel in their applications, such as advanced thermal-conductivity composite materials, providing a sustainable alternative to traditional polymers. The incorporation of vitrimers into composite fillers enhances alignment and heat passway broadly, resulting in superior thermal conductivity compared to conventional thermosetting polymers. Their dynamic exchange reactions enable straightforward reprocessing, fostering the easy reuse of damaged composite materials and opening possibilities for recycling both matrix and filler components. We review an overview of the present advancements in utilizing vitrimers for highly thermally conductive composite materials.
Collapse
Affiliation(s)
- Younggi Hong
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Munju Goh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
19
|
Maliszewski BP, Casillo E, Lambert P, Nahra F, Cazin CSJ, Nolan SP. Simply accessible platinum(II) complexes enabling alkene hydrosilylation at ppm catalyst loadings. Chem Commun (Camb) 2023; 59:14017-14020. [PMID: 37942945 DOI: 10.1039/d3cc05033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
An efficient olefin hydrosilylation protocol utilising Pt(II)-thioether-based pre-catalysts is reported. These simple and readily available complexes exhibit excellent catalytic performance and offer significant advantages over existing alternatives, enabling rapid and high conversions at ppm-level catalyst loadings.
Collapse
Affiliation(s)
- Benon P Maliszewski
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| | - Eleonora Casillo
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| | - Perrine Lambert
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
- VITO (Flemish Institute for Technological Research), Separation and Conversion Technology, Boeretang 200, Mol 2400, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| |
Collapse
|
20
|
Kassem H, Imbernon L, Stricker L, Jonckheere L, Du Prez FE. Reprocessable Polyurethane Foams Using Acetoacetyl-Formed Amides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917002 DOI: 10.1021/acsami.3c12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Like any other thermosetting material, polyurethane foams (PUFs) contain permanent cross-links that hinder their reprocessability and make their recyclability a tedious and environmentally unfriendly process. Herein, we introduce acetoacetyl-formed amides, formed by the reaction of isocyanates with acetoacetate groups, as dynamic units in the backbone of PUFs. By extensive variation of the foam composition, optimum parameters have been found to produce malleable foams above temperatures of 130 °C, without the requirement of any solvent during the foaming process. The PU cross-linked material can be compression-molded at least three times, giving rise to PU elastomers and thus maintaining a cross-linked network structure. Characterization of the original foams shows comparable properties to standard PUFs, for example, having a density of 32 kg/m3, while they show similar chemical and thermal properties upon reprocessing to strong PU elastomers, exhibiting Tg ranging from -42 to -48 °C. This research provides a straightforward method to produce thermally reprocessable PUFs as a promising pathway to address the recycling issues of end-of-life foams.
Collapse
Affiliation(s)
- Hiba Kassem
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Lucie Imbernon
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Lucas Stricker
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Laura Jonckheere
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Johnson AM, Johnson JA. Thermally Robust yet Deconstructable and Chemically Recyclable High-Density Polyethylene (HDPE)-Like Materials Based on Si-O Bonds. Angew Chem Int Ed Engl 2023:e202315085. [PMID: 37903133 DOI: 10.1002/anie.202315085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Polyethylene (PE) is the most widely produced synthetic polymer. By installing chemically cleavable bonds into the backbone of PE, it is possible to produce chemically deconstructable PE derivatives; to date, however, such designs have primarily relied on carbonyl- and olefin-related functional groups. Bifunctional silyl ethers (BSEs; SiR2 (OR'2 )) could expand the functional scope of PE mimics as they possess strong Si-O bonds and facile chemical tunability. Here, we report BSE-containing high-density polyethylene (HDPE)-like materials synthesized through a one-pot catalytic ring-opening metathesis polymerization (ROMP) and hydrogenation sequence. The crystallinity of these materials can be adjusted by varying the BSE concentration or the steric bulk of the Si-substituents, providing handles to control thermomechanical properties. Two methods for chemical recycling of HDPE mimics are introduced, including a circular approach that leverages acid-catalyzed Si-O bond exchange with 1-propanol. Additionally, despite the fact that the starting HDPE mimics were synthesized by chain-growth polymerization (ROMP), we show that it is possible to recover the molar mass and dispersity of recycled HDPE products using step-growth Si-O bond formation or exchange, generating high molecular weight recycled HDPE products with mechanical properties similar to commercial HDPE.
Collapse
Affiliation(s)
- Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Qin B, Liu S, Xu JF. Reversible Amidation Chemistry Enables Closed-Loop Chemical Recycling of Carbon Fiber Reinforced Polymer Composites to Monomers and Fibers. Angew Chem Int Ed Engl 2023; 62:e202311856. [PMID: 37675859 DOI: 10.1002/anie.202311856] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Highly efficient recycling of carbon fiber reinforced polymer composites into monomers and fibers is a formidable challenge. Herein, we present a closed-loop recycling approach for carbon fiber reinforced polymer composites using reversible amidation chemistry, which enables the complete recovery of intact carbon fibers and pure monomers. The polymer network, synthesized by amidation between a macromonomer linear polyethyleneimine and a bifunctional maleic anhydride cross-linker, serves as a matrix for the construction of composites with exceptional mechanical properties, thermal stability and solvent resistance. The matrices can be fully depolymerized under the acidic condition at ambient temperature, allowing the effective separation and recovery of both carbon fibers and the two monomers. The reclaimed carbon fibers retain nearly identical mechanical properties to pristine ones, while pure monomers are recycled with high separation yields (>93 %). They can be reused in for multiple cycles for the manufacture of new composites, whose mechanical properties recover over 95 % of their original properties. This line of research presents a promising approach for the design of high-performance and sustainable thermoset composites, offering significant environmental and economic benefits.
Collapse
Affiliation(s)
- Bo Qin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Siyuan Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
Hu Z, Hu F, Deng L, Yang Y, Xie Q, Gao Z, Pan C, Jin Y, Tang J, Yu G, Zhang W. Reprocessible Triketoenamine-Based Vitrimers with Closed-Loop Recyclability. Angew Chem Int Ed Engl 2023; 62:e202306039. [PMID: 37314932 DOI: 10.1002/anie.202306039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/16/2023]
Abstract
Development of thermosets that can be repeatedly recycled via both chemical route (closed-loop) and thermo-mechanical process is attractive and remains an imperative task. In this work, we reported a triketoenamine based dynamic covalent network derived from 2,4,6-triformylphloroglucinol and secondary amines. The resulting triketoenamine based network does not have intramolecular hydrogen bonds, thus reducing its π-electron delocalization, lowering the stability of the tautomer structure, and enabling its dynamic feature. By virtue of the highly reversible bond exchange, this novel dynamic covalent bond enables the easy construction of highly crosslinked and chemically reprocessable networks from commercially available monomers. The as-made polymer monoliths exhibit high mechanical properties (tensile strength of 79.4 MPa and Young's modulus of 571.4 MPa) and can undergo a monomer-network-monomer (yields up to 90 %) recycling mediated by an aqueous solution, with the new-generation polymer capable of restoring the material strength to its original state. In addition, owing to its dynamic nature, a catalyst-free and low-temperature reprogrammable covalent adaptable network (vitrimer) was achieved. The design concept reported herein can be applied to the development of other novel vitrimers with high repressibility and recyclability, and sheds light on future design of sustainable polymers with minimal environmental impact.
Collapse
Affiliation(s)
- Zeyou Hu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Fan Hu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Lifeng Deng
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Yumin Yang
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Qiujian Xie
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Zhu Gao
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
24
|
Yan T, Balzer AH, Herbert KM, Epps TH, Korley LTJ. Circularity in polymers: addressing performance and sustainability challenges using dynamic covalent chemistries. Chem Sci 2023; 14:5243-5265. [PMID: 37234906 PMCID: PMC10208058 DOI: 10.1039/d3sc00551h] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
The circularity of current and future polymeric materials is a major focus of fundamental and applied research, as undesirable end-of-life outcomes and waste accumulation are global problems that impact our society. The recycling or repurposing of thermoplastics and thermosets is an attractive solution to these issues, yet both options are encumbered by poor property retention upon reuse, along with heterogeneities in common waste streams that limit property optimization. Dynamic covalent chemistry, when applied to polymeric materials, enables the targeted design of reversible bonds that can be tailored to specific reprocessing conditions to help address conventional recycling challenges. In this review, we highlight the key features of several dynamic covalent chemistries that can promote closed-loop recyclability and we discuss recent synthetic progress towards incorporating these chemistries into new polymers and existing commodity plastics. Next, we outline how dynamic covalent bonds and polymer network structure influence thermomechanical properties related to application and recyclability, with a focus on predictive physical models that describe network rearrangement. Finally, we examine the potential economic and environmental impacts of dynamic covalent polymeric materials in closed-loop processing using elements derived from techno-economic analysis and life-cycle assessment, including minimum selling prices and greenhouse gas emissions. Throughout each section, we discuss interdisciplinary obstacles that hinder the widespread adoption of dynamic polymers and present opportunities and new directions toward the realization of circularity in polymeric materials.
Collapse
Affiliation(s)
- Tianwei Yan
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Alex H Balzer
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Katie M Herbert
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Thomas H Epps
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
- Department of Materials Science and Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark 19716 Delaware USA
| | - LaShanda T J Korley
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
- Department of Materials Science and Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark 19716 Delaware USA
| |
Collapse
|
25
|
Maity PR, Upadhyay C, Sinha ASK, Ojha U. Closed-loop recyclable and biodegradable thioester-based covalent adaptable networks. Chem Commun (Camb) 2023; 59:4225-4228. [PMID: 36940094 DOI: 10.1039/d3cc00181d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Closed-loop recyclable and biodegradable aliphatic covalent adaptable networks (CANs) based on dynamic β-CO thioester linkages that exhibit a service temperature beyond 100 °C are reported. These CANs possessing tensile strength and modulus values of up to 0.3 and 3 MPa, respectively, effectively undergo stress relaxation above 100 °C. The samples exhibit creep resistance ability and low hysteresis loss, and are repeatedly reprocessable at 120 °C. These CANs are depolymerizable to monomers under mild conditions and lose notable mechanical strength (92.4%) and weight (76.5%) within ∼35 days under natural biodegradation conditions.
Collapse
Affiliation(s)
- Pralay Ranjan Maity
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology, Jais, Uttar Pradesh 229304, India.
| | - Chandan Upadhyay
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology, Jais, Uttar Pradesh 229304, India.
| | - A S K Sinha
- Department of Chemical & Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Uttar Pradesh 229304, India
| | - Umaprasana Ojha
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology, Jais, Uttar Pradesh 229304, India.
| |
Collapse
|
26
|
Khedaioui DZ, Tribout C, Bratasanu J, D'Agosto F, Boisson C, Montarnal D. Deciphering Siloxane Bond Exchanges: From a Molecular Study to Vitrimerization and Recycling of Silicone Elastomers. Angew Chem Int Ed Engl 2023; 62:e202300225. [PMID: 36695741 DOI: 10.1002/anie.202300225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
The activity of various additives promoting siloxane equilibration reactions is examined and quantified on model compounds. We found in particular that the "superbase" phosphazene derivative P4 -t Bu can promote very fast exchanges (a few seconds at 90 °C) even at low concentration (<0.1 wt %). We demonstrate that permanent silicone networks can be transformed into reprocessable and recyclable dynamic networks by mere introduction of such additives. Annealing at high temperature degrades the additives and deactivates the dynamic features of the silicone networks, reverting them back into permanent networks. A simple rheological experiment and the corresponding model allow to extract the critical kinetic parameters to predict and control such deactivations.
Collapse
Affiliation(s)
- Douriya Z Khedaioui
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Camille Tribout
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Julie Bratasanu
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Franck D'Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Christophe Boisson
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Damien Montarnal
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| |
Collapse
|
27
|
Şucu T, Wang M, Shaver MP. Degradable and Reprocessable Resins from a Dioxolanone Cross-Linker. Macromolecules 2023; 56:1625-1632. [PMID: 36874530 PMCID: PMC9979638 DOI: 10.1021/acs.macromol.2c02560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Indexed: 02/11/2023]
Abstract
Chemically cross-linked polymers offer excellent temperature and solvent resistance, but their high dimensional stability precludes reprocessing. The renewed demand for sustainable and circular polymers from public, industry, and government stakeholders has increased research into recycling thermoplastics, but thermosets have often been overlooked. To address this need for more sustainable thermosets, we have developed a novel bis(1,3-dioxolan-4-one) monomer, derived from the naturally occurring l-(+)-tartaric acid. This compound can be used as a cross-linker and copolymerized in situ with common cyclic esters such as l-lactide, ε-caprolactone, and δ-valerolactone to produce cross-linked, degradable polymers. The structure-property relationships and the final network properties were tuned by both co-monomer choice and composition, with properties ranging from resilient solids with tensile strengths of 46.7 MPa to elastomers with elongations up to 147%. In addition to exhibiting properties rivalling those of commercial thermosets, the synthesized resins could be recovered at end-of-life through triggered degradation or reprocessing. Accelerated hydrolysis experiments showed the materials fully degraded to tartaric acid and the corresponding oligomers from 1 to 14 days under mild basic conditions and in a matter of minutes in the presence of a transesterification catalyst. The vitrimeric reprocessing of networks was demonstrated at elevated temperatures, and rates could be tuned by modifying the concentration of the residual catalyst. This work develops new thermosets, and indeed their glass fiber composites, with an unprecedented ability to tune degradability and high performance by creating resins from sustainable monomers and a bio-derived cross-linker.
Collapse
Affiliation(s)
- Theona Şucu
- Department of Materials, Engineering Building A, University of Manchester, Oxford Road M13 9PL, U.K.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Meng Wang
- Department of Materials, Engineering Building A, University of Manchester, Oxford Road M13 9PL, U.K.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Michael P Shaver
- Department of Materials, Engineering Building A, University of Manchester, Oxford Road M13 9PL, U.K.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
28
|
Hu K, Wang B, Xu X, Su Y, Zhang W, Zhou S, Zhang C, Zhu J, Ma S. Dual-Dynamic Chemistries-Based Fast-Reprocessing and High-Performance Covalent Adaptable Networks. Macromol Rapid Commun 2023; 44:e2200726. [PMID: 36250433 DOI: 10.1002/marc.202200726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Covalent adaptable networks (CANs) possess multiple functions including reprocessing (or recyclability), self-healing, welding, shape shifting, 3D printing, etc., due to the network rearrangement from dynamic bonds, and favorable performance from their cross-linked feature, and they are supposed to be as sustainable alternatives to thermosets. However, the thermal and mechanical properties, and stability of CANs are often sacrificed for rapid network rearrangement. In this paper, fast-reprocessing CANs with high performance are facilely constructed by in situ polymerization and dynamic cross-linking of styrene (St), maleic anhydride (MA), and acetal diol (BHAD). The rigid and hydrophobic polymer backbone endow the materials with high glass transition temperatures, mechanical performance, and water resistance. Besides, carboxylic group-catalyzed dual dynamic ester and acetal-based networks exhibit faster stress relaxation and realize extrusion reprocessing. This work provides an ingenious and simple strategy of construction of CANs combining rapid network rearrangement and excellent comprehensive performance, which is beneficial for the application of CANs.
Collapse
Affiliation(s)
- Kezhen Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Binbo Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xiwei Xu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yi Su
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Weiqiong Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Sican Zhou
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chuanzhi Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
29
|
Husted KEL, Brown CM, Shieh P, Kevlishvili I, Kristufek SL, Zafar H, Accardo JV, Cooper JC, Klausen RS, Kulik HJ, Moore JS, Sottos NR, Kalow JA, Johnson JA. Remolding and Deconstruction of Industrial Thermosets via Carboxylic Acid-Catalyzed Bifunctional Silyl Ether Exchange. J Am Chem Soc 2023; 145:1916-1923. [PMID: 36637230 DOI: 10.1021/jacs.2c11858] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Convenient strategies for the deconstruction and reprocessing of thermosets could improve the circularity of these materials, but most approaches developed to date do not involve established, high-performance engineering materials. Here, we show that bifunctional silyl ether, i.e., R'O-SiR2-OR'', (BSE)-based comonomers generate covalent adaptable network analogues of the industrial thermoset polydicyclopentadiene (pDCPD) through a novel BSE exchange process facilitated by the low-cost food-safe catalyst octanoic acid. Experimental studies and density functional theory calculations suggest an exchange mechanism involving silyl ester intermediates with formation rates that strongly depend on the Si-R2 substituents. As a result, pDCPD thermosets manufactured with BSE comonomers display temperature- and time-dependent stress relaxation as a function of their substituents. Moreover, bulk remolding of pDCPD thermosets is enabled for the first time. Altogether, this work presents a new approach toward the installation of exchangeable bonds into commercial thermosets and establishes acid-catalyzed BSE exchange as a versatile addition to the toolbox of dynamic covalent chemistry.
Collapse
Affiliation(s)
- Keith E L Husted
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hadiqa Zafar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph V Accardo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julian C Cooper
- Department of Chemistry, University of Illinois at Urbana Champaign, Champaign County, Illinois 61820, United States
| | - Rebekka S Klausen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana Champaign, Champaign County, Illinois 61820, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Champaign County, Illinois 60208, United States
| | - Nancy R Sottos
- Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Champaign County, Illinois 60208, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Guo X, Liu F, Lv M, Chen F, Gao F, Xiong Z, Chen X, Shen L, Lin F, Gao X. Self-Healable Covalently Adaptable Networks Based on Disulfide Exchange. Polymers (Basel) 2022; 14:3953. [PMID: 36235901 PMCID: PMC9570560 DOI: 10.3390/polym14193953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Introducing dynamic covalent bonding into thermoset polymers has received considerable attention because they can repair or recover when damaged, thereby minimizing waste and extending the service life of thermoset polymers. However, most of the yielded dynamic covalent bonds require an extra catalyst, high temperature and high-pressure conditions to trigger their self-healing properties. Herein, we report on a catalyst-free bis-dynamic covalent polymer network containing vinylogous urethane and disulfide bonds. It is revealed that the introduction of disulfide bonds significantly reduces the activation energy (reduced from 94 kJ/mol to 51 kJ/mol) of the polymer system for exchanging and promotes the self-healing efficiency (with a high efficiency of 86.92% after being heated at 100 °C for 20 h) of the material. More importantly, the mechanical properties of the healed materials are comparable to those of the initial ones due to the special bis-dynamic covalent polymer network. These results suggest that the bis-dynamic covalent polymer network made of disulfide and inter-vinyl ester bonds opens a new strategy for developing high-performance vitrimer polymers.
Collapse
Affiliation(s)
- Xinru Guo
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Feng Liu
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Meng Lv
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Fengbiao Chen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zhenhua Xiong
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xuejiao Chen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Faman Lin
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xuelang Gao
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| |
Collapse
|