1
|
Li X, Liu L, Yu J, Liu X, Xu S, Wu G, Wang YZ. Full Recovery of Epoxy Resin Wastes into Bisphenol A and Epoxy Monomers via Lewis Acid. Angew Chem Int Ed Engl 2025; 64:e202422472. [PMID: 40012484 DOI: 10.1002/anie.202422472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Epoxy resins (EPs) are important thermosetting plastics and difficult to recycle because of their stable cross-linked structure. In this study, we report a full recovery strategy for the conversion of EPs into high-value platform compounds, i.e., bisphenol A (BPA) and epoxy monomers such as 4,4'-methylenebis (N,N'-diglycidylaniline) (AG80), which involves the selective breaking of the C(sp3)─O bond using commercially available boron trichloride (BCl3), the reconstruction of the broken C(sp3)─N bond and the cyclization of the hydroxy groups. The yield of BPA is 93 wt% with a purity of 99%, and the yield of AG80 is 96 wt% with an epoxy value of 0.43. 100% recovery of EP elements was achieved theoretically, and the actual mass recovery of the EPs is as high as 91%. Because of its versatility, simplicity of operation, mild reaction conditions, and recyclability of all solvents and by-products, this approach shows the potential in solving the current recycling challenges associated with EP waste.
Collapse
Affiliation(s)
- Xiaohui Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Lulu Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Jing Yu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Xuehui Liu
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Gang Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Kumar M, Michelas M, Boyer C. Polymer Chain Modification via HAT Chemistry and Its Application in Graft Copolymer Synthesis. ACS Macro Lett 2025; 14:396-404. [PMID: 40088163 DOI: 10.1021/acsmacrolett.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Hydrogen atom transfer (HAT) chemistry has emerged as a powerful tool for selective molecular functionalization, with significant applications in the pharmaceutical and agricultural industries. More recently, HAT has been explored in polymer chemistry as a versatile strategy for introducing targeted functional groups onto polymer chains, enabling precise control over properties such as solubility and mechanical strength. This study investigates the use of HAT to synthesize reversible addition-fragmentation chain transfer (RAFT) agents (or chain transfer agents, CTAs) by modifying various substrates, including toluene, ethyl acetate, and dioxane, in the presence of bis(dodecylsulfanylthiocarbonyl) disulfide or bis(3,5-dimethyl-1H-pyrazol-1-ylthiocarbonyl) disulfide. The resulting CTAs were evaluated in both thermal and photoinduced electron transfer (PET)-RAFT polymerization for controlled polymerization of various monomers. This approach was then extended to functionalize polycaprolactone (PCL) and polyvinyl acetate (PVAc), enabling the synthesis of graft copolymers with various vinyl monomers. To promote HAT, a range of photocatalysts, including iron(III) chloride (FeCl3), were investigated, offering advantages over conventional thermal HAT systems. Photocatalysis enables mild and efficient radical generation under light irradiation, providing a cost-effective and environmentally friendly alternative to expensive or toxic metal catalysts.
Collapse
Affiliation(s)
- Manish Kumar
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Maxime Michelas
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Tyler JL, Trauner D, Glorius F. Reaction development: a student's checklist. Chem Soc Rev 2025; 54:3272-3292. [PMID: 39912730 DOI: 10.1039/d4cs01046a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
So you've discovered a reaction. But how do you turn this new discovery into a fully-fledged program that maximises the potential of your novel transformation? Herein, we provide a student's checklist to serve as a helpful guide for synthesis development, allowing you to thoroughly investigate the chemistry in question while ensuring that no key aspect of the project is overlooked. A wide variety of the most illuminating synthetic and spectroscopic techniques will be summarised, in conjunction with literature examples and our own insights, to provide sound justifications for their implementation towards the goal of developing new reactions.
Collapse
Affiliation(s)
- Jasper L Tyler
- University of Muenster, Institute for Organic Chemistry, Corrensstrasse 36, 48149 Muenster, Germany.
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | - Frank Glorius
- University of Muenster, Institute for Organic Chemistry, Corrensstrasse 36, 48149 Muenster, Germany.
| |
Collapse
|
4
|
Dong A, Liu Q, Yao H, Ma J, Cheng J, Zhang J. Epoxy Vitrimer with Excellent Mechanical Properties and High Tg for Detachable Structural Adhesives. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39985436 DOI: 10.1021/acsami.4c22337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
It is a long-standing challenge for thermoset resins to simultaneously achieve outstanding thermomechanical and mechanical properties as well as rapid network reconfiguration due to the trade-off between chemical bond transformation and stability of the network. The design of the vitrimer network topology is an effective strategy to address the above issues. Here, we prepared an epoxy vitrimer material (DGEBA-API-MHHPA) with excellent mechanical properties and high glass-transition temperature (Tg) by introducing rigid-flexible integrated side chains [1-(3-aminopropyl) imidazole (API)], which endow DGEBA-API-MHHPA multiple interactions including "internal antiplasticization" effect, intermolecular hydrogen bonds, and π-π interactions. Moreover, the introduction of Zn2+ facilitates transesterification, enabling the fast rearrangement of the network. Specifically, the relaxation time of DGEBA-API0.2-MHHPA0.8-Zn reaches 65 s at 200 °C. Meanwhile, Zn2+-imidazole coordination bonds with energy dissipation improve the toughness of the vitrimer network. The resulting DGEBA-API0.2-MHHPA0.8-Zn exhibits self-healing and recyclable behaviors and possesses 80.3 MPa of tensile strength, 3.25 GPa of Young's modulus, 7.2 MPa·m1/2 of fracture toughness (KIC), and Tg of 129 °C. Concurrently, DGEBA-API0.2-MHHPA0.8-Zn can be applied as detachable structural adhesives for various substrates and can be used as matrixes of recyclable and electrically self-healing composites. This skillful strategy can be widely referenced in the large-scale manufacturing of high-performance dynamic covalent epoxy resins and their composites with excellent mechanical and thermomechanical performance.
Collapse
Affiliation(s)
- Aiqing Dong
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qiguang Liu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Huarui Yao
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiahao Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jue Cheng
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Junying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
5
|
Shiraki R, Hsu YI, Uyama H, Tobisu M. Synthesis of Polyamides Bearing Directing Groups and Their Catalytic Depolymerization. Org Lett 2025. [PMID: 39887009 DOI: 10.1021/acs.orglett.4c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
We report a directing group (DG)-enabled strategy for polyamide depolymerization. Pyridine-based DGs selectively interact with In(III) catalysts, activating amide bonds for catalytic cleavage via alcoholysis. The process achieves efficient depolymerization of DG-introduced polyamides into recyclable monomers, providing a sustainable chemical recycling approach for robust polyamides.
Collapse
Affiliation(s)
- Ryota Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Ogawa S, Morita H, Hsu YI, Uyama H, Tobisu M. Controlled degradation of chemically stable poly(aryl ethers) via directing group-assisted catalysis. Chem Sci 2024:d4sc04147j. [PMID: 39386902 PMCID: PMC11457300 DOI: 10.1039/d4sc04147j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
To establish a sustainable society, the development of polymer materials capable of reverting into monomers on demand is crucial. Traditional methods rely on breaking labile bonds such as esters in the main chain, which limits applicability to polymers that consist of robust covalent bonds. We found that the integration of directing groups allowed the engineering of resilient polymers with built-in recyclability. Our study showcases phenylene ether-based polymers fortified with directing groups, which can be selectively disassembled under nickel catalysts via selective cleavage of carbon-oxygen bonds. Notably, these polymers exhibit exceptional chemical stability towards acids, bases, and oxidizing agents, while being degradable to well-defined, repolymerizable molecules in the presence of a catalyst. Our findings allow for the development of next-generation polymer materials that are chemically recyclable by design.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Hiroki Morita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Suita Osaka 565-0871 Japan
| |
Collapse
|
7
|
Michelas M, Wimberger L, Boyer C. A General Approach for Photo-Oxidative Degradation of Various Polymers. Macromol Rapid Commun 2024; 45:e2400358. [PMID: 39008823 DOI: 10.1002/marc.202400358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Indexed: 07/17/2024]
Abstract
The escalating demand for plastics has resulted in a surge of plastic waste worldwide, posing a monumental environmental challenge. To address this issue, a versatile photo-oxidative degradation method applicable to seven distinct polymer families is proposed, comprising poly(isobutyl vinyl ether) (PIBVE), poly(2,3-dihydrofuran) (PDHF), poly(vinyl acetate) (PVAc), poly(n-butyl acrylate) (PBA), poly(methyl acrylate) (PMA), poly(vinyl chloride) (PVC), poly(dimethyl acrylamide) (PDMA), poly(ethylene oxide) (PEO), poly(oligo(ethylene glycol) methyl ether acrylate) (PEGMEA), and even poly(methyl methacrylate) (PMMA). This method employs photo-mediated hydrogen atom transfer (HAT) followed by oxidation to promote polymer degradation. This reaction is carried out under aerobic condition in the presence of iron trichloride (FeCl3) as a photocatalyst in combination with low-intensity purple light irradiation. The process can degrade up to 97% of the polymer in less than 3 h. This degradation process can be easily controlled by switching the light off, which allows for precise modulation of the degradation rate, enhancing the effectiveness of the method. Overall, this method provides a sustainable method for degrading various polymer types with low energy input.
Collapse
Affiliation(s)
- Maxime Michelas
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Laura Wimberger
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
8
|
Beil SB, Bonnet S, Casadevall C, Detz RJ, Eisenreich F, Glover SD, Kerzig C, Næsborg L, Pullen S, Storch G, Wei N, Zeymer C. Challenges and Future Perspectives in Photocatalysis: Conclusions from an Interdisciplinary Workshop. JACS AU 2024; 4:2746-2766. [PMID: 39211583 PMCID: PMC11350580 DOI: 10.1021/jacsau.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a versatile and rapidly developing field with applications spanning artificial photosynthesis, photo-biocatalysis, photoredox catalysis in solution or supramolecular structures, utilization of abundant metals and organocatalysts, sustainable synthesis, and plastic degradation. In this Perspective, we summarize conclusions from an interdisciplinary workshop of young principal investigators held at the Lorentz Center in Leiden in March 2023. We explore how diverse fields within photocatalysis can benefit from one another. We delve into the intricate interplay between these subdisciplines, by highlighting the unique challenges and opportunities presented by each field and how a multidisciplinary approach can drive innovation and lead to sustainable solutions for the future. Advanced collaboration and knowledge exchange across these domains can further enhance the potential of photocatalysis. Artificial photosynthesis has become a promising technology for solar fuel generation, for instance, via water splitting or CO2 reduction, while photocatalysis has revolutionized the way we think about assembling molecular building blocks. Merging such powerful disciplines may give rise to efficient and sustainable protocols across different technologies. While photocatalysis has matured and can be applied in industrial processes, a deeper understanding of complex mechanisms is of great importance to improve reaction quantum yields and to sustain continuous development. Photocatalysis is in the perfect position to play an important role in the synthesis, deconstruction, and reuse of molecules and materials impacting a sustainable future. To exploit the full potential of photocatalysis, a fundamental understanding of underlying processes within different subfields is necessary to close the cycle of use and reuse most efficiently. Following the initial interactions at the Lorentz Center Workshop in 2023, we aim to stimulate discussions and interdisciplinary approaches to tackle these challenges in diverse future teams.
Collapse
Affiliation(s)
- Sebastian B. Beil
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Sylvestre Bonnet
- Leiden Institute
of Chemistry, Leiden University, Gorlaeus
Laboratories, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Carla Casadevall
- Department
of Physical and Inorganic Chemistry, University
Rovira i Virgili (URV), C/Marcel.lí Domingo, 1, 43007 Tarragona, Spain
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avinguda dels Països Catalans, 16, 43007 Tarragona, Spain
| | - Remko J. Detz
- Energy Transition
Studies (ETS), Netherlands Organization
for Applied Scientific Research (TNO), Radarweg 60, 1043
NT Amsterdam, The
Netherlands
| | - Fabian Eisenreich
- Department
of Chemical Engineering and Chemistry & Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Starla D. Glover
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Line Næsborg
- Department
of Organic Chemistry, University of Münster, Correnstr. 40, 48149 Münster, Germany
| | - Sonja Pullen
- Homogeneous
and Supramolecular Catalysis, Van ’t Hoff Institute for Molecular
Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Golo Storch
- Technical
University of Munich (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ning Wei
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Cathleen Zeymer
- Center for
Functional Protein Assemblies & Department of Bioscience, TUM
School of Natural Sciences, Technical University
of Munich, 85748 Garching, Germany
| |
Collapse
|
9
|
Chin M, Diao T. Industrial and Laboratory Technologies for the Chemical Recycling of Plastic Waste. ACS Catal 2024; 14:12437-12453. [PMID: 39169909 PMCID: PMC11334192 DOI: 10.1021/acscatal.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Synthetic polymers play an indispensable role in modern society, finding applications across various sectors ranging from packaging, textiles, and consumer products to construction, electronics, and industrial machinery. Commodity plastics are cheap to produce, widely available, and versatile to meet diverse application needs. As a result, millions of metric tons of plastics are manufactured annually. However, current approaches for the chemical recycling of postconsumer plastic waste, primarily based on pyrolysis, lag in efficiency compared to their production methods. In recent years, significant research has focused on developing milder, economically viable methods for the chemical recycling of commodity plastics, which involves converting plastic waste back into monomers or transforming it into other valuable chemicals. This Perspective examines both industrial and cutting-edge laboratory-scale methods contributing to recent advancements in the field of chemical recycling.
Collapse
Affiliation(s)
- Mason
T. Chin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
10
|
Kristensen SK, Ahrens A, Donslund BS, Skrydstrup T. Perspective on the Development of Monomer Recovery Technologies from Plastics Designed to Last. ACS ORGANIC & INORGANIC AU 2024; 4:373-386. [PMID: 39132016 PMCID: PMC11311459 DOI: 10.1021/acsorginorgau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 08/13/2024]
Abstract
In order to prevent the current unsustainable waste handling of the enormous volumes of end-of-use organic polymer material sent to landfilling or incineration, extensive research efforts have been devoted toward the development of appropriate solutions for the recycling of commercial thermoset polymers. The inability of such cross-linked polymers to be remelted once cured implies that mechanical recycling processes used for thermoplastic materials do not translate to the recycling of thermoset polymers. Moreover, the structural diversity within the materials from the use of different monomers as well as the use of such polymers for the fabrication of fiber-reinforced polymer composites make recycling of these materials highly challenging. In this Perspective, depolymerization strategies for thermoset polymers are discussed with an emphasis on recent advancements within our group on recovering polymer building blocks from polyurethane (PU) and epoxy-based materials. While these two represent the largest thermoset polymer groups with respect to the production volumes, the recycling landscapes for these classes of materials are vastly different. For PU, increased collaboration between academia and industry has resulted in major advancements within solvolysis, acidolysis, aminolysis, and split-phase glycolysis for polyol recovery, where several processes are being evaluated for further scaling studies. For epoxy-based materials, the molecular skeleton has no obvious target for chemical scission. Nevertheless, we have recently demonstrated the possibility of the disassembly of the epoxy polymer in fiber-reinforced composites for bisphenol A (BPA) recovery through catalytic C-O bond cleavage. Furthermore, a base promoted cleavage developed by us and others shows tremendous potential for the recovery of BPA from epoxy polymers. Further efforts are still required for evaluating the suitability of such monomer recovery strategies for epoxy materials at an industrial scale. Nonetheless, recent advancements as illustrated with the presented chemistry suggest that the future of thermoset polymer recycling could include processes that emphasize monomer recovery in an energy efficient manner for closed-loop recycling.
Collapse
Affiliation(s)
- Steffan K. Kristensen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Alexander Ahrens
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Bjarke S. Donslund
- Carbon
Dioxide Activation Center (CADIAC), Novo Nordisk Foundation CO2 Research Center, Interdisciplinary Nanoscience Center (iNANO)
and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon
Dioxide Activation Center (CADIAC), Novo Nordisk Foundation CO2 Research Center, Interdisciplinary Nanoscience Center (iNANO)
and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Lin A, Lee S, Knowles RR. Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer. Acc Chem Res 2024; 57:1827-1838. [PMID: 38905487 PMCID: PMC11831427 DOI: 10.1021/acs.accounts.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
ConspectusChemists have long been inspired by biological photosynthesis, wherein a series of excited-state electron transfer (ET) events facilitate the conversion of low energy starting materials such as H2O and CO2 into higher energy products in the form of carbohydrates and O2. While this model for utilizing light-driven charge transfer to drive catalytic reactions thermodynamically "uphill" has been extensively adapted for small molecule activation, molecular machines, photoswitches, and solar fuel chemistry, its application in organic synthesis has been less systematically developed. However, the potential benefits of these approaches are significant, both in enabling transformations that cannot be readily achieved using conventional thermal chemistry and in accessing distinct selectivity regimes that are uniquely enabled by excited-state mechanisms. In this Account, we present work from our group that highlights the ability of visible light photoredox catalysis to drive useful organic transformations away from their equilibrium positions, addressing a number of long-standing synthetic challenges.We first discuss how excited-state ET enabled the first general methods for the catalytic anti-Markovnikov hydroamination of unactivated alkenes with alkyl amines. In these reactions, an excited-state iridium(III) photocatalyst reversibly oxidizes secondary amine substrates to their corresponding aminium radical cations (ARCs). These electrophilic N-centered radicals can then react with olefins to furnish valuable tertiary amine products with complete anti-Markovnikov regioselectivity. Notably, some of these products are less thermodynamically stable than their corresponding amine and alkene starting materials. We next present a strategy for light-driven C-C bond cleavage within various aliphatic alcohols mediated by homolytic activation of alcohol O-H bonds by excited-state proton-coupled electron transfer (PCET). The resulting alkoxy radical intermediates then undergo C-C β-scission to ultimately provide isomeric linear carbonyl products that are often higher in energy than their cyclic alcohol precursors. Applications of this chemistry for the light-driven depolymerization of lignin biomass, commercial phenoxy resin, hydroxylated polyolefin derivatives, and thermoset polymers are presented as well. We then describe a method for the contrathermodynamic positional isomerization of highly substituted olefins by means of cooperative photoredox and chromium(II) catalysis. In this work, generation of an allylchromium(III) species that can undergo highly regioselective in situ protodemetalation enables access to a less substituted and thermodynamically less stable positional isomer. Product selectivity in this reaction is determined by the large differential in oxidation potentials between differently substituted olefin isomers. Lastly, we discuss a light-driven deracemization reaction developed in collaboration with the Miller group, wherein a racemic urea substrate undergoes spontaneous optical enrichment upon visible light irradiation in the presence of an iridium(III) chromophore, a chiral Brønsted base, and a chiral peptide thiol. Excellent levels of enantioselectivity are achieved via sequential and synergistic proton transfer (PT) and H atom transfer (HAT) steps. Taken together, these examples highlight the ability of excited-state ET events to enable access to nonequilibrium product distributions across a wide range of catalytic, redox-neutral transformations in which photons are the only stoichiometric reagents.
Collapse
Affiliation(s)
- Angela Lin
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Sumin Lee
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| |
Collapse
|
12
|
Wang L, Zhang K, Zhang X, Tan Y, Guo L, Xia Y, Wang X. Mismatched Supramolecular Interactions Facilitate the Reprocessing of Super-Strong and Ultratough Thermoset Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311758. [PMID: 38758171 DOI: 10.1002/adma.202311758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Thermoset elastomers have been extensively applied in many fields because of their excellent mechanical strengths and durable characteristics, such as an excellent chemical resistance. However, in the context of environmental issues, the nonrecyclability of thermosets has become a major barrier to the further development of these materials. Here, a well-tailored strategy is reported to solve this problem by introducing mismatched supramolecular interactions (MMSIs) into a covalently cross-linked poly(urethane-urea) network with dynamic acylsemicarbazide moieties. The MMSIs significantly strengthen and toughen the thermoset elastomer by effectively dissipating energy and resisting external stress. In addition, the elastomer recycling efficiency is improved 2.7-fold due to the superior reversibility of the MMSIs. The optimized thermoset elastomer features outstanding characteristics, including an ultrahigh tensile strength (110.8 MPa), an unprecedented tensile toughness (1245.2 MJ m-3), as well as remarkable resistance to chemical media, creep, and damage. Most importantly, it exhibits an extraordinary multirecyclability, and the 4th recycling efficiency remains close to 100%. This scalable method promotes the development of thermosets with both high performance and excellent recyclability, thereby providing valuable guidance for addressing the issue of nonrecyclability from a molecular design standpoint.
Collapse
Affiliation(s)
- Luping Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xingxue Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Longfei Guo
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuguo Xia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
13
|
Zhang J, Jiang C, Deng G, Luo M, Ye B, Zhang H, Miao M, Li T, Zhang D. Closed-loop recycling of tough epoxy supramolecular thermosets constructed with hyperbranched topological structure. Nat Commun 2024; 15:4869. [PMID: 38849328 PMCID: PMC11161517 DOI: 10.1038/s41467-024-49272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The regulation of topological structure of covalent adaptable networks (CANs) remains a challenge for epoxy CANs. Here, we report a strategy to develop strong and tough epoxy supramolecular thermosets with rapid reprocessability and room-temperature closed-loop recyclability. These thermosets were constructed from vanillin-based hyperbranched epoxy resin (VanEHBP) through the introduction of intermolecular hydrogen bonds and dual dynamic covalent bonds, as well as the formation of intramolecular and intermolecular cavities. The supramolecular structures confer remarkable energy dissipation capability of thermosets, leading to high toughness and strength. Due to the dynamic imine exchange and reversible noncovalent crosslinks, the thermosets can be rapidly and effectively reprocessed at 120 °C within 30 s. Importantly, the thermosets can be efficiently depolymerized at room temperature, and the recovered materials retain the structural integrity and mechanical properties of the original samples. This strategy may be employed to design tough, closed-loop recyclable epoxy thermosets for practical applications.
Collapse
Affiliation(s)
- Junheng Zhang
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.
| | - Can Jiang
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China
| | - Guoyan Deng
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China
| | - Mi Luo
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China.
| | - Menghe Miao
- Department of Mechanical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Tingcheng Li
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China
| | - Daohong Zhang
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
14
|
Wang L, Meng Y, Wang X. Sustainable Supramolecular Polymers. Chempluschem 2024; 89:e202300694. [PMID: 38355904 DOI: 10.1002/cplu.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Polymer waste is a pressing issue that requires innovative solutions from the scientific community. As a beacon of hope in addressing this challenge, the concept of sustainable supramolecular polymers (SSPs) emerges. This article discusses challenges and efforts in fabricating SSPs. Addressing the trade-offs between mechanical performance and sustainability, the ultra-tough and multi-recyclable supramolecular polymers are fabricated via tailoring mismatched supramolecular interactions. Additionally, the healing of kinetically inert polymer materials is realized through transient regulation of the interfacial reactivity. Furthermore, a possible development trajectory for SSPs is proposed, and the transient materials can be regarded as the next generation in this field. The evolution of SSPs promises to be a pivotal stride towards a regenerative economy, sparking further exploration and innovation in the realm of sustainable materials.
Collapse
Affiliation(s)
- Luping Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuwen Meng
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
15
|
Wimberger L, Ng G, Boyer C. Light-driven polymer recycling to monomers and small molecules. Nat Commun 2024; 15:2510. [PMID: 38509090 PMCID: PMC10954676 DOI: 10.1038/s41467-024-46656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Only a small proportion of global plastic waste is recycled, of which most is mechanically recycled into lower quality materials. The alternative, chemical recycling, enables renewed production of pristine materials, but generally comes at a high energy cost, particularly for processes like pyrolysis. This review focuses on light-driven approaches for chemically recycling and upcycling plastic waste, with emphasis on reduced energy consumption and selective transformations not achievable with heat-driven methods. We focus on challenging to recycle backbone structures composed of mainly C‒C bonds, which lack functional groups i.e., esters or amides, that facilitate chemical recycling e.g., by solvolysis. We discuss the use of light, either in conjunction with heat to drive depolymerization to monomers or via photocatalysis to transform polymers into valuable small molecules. The structural prerequisites for these approaches are outlined, highlighting their advantages as well as limitations. We conclude with an outlook, addressing key challenges, opportunities, and provide guidelines for future photocatalyst (PC) development.
Collapse
Affiliation(s)
- Laura Wimberger
- Cluster for Advanced Macromolecular Design and School of Chemical Engineering, The University of New South Wales, 2052, Sydney, NSW, Australia
| | - Gervase Ng
- Cluster for Advanced Macromolecular Design and School of Chemical Engineering, The University of New South Wales, 2052, Sydney, NSW, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and School of Chemical Engineering, The University of New South Wales, 2052, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Minami Y, Imamura S, Matsuyama N, Nakajima Y, Yoshida M. Catalytic thiolation-depolymerization-like decomposition of oxyphenylene-type super engineering plastics via selective carbon-oxygen main chain cleavages. Commun Chem 2024; 7:37. [PMID: 38378901 PMCID: PMC10879179 DOI: 10.1038/s42004-024-01120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
As the effective use of carbon resources has become a pressing societal issue, the importance of chemical recycling of plastics has increased. The catalytic chemical decomposition for plastics is a promising approach for creating valuable products under efficient and mild conditions. Although several commodity and engineering plastics have been applied, the decompositions of stable resins composed of strong main chains such as polyamides, thermoset resins, and super engineering plastics are underdeveloped. Especially, super engineering plastics that have high heat resistance, chemical resistance, and low solubility are nearly unexplored. In addition, many super engineering plastics are composed of robust aromatic ethers, which are difficult to cleave. Herein, we report the catalytic depolymerization-like chemical decomposition of oxyphenylene-based super engineering plastics such as polyetheretherketone and polysulfone using thiols via selective carbon-oxygen main chain cleavage to form electron-deficient arenes with sulfur functional groups and bisphenols. The catalyst combination of a bulky phosphazene base P4-tBu with inorganic bases such as tripotassium phosphate enabled smooth decomposition. This method could be utilized with carbon- or glass fiber-enforced polyetheretherketone materials and a consumer resin. The sulfur functional groups in one product could be transformed to amino and sulfonium groups and fluorine by using suitable catalysts.
Collapse
Affiliation(s)
- Yasunori Minami
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Sae Imamura
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nao Matsuyama
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
17
|
Hsu JH, Ball TE, Oh S, Stache EE, Fors BP. Selective Electrocatalytic Degradation of Ether-Containing Polymers. Angew Chem Int Ed Engl 2024; 63:e202316578. [PMID: 38032347 DOI: 10.1002/anie.202316578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron-rich C-H bonds. We leveraged this reactivity to degrade polyethers and poly(vinyl ethers) in the presence of polymethacrylates and polyacrylates with complete selectivity. Furthermore, this method made polyacrylates degradable by incorporation of ether units into the polymer backbone. We quantified degradation products, identifying up to 36 mol % of defined oxidation products, including acetic acid, formic acid, and acetaldehyde, and we extended this method to degrade a polyether-based polyurethane in a green solvent. This work demonstrates a facile, electrochemically-driven route to degrade polymers containing ether functionalities.
Collapse
Affiliation(s)
- Jesse H Hsu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Tyler E Ball
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Sewon Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Erin E Stache
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|