1
|
Zhao Y, Wang H, Liu C, Ji Y, Li X, Jiang Q, Zheng T, Xia C. Interfacial Metal Oxides Stabilize Cu Oxidation States for Electrocatalytical CO 2 Reduction. CHEMSUSCHEM 2025; 18:e202402510. [PMID: 39803814 DOI: 10.1002/cssc.202402510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Modulating the oxidation state of copper (Cu) is crucial for enhancing the electrocatalytic CO2 reduction reaction (CO2RR), particularly for facilitating deep reductions to produce methane (CH4) or multi-carbon (C2+) products. However, Cuδ+ sites are thermodynamically unstable, fluctuating their oxidation states under reaction conditions, which complicates their functionality. Incorporating interfacial metal oxides has emerged as an effective strategy for stabilizing these oxidation states. This review provides an in-depth examination of the reaction mechanisms occurring at oxide-modified Cuδ+ sites, offering a comprehensive understanding of their behavior. We explore how Cu/metal oxide interfaces stabilize Cu oxidation states, showing that oxides-modified Cu catalysts often enhance selectivity for C2+ or CH4 products by stabilizing Cu+ or Cu2+ sites. In addition, we discuss innovative strategies for the rational design of efficient Cu catalytic sites tailored for specific deep CO2RR products. The review concludes with an outlook on current challenges and future directions, offering new insights into the rational design of selective and efficient CO2RR catalysts.
Collapse
Affiliation(s)
- Yajie Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Haoyuan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
2
|
Zhong Y, Sun Z, Xia BY, Su Y. Structural Reconstruction of Copper-Based Catalysts in CO 2 Electroreduction Reaction: A Comprehensive Review. Chemistry 2025; 31:e202500770. [PMID: 40145133 DOI: 10.1002/chem.202500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 03/28/2025]
Abstract
The escalating concerns over climate change and environmental pollution have intensified the pursuit for sustainable solutions to mitigate CO2 emissions, with the electrochemical CO2 reduction reaction (CO2RR) emerging as a promising strategy to convert CO2 into valuable chemicals and fuels. Central to this process is the development of efficient electrocatalysts, where Cu-based catalysts have garnered significant attention due to their high activity towards multi-carbon products. However, understanding of structural reconstruction of Cu-based catalysts under operational conditions presents a substantial challenge, complicating the identification of real active sites and the elucidation of structure-performance relationships. Herein, we first highlight the fundamental principles governing the structural reconstruction in CO2RR, encompassing both thermodynamic and kinetic perspectives. We then introduce advanced Operando techniques employed to monitor the structural changes of catalysts. The review further delves into the dynamic evolution behaviors of Cu-based catalysts, including atomic rearrangement and morphology evolution, with a focus on correlating these behaviors with catalytic properties such as activity, selectivity, and stability. Finally, we discuss cases of emerging strategies, such as heteroatom doping and electrolyte engineering, that hold promise for manipulating the structural reconstruction of Cu-based catalysts, and we explore future opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Yi Zhong
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhuangzhi Sun
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, China
- Center for Next-Generation Energy Materials and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Wang S, Yang Y, Zhao Y, Qiu J, Wu X, Liu Z, Ding F, Si P. Electronic Modulation of Bismuth by g-C 3N 4 Constructs Electron-Enriched Active Sites for Accelerated CO 2 Electroreduction to Formate. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28234-28243. [PMID: 40305683 DOI: 10.1021/acsami.5c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Electrochemical reduction of CO2 (ECO2RR) to formate represents a promising approach to achieving carbon neutrality, yet it faces significant challenges due to the low adsorption efficiency of the CO2 intermediates. In this study, we developed a highly dispersed electron-rich Bi metal catalyst, utilizing low-cost g-C3N4 as a nonmetallic support and electron donor. This design created a conductive network and a multielectron environment around the Bi atoms that facilitated dynamic interfacial charge transfer from g-C3N4 to Bi, thus enhancing the catalytic efficiency of active sites. The assembly catalyst exhibited a formate selectivity of over 90% within a wide potential window and maintained stable catalytic activity in simulated seawater solutions. In situ Raman spectroscopy and DFT calculations indicated that the incorporation of the nonmetallic support shifted the Bi-p band center to more negative values while increasing Bader charge transfer between Bi and *OCHO intermediates. This indicated enhanced adsorption of the *OCHO intermediate by electron-rich Bi, thus improving the selectivity and activity for formate production.
Collapse
Affiliation(s)
- Shenao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yuan Yang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Yongtao Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jianwei Qiu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiaochen Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Zhaojun Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Fei Ding
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
| | - Pengchao Si
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
4
|
Clarysse J, Silva JDJ, Xing Y, Zhang SBXY, Docherty SR, Yazdani N, Yarema M, Copéret C, Wood V. Earth-abundant Ni-Zn nanocrystals for efficient alkyne semihydrogenation catalysis. Nat Commun 2025; 16:4378. [PMID: 40355439 PMCID: PMC12069521 DOI: 10.1038/s41467-025-58838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
The development of catalysts that are based on earth-abundant metals remains a grand challenge. Alloy nanocrystals (NCs) form an emerging class of heterogeneous catalysts, offering the promise of small, uniform catalysts with composition-control. Here, we report the synthesis of small Ni and bimetallic Ni-X (X= Zn, Ga, In) NCs for alkyne semihydrogenation catalysis. We show that Ni3Zn NCs are particularly reactive and selective under mild reaction conditions and at low loadings. While bimetallic NCs are all more selective than pure Ni NCs, Ni-Zn NCs also maintain excellent reactivity compared to Ni-Ga and Ni-In alloys. Ab-initio calculations can explain the differences in reactivity, indicating that, unlike Ga and In, Zn atoms interact with the substrates. We further show that Ni3Zn NCs are robust and tolerate a broad range of substrates, which may be linked to the favorable amine-terminated surface.
Collapse
Affiliation(s)
- Jasper Clarysse
- ETH Zurich, Institute for Electronics, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | | | - Yunhua Xing
- ETH Zurich, Institute for Electronics, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | | | - Scott R Docherty
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zürich, Switzerland
| | - Nuri Yazdani
- ETH Zurich, Institute for Electronics, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Maksym Yarema
- ETH Zurich, Institute for Electronics, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Christophe Copéret
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zürich, Switzerland.
| | - Vanessa Wood
- ETH Zurich, Institute for Electronics, Department of Information Technology and Electrical Engineering, Zurich, Switzerland.
| |
Collapse
|
5
|
Ma Y, Shao M, Wang G, Guo L, Wang Y, Hao F, Liu F, Meng X, Wang C, Xiong Y, Fan Z. Controlled synthesis of metal-based Janus nanostructures for tandem electrocatalytic carbon dioxide reduction. Sci Bull (Beijing) 2025:S2095-9273(25)00490-6. [PMID: 40413073 DOI: 10.1016/j.scib.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/27/2025]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) possesses huge potential for achieving carbon neutrality by reducing greenhouse-gas CO2 to value-added chemicals/fuels with sustainable energy. However, obtaining highly selective and long-term stable catalysts for CO2RR is still challenging. Recently, metal-based Janus nanostructures (JNSs) have demonstrated unique advantages in addressing this issue in CO2RR via tandem catalysis. Herein, we systematically summarize the recently developed metal-based JNSs for electrocatalytic CO2RR. The synthesis methods are first introduced, including three representative methods (seed-mediated growth, dimerization, and selective-etching) and the strategy for constructing specific facets or unconventional phases in metal-based JNSs. Then, the application of metal-based JNSs in CO2RR toward the generation of single-carbon and multi-carbon products is elaborated, along with the corresponding catalytic mechanisms. The structural reconstruction of metal-based JNSs is also discussed in detail. Finally, we briefly summarize the recent advances and provide personal perspectives in this research direction.
Collapse
Affiliation(s)
- Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Mingzheng Shao
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Chaohui Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong 999077, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
6
|
Hou T, Shan T, Rong H, Zhang J. Nitrate Electroreduction to Ammonia Over Copper-based Catalysts. CHEMSUSCHEM 2025; 18:e202402331. [PMID: 39676306 DOI: 10.1002/cssc.202402331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
The electrocatalytic reduction of nitrate (NO3 -) to ammonia (NH3) holds substantial promise, as it transforms NO3 - from polluted water into valuable NH3. However, the reaction is limited by sluggish kinetics and low NH3 selectivity. Cu-based catalysts with unique electronic structures demonstrate rapid NO3 - to NO2 - rate-determining step (RDS) and fast electrocatalytic nitrate reduction reaction (eNO3RR) kinetics among non-noble metal catalysts. Nonetheless, achieving high robustness and selectivity for NH3 with Cu-based catalysts remains a significant challenge. This review provides a comprehensive overview of the reaction mechanisms in eNO3RR, highlights how the structures of monometallic and bimetallic Cu-based catalyst affect catalytic properties, and discusses the current challenges as well as prospects in eNO3RR.
Collapse
Affiliation(s)
- Tailei Hou
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianshang Shan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology, Zhuhai, 519088, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology, Zhuhai, 519088, China
| |
Collapse
|
7
|
Zheng C, Zhang L, Song X, Tan X, Li W, Jin X, Sun X, Han B. Rational Construction of Cu Active Sites for CO 2 Electrolysis to C 2+ Product. Chem Asian J 2025; 20:e202500091. [PMID: 40019336 DOI: 10.1002/asia.202500091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising approach in advancing towards carbon neutrality and addressing renewable energy intermittency. Copper-based catalysts have received much attention due to their high catalytic activity to convert CO2 into high value-added C2+ products. However, CO2RR exhibits a diversity of reduction products and unavoidable hydrogen precipitation side reactions due to the moderate adsorption strength of *CO on the copper surface and the fact that the electrode potential for CO2 reduction is very close to that for hydrogen precipitation reduction. Here, we summarize recent advances in the structural design and active site construction of copper-based catalysts for CO2RR, and investigate their effects on the improvement of CO2RR performance, with the aim of deepening the understanding of catalyst structure and active sites, thereby facilitating the design of more efficient copper-based catalysts for the sustainable production of value-added chemicals.
Collapse
Affiliation(s)
- Chaofeng Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weixiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyuan Jin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
8
|
Wang N, Feng H, Yang J, Zheng J, Zhang Y, Hadjichristidis N, Li Z. In Situ High Selectivity Contact-Electroreduction of CO 2 to Methanol Using an Imine-Mediated Metal-Free Vitrimer Catalyst. Angew Chem Int Ed Engl 2025; 64:e202500222. [PMID: 40047403 PMCID: PMC12051734 DOI: 10.1002/anie.202500222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
Metal catalysts for the CO2 reduction reaction (CO2RR) face challenges such as high cost, limited durability, and environmental impact. Although various structurally diverse and functional metal-free catalysts have been developed, they often suffer from slow kinetics, low selectivity, and nonrecyclability, significantly limiting their practical applications. In this study, we introduce a recyclable nonmetallic polymer material (vitrimer) as a catalyst for a new platform in contact-electrocatalysis. This approach harnesses the contact charges generated between water droplets and vitrimer to drive CO2RR, achieving methanol selectivity exceeding 90%. The imine groups within the vitrimer play a dual role, facilitating CO2 adsorption and enriching friction-generated electrons, thereby mediating efficient electron transfer between the imine groups and CO2 to promote CO2RR. After 84 h of CO2RR, the system achieved a methanol production rate of 13 nmol·h-1, demonstrating the excellent stability of the method. Moreover, the vitrimer retains its high-performance electrocatalytic activity even after recycling. Mechanistic studies reveal that, compared to traditional metal catalysts, the N─O bond in the imine, which adsorbs the key intermediate *OCH3, breaks more readily to produce methanol, resulting in enhanced product selectivity and yield. This efficient and environmentally friendly contact-electroreduction strategy for CO2 offers a promising pathway toward a circular carbon economy by leveraging natural water droplet-based contact-electrochemistry.
Collapse
Affiliation(s)
- Nannan Wang
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Republic of Singapore
| | - Haisong Feng
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P.R. China
| | - Jing Yang
- Institute of High Performance Computing (IHPC)Agency for ScienceTechnology and Research (A*STAR)1 Fusionopolis Way, #16‐16 ConnexisSingapore138632Republic of Singapore
| | - Jie Zheng
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Republic of Singapore
| | - Yong‐Wei Zhang
- Institute of High Performance Computing (IHPC)Agency for ScienceTechnology and Research (A*STAR)1 Fusionopolis Way, #16‐16 ConnexisSingapore138632Republic of Singapore
| | - Nikos Hadjichristidis
- Polymer Synthesis LaboratoryKAUST Catalysis CenterPhysical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Zibiao Li
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Republic of Singapore
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117576Singapore
| |
Collapse
|
9
|
Huang J, Yang Y, Liang X, Chen B, Shen Y, Chen Y, Yang J, Yu Y, Huang F, He H, Chen P, Zhou L, Guan A. Highly Selective Electroreduction of CO 2 to CH 4 on Cu-Pd Alloy Catalyst: the Role of Palladium-Adsorbed Hydrogen Species and Blocking Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417247. [PMID: 40135917 PMCID: PMC12097132 DOI: 10.1002/advs.202417247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/01/2025] [Indexed: 03/27/2025]
Abstract
Electroreduction of CO2 to chemical fuels offers a promising strategy for controlling the global carbon balance and addressing the need for the storage of intermittent renewable energy. In this work, it is demonstrated that tuning adjacent active sites enables the selection of different reaction pathways for generating C1 or C2 products during the electroreduction of CO2. Cu and Cu-Pd alloy catalysts with different atomic ratios are synthesized and investigated to elucidate their different electroreduction selectivities for CO2 electroreduction. Cu catalyst favors the formation of C2 products since the neighboring active Cu sites are beneficial for coupling adjacently adsorbed *CO and *CHO intermediates. Cu alloyed with Pd introduces a blocking effect and increases the intermolecular distance between adjacent adsorbed *CO and *CHO intermediates. Therefore the selectivity for the C2H4 pathway decreas while the CH4 pathway is enhanced. Moreover, the existence of adsorbed *H species on Pd atoms also played a significant role in boosting CO2 electroreduction to CH4 by facilitating the hydrogenation of *CO intermediates. This work reveals the key role of *H species adsorbed on Pd atoms and the blocking effect between active sites for CH4 formation, which is helpful for the design of copper-based catalysts for desired products.
Collapse
Affiliation(s)
- Jinyan Huang
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Ye Yang
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Xuexue Liang
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Bing Chen
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Yue Shen
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Yan Chen
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Jielian Yang
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Yinglin Yu
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Fang Huang
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Huibing He
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Peican Chen
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Liya Zhou
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| | - Anxiang Guan
- School of Chemistry and Chemical EngineeringGuangxi Key Laboratory of Electrochemical Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentGuangxi UniversityNanning530004China
| |
Collapse
|
10
|
Bhawnani RR, Sartape R, Gande VV, Barsoum ML, Kallon EM, dos Reis R, Dravid VP, Singh MR. Non-Aqueous Electrochemical CO 2 Reduction to Multivariate C 2-Products Over Single Atom Catalyst at Current Density up to 100 mA cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408010. [PMID: 39648565 PMCID: PMC12051823 DOI: 10.1002/smll.202408010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Indexed: 12/10/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2-RR) in non-aqueous electrolytes offers significant advantages over aqueous systems, as it boosts CO2 solubility and limits the formation of HCO3 - and CO3 2- anions. Metal-organic frameworks (MOFs) in non-aqueous CO2-RR makes an attractive system for CO2 capture and conversion. However, the predominantly organic composition of MOFs limits their electrical conductivity and stability in electrocatalysis, where they suffer from electrolytic decomposition. In this work, electrically conductive and stable Zirconium (Zr)-based porphyrin MOF, specifically PCN-222, metalated with a single-atom Cu has been explored, which serves as an efficient single-atom catalyst (SAC) for CO2-RR. PCN- 222(Cu) demonstrates a substantial enhancement in redox activity due to the synergistic effect of the Zr matrix and the single-atom Cu site, facilitating complete reduction of C2 species under non-aqueous electrolytic conditions. The current densities achieved (≈100 mA cm- 2) are 4-5 times higher than previously reported values for MOFs, with a faradaic efficiency of up to 40% for acetate production, along with other multivariate C2 products, which have never been achieved previously in non-aqueous systems. Characterization using X-ray and various spectroscopic techniques, reveals critical insights into the role of the Zr matrix and Cu sites in CO2 reduction, benchmarking PCN-222(Cu) for MOF-based SAC electrocatalysis.
Collapse
Affiliation(s)
- Rajan R. Bhawnani
- Department of Chemical EngineeringUniversity of Illinois ChicagoChicagoIL60607USA
| | - Rohan Sartape
- Department of Chemical EngineeringUniversity of Illinois ChicagoChicagoIL60607USA
| | - Vamsi V Gande
- Department of Chemical EngineeringUniversity of Illinois ChicagoChicagoIL60607USA
| | - Michael L. Barsoum
- Department of Materials Science & EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Elias M. Kallon
- Department of Materials Science & EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Roberto dos Reis
- Department of Materials Science & EngineeringNorthwestern UniversityEvanstonIL60208USA
- International Institute of NanotechnologyNorthwestern UniversityEvanstonIL60208USA
- The NUANCE CenterNorthwestern UniversityEvanstonIL60208USA
| | - Vinayak P. Dravid
- Department of Materials Science & EngineeringNorthwestern UniversityEvanstonIL60208USA
- International Institute of NanotechnologyNorthwestern UniversityEvanstonIL60208USA
- The NUANCE CenterNorthwestern UniversityEvanstonIL60208USA
| | - Meenesh R. Singh
- Department of Chemical EngineeringUniversity of Illinois ChicagoChicagoIL60607USA
| |
Collapse
|
11
|
Chen Y, Wei K, Duan H, Sun H, Yu Z, Zohaib A, Zhu P, He J, Sun S. N-Heterocyclic Carbene Polymer-Stabilized Au Nanowires for Selective and Stable Reduction of CO 2. J Am Chem Soc 2025; 147:14845-14855. [PMID: 40238718 DOI: 10.1021/jacs.5c04742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The structural stability of nanocatalysts during electrochemical CO2 reduction (CO2RR) is crucial for practical applications. However, highly active nanocatalysts often reconstruct under reductive conditions, requiring stabilization strategies to maintain activity. Here, we demonstrate that the N-heterocyclic carbene (NHC) polymer stabilizes Au nanowire (NW) catalysts for selective CO2 reduction to CO over a broad potential range, enabling coupling with Cu NWs for one-step tandem conversion of CO2 to C2H4. By combining the hydrophobicity of the polystyrene chain and the strong binding of NHC to Au, the polymer stabilizes Au NWs and promotes CO2RR to CO with excellent selectivity (>90%) across -0.4 V to -1.0 V (vs RHE), a significantly broader range than unmodified Au NWs (-0.5 V to -0.7 V). Stable CO2RR at negative potentials yields a high jCO of 142 A/g Au at -1.0 V. In situ ATR-IR analysis indicates that the NHC polymer regulates the water microenvironment and suppresses hydrogen evolution at high overpotential. Moreover, NHC-Au NWs maintain excellent stability during 10 h of CO2RR testing, preserving the NW morphology and catalytic performance, while unmodified NWs degrade into nanoparticles with reduced activity and selectivity. NHC-Au NWs can be coupled with Cu NWs in a flow cell to catalyze CO2RR to C2H4 with 58% efficiency and a partial current density of 70 mA/cm2 (overall C2 product efficiency of 65%). This study presents an adaptable strategy to enhance the catalyst microenvironment, ensure stability, and enable efficient tandem CO2 conversion into value-added hydrocarbons.
Collapse
Affiliation(s)
- Yuliang Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hanyi Duan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Haobo Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ziyan Yu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ahsan Zohaib
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Pengcheng Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
12
|
Zhou L, Tsai HW, Kuo TW, Kao JC, Lo YC, Chang JM, Chiang TH, Dai S, Wang KW, Chen TY. Atomic Layered ZnO Between Cu Nanoparticles and a PVP Polymer Layer Enable Exceptional Selectivity and Stability in Electrocatalytic CO 2 Reduction to C 2H 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501642. [PMID: 40285630 DOI: 10.1002/advs.202501642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Indexed: 04/29/2025]
Abstract
This study employs a chemically controlled strategy to construct a few-atomic-layer ZnO structure integrated with polyvinylpyrrolidone (PVP) and nanoscale metallic copper on active carbon. Hydrogen-bond interactions from PVP's N-vinylpyrrolidone allow ZnO to retain a specific proportion of metal atoms, confining electrons at the Cu/ZnO interface to form CuZn nanoalloy clusters. The nanoalloy's dual role in promoting CO adsorption and C─C coupling synergistically boosts C2H4 production during electrochemical CO2 reduction (ECR). Rapid Cu regeneration further increases adsorbed hydrogen (Hads) from water splitting, achieving a remarkable C2H4 selectivity of ≈50.2% with stable performance over 10 h. The Zn→Cu electron confinement and interfacial synergy at the organic-oxide-metal heterojunction underscore the catalyst's superior efficiency, offering a promising pathway for sustainable CO2-to-C2H4 conversion.
Collapse
Affiliation(s)
- Lihui Zhou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Hung-Wei Tsai
- Institute of Materials Science and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Ting-Wei Kuo
- Institute of Materials Science and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Jui-Cheng Kao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ji-Min Chang
- Department of Energy Engineering, National United University, Miaoli, 360301, Taiwan
| | - Tzu-Hsuan Chiang
- Department of Energy Engineering, National United University, Miaoli, 360301, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Analytical and Environmental Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
13
|
Yang Y, Gao B, Fu H, Xiao C, Du X, Song Z. Efficient Electrochemical Reduction of CO 2 to C 2H 4 Over Low Work Function Cu/ZnO Film Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500414. [PMID: 40244710 DOI: 10.1002/smll.202500414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Cu-based catalysts for electrochemical CO2 reduction reactions facilitate the transformation of CO2 into economically viable multicarbon products. There remains a pressing need to design efficient, stable, and cost-effective catalysts to enhance the selectivity for these multicarbon products. Metal-oxide heterogeneous interface can modify the electronic structure of metal surfaces, influencing the adsorption energy of crucial intermediates and thereby enhancing the selectivity for multicarbon products. In this study, Cu/ZnO electrodes are prepared by magnetron sputtering to achieve a Faraday efficiency of 51.2% for C2H4 at -1.17 V. The Cu/ZnO heterogeneous interface provided abundant active sites for the reaction, and the lower work function facilitated the multi-electron transfer process necessary for the reduction of CO2 to C2H4, thereby enhances the catalytic performance. DFT calculations reveal that the upward shift in the d-band center of Cu/ZnO, compared to pure Cu, enhances the adsorption energy of the crucial intermediate *CO. Moreover, the C-C coupling achieved on Cu/ZnO through the *CHO-*CHO pathway, which features lower energy barriers, ensures high selectivity in the conversion of CO2 to C2H4. This work provides a promising and effective strategy for the large-scale development of metal-oxide catalysts for the electrochemical reduction of CO2 to C2H4.
Collapse
Affiliation(s)
- Yixuan Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Bo Gao
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, Shandong, 266525, China
| | - Heng Fu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chunhui Xiao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoye Du
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhongxiao Song
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
14
|
Yoo S, Kim D, Deng G, Chen Y, Lee K, Yoo S, Liu X, Tang Q, Hwang YJ, Hyeon T, Bootharaju MS. Impact of Heterocore Atoms on CO 2 Electroreduction in Atomically Precise Silver Nanoclusters. J Am Chem Soc 2025; 147:12546-12554. [PMID: 40185682 DOI: 10.1021/jacs.4c17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Understanding the effect of internal atoms in metal nanoparticles on heterogeneous catalytic processes is crucial for achieving high activity and selectivity. This requires meticulous synthetic control over the size, composition, and atomic arrangement of nanoparticles. Here, we report the design of ligand-exchange-induced structure transformation and nanomolecule-templated atomic-level galvanic exchange strategies to synthesize PtAg24(IPBT)18 (denoted as PtAg24) and AuAg24(IPBT)18 (denoted as AuAg24) nanoclusters (NCs). Both NCs exhibit identical total metal atom and ligand (IPBT: 2-isopropylbenzenethiolate) counts, as well as atomic-level structure, except for the difference in the core atom (Pt and Au). Using these model NCs, we uncover the impact of heterocore atoms on the electrochemical CO2 reduction reaction (eCO2RR) activity and selectivity. The central Pt atom in PtAg24 is less favorable for eCO2RR activity, with an activity approximately 4 times smaller than that of Au in AuAg24. The eCO2RR product CO selectivity is <30% for PtAg24, while it exceeds 70% for AuAg24, revealing the critical role of the central atom in surface catalytic pathways. Furthermore, AuAg24 exhibits high activity, with a CO partial current density of -202.2 mA cm-2, and stability over 24 h, retaining 90% CO selectivity in a membrane electrode assembly configuration. Operando spectroscopy and density functional theory calculations suggest the weaker adsorption of *CO intermediates and smaller energy barrier facilitate CO production on AuAg24 compared to PtAg24, providing valuable atomistic insights into the reaction intermediates and mechanism. The findings in this work will inspire the design of more atomically precise model nanocatalysts to explore the role of their remarkable features in the catalytic activity and selectivity for renewable energy conversion and storage.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dayeon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Suhwan Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Zhong K, Xue J, Ji Y, Jiang Q, Zheng T, Xia C. Strategies for Enhancing Stability in Electrochemical CO 2 Reduction. Chem Asian J 2025:e202500174. [PMID: 40200798 DOI: 10.1002/asia.202500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) holds significant promise as a sustainable approach to address global energy challenges and reduce carbon emissions. However, achieving long-term stability in terms of catalytic performance remains a critical hurdle for large-scale commercial deployment. This mini-review provides a comprehensive exploration of the key factors influencing CO2RR stability, encompassing catalyst design, electrode architecture, electrolyzer optimization, and operational conditions. We examine how catalyst degradation occurs through mechanisms such as valence changes, elemental dissolution, structural reconfiguration, and active site poisoning and propose targeted strategies for improvement, including doping, alloying, and substrate engineering. Additionally, advancements in electrode design, such as structural modifications and membrane enhancements, are highlighted for their role in improving stability. Operational parameters such as temperature, pressure, and electrolyte composition also play crucial roles in extending the lifespan of the reaction. By addressing these diverse factors, this review aims to offer a deeper understanding of the determinants of long-term stability in the CO2RR, laying the groundwork for the development of robust, scalable technologies for efficient carbon dioxide conversion.
Collapse
Affiliation(s)
- Kexin Zhong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
16
|
Hou T, Zhu J, Gu H, Li X, Sun Y, Hua Z, Shao R, Chen C, Hu B, Mai L, Chen S, Wang D, Zhang J. Switching CO 2 Electroreduction toward C 2+ Products and CH 4 by Regulating the Dimerization and Protonation in Platinum/Copper Catalysts. Angew Chem Int Ed Engl 2025; 64:e202424749. [PMID: 39846994 DOI: 10.1002/anie.202424749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/24/2025]
Abstract
Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates. The Pt single-atoms and Pt nanoparticles modified Cu catalysts (denoted as Cu-Pt1 and Cu-PtNPs) precisely regulated the protonation and dimerization, with the faradaic efficiency (FE) of C2+ products up to 70.4 % and the FE of CH4 reaching 57.7 %, respectively. CO stripping experiments reveal that Pt1 sites could enhance the adsorption of *CO, while PtNPs exhibit *CO tolerance for H2O dissociation. In situ spectroscopic results further confirms that high coverage of *CO is achieved on Cu-Pt1, while *CHO on Cu-PtNPs might generate by additional water dissociation. As elucidated by theoretical studies, the interfacial sites of Cu-Pt1 would favor the *CO coverage promoting the evolution of *OCCO for C2+ products while PtNPs supplementarily accelerate H2O dissociation achieving *CHO for CH4. This work provides insights for efficient and targeted CO2 conversion by atomically design of active sites with engineered key intermediates coverage.
Collapse
Affiliation(s)
- Tailei Hou
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongfei Gu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xinyuan Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yiqing Sun
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ze Hua
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruiwen Shao
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Cheng Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Botao Hu
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Shenghua Chen
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
17
|
Li D, Liu J, Wang B, Huang C, Chu PK. Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO 2 to C 2+ Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416597. [PMID: 40013974 PMCID: PMC11967780 DOI: 10.1002/advs.202416597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The electrocatalytic conversion of CO2 into valuable multi-carbon (C2+) products using Cu-based catalysts has attracted significant attention. This review provides a comprehensive overview of recent advances in Cu-based catalyst design to improve C2+ selectivity and operational stability. It begins with an analysis of the fundamental reaction pathways for C2+ formation, encompassing both established and emerging mechanisms, which offer critical insights for catalyst design. In situ techniques, essential for validating these pathways by real-time observation of intermediates and material evolution, are also introduced. A key focus of this review is placed on how to enhance C2+ selectivity through intermediates manipulation, particularly emphasizing catalytic site construction to promote C─C coupling via increasing *CO coverage and optimizing protonation. Additionally, the challenge of maintaining catalytic activity under reaction conditions is discussed, highlighting the reduction of active charged Cu species and materials reconstruction as major obstacles. To address these, the review describes recent strategies to preserve active sites and control materials evolution, including novel catalyst design and the utilization and mitigation of reconstruction. By presenting these developments and the challenges ahead, this review aims to guide future materials design for CO2 conversion.
Collapse
Affiliation(s)
- Dan Li
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Jinyuan Liu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Bin Wang
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Chao Huang
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong KongChina
| |
Collapse
|
18
|
Dutta N, Peter SC. Electrochemical CO 2 Reduction in Acidic Media: A Perspective. J Am Chem Soc 2025; 147:9019-9036. [PMID: 40035683 DOI: 10.1021/jacs.5c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) is a promising approach for converting CO2 to useful chemicals and, hence, achieving carbon neutrality. Though high selectivity and activity of products have been achieved recently, all are reported in neutral or alkaline electrolytes. Although these electrolyte media give high selectivity and activity, they face the major challenge of low CO2 utilization because of carbonate formation, which lowers the overall efficiency of the process. Conducting the eCO2RR in acidic media can help overcome the issue of carbonate formation and hence can increase the CO2 utilization efficiency. However, there are many challenges associated with acidic eCO2RR. Two major concerns are the highly competitive hydrogen evolution reaction in acidic media and salt precipitation issues. This Perspective focuses on the fundamentals of acidic eCO2RR, recent catalyst development strategies, and relevant problems that need to be addressed in the future. In the end, we provide a future outlook that will give an idea about the problems to focus on in the future in the field of acidic eCO2RR.
Collapse
Affiliation(s)
- Nilutpal Dutta
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Sebastian C Peter
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
19
|
Li X, Kang W, Fan X, Tan X, Masa J, Robertson AW, Jung Y, Han B, Texter J, Cheng Y, Dai B, Sun Z. Electrochemical CO 2 reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes. Innovation (N Y) 2025; 6:100807. [PMID: 40098663 PMCID: PMC11910886 DOI: 10.1016/j.xinn.2025.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/14/2025] [Indexed: 03/19/2025] Open
Abstract
The high energy density of green synthetic liquid chemicals and fuels makes them ideal for sustainable energy storage and transportation applications. Electroreduction of carbon dioxide (CO2) directly into such high value-added chemicals can help us achieve a renewable C cycle. Such electrochemical reduction typically suffers from low faradaic efficiencies (FEs) and generates a mixture of products due to the complexity of controlling the reaction selectivity. This perspective summarizes recent advances in the mechanistic understanding of CO2 reduction reaction pathways toward liquid products and the state-of-the-art catalytic materials for conversion of CO2 to liquid C1 (e.g., formic acid, methanol) and C2+ products (e.g., acetic acid, ethanol, n-propanol). Many liquid fuels are being produced with FEs between 80% and 100%. We discuss the use of structure-binding energy relationships, computational screening, and machine learning to identify promising candidates for experimental validation. Finally, we classify strategies for controlling catalyst selectivity and summarize breakthroughs, prospects, and challenges in electrocatalytic CO2 reduction to guide future developments.
Collapse
Affiliation(s)
- Xueying Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Woojong Kang
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, and Institute of Engineering Research, Seoul National University, 1 Kwanak-ro, Seoul 08826, South Korea
| | - Xinyi Fan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyi Tan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing 100081, China
| | - Justus Masa
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Alex W Robertson
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Yousung Jung
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, and Institute of Engineering Research, Seoul National University, 1 Kwanak-ro, Seoul 08826, South Korea
| | - Buxing Han
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John Texter
- Strider Research Corporation, Rochester, NY 14610-2246, USA
- School of Engineering and Coating Research Institute, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Yuanfu Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Lee SH, Avilés Acosta JE, Lee D, Larson DM, Li H, Chen J, Lee J, Erdem E, Lee DU, Blair SJ, Gallo A, Zheng H, Nielander AC, Tassone CJ, Jaramillo TF, Drisdell WS. Structural Transformation and Degradation of Cu Oxide Nanocatalysts during Electrochemical CO 2 Reduction. J Am Chem Soc 2025; 147:6536-6548. [PMID: 39815387 PMCID: PMC11869297 DOI: 10.1021/jacs.4c14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed. In this work, we report the structural dynamics and degradation pathway of Cu oxide nanoparticles (CuOx NPs) during the CO2RR by using in situ small-angle X-ray scattering (SAXS) and X-ray absorption spectroscopy (XAS). The in situ SAXS reveals a reduction in the size of NPs when subjected to a potential at which no reaction products are detected. At potentials where the CO2RR starts to occur, CuOx NPs are agglomerated through a particle migration and coalescence process in the early stage of the reaction, followed by Ostwald ripening (OR) as the dominant degradation mechanism for the remainder of the reaction. As the applied potential becomes more negative, the OR process becomes more dominant, and for the most negative applied potential, OR dominates for the entire reaction time. The morphological changes are linked to a gradual decrease in the formation rate for multicarbon products (C2H4 and ethanol). Other reaction parameters, including reaction intermediates and local high pH, induce changes in the agglomeration process and final morphology of the CuOx NPs electrode, supported by post-mortem ex situ microscopic analysis. The in situ XAS analysis suggests that the CuOx NPs reduced into the metallic state before the structural transformation was observed. The introduction of high surface area carbon supports with ionomer coating mitigates the degree of structural transformation and detachment of the CuOx NPs electrode. These findings show the dynamic nature of Cu nanocatalysts during the CO2RR and can serve as a rational guideline toward a stable catalyst system under electrochemical conditions.
Collapse
Affiliation(s)
- Soo Hong Lee
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Chemical
& Process Technology Division, Korea
Research Institute of Chemical Technology (KRICT), Yuseong-gu, Daejeon 34114, South Korea
| | - Jaime E. Avilés Acosta
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Daewon Lee
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - David M. Larson
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Hui Li
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Junjie Chen
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jinyoung Lee
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ezgi Erdem
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Dong Un Lee
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sarah J. Blair
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alessandro Gallo
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Haimei Zheng
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Adam C. Nielander
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Christopher J. Tassone
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F. Jaramillo
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Walter S. Drisdell
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Xie W, Li B, Liu L, Li H, Yue M, Niu Q, Liang S, Shao X, Lee H, Lee JY, Shao M, Wang Q, O'Hare D, He H. Advanced systems for enhanced CO 2 electroreduction. Chem Soc Rev 2025; 54:898-959. [PMID: 39629562 DOI: 10.1039/d4cs00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Carbon dioxide (CO2) electroreduction has extraordinary significance in curbing CO2 emissions while simultaneously producing value-added chemicals with economic and environmental benefits. In recent years, breakthroughs in designing catalysts, optimizing intrinsic activity, developing reactors, and elucidating reaction mechanisms have continuously driven the advancement of CO2 electroreduction. However, the industrialization of CO2 electroreduction remains a challenging task, with high energy consumption, high costs, limited reaction products, and restricted application scenarios being the issues that urgently need to be addressed. To accelerate the progress of CO2 electroreduction towards practical application, this review shifts the research focus from catalysts to aspects such as reactions and systems, aiming to improve reaction efficiency, reduce technical costs, expand the range of products, and enhance selectivity, offering readers a new perspective. In particular, innovative and specific design strategies such as CO2 reduction coupled with alternative oxidation, co-reduction reaction of CO2 and C/N/O/S-containing species, cascade systems, and integrated CO2 capture and reduction systems are discussed in detail. Additionally, personal views on the opportunities and future challenges of the aforementioned innovative strategies are provided, offering new insights for the future research and development of CO2 electroreduction.
Collapse
Affiliation(s)
- Wenfu Xie
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Bingkun Li
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Lu Liu
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingzhu Yue
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Qingman Niu
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Shuyu Liang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Dermot O'Hare
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, UK
| | - Hong He
- Laboratory of Atmospheric Environment and Pollution Control, Research Center for EcoEnvironmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
22
|
Liu R, Wang P, Wang X, Chen F, Yu H. Facilitating Oriented Electron Transfer from Cu to Mo 2C MXene for Weakened Mo─H Bond Toward Enhanced Photocatalytic H 2 Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408330. [PMID: 39604232 DOI: 10.1002/smll.202408330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Mo2C MXene (Mo2CTx) is recognized as an excellent cocatalyst due to unique physicochemical properties and platinum-like d-band of Mo active sites. However, Mo sites of Mo2CTx with high-density empty d-orbitals exhibit strong Mo─Hads bonds during photocatalytic hydrogen evolution, leading to easy adsorption of hydrogen ions from solution and unfavorable desorption of H2 from Mo sites. To weaken the Mo─Hads bond, a strategy of oriented electron transfer from Cu to Mo2CTx to increase the antibonding orbital occupancy of Mo─Hads hybrid orbitals is implemented by introducing Cu into Mo2CTx interlayers to form Cu-Mo2CTx. The Cu-Mo2CTx is synthesized from Mo2Ga2C and CuCl2 via a one-step molten salt method and combined with TiO2 to form Cu-Mo2CTx/TiO2 photocatalyst through an ultrasound-assisted approach. Hydrogen production tests reveal that an exceptional performance of Cu-Mo2CTx/TiO2 (6446 µmol h-1 g-1, AQE = 18.3%) is 8.4 fold higher than that of Mo2CF2/TiO2 (Mo2CF2 by the conventional etchant NH4F+HCl). Density functional theory (DFT) calculations and characterization results corroborate that the oriented electron transfer from Cu to Mo2CTx increases the Mo─Hads antibonding occupancy in Cu-Mo2CTx, thereby weakening Mo─Hads bonds and accelerating the hydrogen evolution rate of TiO2. This research offers valuable insights into optimizing H-adsorption capabilities at active sites on MXene materials.
Collapse
Affiliation(s)
- Ruiyun Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Ping Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Xuefei Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Feng Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| |
Collapse
|
23
|
Yang Z, Li Z, Yang C, Meng L, Guo W, Jing L. Synthesis of Closely-Contacted Cu 2O-CoWO 4 Nanosheet Composites for Cuproptosis Therapy to Tumors With Sonodynamic and Photothermal Assistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410621. [PMID: 39573907 PMCID: PMC11727377 DOI: 10.1002/advs.202410621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/01/2024] [Indexed: 01/14/2025]
Abstract
Cuproptosis offers a promising and selective therapeutic strategy for cancer therapy. To fully realize its potential, the development of novel cuproptosis therapeutic agents and the achievement of efficient copper release are critical steps forward. Herein, closely-contacted Cu2O-CoWO4 nanosheet heterojunctions (CCW-NH) are successfully synthesized using an in-situ process for cuproptosis therapy. The efficient release of copper ions from CCW-NH can be triggered by ultrasound irradiation, primarily due to the generation of superoxide radicals as the sonodynamic agents via the Z-scheme charge transfer mechanism. When subjected to the combined effects of ultrasound and laser irradiation, the effective release of copper ions is increased by 1.7 times compared to the untreated group, significantly enhancing the efficiency of cuproptosis. And the incorporation of CCW-NH and L-arginine into the temperature-sensitive injectable hydrogel (HP-CCW@LA) ultimately achieved a tumor inhibition rate of up to 95.1%. L-arginine, serving as a reducing agent, enabled the sustained release of highly active Cu+ during treatment. Notably, after treating tumors with HP-CCW@LA, the tumor microenvironment is leveraged to promote copper ion conversion, which offers the potential for monitoring tumor therapy efficacy through magnetic resonance imaging. This work offers a novel integrated strategy for the development of new cuproptosis agents and therapeutic evaluation.
Collapse
Affiliation(s)
- Zhuoran Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsHeilongjiang Province and College of Chemistry and Chemical EngineeringHarbin Normal UniversityHarbin150025China
| | - Zhuo Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education)School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic TechnologyHeilongjiang UniversityHarbin150080China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsHeilongjiang Province and College of Chemistry and Chemical EngineeringHarbin Normal UniversityHarbin150025China
| | - Li Meng
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education)School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic TechnologyHeilongjiang UniversityHarbin150080China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsHeilongjiang Province and College of Chemistry and Chemical EngineeringHarbin Normal UniversityHarbin150025China
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education)School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic TechnologyHeilongjiang UniversityHarbin150080China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education)School of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic TechnologyHeilongjiang UniversityHarbin150080China
| |
Collapse
|
24
|
Ramadhany P, Luong Q, Zhang Z, Leverett J, Samorì P, Corrie S, Lovell E, Canbulat I, Daiyan R. State of Play of Critical Mineral-Based Catalysts for Electrochemical E-Refinery to Synthetic Fuels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405029. [PMID: 38838055 DOI: 10.1002/adma.202405029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.
Collapse
Affiliation(s)
- Putri Ramadhany
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quang Luong
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Ziling Zhang
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Josh Leverett
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Simon Corrie
- Chemical and Biological Engineering Department, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Clayton, VIC 3800, Australia
| | - Emma Lovell
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ismet Canbulat
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| |
Collapse
|
25
|
Senthilkumar AK, Kumar M, Samuel MS, Ethiraj S, Shkir M, Chang JH. Recent advancements in carbon/metal-based nano-catalysts for the reduction of CO 2 to value-added products. CHEMOSPHERE 2024; 364:143017. [PMID: 39103104 DOI: 10.1016/j.chemosphere.2024.143017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to the increased human activities in burning of fossil fuels and deforestation, the CO2 level in the atmosphere gets increased up to 415 ppm; although it is an essential component for plant growth, an increased level of CO2 in the atmosphere leads to global warming and catastrophic climate change. Various conventional methods are used to capture and utilize CO2, among that a feasible and eco-friendly technique for creating value-added products is the CO2RR. Photochemical, electrochemical, thermochemical, and biochemical approaches can be used to decrease the level of CO2 in the atmosphere. The introduction of nano-catalysts in the reduction process helps in the efficient conversion of CO2 with improved selectivity, increased efficiency, and also enhanced stability of the catalyst materials. Thus, in this mini-review of nano-catalysts, some of the products formed during the reduction process, like CH3OH, C2H5OH, CO, HCOOH, and CH4, are explained. Among different types of metal catalysts, carbonaceous, single-atom catalysts, and MOF based catalysts play a significant role in the CO2 RR process. The effects of the catalyst material on the surface area, composition, and structural alterations are covered in depth. To aid in the design and development of high-performance nano-catalysts for value-added products, the current state, difficulties, and future prospects are provided.
Collapse
Affiliation(s)
- Arun Kumar Senthilkumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| | - Melvin S Samuel
- Department of Civil, Construction & Environmental Engineering, Marquette University, 1637 W Wisconsin Ave, Milwaukee, WI, 53233, USA
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Mohd Shkir
- Department of Physics, College of Science, King Khalid University, P.O Box-9004, Abha, 61413, Saudi Arabia
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| |
Collapse
|
26
|
Chen L, Chen J, Fu W, Chen J, Wang D, Xiao Y, Xi S, Ji Y, Wang L. Energy-efficient CO (2) conversion to multicarbon products at high rates on CuGa bimetallic catalyst. Nat Commun 2024; 15:7053. [PMID: 39147764 PMCID: PMC11327302 DOI: 10.1038/s41467-024-51466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Electrocatalytic CO2 reduction to multi-carbon products is a promising approach for achieving carbon-neutral economies. However, the energy efficiency of these processes remains low, particularly at high current densities. Herein, we demonstrate that the low energy efficiencies are, in part, sometimes significantly, attributed to the high concentration overpotential resulting from the instability (i.e., flooding) of catalyst-layer during electrolysis. To tackle this challenge, we develop copper/gallium bimetallic catalysts with reduced activation energies for the formation of multi-carbon products. Consequently, the reduced activation overpotential allows us to achieve practical-relevant current densities for CO2 reduction at low cathodic potentials, ensuring good stability of the catalyst-layer and thereby minimizing the undesired concentration overpotential. The optimized bimetallic catalyst achieves over 50% cathodic energy efficiency for multi-carbon production at a high current density of over 1.0 A cm - 2 . Furthermore, we achieve current densities exceeding 2.0 A cm - 2 in a zero-gap membrane-electrode-assembly reactor, with a full-cell energy efficiency surpassing 30%.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Weiwei Fu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yukun Xiao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, China.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, Singapore, Singapore.
| |
Collapse
|
27
|
Ma Y, Sun M, Xu H, Zhang Q, Lv J, Guo W, Hao F, Cui W, Wang Y, Yin J, Wen H, Lu P, Wang G, Zhou J, Yu J, Ye C, Gan L, Zhang D, Chu S, Gu L, Shao M, Huang B, Fan Z. Site-Selective Growth of fcc-2H-fcc Copper on Unconventional Phase Metal Nanomaterials for Highly Efficient Tandem CO 2 Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402979. [PMID: 38811011 DOI: 10.1002/adma.202402979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.
Collapse
Affiliation(s)
- Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hongming Xu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
- Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia Lv
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Weihua Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wenting Cui
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Haiyu Wen
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Lin Gan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
28
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Haoming Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, China
| | - Yuen-Leong Chow
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
29
|
Meng L, Kao CW, Wang Z, Ma J, Huang P, Zhao N, Zheng X, Peng M, Lu YR, Tan Y. Alloying and confinement effects on hierarchically nanoporous CuAu for efficient electrocatalytic semi-hydrogenation of terminal alkynes. Nat Commun 2024; 15:5999. [PMID: 39013955 PMCID: PMC11252328 DOI: 10.1038/s41467-024-50499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Electrocatalytic alkynes semi-hydrogenation to produce alkenes with high yield and Faradaic efficiency remains technically challenging because of kinetically favorable hydrogen evolution reaction and over-hydrogenation. Here, we propose a hierarchically nanoporous Cu50Au50 alloy to improve electrocatalytic performance toward semi-hydrogenation of alkynes. Using Operando X-ray absorption spectroscopy and density functional theory calculations, we find that Au modulate the electronic structure of Cu, which could intrinsically inhibit the combination of H* to form H2 and weaken alkene adsorption, thus promoting alkyne semi-hydrogenation and hampering alkene over-hydrogenation. Finite element method simulations and experimental results unveil that hierarchically nanoporous catalysts induce a local microenvironment with abundant K+ cations by enhancing the electric field within the nanopore, accelerating water electrolysis to form more H*, thereby promoting the conversion of alkynes. As a result, the nanoporous Cu50Au50 electrocatalyst achieves highly efficient electrocatalytic semi-hydrogenation of alkynes with 94% conversion, 100% selectivity, and a 92% Faradaic efficiency over wide potential window. This work provides a general guidance of the rational design for high-performance electrocatalytic transfer semi-hydrogenation catalysts.
Collapse
Affiliation(s)
- Linghu Meng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, 410082, Hunan, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Zhen Wang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, 410082, Hunan, China
| | - Jun Ma
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Peifeng Huang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Nan Zhao
- Electrical Power Research Institute of Yunnan Power Grid Co. Ltd, North China Electric Power, Kunming, 650217, Yunnan, China
| | - Xin Zheng
- Electrical Power Research Institute of Yunnan Power Grid Co. Ltd, North China Electric Power, Kunming, 650217, Yunnan, China
| | - Ming Peng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, 410082, Hunan, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
30
|
Zeng M, Fang W, Cen Y, Zhang X, Hu Y, Xia BY. Reaction Environment Regulation for Electrocatalytic CO 2 Reduction in Acids. Angew Chem Int Ed Engl 2024; 63:e202404574. [PMID: 38638104 DOI: 10.1002/anie.202404574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is a sustainable route for converting CO2 into value-added fuels and feedstocks, advancing a carbon-neutral economy. The electrolyte critically influences CO2 utilization, reaction rate and product selectivity. While typically conducted in neutral/alkaline aqueous electrolytes, the CO2RR faces challenges due to (bi)carbonate formation and its crossover to the anolyte, reducing efficiency and stability. Acidic media offer promise by suppressing these processes, but the low Faradaic efficiency, especially for multicarbon (C2+) products, and poor electrocatalyst stability persist. The effective regulation of the reaction environment at the cathode is essential to favor the CO2RR over the competitive hydrogen evolution reaction (HER) and improve long-term stability. This review examines progress in the acidic CO2RR, focusing on reaction environment regulation strategies such as electrocatalyst design, electrode modification and electrolyte engineering to promote the CO2RR. Insights into the reaction mechanisms via in situ/operando techniques and theoretical calculations are discussed, along with critical challenges and future directions in acidic CO2RR technology, offering guidance for developing practical systems for the carbon-neutral community.
Collapse
Affiliation(s)
- Min Zeng
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Wensheng Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Yiren Cen
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Xinyi Zhang
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Yongming Hu
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
31
|
Liu S, Li Y, Wang D, Xi S, Xu H, Wang Y, Li X, Zang W, Liu W, Su M, Yan K, Nielander AC, Wong AB, Lu J, Jaramillo TF, Wang L, Canepa P, He Q. Alkali cation-induced cathodic corrosion in Cu electrocatalysts. Nat Commun 2024; 15:5080. [PMID: 38871724 PMCID: PMC11176167 DOI: 10.1038/s41467-024-49492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The reconstruction of Cu catalysts during electrochemical reduction of CO2 is a widely known but poorly understood phenomenon. Herein, we examine the structural evolution of Cu nanocubes under CO2 reduction reaction and its relevant reaction conditions using identical location transmission electron microscopy, cyclic voltammetry, in situ X-ray absorption fine structure spectroscopy and ab initio molecular dynamics simulation. Our results suggest that Cu catalysts reconstruct via a hitherto unexplored yet critical pathway - alkali cation-induced cathodic corrosion, when the electrode potential is more negative than an onset value (e.g., -0.4 VRHE when using 0.1 M KHCO3). Having alkali cations in the electrolyte is critical for such a process. Consequently, Cu catalysts will inevitably undergo surface reconstructions during a typical process of CO2 reduction reaction, resulting in dynamic catalyst morphologies. While having these reconstructions does not necessarily preclude stable electrocatalytic reactions, they will indeed prohibit long-term selectivity and activity enhancement by controlling the morphology of Cu pre-catalysts. Alternatively, by operating Cu catalysts at less negative potentials in the CO electrochemical reduction, we show that Cu nanocubes can provide a much more stable selectivity advantage over spherical Cu nanoparticles.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Yuheng Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Singapore.
| | - Haoming Xu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Yulin Wang
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Xinzhe Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Wenjie Zang
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Weidong Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Mengyao Su
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Katherine Yan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam C Nielander
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrew B Wong
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| | - Pieremanuele Canepa
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
| | - Qian He
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| |
Collapse
|
32
|
Han J, Bai X, Xu X, Bai X, Husile A, Zhang S, Qi L, Guan J. Advances and challenges in the electrochemical reduction of carbon dioxide. Chem Sci 2024; 15:7870-7907. [PMID: 38817558 PMCID: PMC11134526 DOI: 10.1039/d4sc01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECO2RR) is a promising way to realize the transformation of waste into valuable material, which can not only meet the environmental goal of reducing carbon emissions, but also obtain clean energy and valuable industrial products simultaneously. Herein, we first introduce the complex CO2RR mechanisms based on the number of carbons in the product. Since the coupling of C-C bonds is unanimously recognized as the key mechanism step in the ECO2RR for the generation of high-value products, the structural-activity relationship of electrocatalysts is systematically reviewed. Next, we comprehensively classify the latest developments, both experimental and theoretical, in different categories of cutting-edge electrocatalysts and provide theoretical insights on various aspects. Finally, challenges are discussed from the perspectives of both materials and devices to inspire researchers to promote the industrial application of the ECO2RR at the earliest.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
33
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
34
|
Tan X, Zhu H, He C, Zhuang Z, Sun K, Zhang C, Chen C. Customizing catalyst surface/interface structures for electrochemical CO 2 reduction. Chem Sci 2024; 15:4292-4312. [PMID: 38516078 PMCID: PMC10952066 DOI: 10.1039/d3sc06990g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) provides a promising route to converting CO2 into value-added chemicals and to neutralizing the greenhouse gas emission. For the industrial application of CO2RR, high-performance electrocatalysts featuring high activities and selectivities are essential. It has been demonstrated that customizing the catalyst surface/interface structures allows for high-precision control over the microenvironment for catalysis as well as the adsorption/desorption behaviors of key reaction intermediates in CO2RR, thereby elevating the activity, selectivity and stability of the electrocatalysts. In this paper, we review the progress in customizing the surface/interface structures for CO2RR electrocatalysts (including atomic-site catalysts, metal catalysts, and metal/oxide catalysts). From the perspectives of coordination engineering, atomic interface design, surface modification, and hetero-interface construction, we delineate the resulting specific alterations in surface/interface structures, and their effect on the CO2RR process. At the end of this review, we present a brief discussion and outlook on the current challenges and future directions for achieving high-efficiency CO2RR via surface/interface engineering.
Collapse
Affiliation(s)
- Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Haojie Zhu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Chang He
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Kaian Sun
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
35
|
Sanati S, Wang Q, Abazari R, Liu M. Recent advanced strategies for bimetallenes toward electrocatalytic energy conversion reactions. Chem Commun (Camb) 2024; 60:3129-3137. [PMID: 38404151 DOI: 10.1039/d3cc06073j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts.
Collapse
Affiliation(s)
- Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran.
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China.
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran.
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China.
| |
Collapse
|
36
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
37
|
Cousins LS, Creissen CE. Multiscale effects in tandem CO 2 electrolysis to C 2+ products. NANOSCALE 2024; 16:3915-3925. [PMID: 38099592 DOI: 10.1039/d3nr05547g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
CO2 electrolysis is a sustainable technology capable of accelerating global decarbonisation through the production of high-value alternatives to fossil-derived products. CO2 conversion can generate critical multicarbon (C2+) products such as drop-in chemicals ethylene and ethanol, however achieving high selectivity from single-component catalysts is often limited by the competitive formation of C1 products. Tandem catalysis can overcome C2+ selectivity limitations through the incorporation of a component that generates a high concentration of CO, the primary reactant involved in the C-C coupling step to form C2+ products. A wide range of approaches to promote tandem CO2 electrolysis have been presented in recent literature that span atomic-scale manipulation to device-scale engineering. Therefore, an understanding of multiscale effects that contribute to selectivity alterations are required to develop effective tandem systems. In this review, we use relevant examples to highlight the complex and interlinked contributions to selectivity and provide an outlook for future development of tandem CO2 electrolysis systems.
Collapse
Affiliation(s)
- Lewis S Cousins
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | - Charles E Creissen
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
38
|
Gao Y, Xiao H, Ma X, Yue Z, Geng B, Zhao M, Zhang L, Zhang J, Zhang J, Jia J, Wu H. Cooperative adsorption of interfacial Ga-N dual-site in GaOOH@N-doped carbon nanotubes for enhanced electrocatalytic reduction of carbon dioxide. J Colloid Interface Sci 2024; 654:339-347. [PMID: 37844505 DOI: 10.1016/j.jcis.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
To reduce activation energy barrier and promote the kinetics of electrocatalytic CO2 reduction reaction (eCO2RR), the performance of CO2 adsorption and activation on electrocatalysts should be optimized. Here, GaOOH is successfully coupled with N-doped carbon nanotubes (NC) via a facile self-assembly-calcination process. The obtained GaOOH@N-doped carbon nanotubes (Ga-NC) display the best CO faradaic efficiency of 96.1 % at -0.6 V (vs. reversible hydrogen electrode). Control-experiment and characterization results suggest Ga-N dual-site in interface between GaOOH and NC shows cooperative adsorption of CO2. C atom in CO2 is adsorbed on N site while O atom in CO2 is adsorbed on Ga site. This cooperative adsorption efficiently promotes the CO2 adsorption and activation performance, as well as the breaking of CO bond due to opposite attraction from Ga-N dual-site. Moreover, in-situ Fourier transform infrared spectroscopy confirms decreased reaction barrier for formation of *CO2- and *COOH intermediates. This work inspires us to construct interfacial dual-site structure with cooperative adsorption property for promoting eCO2RR activity.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - He Xiao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Xiaofang Ma
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Zhizhu Yue
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Bo Geng
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Man Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Li Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Junming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Jian Zhang
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| |
Collapse
|
39
|
Yan S, Chen Z, Chen Y, Peng C, Ma X, Lv X, Qiu Z, Yang Y, Yang Y, Kuang M, Xu X, Zheng G. High-Power CO 2-to-C 2 Electroreduction on Ga-Spaced, Square-like Cu Sites. J Am Chem Soc 2023; 145:26374-26382. [PMID: 37992232 DOI: 10.1021/jacs.3c10202] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The electrochemical conversion of CO2 into multicarbon (C2) products on Cu-based catalysts is strongly affected by the surface coverage of adsorbed CO (*CO) intermediates and the subsequent C-C coupling. However, the increased *CO coverage inevitably leads to strong *CO repulsion and a reduced C-C coupling efficiency, thus resulting in suboptimal CO2-to-C2 activity and selectivity, especially at ampere-level electrolysis current densities. Herein, we developed an atomically ordered Cu9Ga4 intermetallic compound consisting of Cu square-like binding sites interspaced by catalytically inert Ga atoms. Compared to Cu(100) previously known with a high C2 selectivity, the Ga-spaced, square-like Cu sites presented an elongated Cu-Cu distance that allowed to reduce *CO repulsion and increased *CO coverage simultaneously, thus endowing more efficient C-C coupling to C2 products than Cu(100) and Cu(111). The Cu9Ga4 catalyst exhibited an outstanding CO2-to-C2 electroreduction, with a peak C2 partial current density of 1207 mA cm-2 and a corresponding Faradaic efficiency of 71%. Moreover, the Cu9Ga4 catalyst demonstrated a high-power (∼200 W) electrolysis capability with excellent electrochemical stability.
Collapse
Affiliation(s)
- Shuai Yan
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zheng Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xingyu Ma
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan Province 610041, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zhehao Qiu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan Province 610041, China
| | - Min Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Xu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai 200433, China
- Hefei National Laboratory, Hefei 230088, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
40
|
Lai W, Qiao Y, Wang Y, Huang H. Stability Issues in Electrochemical CO 2 Reduction: Recent Advances in Fundamental Understanding and Design Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306288. [PMID: 37562821 DOI: 10.1002/adma.202306288] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) offers a promising approach to close the anthropogenic carbon cycle and store intermittent renewable energy in fuels or chemicals. On the path to commercializing this technology, achieving the long-term operation stability is a central requirement but still confronts challenges. This motivates to organize the present review to systematically discuss the stability issue of CO2 RR. This review starts from the fundamental understanding on the destabilization mechanisms of CO2 RR, with focus on the degradation of electrocatalyst and change of reaction microenvironment during continuous electrolysis. Subsequently, recent efforts on catalyst design to stabilize the active sites are summarized, where increasing atomic binding strength to resist surface reconstruction is highlighted. Next, the optimization of electrolysis system to enhance the operation stability by maintaining reaction microenvironment especially mitigating flooding and carbonate problems is demonstrated. The manipulation on operation conditions also enables to prolong CO2 RR lifespan through recovering catalytically active sites and mass transport process. This review finally ends up by indicating the challenges and future opportunities.
Collapse
Affiliation(s)
- Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Qiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanan Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
41
|
Okatenko V, Boulanger C, Chen AN, Kumar K, Schouwink P, Loiudice A, Buonsanti R. Voltage-Driven Chemical Reactions Enable the Synthesis of Tunable Liquid Ga-Metal Nanoparticles. J Am Chem Soc 2023; 145:25401-25410. [PMID: 37948677 DOI: 10.1021/jacs.3c09828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nanosized particles of liquid metals are emerging materials that hold promise for applications spanning from microelectronics to catalysis. Yet, knowledge of their chemical reactivity is largely unknown. Here, we study the reactivity of liquid Ga and Cu nanoparticles under the application of a cathodic voltage. We discover that the applied voltage and the spatial proximity of these two particle precursors dictate the reaction outcome. In particular, we find that a gradual voltage ramp is crucial to reduce the native oxide skin of gallium and enable reactive wetting between the Ga and Cu nanoparticles; instead, a voltage step causes dewetting between the two. We determine that the use of liquid Ga/Cu nanodimer precursors, which consist of an oxide-covered Ga domain interfaced with a metallic Cu domain, provides a more uniform mixing and results in more homogeneous reaction products compared to a physical mixture of Ga and Cu NPs. Having learned this, we obtain CuGa2 alloys or solid@liquid CuGa2@Ga core@shell nanoparticles by tuning the stoichiometry of Ga and Cu in the nanodimer precursors. These products reveal an interesting complementarity of thermal and voltage-driven syntheses to expand the compositional range of bimetallic NPs. Finally, we extend the voltage-driven synthesis to the combination of Ga with other elements (Ag, Sn, Co, and W). By rationalizing the impact of the native skin reduction rate, the wetting properties, and the chemical reactivity between Ga and other metals on the results of such voltage-driven chemical manipulation, we define the criteria to predict the outcome of this reaction and set the ground for future studies targeting various applications for multielement nanomaterials based on liquid Ga.
Collapse
Affiliation(s)
- Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Coline Boulanger
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Alexander N Chen
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Krishna Kumar
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Pascal Schouwink
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
42
|
Zhang L, Feng J, Wu L, Ma X, Song X, Jia S, Tan X, Jin X, Zhu Q, Kang X, Ma J, Qian Q, Zheng L, Sun X, Han B. Oxophilicity-Controlled CO 2 Electroreduction to C 2+ Alcohols over Lewis Acid Metal-Doped Cu δ+ Catalysts. J Am Chem Soc 2023; 145:21945-21954. [PMID: 37751566 DOI: 10.1021/jacs.3c06697] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Cu-based electrocatalysts have great potential for facilitating CO2 reduction to produce energy-intensive fuels and chemicals. However, it remains challenging to obtain high product selectivity due to the inevitable strong competition among various pathways. Here, we propose a strategy to regulate the adsorption of oxygen-associated active species on Cu by introducing an oxophilic metal, which can effectively improve the selectivity of C2+ alcohols. Theoretical calculations manifested that doping of Lewis acid metal Al into Cu can affect the C-O bond and Cu-C bond breaking toward the selectively determining intermediate (shared by ethanol and ethylene), thus prioritizing the ethanol pathway. Experimentally, the Al-doped Cu catalyst exhibited an outstanding C2+ Faradaic efficiency (FE) of 84.5% with remarkable stability. In particular, the C2+ alcohol FE could reach 55.2% with a partial current density of 354.2 mA cm-2 and a formation rate of 1066.8 μmol cm-2 h-1. A detailed experimental study revealed that Al doping improved the adsorption strength of active oxygen species on the Cu surface and stabilized the key intermediate *OC2H5, leading to high selectivity toward ethanol. Further investigation showed that this strategy could also be extended to other Lewis acid metals.
Collapse
Affiliation(s)
- Libing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyuan Jin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
43
|
Luo Q, Duan H, McLaughlin MC, Wei K, Tapia J, Adewuyi JA, Shuster S, Liaqat M, Suib SL, Ung G, Bai P, Sun S, He J. Why surface hydrophobicity promotes CO 2 electroreduction: a case study of hydrophobic polymer N-heterocyclic carbenes. Chem Sci 2023; 14:9664-9677. [PMID: 37736633 PMCID: PMC10510627 DOI: 10.1039/d3sc02658b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
We report the use of polymer N-heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO-NHC), hydrophobic polystyrene (PS-NHC), and amphiphilic block copolymer (BCP) (PEO-b-PS-NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS-NHC and PEO-b-PS-NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO-NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Hanyi Duan
- Polymer Program, Institute of Materials Science, University of Connecticut Storrs CT 06269 USA
| | | | - Kecheng Wei
- Department of Chemistry, Brown University Providence Rhode Island 02912 USA
| | - Joseph Tapia
- Department of Chemical Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Joseph A Adewuyi
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Seth Shuster
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Maham Liaqat
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Steven L Suib
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Gaël Ung
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Peng Bai
- Department of Chemical Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Shouheng Sun
- Department of Chemistry, Brown University Providence Rhode Island 02912 USA
| | - Jie He
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
- Polymer Program, Institute of Materials Science, University of Connecticut Storrs CT 06269 USA
| |
Collapse
|