1
|
Abbas SJ, Yesmin S, Vittala SK, Sepay N, Xia F, Ali SI, Chang WC, Hung YC, Ma WL. Target Bioconjugation of Protein Through Chemical, Molecular Dynamics, and Artificial Intelligence Approaches. Metabolites 2024; 14:668. [PMID: 39728449 DOI: 10.3390/metabo14120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge. In this review, we delve into site-selective protein modification using synthetic probes, highlighting both chemical and computational methodologies for chemo- and regioselective modifications of naturally occurring amino acids, as well as proximity-driven protein-selective chemical modifications. We also underline recent traceless affinity labeling strategies that involve exchange/cleavage reactions and catalyst tethering modifications. The rapid development of computational infrastructure and methods has made the bioconjugation of proteins more accessible, enabling precise predictions of structural changes due to protein modifications. Hence, we discuss bioconjugational computational approaches, including molecular dynamics and artificial intelligence, underscoring their potential applications in enhancing our understanding of cellular biology and addressing current challenges in the field.
Collapse
Affiliation(s)
- Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Sabina Yesmin
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Sandeepa K Vittala
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Wei-Chun Chang
- Ph.D. Program for Health Science and Industry, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yao-Ching Hung
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
2
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
3
|
Wang H, Yan J, Wang W, Chen E, Chen D, Zeng S, Li Q, Qian L. Antibody-based near-infrared fluorogenic probes for wash-free imaging of cell-surface proteins. Anal Chim Acta 2024; 1320:343005. [PMID: 39142782 DOI: 10.1016/j.aca.2024.343005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Cell-surface proteins, which are closely associated with various physiological and pathological processes, have drawn much attention in drug discovery and disease diagnosis. Thus, wash-free imaging of the target cell-surface protein under its native environment is critical and helpful for early detection and prognostic evaluation of diseases. RESULTS To minimize the interference from autofluorescence and fit the penetration depth towards tissue samples, we developed a fluorogenic antibody-based probe, Ab-Cy5.5, which will liberate > 5-fold turn-on near-infrared (NIR) emission in the presence of its target antigen within 10 min. SIGNIFICANCE By taking advantage of the fluorescence-quenched dimeric H-aggregation of Cy5.5, Ab-Cy5.5 with Cy5.5 attached at the N-terminus showed negligible background signal, allowing direct imaging of the target cell-surface protein in both living cells and tissue samples without washing.
Collapse
Affiliation(s)
- Haoting Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Yan
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Endong Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325006, China
| | - Di Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Quan Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325006, China.
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, 313100, China.
| |
Collapse
|
4
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
5
|
Ahmad MG, Balamurali MM, Chanda K. Click-derived multifunctional metal complexes for diverse applications. Chem Soc Rev 2023; 52:5051-5087. [PMID: 37431583 DOI: 10.1039/d3cs00343d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Click reaction that involves Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) serves as the most potent and highly dependable tool for the development of many complex architectures. It has paved the way for the synthesis of numerous drug molecules with enhanced synthetic flexibility, reliability, specificity and modularity. It is all about bringing two different molecular entities together to achieve the required molecular properties. The utilization of Click chemistry has been well demonstrated in organic synthesis, particularly in reactions that involve biocompatible precursors. In pharmaceutical research, Click chemistry is extensively utilized for drug delivery applications. The exhibited bio-compatibility and dormancy towards other biological components under cellular environments makes Click chemistry an identified boon in bio-medical research. In this review, various click-derived transition metal complexes are discussed in terms of their applications and uniqueness. The scope of this chemistry towards other streams of applied sciences is also discussed.
Collapse
Affiliation(s)
- Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai 600127, Tamilnadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
6
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
7
|
Thimaradka V, Utsunomiya H, Tamura T, Hamachi I. Endogenous Cell-Surface Receptor Modification by Metal Chelation-Assisted Pyridinium Oxime Catalyst. Org Lett 2023; 25:2118-2122. [PMID: 36947590 DOI: 10.1021/acs.orglett.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Organocatalyst-mediated acyl transfer reactions hold promise for selective protein labeling in biological milieu. However, they often suffer from off-target reactions and high background signals because of the requirement of high concentrations of substrates. Here, we report a new catalytic protein acylation strategy promoted by the His-tag/NiNTA interaction. The recognition-assisted activation mechanism allows efficient protein labeling even with >10-fold lower substrate concentrations than conventional reactions, thereby enabling highly selective and efficient cell-surface receptor modification in live cells.
Collapse
Affiliation(s)
- Vikram Thimaradka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hayata Utsunomiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
8
|
Role for μ-opioid receptor in antidepressant effects of δ-opioid receptor agonist KNT-127. J Pharmacol Sci 2023; 151:135-141. [PMID: 36828615 DOI: 10.1016/j.jphs.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Previous pharmacological data have shown the possible existence of functional interactions between μ- (MOP), κ- (KOP), and δ-opioid receptors (DOP) in pain and mood disorders. We previously reported that MOP knockout (KO) mice exhibit a lower stress response compared with wildtype (WT) mice. Moreover, DOP agonists have been shown to exert antidepressant-like effects in numerous animal models. In the present study, the tail suspension test (TST) and forced swim test (FST) were used to examine the roles of MOP and DOP in behavioral despair. MOP-KO mice and WT mice were treated with KNT-127 (10 mg/kg), a selective DOP agonist. The results indicated a significant decrease in immobility time in the KNT-127 group compared with the saline group in all genotypes in both tests. In the saline groups, immobility time significantly decreased in MOP-KO mice compared with WT mice in both tests. In female MOP-KO mice, KNT-127 significantly decreased immobility time in the TST compared with WT mice. In male MOP-KO mice, however, no genotypic differences were found in the TST after either KNT-127 or saline treatment. Thus, at least in the FST and TST, the activation of DOP and absence of MOP had additive effects in reducing measures of behavioral despair, suggesting that effects on this behavior by DOP activation occur independently of MOP.
Collapse
|
9
|
Roy S, Curry SD, Bagot CC, Mueller EN, Mansouri AM, Park W, Cha JN, Goodwin AP. Enzyme Prodrug Therapy with Photo-Cross-Linkable Anti-EGFR Affibodies Conjugated to Upconverting Nanoparticles. ACS NANO 2022; 16:15873-15883. [PMID: 36129781 PMCID: PMC10197967 DOI: 10.1021/acsnano.2c02558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, we demonstrate that a photo-cross-linkable conjugate of upconverting nanoparticles and cytosine deaminase can catalyze prodrug conversion specifically at tumor sites in vivo. Non-covalent association of proteins and peptides with cellular surfaces leads to receptor-mediated endocytosis and catabolic degradation. Recently, we showed that covalent attachment of proteins such as affibodies to cell receptors yields extended expression on cell surfaces with preservation of protein function. To adapt this technology for in vivo applications, conjugates were prepared from upconverting nanoparticles and fusion proteins of affibody and cytosine deaminase enzyme (UC-ACD). The affibody allows covalent photo-cross-linking to epidermal growth factor receptors (EGFRs) overexpressed on Caco-2 human colorectal cancer cells under near-infrared (NIR) light. Once bound, the cytosine deaminase portion of the fusion protein converts the prodrug 5-fluorocytosine (5-FC) to the anticancer drug 5-fluorouracil (5-FU). NIR covalent photoconjugation of UC-ACD to Caco-2 cells showed 4-fold higher retention than observed with cells that were not irradiated in vitro. Next, athymic mice expressing Caco-2 tumors showed 5-fold greater UC-ACD accumulation in the tumors than either conjugates without the CD enzyme or UC-ACDs in the absence of NIR excitation. With oral administration of 5-FC prodrug, tumors with photoconjugated UC-ACD yielded 2-fold slower growth than control groups, and median mouse survival increased from 28 days to 35 days. These experiments demonstrate that enzyme-decorated nanoparticles can remain viable after a single covalent photoconjugation in vivo, which can in turn localize prodrug conversion to tumor sites for multiple weeks.
Collapse
Affiliation(s)
- Shambojit Roy
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Shane D. Curry
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Conrad Corbella Bagot
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Evan N. Mueller
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Abdulrahman M. Mansouri
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Wounjhang Park
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Jennifer N. Cha
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Yu H, Wang S, Huang J, Fu Y, Wagner M, Weil T, Zhong F, Zhao W, Wu Y. Light-Controlled Traceless Protein Labeling via Decaging Thio- o-naphthoquinone Methide Chemistry. Org Lett 2022; 24:6816-6821. [PMID: 36099167 DOI: 10.1021/acs.orglett.2c02742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the molecular design of a novel multifunctional reagent and its application for light-controlled selective protein labeling. This molecule integrates functions of protein-ligand recognition, bioconjugation, ligand cleavage, and photoactivation by merging the photochemistries of 2-nitrophenylpropyloxycarbonyl and 3-hydroxymethyl-2-naphthol with an affinity ligand and fluorescein. Highly electrophilic o-naphthoquinone methide was photochemically released and underwent proximity-driven selective labeling with the protein of interest (e.g., carbonic anhydrases), which retains its native function after labeling.
Collapse
Affiliation(s)
- Huaibin Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Shuangshuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Jianjian Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Yu Fu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fangrui Zhong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yuzhou Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
11
|
Roy SK, Purkait A, Shome R, Das S, Das D, Ghosh SS, Jana CK. Proline selective labeling via on-site construction of naphthoxazole (NapOx). Chem Commun (Camb) 2022; 58:5909-5912. [PMID: 35475487 DOI: 10.1039/d2cc01268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective construction of naphthoxazoles (NapOx) via a three-component annulation reaction enables proline selective labeling of peptides in solution or in solid-phase synthesis. The fluorogenic peptides possess low cytotoxicity, efficient cell membrane permeability and excellent bioimaging potential for biomedical applications.
Collapse
Affiliation(s)
- Subhra Kanti Roy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| | - Anisha Purkait
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| | - Rajib Shome
- Department of Biosciences and Engineering, Indian Institute of Technology Guwahati, 781039, India
| | - Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Engineering, Indian Institute of Technology Guwahati, 781039, India
| | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| |
Collapse
|
12
|
Tsushima M, Sato S, Miura K, Niwa T, Taguchi H, Nakamura H. Intracellular photocatalytic-proximity labeling for profiling protein-protein interactions in microenvironments. Chem Commun (Camb) 2022; 58:1926-1929. [PMID: 35040832 DOI: 10.1039/d1cc05764b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracellular photocatalytic-proximity labeling (iPPL) was developed to profile protein-protein interactions in the microenvironment of living cells. Acriflavine was found to be an efficient cell-membrane-permeable photocatalyst for introduction into the genetically HaloTag-fused protein of interest for iPPL with a radical labeling reagent, 1-methyl-4-arylurazole. iPPL was applied to the histone-associated protein H2B in HaloTag-H2B expressing HEK293FT cells. The proteins directly interacting with histones and RNA-binding proteins were selectively labeled in the intracellular environment, suggesting that the iPPL method has a smaller labeling radius (CA. 6 nm) than the BioID and APEX methods.
Collapse
Affiliation(s)
- Michihiko Tsushima
- School of Life Science and Engineering, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Kazuki Miura
- School of Life Science and Engineering, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Tatsuya Niwa
- School of Life Science and Engineering, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hideki Taguchi
- School of Life Science and Engineering, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Engineering, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
13
|
Sato S. Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions. Chem Pharm Bull (Tokyo) 2022; 70:95-105. [PMID: 35110442 DOI: 10.1248/cpb.c21-00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein bioconjugation has become an increasingly important research method for introducing artificial functions in to protein with various applications, including therapeutics and biomaterials. Due to its amphiphilic nature, only a few tyrosine residues are exposed on the protein surface. Therefore, tyrosine residue has attracted attention as suitable targets for site-specific modification, and it is the most studied amino acid residue for modification reactions other than lysine and cysteine residues. In this review, we present the progress of our tyrosine chemical modification studies over the past decade. We have developed several different catalytic approaches to selectively modify tyrosine residues using peroxidase, laccase, hemin, and ruthenium photocatalysts. In addition to modifying tyrosine residues by generating radical species through single-electron transfer, we have developed a histidine modification method that utilizes singlet oxygen generated by photosensitizers. These highly reactive chemical species selectively modify proteins in close proximity to the enzyme/catalyst. Taking advantage of the spatially controllable reaction fields, we have developed novel methods for site-specific antibody modification, detecting hotspots of oxidative stress, and target identification of bioactive molecules.
Collapse
Affiliation(s)
- Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|
14
|
Roy S, Curry SD, Bibbey MG, Chapnick DA, Liu X, Goodwin AP, Cha JN. Effect of covalent photoconjugation of affibodies to epidermal growth factor receptor (EGFR) on cellular quiescence. Biotechnol Bioeng 2022; 119:187-198. [PMID: 34676884 DOI: 10.1002/bit.27964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022]
Abstract
Cellular quiescence is a reversible state of cell cycle arrest whereby cells are temporarily maintained in the nondividing phase. Inducing quiescence in cancer cells by targeting growth receptors is a treatment strategy to slow cell growth in certain aggressive tumors, which in turn increases the efficacy of treatments such as surgery or systemic chemotherapy. However, ligand interactions with cell receptors induce receptor-mediated endocytosis followed by proteolytic degradation, which limits the duration of cellular quiescence. Here, we report the effects of targeted covalent affibody photoconjugation to epidermal growth factor receptors (EGFR) on EGFR-positive MDA-MB-468 breast cancer cells. First, covalently conjugating affibodies to cells increased doubling time two-fold and reduced ERK activity by 30% as compared to cells treated with an FDA-approved anti-EGFR antibody Cetuximab, which binds to EGFR noncovalently. The distribution of cells in each phase of the cell cycle was determined, and cells conjugated with the affibody demonstrated an accumulation in the G1 phase, indicative of G1 cell cycle arrest. Finally, the proliferative capacity of the cells was determined by the incorporation of 5-ethynyl-2-deoxyuridine and Ki67 Elisa assay, which showed that the percentage of proliferative cells with photoconjugated affibody was half of that found for the untreated control.
Collapse
Affiliation(s)
- Shambojit Roy
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Shane D Curry
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Michael G Bibbey
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Douglas A Chapnick
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - Andrew P Goodwin
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado, USA
| | - Jennifer N Cha
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
15
|
Li K, Xu S, Xiong M, Huan SY, Yuan L, Zhang XB. Molecular engineering of organic-based agents for in situ bioimaging and phototherapeutics. Chem Soc Rev 2021; 50:11766-11784. [PMID: 34570124 DOI: 10.1039/d1cs00408e] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ monitoring of the location and transportation of bioactive molecules is essential for deciphering diverse biological events in the field of biomedicine. In addition, obtaining the in situ information of lesions will provide a clear perspective for surgeons to perform precise resection in clinical surgery. Notably, delivering drugs or operating photodynamic therapy/photothermal therapy in situ by labeling the lesion regions of interest can improve treatment and reduce side effects in vivo. In various advanced imaging and therapy modalities, optical theranostic agents based on organic small molecules can be conveniently modified as needed and can be easily internalized into cells/lesions in a non-invasive manner, which are prerequisites for in situ bioimaging and precision treatment. In this tutorial review, we first summarize the in situ molecular immobilization strategies to retain small-molecule agents inside cells/lesions to prevent their diffusion in living organisms. Emphasis will be focused on introducing the application of these strategies for in situ imaging of biomolecules and precision treatment, particularly pertaining to why targeting therapy in situ is required.
Collapse
Affiliation(s)
- Ke Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Shuang-Yan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| |
Collapse
|
16
|
Wang W, Zhang Y, Zhao H, Zhuang X, Wang H, He K, Xu W, Kang Y, Chen S, Zeng S, Qian L. Real-time imaging of cell-surface proteins with antibody-based fluorogenic probes. Chem Sci 2021; 12:13477-13482. [PMID: 34777767 PMCID: PMC8528012 DOI: 10.1039/d1sc03065e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Cell-surface proteins, working as key agents in various diseases, are the targets for around 66% of approved human drugs. A general strategy to selectively detect these proteins in a real-time manner is expected to facilitate the development of new drugs and medical diagnoses. Although brilliant successes were attained using small-molecule probes, they could cover a narrow range of targets due to the lack of suitable ligands and some of them suffer from selectivity issues. We report herein an antibody-based fluorogenic probe prepared via a two-step chemical modification under physiological conditions, to fulfill the selective recognition and wash-free imaging of membrane proteins, establishing a modular strategy with broad implications for biochemical research and for therapeutics.
Collapse
Affiliation(s)
- Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
| | - Ying Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
| | - Hong Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
| | - Xinlei Zhuang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
| | - Haoting Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
| | - Kaifeng He
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine, Zhejiang University Hangzhou 310018 China
| | - Wanting Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine, Zhejiang University Hangzhou 310018 China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, Zhejiang University Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine, Zhejiang University Hangzhou 310018 China
| |
Collapse
|
17
|
Conjugation of 4-(dimethylamino)pyridine to primary amines in aqueous buffer solutions using an N-hydroxysuccinimide ester reagent. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Wang X, Liu L, Wu H, Wu Z, Tang LJ, Jiang JH. Programming DNA cascade circuits on live cell membranes for accurate cancer cell recognition and gene silencing. Chem Commun (Camb) 2021; 57:3816-3819. [PMID: 33876130 DOI: 10.1039/d1cc00481f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A dual-aptamer based AND logic cascade circuit is activated on cell membranes in response to the receptor-aptamer binding, affording enhanced specificity for cell subtype recognition and gene silencing.
Collapse
Affiliation(s)
- Xiangnan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | |
Collapse
|
19
|
Hakariya H, Takashima I, Takemoto M, Noda N, Sato SI, Uesugi M. Non-genetic cell-surface modification with a self-assembling molecular glue. Chem Commun (Camb) 2021; 57:1470-1473. [PMID: 33442714 DOI: 10.1039/d0cc07171d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This report describes the development of a non-genetic cell-surface modification method, in which a self-assembling small molecule is combined with Halo-tag proteins. Cell-surface functionalization with cancer-linked extracellular proteins led to enhanced cell motility, angiogenesis, and immune shielding of the cells, paving the way for translational opportunities for cell therapy.
Collapse
Affiliation(s)
- Hayase Hakariya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. and Graduate School of Medicine, Kyoto University, Uji, Kyoto 611-0011, Japan and Training Program of Leaders for Integrated Medical System (LIMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ippei Takashima
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Misao Takemoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Naotaka Noda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. and Graduate School of Medicine, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. and Institute for Integrated Cell-Materials Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan and School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
20
|
Parameswar AV, Dikshit KV, Movafaghi S, Bruns CJ, Goodwin AP. Mechanochemistry Activated Covalent Conjugation Reactions in Soft Hydrogels Induced by Interfacial Failure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1486-1492. [PMID: 33370089 PMCID: PMC7984414 DOI: 10.1021/acsami.0c18432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work reports the development of a mechanochemistry activated covalent conjugation (MACC) reaction that shows areas of interfacial failure in soft hydrogels. Hydrogels are prone to delamination from rigid substrates due to the competition between swelling and adhesion, which can lead to bonding failure in a mechanism similar to crack propagation in harder materials. In this work, reductive amination was shown to occur when a ketone-bearing fluorescein derivative was bonded to an amine-functionalized hydrogel, as both of these moieties were found to be necessary for covalent conjugation into the gel network. For thin, circular polyacrylamide hydrogels, wrinkle patterns and regions of subsequent delamination at the edge of the gel were found to be selectively tagged by the dye. This reaction was then used to explore the effect of gel properties on patterns of interfacial failure. As cross-linker loading increased, the propagation of the delamination front and the area fraction of delamination were both found to increase, as shown by fluorescence images of gels. Increasing the thickness of the gel increased the fraction of delaminated area but did not change its propagation toward the center of the gel. This MACC reaction shows how mechanochemical reactions can be used for fluorescence tagging without incorporating mechanophores into the polymer gel matrix.
Collapse
Affiliation(s)
- Ashray V. Parameswar
- Materials Science and Engineering Program, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| | - Karan V. Dikshit
- Materials Science and Engineering Program, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| | - Sanli Movafaghi
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| | - Carson J. Bruns
- Materials Science and Engineering Program, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
- Department of Mechanical Engineering, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| | - Andrew P. Goodwin
- Materials Science and Engineering Program, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB Boulder, Colorado 80303, United States
| |
Collapse
|
21
|
Roy S, Cha JN, Goodwin AP. Nongenetic Bioconjugation Strategies for Modifying Cell Membranes and Membrane Proteins: A Review. Bioconjug Chem 2020; 31:2465-2475. [PMID: 33146010 DOI: 10.1021/acs.bioconjchem.0c00529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell membrane possesses an extensive library of proteins, carbohydrates, and lipids that control a significant portion of inter- and intracellular functions, including signaling, proliferation, migration, and adhesion, among others. Augmenting the cell surface composition would open possibilities for advances in therapy, tissue engineering, and probing fundamental cell processes. While genetic engineering has proven effective for many in vitro applications, these techniques result in irreversible changes to cells and are difficult to apply in vivo. Another approach is to instead attach exogenous functional groups to the cell membrane without changing the genetic nature of the cell. This review focuses on more recent approaches of nongenetic methods of cell surface modification through metabolic pathways, anchorage by hydrophobic interactions, and chemical conjugation. Benefits and drawbacks of each approach are considered, followed by a discussion of potential applications for nongenetic cell surface modification and an outlook on the future of the field.
Collapse
|
22
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
23
|
Chen X, Qiu L, Cai R, Cui C, Li L, Jiang JH, Tan W. Aptamer-Directed Protein-Specific Multiple Modifications of Membrane Glycoproteins on Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37845-37850. [PMID: 32706235 DOI: 10.1021/acsami.0c07004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Understanding how a cell membrane protein functions on living cells remains a challenge for cell biology. Specific placement of functional molecules on specific proteins in their native environment would allow comprehensive study of proteins' dynamic functions. Existing methods cannot facilely achieve multiple modifications on specific membrane proteins. In this report, we describe an aptamer-induced, protein-specific bio-orthogonal modification technology for precise nongenetic immobilization of multiple small functional molecules on target membrane glycoproteins by combining metabolic technology and aptamer targeting. In brief, DNA probes were designed by modifying aptamers, which bind to target proteins on the surfaces of living cells pretreated with N-azidoacetylmannosamine-tetraacylated (Ac4ManNAz). The cyclooctynes tagged of DNA probes will approach the azide groups to trigger the bio-orthogonal reactions. After UV irradiation and hybridization with cDNA (complementary DNA), the aptamers can be removed, and the process can be repeated to achieve multiple modifications for multicolor imaging and cell surface nanoengineering on specific proteins.
Collapse
Affiliation(s)
- Xigao Chen
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ren Cai
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Long Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jian-Hui Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
- The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
24
|
Shiraiwa K, Cheng R, Nonaka H, Tamura T, Hamachi I. Chemical Tools for Endogenous Protein Labeling and Profiling. Cell Chem Biol 2020; 27:970-985. [DOI: 10.1016/j.chembiol.2020.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022]
|
25
|
Lahav-Mankovski N, Prasad PK, Oppenheimer-Low N, Raviv G, Dadosh T, Unger T, Salame TM, Motiei L, Margulies D. Decorating bacteria with self-assembled synthetic receptors. Nat Commun 2020; 11:1299. [PMID: 32157077 PMCID: PMC7064574 DOI: 10.1038/s41467-020-14336-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The responses of cells to their surroundings are mediated by the binding of cell surface proteins (CSPs) to extracellular signals. Such processes are regulated via dynamic changes in the structure, composition, and expression levels of CSPs. In this study, we demonstrate the possibility of decorating bacteria with artificial, self-assembled receptors that imitate the dynamic features of CSPs. We show that the local concentration of these receptors on the bacterial membrane and their structure can be reversibly controlled using suitable chemical signals, in a way that resembles changes that occur with CSP expression levels or posttranslational modifications (PTMs), respectively. We also show that these modifications can endow the bacteria with programmable properties, akin to the way CSP responses can induce cellular functions. By programming the bacteria to glow, adhere to surfaces, or interact with proteins or mammalian cells, we demonstrate the potential to tailor such biomimetic systems for specific applications. Cell surface proteins mediate the interactions between cells and their extracellular environment. Here the authors design synthetic biomemetic receptor-like sensors that facilitate programmable interactions between bacteria and their target.
Collapse
Affiliation(s)
- Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Pragati Kishore Prasad
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Noa Oppenheimer-Low
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gal Raviv
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tamar Unger
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
26
|
Geri JB, Oakley JV, Reyes-Robles T, Wang T, McCarver SJ, White CH, Rodriguez-Rivera FP, Parker DL, Hett EC, Fadeyi OO, Oslund RC, MacMillan DWC. Microenvironment mapping via Dexter energy transfer on immune cells. Science 2020; 367:1091-1097. [PMID: 32139536 PMCID: PMC7336666 DOI: 10.1126/science.aay4106] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/13/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Many disease pathologies can be understood through the elucidation of localized biomolecular networks, or microenvironments. To this end, enzymatic proximity labeling platforms are broadly applied for mapping the wider spatial relationships in subcellular architectures. However, technologies that can map microenvironments with higher precision have long been sought. Here, we describe a microenvironment-mapping platform that exploits photocatalytic carbene generation to selectively identify protein-protein interactions on cell membranes, an approach we term MicroMap (μMap). By using a photocatalyst-antibody conjugate to spatially localize carbene generation, we demonstrate selective labeling of antibody binding targets and their microenvironment protein neighbors. This technique identified the constituent proteins of the programmed-death ligand 1 (PD-L1) microenvironment in live lymphocytes and selectively labeled within an immunosynaptic junction.
Collapse
Affiliation(s)
- Jacob B Geri
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | - James V Oakley
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | - Tamara Reyes-Robles
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Tao Wang
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | - Stefan J McCarver
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA
| | - Cory H White
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | | | - Dann L Parker
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Erik C Hett
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | | | - Rob C Oslund
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA.
| | | |
Collapse
|
27
|
Mizumoto S, Xi S, Fujiwara Y, Kawashima SA, Yamatsugu K, Kanai M. Hydroxamic Acid‐Piperidine Conjugate is an Activated Catalyst for Lysine Acetylation under Physiological Conditions. Chem Asian J 2020; 15:833-839. [DOI: 10.1002/asia.201901737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Shinsuke Mizumoto
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Siqi Xi
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yusuke Fujiwara
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shigehiro A. Kawashima
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
28
|
Roy S, Brasino M, Beirne JM, Harguindey A, Chapnick DA, Liu X, Cha JN, Goodwin AP. Enzymes Photo-Cross-Linked to Live Cell Receptors Retain Activity and EGFR Inhibition after Both Internalization and Recycling. Bioconjug Chem 2019; 31:104-112. [PMID: 31840981 DOI: 10.1021/acs.bioconjchem.9b00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this work, we show that a prodrug enzyme covalently photoconjugated to live cell receptors survives endosomal proteolysis and retains its catalytic activity over multiple days. Here, a fusion protein was designed with both an antiepidermal growth factor receptor (EGFR) affibody and the prodrug enzyme cytosine deaminase, which can convert prodrug 5-fluorocytosine to the anticancer drug 5-fluorouracil. A benzophenone group was added at a site-specific mutation within the affibody, and the fusion protein was selectively photoconjugated to EGFR receptors expressed on membranes of MDA-MB-468 breast cancer cells. The fusion protein was next labeled with two dyes for tracking uptake: AlexaFluor 488 and pH-sensitive pHAb. Flow cytometry showed that fusion proteins photo-cross-linked to EGFR first underwent receptor-mediated endocytosis within 12 h, followed by recycling back to the cell membrane within 24 h. These findings were also confirmed by confocal microscopy. The unique cross-linking of the affibody-enzyme fusion proteins was utilized for two anticancer treatments. First, the covalent linking of the protein to the EGFR led to inhibition of ERK signaling over a two-day period, whereas conventional antibody therapy only led to 6 h of inhibition. Second, when the affibody-CodA fusion proteins were photo-cross-linked to EGFR overexpressed on MDA-MB-468 breast cancer cells, prodrug conversion was found even 48 h postincubation without any apparent decrease in cell killing, while without photo-cross-linking no cell killing was observed 8 h postincubation. These studies show that affinity-mediated covalent conjugation of the affibody-enzymes to cell receptors allows for prolonged expression on membranes and retained enzymatic activity without genetic engineering.
Collapse
|
29
|
Mortensen M, Krall J, Kongstad KT, Brygger BM, Lenzi O, Francotte P, Sørensen TE, Nielsen B, Jensen AA, Smart TG, Frølund B. Developing New 4-PIOL and 4-PHP Analogues for Photoinactivation of γ-Aminobutyric Acid Type A Receptors. ACS Chem Neurosci 2019; 10:4669-4684. [PMID: 31589403 DOI: 10.1021/acschemneuro.9b00478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The critical roles played by GABAA receptors as inhibitory regulators of excitation in the central nervous system has been known for many years. Aberrant GABAA receptor function and trafficking deficits have also been associated with several diseases including anxiety, depression, epilepsy, and insomnia. As a consequence, important drug groups such as the benzodiazepines, barbiturates, and many general anesthetics have become established as modulators of GABAA receptor activity. Nevertheless, there is much we do not understand about the roles and mechanisms of GABAA receptors at neural network and systems levels. It is therefore crucial to develop novel technologies and especially chemical entities that can interrogate GABAA receptor function in the nervous system. Here, we describe the chemistry and characterization of a novel set of 4-PIOL and 4-PHP analogues synthesized with the aim of developing a toolkit of drugs that can photoinactivate GABAA receptors. Most of these new analogues show higher affinities/potencies compared with the respective lead compounds. This is indicative of cavernous areas being present near their binding sites that can be potentially associated with novel receptor interactions. The 4-PHP azide-analogue, 2d, possesses particularly impressive nanomolar affinity/potency and is an effective UV-inducible photoinhibitor of GABAA receptors with considerable potential for photocontrol of GABAA receptor function in situ.
Collapse
Affiliation(s)
- Martin Mortensen
- Department of Neuroscience, Physiology & Pharmacology , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Benjamin M Brygger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Ombretta Lenzi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Pierre Francotte
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark.,Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM) , University of Liege , Avenue de l'Hôpital, 1, B36 , B-4000 Liège , Belgium
| | - Troels E Sørensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| |
Collapse
|
30
|
Mathematical modeling of drug-induced receptor internalization in the HER2-positive SKBR3 breast cancer cell-line. Sci Rep 2019; 9:12709. [PMID: 31481718 PMCID: PMC6722142 DOI: 10.1038/s41598-019-49019-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
About 20% of breast cancer tumors over-express the HER2 receptor. Trastuzumab, an approved drug to treat this type of breast cancer, is a monoclonal antibody directly binding at the HER2 receptor and ultimately inhibiting cancer cell growth. The goal of our study was to understand the early impact of trastuzumab on HER2 internalization and recycling in the HER2-overexpressing breast cancer cell line SKBR3. To this end, fluorescence microscopy, monitoring the amount of HER2 expression in the plasma membrane, was combined with mathematical modeling to derive the flux of HER2 receptors from and to the membrane. We constructed a dynamic multi-compartment model based on ordinary differential equations. To account for cancer cell heterogeneity, a first, dynamic model was expanded to a second model including two distinct cell phenotypes, with implications for different conformational states of HER2, i.e. monomeric or homodimeric. Our mathematical model shows that the hypothesis of fast constitutive HER2 recycling back to the plasma membrane does not match the experimental data. It conclusively describes the experimental observation that trastuzumab induces sustained receptor internalization in cells with membrane ruffles. It is also concluded that for rare, non-ruffled (flat) cells, HER2 internalization occurs three orders of magnitude slower than for the bulk, ruffled cell population.
Collapse
|
31
|
Mortensen MR, Skovsgaard MB, Gothelf KV. Considerations on Probe Design for Affinity‐Guided Protein Conjugation. Chembiochem 2019; 20:2711-2728. [DOI: 10.1002/cbic.201900157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Michael R. Mortensen
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mikkel B. Skovsgaard
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
32
|
Hamajima W, Fujimura A, Fujiwara Y, Yamatsugu K, Kawashima SA, Kanai M. Site-Selective Synthetic Acylation of a Target Protein in Living Cells Promoted by a Chemical Catalyst/Donor System. ACS Chem Biol 2019; 14:1102-1109. [PMID: 31117394 DOI: 10.1021/acschembio.9b00102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell biology is tightly regulated by post-translational modifications of proteins. Methods to modulate post-translational modifications in living cells without relying on enzymes or genetic manipulation are, however, largely underexplored. We previously reported that a chemical catalyst (DSH) conjugated with a nucleosome-binding ligand can activate an acyl-CoA and promote site-selective lysine acylation of histones in test tubes. In-cell acylation by this catalyst system is challenging, however, mainly due to the low cell permeability of acyl-CoA and the propensity of DSH to form inactive disulfide. Here, we report a new catalyst system effective for in-cell acylation, comprising a cell-permeable acyl donor and pro-drugged DSH. Using E. coli dihydrofolate reductase and trimethoprim as a model protein and ligand pair, the catalyst system enabled site-selective acylation of the target protein in living cells. The findings will lead to the development of useful chemical biology tools and new therapeutic strategies capable of synthetically modulating post-translational modifications.
Collapse
Affiliation(s)
- Wataru Hamajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akiko Fujimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Fujiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigehiro A. Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
34
|
Tamura T, Hamachi I. Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. J Am Chem Soc 2018; 141:2782-2799. [DOI: 10.1021/jacs.8b11747] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO, Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
35
|
Brasino M, Roy S, Erbse AH, He L, Mao C, Park W, Cha JN, Goodwin AP. Anti-EGFR Affibodies with Site-Specific Photo-Cross-Linker Incorporation Show Both Directed Target-Specific Photoconjugation and Increased Retention in Tumors. J Am Chem Soc 2018; 140:11820-11828. [PMID: 30203972 PMCID: PMC6689236 DOI: 10.1021/jacs.8b07601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A significant challenge for solid tumor treatment is ensuring that a sufficient concentration of therapeutic agent is delivered to the tumor site at doses that can be tolerated by the patient. Biomolecular targeting can bias accumulation in tumors by taking advantage of specific interactions with receptors overexpressed on cancerous cells. However, while antibody-based immunoconjugates show high binding to specific cells, their low dissociation constants ( KD) and large Stokes radii hinder their ability to penetrate deep into tumor tissue, leading to incomplete cell killing and tumor recurrence. To address this, we demonstrate the design and production of a photo-cross-linkable affibody that can form a covalent bond to epidermal growth factor receptor (EGFR) under near UV irradiation. Twelve cysteine mutations were created of an EGFR affibody and conjugated with maleimide-benzophenone. Of these only one exhibited photoconjugation to EGFR, as demonstrated by SDS-PAGE and Western blot. Next this modified affibody was shown to not only bind EGFR expressing cells but also show enhanced retention in a 3D tumor spheroid model, with minimal loss up to 24 h as compared to either unmodified EGFR-binding affibodies or nonbinding, photo-cross-linkable affibodies. Finally, in order to show utility of photo-cross-linking at clinically relevant wavelengths, upconverting nanoparticles (UCNPs) were synthesized that could convert 980 nm light to UV and blue light. In the presence of UCNPs, both direct photoconjugation to EGFR and enhanced retention in tumor spheroids could be obtained using near-infrared illumination. Thus, the photoactive affibodies developed here may be utilized as a platform technology for engineering new therapy conjugates that can penetrate deep into tumor tissue and be retained long enough for effective tumor therapy.
Collapse
|
36
|
Yamatsugu K, Furuta M, Xi S, Amamoto Y, Liu J, Kawashima SA, Kanai M. Kinetic analyses and structure-activity relationship studies of synthetic lysine acetylation catalysts. Bioorg Med Chem 2018; 26:5359-5367. [PMID: 30006145 DOI: 10.1016/j.bmc.2018.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
Abstract
Lysine acylation of proteins is a crucial chemical reaction, both as a post-translational modification and as a method for bioconjugation. We previously developed a chemical catalyst, DSH, which activates a chemically stable thioester including acyl-CoA, allowing the site-selective lysine acylation of histones under physiological conditions. However, a more active catalyst is required for efficient lysine acylation in more complex biological milieu, such as in living cells, but there are no rational guidelines for developing efficient lysine acylation catalysts for use under physiological conditions as opposed to in organic solvents. We, herein, conducted a kinetic analysis of the ability of DSH and several derivatives to mediate lysine acetylation to better understand the structural elements essential for high acetylation activity under physiological conditions. Interestingly, the obtained trend in reactivity was different from that observed in organic solvents, suggesting that a different principle is necessary for designing chemical catalysts specifically for use under physiological conditions compared to catalysts for use in organic solvents. Based on the obtained information, we identified a new catalyst scaffold with high activity and structural flexibility for further modification to improve this catalyst system.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; JST-ERATO, Japan.
| | - Masahiro Furuta
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Siqi Xi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshifumi Amamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; JST-ERATO, Japan
| | - Jiaan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; JST-ERATO, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; JST-ERATO, Japan.
| |
Collapse
|
37
|
Endogenous Membrane Receptor Labeling by Reactive Cytokines and Growth Factors to Chase Their Dynamics in Live Cells. Chem 2018. [DOI: 10.1016/j.chempr.2018.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Abstract
Chemically constructed biosensors consisting of a protein scaffold and an artificial small molecule have recently been recognized as attractive analytical tools for the specific detection and real-time monitoring of various biological substances or events in cells. Conventionally, such semisynthetic biosensors have been prepared in test tubes and then introduced into cells using invasive methods. With the impressive advances seen in bioorthogonal protein conjugation methodologies, however, it is now becoming feasible to directly construct semisynthetic biosensors in living cells, providing unprecedented tools for life-science research. We discuss here recent efforts regarding the in situ construction of protein-based semisynthetic biosensors and highlight their uses in the visualization and quantification of biomolecules and events in multimolecular and crowded cellular systems.
Collapse
Affiliation(s)
- Tsuyoshi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST(Core Research for Evolutional Science and Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| |
Collapse
|
39
|
Muguruma K, Shirasaka T, Akiyama D, Fukumoto K, Taguchi A, Takayama K, Taniguchi A, Hayashi Y. An Efficient Method for the Conjugation of Hydrophilic and Hydrophobic Components by Solid-Phase-Assisted Disulfide Ligation. Angew Chem Int Ed Engl 2018; 57:2170-2173. [DOI: 10.1002/anie.201712324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Kyohei Muguruma
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Takuya Shirasaka
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Daichi Akiyama
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Kentarou Fukumoto
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
- Kokusan Chemical Co., Ltd.; 3-1-3 Nihonbashihoncho, Chuo-ku Tokyo 103-0023 Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
40
|
Muguruma K, Shirasaka T, Akiyama D, Fukumoto K, Taguchi A, Takayama K, Taniguchi A, Hayashi Y. An Efficient Method for the Conjugation of Hydrophilic and Hydrophobic Components by Solid-Phase-Assisted Disulfide Ligation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyohei Muguruma
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Takuya Shirasaka
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Daichi Akiyama
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Kentarou Fukumoto
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
- Kokusan Chemical Co., Ltd.; 3-1-3 Nihonbashihoncho, Chuo-ku Tokyo 103-0023 Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
41
|
Flanagan ML, Arguello AE, Colman DE, Kim J, Krejci JN, Liu S, Yao Y, Zhang Y, Gorin DJ. A DNA-conjugated small molecule catalyst enzyme mimic for site-selective ester hydrolysis. Chem Sci 2018; 9:2105-2112. [PMID: 29732115 PMCID: PMC5911826 DOI: 10.1039/c7sc04554a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022] Open
Abstract
The challenge of site-selectivity must be overcome in many chemical research contexts, including selective functionalization in complex natural products and labeling of one biomolecule in a living system. Synthetic catalysts incorporating molecular recognition domains can mimic naturally-occurring enzymes to direct a chemical reaction to a particular instance of a functional group. We propose that DNA-conjugated small molecule catalysts (DCats), prepared by tethering a small molecule catalyst to a DNA aptamer, are a promising class of reagents for site-selective transformations. Specifically, a DNA-imidazole conjugate able to increase the rate of ester hydrolysis in a target ester by >100-fold compared with equimolar untethered imidazole was developed. Other esters are unaffected. Furthermore, DCat-catalyzed hydrolysis follows enzyme-like kinetics and a stimuli-responsive variant of the DCat enables programmable "turn on" of the desired reaction.
Collapse
Affiliation(s)
- Moira L Flanagan
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - A Emilia Arguello
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Drew E Colman
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Jiyeon Kim
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Jesse N Krejci
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Shimu Liu
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Yueyu Yao
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Yu Zhang
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - David J Gorin
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| |
Collapse
|
42
|
Kim H, Shin K, Park OK, Choi D, Kim HD, Baik S, Lee SH, Kwon SH, Yarema KJ, Hong J, Hyeon T, Hwang NS. General and Facile Coating of Single Cells via Mild Reduction. J Am Chem Soc 2018; 140:1199-1202. [DOI: 10.1021/jacs.7b08440] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hyunbum Kim
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwangsoo Shin
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center
for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Ok Kyu Park
- Center
for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Daheui Choi
- School
of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hwan D. Kim
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungmin Baik
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center
for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Soo Hong Lee
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center
for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seung-Hae Kwon
- Division
of Bio-imaging, Korea Basic Science Institute (KSBI), Chun-Cheon 24341, Republic of Korea
| | - Kevin J. Yarema
- Department
of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland 21205, United States of America
| | - Jinkee Hong
- School
of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Taeghwan Hyeon
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center
for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Nathaniel S. Hwang
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
43
|
Sato S, Hatano K, Tsushima M, Nakamura H. 1-Methyl-4-aryl-urazole (MAUra) labels tyrosine in proximity to ruthenium photocatalysts. Chem Commun (Camb) 2018; 54:5871-5874. [DOI: 10.1039/c8cc02891e] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 1-methyl-4-aryl-urazole (MAUra) structure was found to be a novel tyrosyl radical trapping agent to label tyrosine residues effectively in proximity to ruthenium photocatalysts.
Collapse
Affiliation(s)
- Shinichi Sato
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kensuke Hatano
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Michihiko Tsushima
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
44
|
Amaike K, Tamura T, Hamachi I. Recognition-driven chemical labeling of endogenous proteins in multi-molecular crowding in live cells. Chem Commun (Camb) 2017; 53:11972-11983. [PMID: 29026906 DOI: 10.1039/c7cc07177a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endogenous protein labeling is one of the most invaluable methods for studying the bona fide functions of proteins in live cells. However, multi-molecular crowding conditions, such as those that occur in live cells, hamper the highly selective chemical labeling of a protein of interest (POI). We herein describe how the efficient coupling of molecular recognition with a chemical reaction is crucial for selective protein labeling. Recognition-driven protein labeling is carried out by a synthetic labeling reagent containing a protein (recognition) ligand, a reporter tag, and a reactive moiety. The molecular recognition of a POI can be used to greatly enhance the reaction kinetics and protein selectivity, even under live cell conditions. In this review, we also briefly discuss how such selective chemical labeling of an endogenous protein can have a variety of applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Kazuma Amaike
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
45
|
Tamura T, Song Z, Amaike K, Lee S, Yin S, Kiyonaka S, Hamachi I. Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems. J Am Chem Soc 2017; 139:14181-14191. [DOI: 10.1021/jacs.7b07339] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomonori Tamura
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zhining Song
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuma Amaike
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shin Lee
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sifei Yin
- Magdalene College, University of Cambridge, Cambridge CB3 0AG, United Kingdom
| | - Shigeki Kiyonaka
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
46
|
Liang C, Zheng D, Shi F, Xu T, Yang C, Liu J, Wang L, Yang Z. Enzyme-assisted peptide folding, assembly and anti-cancer properties. NANOSCALE 2017; 9:11987-11993. [PMID: 28792044 DOI: 10.1039/c7nr04370h] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The α-helix is the most prevalent conformation in proteins. However, formation of the α-helical conformation remains a challenge for short peptides with less than 5 amino acids. We demonstrated in this study that enzyme-instructed self-assembly (EISA) provides a unique pathway to assist the self-assembly of peptides into the α-helical conformation, while a heating-cooling process leads to a conformation more similar to a β-sheet. The same peptide with different conformations self-assembled into different nanostructures. The peptide with α-helical conformation self-assembled into stable nanofibers and hydrogels, while the other one assembled into an unstable nanoparticle suspension. The nanofiber solution exhibited better stability against proteinase K digestion and an enhanced cellular uptake compared to the nanoparticle solution. Therefore, the nanomedicine formed by the α-helical peptide showed a better inhibition capacity against cancer cells in vitro and significantly inhibited tumor growth in vivo compared to the one formed by the β-sheet peptide. Our study demonstrates the unique advantages of EISA to assist peptide folding and self-assembly into biofunctional nanomaterials.
Collapse
Affiliation(s)
- Chunhui Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ishiguro T, Amamoto Y, Tanabe K, Liu J, Kajino H, Fujimura A, Aoi Y, Osakabe A, Horikoshi N, Kurumizaka H, Yamatsugu K, Kawashima SA, Kanai M. Synthetic Chromatin Acylation by an Artificial Catalyst System. Chem 2017. [DOI: 10.1016/j.chempr.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Yang Y, Song H, He D, Zhang S, Dai S, Lin S, Meng R, Wang C, Chen PR. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label. Nat Commun 2016; 7:12299. [PMID: 27460181 PMCID: PMC4974458 DOI: 10.1038/ncomms12299] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 06/16/2016] [Indexed: 11/10/2022] Open
Abstract
Coupling photocrosslinking reagents with mass spectrometry has become a powerful tool for studying protein–protein interactions in living systems, but it still suffers from high rates of false-positive identifications as well as the lack of information on interaction interface due to the challenges in deciphering crosslinking peptides. Here we develop a genetically encoded photo-affinity unnatural amino acid that introduces a mass spectrometry-identifiable label (MS-label) to the captured prey proteins after photocrosslinking and prey–bait separation. This strategy, termed IMAPP (In-situ cleavage and MS-label transfer After Protein Photocrosslinking), enables direct identification of photo-captured substrate peptides that are difficult to uncover by conventional genetically encoded photocrosslinkers. Taking advantage of the MS-label, the IMAPP strategy significantly enhances the confidence for identifying protein–protein interactions and enables simultaneous mapping of the binding interface under living conditions. Mapping protein-protein interaction using crosslinking and mass spectroscopy strategies is hampered by a high rate of false-positive results. Here, the authors develop a genetically encoded photo-affinity probe for accurate identification of protein interaction partners and crosslinking sites.
Collapse
Affiliation(s)
- Yi Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haiping Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dan He
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuai Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shizhong Dai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shixian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Meng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
49
|
Capture-Tag-Release: A Strategy for Small Molecule Labeling of Native Enzymes. Chembiochem 2016; 17:1602-5. [DOI: 10.1002/cbic.201600267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Indexed: 12/20/2022]
|
50
|
Willwacher J, Raj R, Mohammed S, Davis BG. Selective Metal-Site-Guided Arylation of Proteins. J Am Chem Soc 2016; 138:8678-81. [PMID: 27336299 DOI: 10.1021/jacs.6b04043] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe palladium-mediated S-arylation that exploits natural metal-binding motifs to ensure high site selectivity for a proximal reactive residue. This allows the chemical identification not only of proteins that bind metals but also the environment of the metal-binding site itself through proteomic analysis of arylation sites. The transformation is easy to perform under standard conditions, does not require the isolation of a reactive Ar-Pd complex, is broad in scope, and is applicable in cell lysates as well as to covalent inhibition/modulation of metal-dependent enzymatic activity.
Collapse
Affiliation(s)
- Jens Willwacher
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Ritu Raj
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Shabaz Mohammed
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Benjamin G Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|